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Abstract

When adapting ICL with or without fine-tuning,
we are curious about whether the instruction-
tuned language model is able to achieve well-
calibrated results without suffering from the
problem of overconfidence (i.e., miscalibra-
tion) considering its strong instruction follow-
ing ability, especially in such limited data se-
tups. In this work, we deliver an in-depth anal-
ysis of the behavior across different choices
of learning methods from the perspective of
both performance and calibration. Through
extensive controlled experiments, we observe
that the miscalibration problem exists across
all learning methods in low-resource setups.
To achieve simultaneous gain for both in-task
performance and calibration, we then study
the potential of self-ensembling applied at dif-
ferent modeling stages (e.g., variations of in-
context examples or variations in prompts or
different ensembling strategies) to make the
predictions more calibrated and have compara-
ble or even better performance. We find that
self-ensembling with max probability produces
robust and calibrated predictions. Our work
reveals the potential calibration problem of us-
ing ICL despite the improvements in task per-
formance and sheds light on which learning
paradigm to choose. We also provide practical
guidelines for choosing learning paradigms de-
pending on whether the data has been seen by
the model before and a worthwhile solution via
self-ensembling on how to enhance both task
performance and calibration of LMs, which we
hope could encourage further study.

1 Introduction

Machine learning and NLP have undergone a sig-
nificant transformation recently, largely propelled
by language models (LMs) (Radford et al., 2019;
Brown et al., 2020; Chowdhery et al., 2022; Ope-
nAl, 2023; Li et al., 2025). Among different learn-
ing paradigms, Supervised Fine-Tuning (SFT) and
In-Context Learning (ICL) have emerged as pre-

dominant methodologies (Raffel et al., 2020; Dong
et al., 2022), demonstrating commendable efficacy
across many tasks. SFT tunes the model’s parame-
ter and effectively specializes a (general-purpose)
model to specific tasks by learning the knowledge
in the training data and optimizing the objective.
ICL, for each input, leverages the few-shot exam-
ples (i.e., the so-called demonstrations) to generate
predictions without tuning model parameters and
treating the model as a ‘black box’. Considering
the different input format between training with
SFT and inference with ICL, Min et al. (2022)
and Chen et al. (2022) introduce the in-context
examples into training phrase, which we call super-
vised in-context learning (SICL). However, when
the demonstrations, as a strong inductive bias, get
combined with SFT, it has been shown that LMs
become more likely to fall into the problem of over-
confidence (Desai and Durrett, 2020; Jiang et al.,
2021); the predicted confidence distribution of ICL
may be miscalibrated due to the bias in in-context
examples (Fei et al., 2023). Through our extensive
experiments, we observe that both paradigms, SFT
and ICL, suffer from the problem of miscalibration
in low-resource scenarios.

The important challenges of overconfidence and
miscalibration, particularly in scenarios marked by
limited data availability, underscore the need for a
nuanced understanding of these paradigms. These
challenges could be more severe in instruction-
tuned models considering their strong instruction-
following abilities. However, most of the previ-
ous work (Mosbach et al., 2023; Sun et al., 2023)
only focuses on comparing solely the performance
of SFT and ICL on out-of-distribution (OOD)
data, targeting general-purpose LMs. Here, we
instead focus on studying instruction-tuned rask-
specialized language models, where the behavior
of different paradigms’ in-task performance along
with their calibration remains an open research
question. Therefore, in this work, in addition to the
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Figure 1: Illustration of the self-ensembled learning
methods. We introduce different types of variations to
the input and feed them to a single language model.
After having the predictions, we run self-ensembling to
obtain final predictions and their confidence.

task performance of the models, we are interested
in: RQ1) how would ICL impact the calibration
of LMs? Furthermore, considering the possible is-
sue of overconfidence and miscalibration, we pose
and study another crucial research question: RQ2)
is it possible to ensure both in-task performance
and well-calibrated LM behavior at the same
time? Satisfying both requirements is critical to
the application of the model in real-life setups: an
applied system should provide both accurate and
calibrated predictions to be responsible.

To address the above challenges, we first inves-
tigate the performance and calibration of different
model-tuning and ICL methods, along with their
interplay, on 7 classification datasets in limited data
setups. The experiments without ICL demonstrate
that the vanilla language model is not necessar-
ily calibrated despite of the high in-task perfor-
mance it achieves. We find empirically that /CL
doesn’t help to improve the calibration consistently
across 5 of the 7 classification datasets. Our empir-
ical investigations with ICL unveil a phenomenon
between in-task performance and calibration, de-
pending on whether the task dataset has been seen
by the model before, which also gains increasing
attention over the research community in data con-
tamination (Zhu et al., 2023; Deng et al., 2023).
We further observe that most of the results show
relatively high calibration errors, which stands in
contrast with the requirements of responsible LMs.

Based on the findings above, we propose prac-
tical guidelines for choosing different learning
paradigms, which suggests supervised tuning meth-
ods are likely to achieve better performance on

unseen datasets while on seen datasets ICL com-
bined with other ‘tweaks’ such as model calibration
can be a better choice. In response to the possible
miscalibration, we explore the application of self-
ensembling as a potential solution (shown in Figure
1), inspired by the effect of ensembling of multiple
independent models in improving the reliability of
the predictions (Ovadia et al., 2019). We incorpo-
rate diverse variations in in-context examples and
prompts, tailor them to different learning methods,
and find that self-ensembling fortifies the model’s
calibration by 43% on average without compromis-
ing task performance.

Contributions. 1) We deliver a comprehensive em-
pirical analysis with different choices of learning
methods across a variety of tasks in limited data
scenarios, demonstrating that ICL doesn’t improve
the calibration of the model consistently (§5.1).
2) We show the relationship between in-task per-
formance and calibration of LMs depending on
whether the data has been seen by the model and
provide practical guidelines for the choice of learn-
ing paradigms (§5.2). 3) We investigate and justify
the feasibility of the self-ensembling pipeline in
enhancing both the performance and calibration
of LMs (§6). We release the code at https://
github.com/cambridgeltl/ensembled-sicl.

2 Related Work

Learning Paradigms. Fine-tuning (FT) pretrained
LM:s has been used as an effective method to adapt
them to specific tasks and datasets (Devlin et al.,
2019; Raffel et al., 2020; Li et al., 2025). With the
generation of much larger and more powerful LMs
(Brown et al., 2020; Chung et al., 2022), parameter-
efficient fine-tuning (PEFT) (He et al., 2022; Zhou
et al., 2024b) has been proposed, where the central
idea is to tune only a fraction of the model parame-
ters to reduce computation and memory costs.

Without tuning the model, in-context learning
(ICL) has shown great potential, achieving promis-
ing performance on various tasks with demonstra-
tion examples (Brown et al., 2020). Motivated by
the positive results of ICL by concatenating mul-
tiple in-context (IC) examples to the LM input at
inference, Min et al. (2022) and Chen et al. (2022)
introduce labeled in-context examples to the super-
vised training process (SICL). This has been further
improved and utilized with pretraining (Gu et al.,
2023; Shi et al., 2023) and other training strategies
(Ye etal., 2023; Wei et al., 2023).
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Sun et al. (2023) study task performance and
stability with different PEFT methods in addition
to ICL, including prompt tuning, and instruction
tuning (IT) (Singhal et al., 2022). Duan et al.
(2023) explore the relationship between ICL and
IT, and interpret ICL as implicit IT. Mosbach
et al. (2023) compare the generalization ability
of ICL and FT on out-of-distribution (OOD) data.
Zhou et al. (2023) show the superior performance
of hard prompt tuning over standard FT in low-
data scenarios. However, previous work has not
explored all the learning methods systematically
within low-data scenarios and has not investigated
them through the joint optics of in-task perfor-
mance, confidence, and their trade-offs.
Calibrating LMs. A well-calibrated LM should
be accurate in terms of performance while also
producing reliable confidence estimates for their
predictions (Zhang et al., 2024). This is essential
for ensuring the robustness and safety of language
model deployment (Hui et al., 2024; Ai et al., 2024).
When concatenating different in-context examples
with various labels, tokens, and example ordering,
ICL would be influenced by the bias in the con-
catenated examples (Zhao et al., 2021), and various
calibration methods have been proposed to mitigate
this issue (Wang et al., 2023a; Zhou et al., 2024a;
Liu et al., 2024). Moreover, the model itself also
contains certain ‘implicit’ label biases due to its
(pre)training corpus, which would have an effect on
the confidence estimation as well (Fei et al., 2023).
Furthermore, FT may suffer from miscalibration
for both in-distribution and OOD data due to over-
parameterization when adapting to the specific data
(Kong et al., 2020), and the miscalibration effect,
as we investigate in this paper, might be even more
pronounced in limited data scenarios.
Ensembling Model Predictions has been used
to mitigate the problem of overconfidence and
improve the reliability of the final model predic-
tions (Ovadia et al., 2019). A standard ensembling
practice is to train the model with different hyper-
parameters or different initialization (Wenzel et al.,
2020; Lakshminarayanan et al., 2017). Concern-
ing LMs, Sun et al. (2022) ensemble fine-tuned
LMs to quantify the uncertainty with disagreement
among different ensembling components. Gleave
and Irving (2022) and Wang et al. (2023b) ensem-
ble partially tuned LMs, considering the compu-
tation resources for training and the storage for
saving different LM checkpoints. Although the
proposed method achieves better and more reli-

able results, it takes a considerable amount of time,
computation, and storage resources to train and
save multiple models, which often makes them in-
applicable to LMs. In contrast to having several
tuned models with supervised learning, Yao et al.
(2023) demonstrate the feasibility of using self-
ensembling in ICL without tuning the model. In
this work, we explore self-ensembling in the novel
context of diverse learning paradigms and low-data
setups and show that it is possible to improve model
calibration without compromising performance.

3 Background: Learning Paradigms

In this paper, we analyze and compare four dif-
ferent learning paradigms relevant to ICL in low-
resource scenarios: zero-shot learning (ZSL),!
in-context learning (ICL), supervised fine-tuning
(SFT) and supervised in-context learning (SICL).
With classification tasks in focus, we briefly de-
scribe each paradigm in what follows.

Zero-Shot Learning (ZSL). Given the input x
and the prompting template f,, the prediction
¢y from the LM can be represented as § =
argmax; P(y;|fp(x)), where the parameters of
the underlying LM are fixed. The prompting tem-
plate f,(«) includes the task instructions and spe-
cial symbols which can be replaced by the input
x. We attach the prompting templates for different
classification tasks in Appendix D.

In-Context Learning (ICL). Similar to ZSL,
instead of only feeding the input z to the
model, we first prepend M in-context ex-
amples (IC) (also called demonstrations)
[fp(z1),y15 s fo(@n), yar) to the input z. The
examples are retrieved from the pool of examples
R following (random or non-random) selection
strategy. The prediction is then defined as
§ = argmax; P(y;|[fp(z10), yicl, fp(x)).
Supervised Fine-Tuning (SFT). As mentioned,
ZSL and ICL are inference-only paradigms treat-
ing the LM as a black box. On the other hand, SFT
first trains the model on the training set following
the input format f,(x) from ZSL. Note that here
we use SFT to refer to instruction-style fine-tuning
with a prompting template, which we see as the
context. Inference with the tuned model P’ is then
conducted in the same way as with ZSL. During
training and inference, we can use different prompt-

'In ZSL and later ICL there is no actual *learning’ taking
place, and the model simply reacts to the provided prompt, but
we have chosen the term ZSL for consistency with previous
literature.
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ing templates to create variations in the model in-
put, which we further elaborate on in §6.1.1.
Supervised In-Context Learning (SICL). Based
on the propositions from Min et al. (2022) and
Chen et al. (2022), we can also fine-tune the model
to directly optimize the in-context learning objec-
tive. For each training step, M in-context examples
(x1,Y1), -, (a1, yar) are selected from the pool R.
We then prepend the selected in-context examples
to the input = as before with ICL and use the con-
catenation as the final model input, and train the
model to generate y. Inference proceeds in the
same way as with ICL, except that we now use the
task-tuned model P’.

4 Experimental Setup

Datasets and Evaluation Metrics. We con-
sider 7 classification datasets that cover a range
of label numbers and scenarios: SST-2, SST-5
(Socher et al., 2013), RTE (Wang et al., 2019),
ANLI (Nie et al., 2020), Measuring Hate Speech
corpus (Sachdeva et al., 2022), Intent Detection
from NLU++ (Casanueva et al., 2022) and Mani-
festos (Lehmann et al., 2023). In order to simulate
low-data setups, we sub-sample smaller training
data from the full data for each dataset. The de-
tails of the datasets along with their corresponding
evaluation metrics are provided in Appendix A.1.

Implementation Details. Unless noted otherwise,
we use Flan-T5jyge (Chung et al., 2022) as the
main model in the experiments. Detailed training
environments and hyper-parameters are provided
in Appendix A.2 and A.3. Further, we provide all
the prompting templates in Appendix D.1 and D.2.
Estimating Calibration. Beyond task perfor-
mance of all the possible variants, we estimate the
calibration of the model’s predictions (as a proxy
towards model confidence) by using Expected Cal-
ibration Error (ECE) (Guo et al., 2017). It di-
vides the n predicted results based on their con-
fidence into M bins B to Bjs and then computes
a weighted average over the absolute difference be-
tween the accuracy acc(B,,) and mean confidence
conf(B,,) of the predictions within each bin. We
set M to 10 in this work.

_— X B,
ECE =) Tm|acc(Bm) — conf(By)| (1)

m=1

ECE measures the difference between the model’s
empirical accuracy and its confidence (predicted

probability). The smaller the ECE, the more con-
fident the model prediction would be. We also
report the negative log-likelihood (NLL) (Hastie
et al., 2001) — " , log(p;) and information en-
tropy (IE) — >, pilog(p;) as supplementary met-
rics of model’s (lack of) confidence (Zhang et al.,
2025). We define well-calibrated results by an ECE
threshold below 0.2 to facilitate clearer discussion.

5 RQI1: How does ICL Impact Model
Calibration?

In this section, we are interested in how ICL im-
pacts the calibration of the language model. To an-
swer this question, we experiment with ZSL, ICL,
SFT and SICL to find out 1) whether the model is
calibrated and 2) the differences in calibration with
different learning methods. We first present a com-
prehensive analysis of various learning methods in
low-resource settings, detailing model performance
and calibration errors in Table 1. Full experimental
results are shown in Appendix B.

5.1 Results and Discussions

The language model with ICL is not necessar-
ily calibrated despite of the high in-task perfor-
mance. We observe that when testing the model
performance with the least inductive bias using
ZSL, the model shows relatively high ECEs on
SST-2 and RTE despite that it achieves more than
80% accuracy, and is only calibrated on SST-5
(ECE <0.2). When we use ICL without tuning the
model, we only witness a significant drop of ECE
in 2 of 7 datasets. By tuning the model with SFT
or SICL, the model becomes even less calibrated
on SST-2, RTE, SST-5, although it achieves better
in-task performance. Based on this finding, we
further look into the interplay between the in-task
performance and model calibration.

Performance and calibration of learning meth-
ods are task-dependent, depending on whether
the data has been seen by the model. We find
that learning methods perform differently depend-
ing on the datasets and we divide the tasks into
different families depending on their observed be-
havior. ICL demonstrates comparable performance
to SFT/SICL on SST-2 and RTE. However, tuning
on these datasets with SFT/SICL yields increased
ECE along with higher NLL and lower IE scores as
shown in Table 2, but no substantial in-task perfor-
mance improvement. This indicates that the model
does not recover the ground truth distribution in
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Metrics Methods | SS7-2 RTE ANLI SST-5 NLU++ Manifestos Hate Speech
ZSL 94.67 86.64 5230 42.00 29.20 14.50 37.08
ICL 9522012 8845, 5217047 37.5%23 40.11p00 1301010  40.090g

Performance | o 9561020 88.8lg20 61.63165 4627200 7998050 3576123  58.01,01
SICL | 95.63020 8857045 6390014 47.12,0; 807603 375561  59.48,79
ZSL 0.907 0.809 0356 0.142 0.231 0.432 0318

ECE ICL 09150001 0.8150003 0.351p9005 0.1830002 0.1299000 0.476¢.002 0.271¢.002
SFT 09410011 0.8420002 0.3160023 04030032 00110001 02010072 0.3540 036
SICL 0.9450013 0.8760003 0.2800011 0.3600025 0.002000; 0.214¢.038 0.1930.113

Table 1: Results for different learning methods across all 7 datasets. We report the average of 3 independent runs
with different random seeds; variance is reported in the subscript. Numbers in bold represent the best performance
and calibration score per dataset. The datasets ‘seen’ by Flan-TS5 at pretraining are labeled in italic.

. . SST-2 SST-5
Evaluation Metrics ICL SICL | TcL  sIcL
ECE | 0915 0.945 | 0.183 0.360
Calibration NLL | 0.135 0.271 | 1.226 2.339
IE 0.056 0.015 | 0.152 0.049
. . NLU++ Manifestos
Evaluation Metrics ICL SICL | TcL  SIcL
ECE | 0.129 0.002 | 0.476 0.214
Calibration NLL | 0.214 0.084 | 3.942 2.026
IE 0.142 0.002 | 0.101 0.145

Table 2: Calibration errors and other uncertainty metrics
of different learning methods across tasks (part of). We
refer the readers to Appendix B.1 for full results.

the test set while becoming more confident and cer-
tain about its predictions, which serves as a sign
of miscalibration. Conversely, tasks such as intent
detection (NLU++), Manifestos, and Hate speech,
show noticeable performance enhancement and bet-
ter calibration with lower ECE by using SFT/SICL.
Nevertheless, despite these task-dependent varia-
tions, ECE remains relatively high across all meth-
ods except for intent detection, indicating the prob-
lem of miscalibration across all learning methods.

ICL can achieve comparable performance with
SFT on ‘seen’ data. We suspect the divergent
behaviors are possibly due to data contamination
of FLAN training corpus (Longpre et al., 2023)
wherein ZSL and ICL exhibit similar performances
with SFT and SICL on training datasets labeled as
seen (e.g., SST-2, RTE).? To further investigate the
performance on seen datasets, we apply the Batch
Calibration method (Zhou et al., 2024a), as shown
in Table 9 in the Appendix. Surprisingly, we find
that ICL performs on par or even better than SICL
with calibration across all the (possibly) seen data,
which reveals the ability of LMs that have been

2We corroborate findings from other concurrent work on
data contamination (Zhu et al., 2023; Deng et al., 2023) that
also reports the unfair practice of evaluations on seen datasets.

recovered by calibration techniques on these seen
tasks. However, for unseen datasets (NLU++, Man-
ifestos, etc.), the performance of ICL, even with
the calibration method applied, is not comparable
to those of either SICL or SFT.

5.2 Practical Guideline on Choosing Learning
Methods

Given the comparison of the performances and
calibration on different datasets, we suggest that
the choice of learning methods should be task-
dependent. The experiments and analysis indicate
that unseen datasets obtain better performance and
more trustworthy results with supervised tuning
methods. For the seen datasets, ICL combined with
other ‘tweaks’ such as model calibration can be a
better choice, since the supervised tuning methods
are more likely to make the model over-confident
and less trustworthy.

Within supervised tuning methods, for SFT and
SICL, we empirically observe that SICL shows
marginally higher performance (1 1.23) and lower
ECE (] 0.05) than SFT on average across unseen
datasets in Table 1. We believe this is possibly due
to 1) the knowledge in the IC examples in addition
to the training input-label pairs and 2) different
combinations of in-context examples as a way of
data augmentation in low-resource scenarios.

6 RQ2: How to Ensure Performance and
Calibration?

6.1 Self-Ensembling

So far, we have observed the common miscalibra-
tion issues for all learning methods. We then inves-
tigate the feasibility of self-ensembling to improve
calibration. There are two points that create pos-
sible variations that can be used for ensembling:
1) variation in the selection of in-context exam-
ples (for ICL and SICL), and 2) variation in the
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chosen prompt (for all the paradigms). Previous
work focuses on 1) selecting a better combination
of in-context examples (Su et al., 2023) for the
model or 2) generating an optimal prompting tem-
plate (Zhou et al., 2023). On the other side, how
the variation of multiple demonstration combina-
tions and prompting templates influences the model
behavior is still unexplored. Furthermore, we can
3) ‘self-ensemble’ the model with different ensem-
bling strategies. We now introduce these variants.

6.1.1 Variation of Ensembling Components

Variation of In-Context Examples (Var-IC). For
ICL and SICL, IC examples and their ordering
[fp(z1c), yic] create variations in the model in-
puts with a fixed template f,,, while not impacting
the test pair f,(x) ~ y. This allows us to create
various in-context example combinations as differ-
ent inputs to a single model and obtain different
ensemble components.

Variation of Prompting Templates (Var-Prompt).
Different prompting templates have shown high
variance in task performance (Mishra et al., 2022).
By changing the wording in the templates f,, we
can also create variations even with the same in-
put to the model. For each input z, we randomly
select a prompting template fl’, from a set of avail-
able prompting template candidates. In ICL and
SICL, the same template is also applied to the
in-context examples, formatting the final input as
(@), y1; -5 fp(@ar), yar, fp(x)]. This makes it
applicable not only to ICL and SICL, but also to
ZSL and SFT as well.

Variation of Both (Var-Both). When we create a
set of ensembling components, we can also com-
bine these two variations.

6.1.2 Self-Ensembling Strategy

For each variant, we obtain the predicted results ¢
and the confidence p for each component. The next
step involves ensembling the predictions over K
different components. We experiment with three
(self-) ensembling strategies to compare their im-
pact on both performance and calibration.

Majority Vote. We select the predicted results
that have the highest accumulated probability
across K variants as the ensembling predictions.
The accumulated probability P,.. for the pre-
dicted label [; is defined as Puec(y = ;) =
S Pr(k = 1)y, = 1;). We pick the vari-
ants that have the same prediction as the ensem-
bling prediction and average the probability dis-

tribution of the selected components Pes(y|z) =
’

& Zszl Pr(y|z) where K’ is the number of se-

lected variants.

Mean Probability. We average the predicted
probability distribution of K variants and use
the prediction that has the largest probability in
the averaged distribution as the ensemble result
Yens = arg max; Pens(y;|x), where Pens(y|r) is
described as Pens(y|z) = % S Prlylx).

Max Probability. For each possible value in
the output space, we find the maximum probabil-
ity of the predicted values across K variants and
use this as the prediction’s probability P'(j =
lilr) = max(P;j(y = lLl|x),j € [1,K]). Be-
cause the probability is obtained from different
components, the summation of these probabilities
is not guaranteed to be 1. Therefore, we apply the
normalization on the new probability distribution:
Pens(y|z) = Norm(P'(y|x)). The ensemble pre-
diction is determined as the ¢ that has the highest
probability after the ensembling step.

6.2 Results and Discussions

Self-ensembling works across learning methods
and enhances calibration performance. In Ta-
ble 3, with different learning methods combined
with self-ensembling variations in the design, we
find that by changing the in-context example com-
binations or prompting templates, the best perfor-
mance of self-ensembling outperforms the baseline
without any ensembling by 0.79. Even though the
performance gains seem marginal, self-ensembling
substantially enhances the calibration performance,
reducing the mean ECE value by 43%. The em-
pirical results also show that in addition to ICL,
SFT, and SICL also benefit from self-ensembling
in both performance and calibration scores. SFT
and SICL exhibit a larger drop in ECE after self-
ensembling than ICL. We also notice that when
self-ensembling over SFT and SICL, the model
has lower ECE scores than ICL, but with much
better task performance. This indicates the effi-
ciency of self-ensembling in making the predic-
tions more trustworthy while maintaining or even
improving the task performance. It also suggests
that self-ensembling has the potential to mitigate
the prominent problem of overconfidence in super-
vised tuning methods, as shown by Figure 1.

Different Variations and Ensembling Strategies.
Our results suggest that with ICL, Var-IC yields
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Manifestos
Systems Macro F1 ECE
Ori. Max Mean Majority A Ori. Max Mean Majority A
ZSL 14.50 10.79 | 0.432 1 0.170
+ Var-Prompt | 1450 13.69 12.93 15.29 170.79 | 0432 0.262 0.335 0.437 1 0.170
ICL 13.01 10.68 | 0.476 10.283
+ Var-IC 13.01 1350 13.46 13.69 170.68 | 0476 0415 0.465 0.469 1 0.061
+ Var-Prompt | 13.01 1325 11.67 11.53 10.24 | 0476 0.268 0.366 0.472 1 0.208
+ Var-Both 13.01 11.19 11.50 11.21 1 1.51 | 0476 0.193 0.354 0.480 10.283
FT 35.76 10.73 | 0.201 1 0.134
+ Var-Prompt | 35.39 3649 35.66 3491 171.10 | 0.144 0.066 0.105 0.135 10.077
SupICL 37.55 170.06 | 0.214 4 0.090
+ Var-IC 37.55 36.57 37.35 37.61 170.06 | 0.214 0.179 0.210 0.215 1 0.035
+ Var-Prompt | 37.04 37.14 37.25 36.77 170.21 | 0.229 0.139 0.191 0.219 1 0.090
+ Var-Both 37.04 36.67 37.15 37.50 170.46 | 0.229 0.124 0.192 0.230 1 0.105
Hate Speech
Systems Macro F1 ECE
Ori. Max Mean Majority A Ori. Max Mean Majority A

ZSL 37.08 4 0.13 | 0.318 1 0.049
+ Var-Prompt | 37.08 36.54 36.95 36.95 1 0.13 [ 0.318 0.269 0.302 0.320 1 0.049
ICL 40.09 11.10 | 0.271 1 0.111
+ Var-IC 40.09 40.01 39.98 40.49 170.40 | 0.271 0.233 0.267 0.269 1 0.038
+ Var-Prompt | 40.09 41.03 41.19 41.05 11.10 | 0.271 0.194 0.236 0.275 10.077
+ Var-Both 40.09 39.68 40.30 40.49 170.40 | 0.271 0.160 0.237 0.278 1 0.111
FT 58.01 1 0.82 | 0.354 1 0.115
+ Var-Prompt | 55.92 57.16 57.17 57.19 11.27 1 0.350  0.239 0.290 0.345 1 0.111
SupICL 59.48 10.74 | 0.193 1 0.078
+ Var-IC 59.48 5998 59.82 59.83 170.50 | 0.193 0.141 0.179 0.191 1 0.052
+ Var-Prompt | 58.66 59.96 60.10 59.86 T1.44 | 0251 0.165 0.211 0.246 1 0.086
+ Var-Both 58.66 60.12 60.22 59.97 1T 1.56 | 0.251 0.115 0.206 0.246 1 0.136

Table 3: Results of self-ensembling with different variations (selection). We mark the cells of baseline systems
without self-ensembling and their results in grey. Numbers in bold represents the best values for each learning
method. A calculates the difference of performance and calibration error between the original results (Ori.) and the
best self-ensembled results, where green denotes better results and red denotes worse results. We refer the readers

to Appendix B.2 for full self-ensembling results.

more improvements than Var-Prompt, while the
latter shows its efficacy with SFT and SICL. This
difference stems from inappropriate prompting tem-
plates, requiring model tuning to adhere to the
prompt structure. We also find that combining both
variations may not necessarily improve the perfor-
mance but is helpful in enhancing the trustworthi-
ness empirically. Regarding ensemble strategies,
we notice that the majority vote improves the per-
formance in general, but struggles to reduce the
calibration error. Ensembling with max probabil-
ity consistently produces the most faithful predic-
tions with promising performances. This can be
explained by the idea that normalizing over the
max probabilities in a way smooths the probabil-
ity distribution, making the max probabilities less
extreme and mitigating over-confidence issues.

6.3 Discussions and Ablation Studies

Comparison with Classical Calibration Meth-
ods. Compared to Platt and Temperature Scaling
(Guo et al., 2017), self-ensembling doesn’t require
any supervised labelled data to tune the parameters
for different instruction templates, ICL settings and
models. In addition, classical calibration methods
merely adjust confidence levels while preserving
the ranking among choices in classification tasks,
making it ineffective in enhancing performance
(see Table 11 in the Appendix). As a different per-
spective, self-ensembling is orthogonal to other cal-
ibration methods, allowing other calibration meth-
ods to be applied on top of the ensembled results.

More ensembling components with Var-IC lead
to better calibration. We explore how varying the
number of ensembling components with different
in-context examples affects performance and cali-
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Figure 2: Performance and calibration errors of different
number of components with variations in in-context
examples on Manifestos.

Hate speech
Metrics Num SFT E-SFT SICL E-SICL
1 58.01 58.01 5948  59.48
Performance 4 5592 57.16 58.66 59.96
8 56.00 56.60 58.37 59.61
1 0.354 0354 0.193  0.193
ECE 4 0.350 0.239 0.251 0.165
8 0.335 0.208 0.403  0.200
SST-5
Metrics Num SFT E-SFT SICL E-SICL
1 46.27 4627 47.12 47.12
Performance 4 48.11 4743  47.99 47.70
8 4755 4788 4575 4512
1 0.403 0403 0360 0.360
ECE 4 0.396 0.301 0.271 0.170
8 0.362 0.244 0403 0.272

Table 4: Results with different numbers of prompting
templates on Hate speech and SST-5.

bration. Figure 2 shows the performance and ECE
scores with different components. We observe that
although the performances remain comparable, cal-
ibration is improved with more components in both
ICL and SICL. This highlights the effectiveness of
the self-ensembling in making the predictions more
trustworthy through increased input variations.

Diversity in Var-Prompt influences self-
ensembling. Table 4 show that when tuning
with more templates, SFT has lower calibration
errors whereas those of SICL increase. Regarding
self-ensembling results, we find that by introducing
more prompting templates, self-ensembling yields
lower calibration error with SFT, but shows worse
calibration with SICL, meanwhile yielding similar
performances.  Nonetheless, self-ensembling
consistently improves the performance and
calibration in each setting.

The key findings are robust across different
training data sizes. We experiment with larger
training data and report the results of SFT and SICL
on SST-5 in Figure 3. We observe that both SFT
and SICL yield better performance and lower ECE

Performance Calibration
55 0.4
. .
[
o L
S SFT O
@ 50 R )
= E-SFT
E-SICL
45 T T 0.0 T T
200 400 200 400
Shots Shots

Figure 3: Performance and calibration errors on SST-5
with different numbers of training data.

with more training data, whereas ICL maintains
similar performance. This indicates that supervised
methods can better calibrate the model, and pro-
duce more calibrated predictions if provided with
sufficient data. We also find that self-ensembling re-
mains effective in improving model’s performance
and mitigating the calibration error on average.

The findings hold across different model sizes.
In order to assess the impact of model sizes, we
further conduct experiments with Flan-T5y;. For
full detailed experiment results, we refer the read-
ers to Table 13 and 14 in the Appendix. We find
that a larger model achieves a better calibration
score with SFT and SICL than ZSL and ICL. We
also witness similar behavior of ICL, surpassing
SFT and SICL with or without Batch Calibration
on seen data, which aligns with previous findings.
The results on SST-5 and Hate Speech show that
by applying the self-ensembling method, Flan-T5y
achieves better performance and lower calibration
scores, indicating that the model becomes more
‘task-specialized’. It is also worth noticing that our
method is able to improve the performance and de-
crease the calibration scores on some tasks (Hate
Speech) where traditional calibration currently fails.

7 Conclusion

We have provided a comprehensive analysis of the
intricate relationship between in-task performance
and calibration across various learning methods in
low-resource scenarios. Our findings illuminate
the nuances of in-task performance and calibration
across different task families, meanwhile address-
ing the inherent miscalibration over all learning
methods. We have also investigated effective strate-
gies to enhance both aspects simultaneously, of-
fering a viable solution through self-ensembling:
it results in more calibrated predictions with com-
parable or superior task performance. We hope
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that this study will contribute valuable insights into
the dynamic landscape of LMs. These discoveries
also offer practical guidance to practitioners, aid-
ing them in choosing suitable learning paradigms
and paving the way for the development of more
reliable and high-performing LMs across diverse
applications.

Limitations

Our experimental results are conducted with the
Flan-T5 model family, which is an encoder-decoder
architecture, where we have not investigated the
behaviour of other popular choices of decoder-
only models, such as Llama (Touvron et al., 2023)
in low-resource scenarios, with different learning
methods and self-ensembling strategies. Secondly,
limited by the training resources, our experiments
only consider LMs within the 3B parameter bud-
get. We will endeavor to scale our experiments to
cover larger language models as part of future work.
Moreover, there is a variety of additional, more
sophisticated ensembling methods (Mohammed
and Kora, 2023), where we have only studied the
max, mean, and majority vote variants for self-
ensembling. In future work, we aim to extend the
analysis and the self-ensembling methods to more
families of tasks, diverse types of models, and other
ensembling techniques.
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A Experiment Setup
A.1 Dataset Details

SST-2. The SST-2 dataset, a widely-used bench-
mark in sentiment analysis, comprises sentences
from movie reviews annotated with binary senti-
ment labels (positive or negative). We train the
model with the data randomly sampled from the
original training set and report the performance on
the test set. We evaluate the model’s performance
based on accuracy.

SST-5. SST-5, an extension of SST-2, enhances
sentiment analysis with five classes: very negative,
negative, neutral, positive, and very positive. De-
rived from movie reviews, this dataset provides a
nuanced perspective on sentiment, allowing models
to distinguish fine-grained emotional tones. With
all other practices aligned with SST-2, the results
are evaluated with micro f1 and macro f1 scores
because it has more than 2 labels.

RTE. Recognizing Textual Entailment is a bench-
mark dataset assessing the task of determining log-
ical entailment between pairs of text snippets. An-
notated with binary labels indicating entailment
or not, RTE is crucial for evaluating models’ logi-
cal reasoning abilities. We report the accuracy in
accordance with other binary classification tasks.

ANLI. Adversarial NLI is a benchmark dataset in-
troducing adversarial examples to challenge mod-
els with nuanced reasoning and complex inferences.
With labeled sentence pairs denoting entailment,
contradiction, or neutrality, ANLI is crucial for as-
sessing models’ robustness and generalization in
the face of diverse linguistic challenges. ANLI has
three different rounds of contexts, with later rounds
having a better base model, thus being more dif-
ficult for the model to distinguish. In this paper,
we conduct the experiments mainly on the first
round, which is easier than other rounds, in order
to compare the performance with ICL. Since it is
a multiclass classification task, we report the per-
formance with micro and macro F1 scores. In this
paper, we mainly use r1 level data for experiments.

NLU++. NLU++ is a more challenging benchmark
in task-oriented dialogue system with more fine-
grained domain ontologies and sentences with mul-
tiple intents. It has two tasks: intent detection and
slot labeling, covering the banking and hotels two
domains. In this work, we focus on the intent detec-
tion task, which is a multi-label classification task
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Dataset Label number Main Metric Train size
SST-2 2 acc 50
RTE 2 acc 50
ANLI 3 acc 50
SSTS 5 macro f1 50
NLU++ 2 micro f1 50
Manifestos 8 macro f1 800
Hate speech 3 macro f1 50

Table 5: Summary of the datasets, main evaluation met-
ric for performance and training data size used for ex-
periment.

and we follow the setting from recent work with
state-of-the-art results (Razumovskaia et al., 2023),
which formats it as a binary yes/no classification
task. See the cited work for further details. Regard-
ing the data split, 1,000 sentences from NLU-++
were held out for testing and 50 sentences from
the leftover 2k+ sentences were sub-sampled for
training.

Manifestos. Manifestos was originally created
to collect the manifestos of parties from different
countries. It also includes the analytical variables
that indicates the respective categories of the quasi-
sentences. The corpus have 8 domains overall,
which are listed as follows: None (of the below)
/ Other, External Relations, Freedom and Democ-
racy, Political System, Economy, Welfare and Qual-
ity of Life, Fabric of Society, Social Groups. In
this paper, we use the sentences that only have one
golden domain and exclude the ones with multiple
labels.

Measuring Hate Speech Corpus. Measuring Hate
Speech Corpus, in short Hate speech, contains1 10
constituent ordinal labels and the continuous hate
speech score to measure the extent of hate. We use
the hate speech score as indicator of hate speech
in this paper. We follow the original division of
approximate hate speech provided by the authors,
where > 0.5 is approximately hate speech, < -1
is counter or supportive speech, and -1 to 0.5 is
neutral or ambiguous.

We only experiment on the intent detection task
in the NLU++ bank domain and for ANLI we
mainly discuss rl level data. We summarize the
training data size, main performance evaluation
metrics, and the number of labels for each dataset
in Table 5. We also list the label verbalizers for all
datasets in Table 6.

Task Label Verbalizer

SST2 postive, negative

RTE yes, no

ANLI yes, maybe, no

SSTS terrible, bad, neutral, good, great

NLU++ yes,no

Manifestos other, external, democr.acy, political,
economy, welfare, fabric, group

Hate Speech | support, neutral, hate

Table 6: Label verbalizer for different tasks.

A.2 Environment Setup

We mainly use Flan-T5;,ee (783M parameters) as
the task models for all the datasets. We also use
Flan-T5y; (2.85B parameters) on some of the task
to see whether the findings still hold on the larger
model. For SFT and SICL, we use LoRA (Hu et al.,
2022) to tune Flan-T5y;. Due to the computational
limitations, we can’t obtain the results on all the
datasets with Flan-T5y;.

All the experiments are conducted on Cam-
bridge High-Performance Clusters with a single
A100 (80G) and a 32-core vCPU. We release
the code and the environment dependencies for
reproducible purposes at https://github.com/
cambridgeltl/ensembled-sicl.

A.3 Hyperparameters

In order to evaluate the model’s performance and
trustworthiness in low-resource scenarios, we sam-
ple a subset of the training set and evaluate it on a
fixed set of data as an evaluation and test set. For
Manifestos, because it has 8 classes and is more ex-
pertise in specialized domains (politics, economics
and etc.), we use a relatively larger training set to
adapt the model to the task itself. For Hate Speech,
we manually sample the training set and test set
ourselves since the corpus didn’t provide the split.
We randomly sample 1500 data as the fixed test set
and 500 examples as the fixed evaluation set.

All the main experiments are conducted three
times with 0, 21, 42 as the random seeds. We
report the mean values of three runs in the main
content.

Across different learning paradigms (ICL and
SICL), we concatenate 3 in-context examples in
front of the input for the main experiments.

For supervised fine-tuning methods, we attach
the detailed hyperparameters in Table 7 for repro-
ducibility. Because tuning the model in the low-
resource setting is prone to over-confidence, in or-
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der to mitigate the problem, we apply the early
stopping with the patience of 5.

Regarding the configuration hyper-parameters of
PEFT, they are listed in Table 8. Unlisted proper-
ties use the default values in PEFT implementation
from huggingface?.

B Full Experiment Results

To solidify the empirical findings, in this section,
we present full experiment results with more met-
rics in addition to the table in the main content for
readers’ reference.

B.1 Results of different learning methods

Table 9 shows the full results on all 7 datasets.
We report the accuracy, micro f1, and macro f1 as
the performance metrics. We report ECE as the
measurement of calibration. We also include NLL
and IE as supplementary uncertainty metrics. We
find that on SST-2 and RTE, the model achieves
comparable or even better performance with ZSL
and ICL than SFT and SICL. In the meantime, the
predictions have a relatively high ECE, indicating
that on these two datasets, the model has the is-
sue of miscalibration. On ANLI, Manifestos, Hate
speech, and NLU++, with SFT and SICL the model
has lower calibration error than ICL and achieves
better performance in both performance metrics.

In addition to the original results, we include the
Batch Calibration results across all the datasets. On
SST-5 and ANLI, although ZSL and ICL achieve
similar micro f1 scores, there is still a gap in the
original macro fl scores between ZSL/ICL and
SFT/SICL. However, after applying Batch Cali-
bration, we find that ZSL/ICL has a comparable
macro f1 score to SFT/SICL. On Manifestos, Hate
speech, and NLU++, we don’t observe compara-
ble performance between ZSL/ICL and SFT/SICL
either with or without Batch Calibration.

B.2 Results of self-ensembling

Table 10 shows the self-ensembling results across 4
datasets. We exclude the seen datasets (SST-2 and
RTE) for fair evaluation, as well as NLU++ since
it’s almost well-calibrated with supervised tuning.
We still include ANLI for comparison even though
it is included during pre-training. We report the
mean values of the results with 3 different random
seeds (0, 21, 42).

Shttps://huggingface.co/docs/peft/index

Hyperparameters ICL FT SupICL
SST2
train batch size - 8 8
eval batch size 64 32 32
grad accumulation - 1 1
learning rate - 5e-5 5e-5
evaluation per steps - 10 10
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - accuracy  accuracy
RTE
train batch size - 8 4
eval batch size 64 32 32
grad accumulation - 1 2
learning rate - 5e-5 5e-5
evaluation per steps - 10 10
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - accuracy  accuracy
ANLI
train batch size - 8 4
eval batch size 64 32 32
grad accumulation - 1 2
learning rate - Se-5 Se-5
evaluation per steps - 10 10
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - accuracy  accuracy
SSTS
train batch size - 8 8
eval batch size 64 32 32
grad accumulation - 1 1
learning rate - Se-5 Se-5
evaluation per steps - 10 10
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - macro f1 ~ macro f1
NLU++
train batch size - 16 16
eval batch size 64 32 32
grad accumulation - 2 2
learning rate - 5e-5 5e-5
evaluation per steps - 500 500
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - micro f1 ~ micro f1
Manifestos
train batch size - 8 4
eval batch size 32 32 32
grad accumulation - 1 2
learning rate - Se-5 Se-5
evaluation per steps - 10 10
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - macro f1  macro f1
Hate speech
train batch size - 8 4
eval batch size 32 32 32
grad accumulation - 1 2
learning rate - 5e-5 5e-5
evaluation per steps - 10 10
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - macro f1 ~ macro f1

Table 7: Hyper-parameters for each dataset when com-
paring different learning methods.
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Hyperparameters Values
r 8
lora alpha 32
lora dropout 0.05
target modules q,v

Table 8: Hyper-parameters for PEFT with FlanT5-x1.

From the perspective of performance, we find
that on SST-5, Manifestos, and Hate speech, self-
ensembled results achieve slightly better perfor-
mances on average and show positive improve-
ments with each learning method. On ANLI, we
observe no significant improvement in the accu-
racy of self-ensembled results and the decreases
in performance are trivial as well. However, from
the perspective of calibration, we find that self-
ensembling with max probability consistently de-
creases the calibration over all settings, as shown in
Figure 4. Introducing variations in both in-context
examples and prompting templates yields the low-
est calibration error in all experiments.

Among different ensembling methods, we find
that majority vote can achieve better performances
sometimes but it doesn’t help to reduce the calibra-
tion error or even make it worse. Mean probability
and max probability are able to improve the per-
formance meanwhile reducing the calibration error.
The empirical experiment results suggest that al-
though majority vote as a widely used ensemble
method achieves better performance, it is worth
noting that it may deliver unfaithful predictions,
which is not preferred in real application.

C Supplementary Results

C.1 Comparison with Classical Calibration
Methods

In comparison to self-ensembling in our work, both
temperature scaling and Platt scaling (Guo et al.,
2017) require supervised labeled data as a valida-
tion set and parameter tuning (e.g., temperature) for
different instruction templates, ICL settings, and
models. In contrast, self-ensembling is tuning-free
and employs strategies that are universally applica-
ble across different learning methods. Furthermore,
temperature scaling merely adjusts confidence lev-
els while preserving the ranking among choices
in classification tasks, making it ineffective in en-
hancing performance, as shown in Table 11. Platt
scaling is mostly suitable for binary classification
tasks, making it less applicable to multi-class clas-

sification tasks.

We argue that self-ensembling is orthogonal to
other calibration methods, allowing other calibra-
tion methods to be applied on top of the ensembled
results for further calibration with improved perfor-
mance. It can help mitigate the problem of miscali-
bration, offering new perspectives on calibration in
addition to previous methods and enhancing trust-
worthiness.

Through experiments, we also observe that tem-
perature scaling is sensitive to the selection of su-
pervised labelled data. If we choose a batch of
label-imbalanced supervised labelled data, temper-
ature scaling may fail in this case. On the other
hand, self-ensembling method doesn’t have this
problem due to its training-free nature, as shown in
Table 12.

C.2 How about larger models?

Table 13 shows the results on SST-5 and Hate
speech with different learning methods using Flan-
T54. With ZSL and ICL, we observe that xI version
model has larger calibration errors than Flan-T5 ;e
model on possibly seen datasets (SST-2 and SST-
5), whereas on unseen datasets (Hate speech and
Manifestos) it shows lower ECE. Regarding the
performances, the x] model shows better perfor-
mances on unseen datasets than the large version
model but doesn’t guarantee better performances
on seen datasets. After tuning the model with SFT
or SICL, we find that the calibration errors are
reduced across all tasks, which is different from
Flan-T5},rge. Due to the computation constraint, we
leave the discrepancy in the behaviors of different-
sized models to future work.

Table 14 shows the self-ensembled results us-
ing Flan-T54; on SST-5 and Hate speech. We
find that both the performances and calibration er-
rors get better with self-ensembling, justifying the
feasibility and extensibility of self-ensembling on
larger models. Compared with Flan-T5age, the
self-ensembled xl model yields much lower cali-
bration errors with SFT and SICL on both tasks.

We also surprisingly find that the self-
ensembling method can improve both the perfor-
mance and calibration on the task that Batch Cali-
bration finds struggling. On Hate speech, after ap-
plying Batch Calibration, we witnessed an improve-
ment in calibration along with a drop in perfor-
mance. However, when we apply self-ensembling,
the predictions yield better performance and much
lower calibration errors at the same time. This in-
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. . SST2 RTE
Evaluation Metrics
ZSL ICL SFT SICL ZSL ICL SFT SICL
acce 94.67 95.220‘12 95.61020 95.63029 86.64 88.450 88.81029 88.570.45
Performance
macro f1 - - - - - - - -
. acc 95.50 95.950,]9 95.610,20 95.630429 89.53 90.250.51 89.170429 87.970,45
+ calibrated
macro f1 - - - - - - - -
ECE 0.9069 0.914990014 0.940800113 0.94499 0129 | 0.8092 0.815000030 0.84180.0204 0.8759.0025
Trustworthiness NLL 0.1465 0.1347()‘0006 0.2146()‘0962 0.27 100.1396 0.3438 0.2910()‘0037 0.44210.2133 1.12340.1 133
1IE 0.0615 0.05990.0003 0.02150.0149 0.01540 0124 | 0.0977  0.097500002 0.06300.0304 0.01530.0030
+ calibrated ECE 0.7877 0.7961 0.0016 0.8040()40056 0.8064040096 0.6831 0.6991 0.0054 O~70220,0061 0.711 10_0045
. . SSTS ANLI
Evaluation Metrics
ZSL ICL SFT SICL ZSL ICL SFT SICL
micro f1 52.58 50.48()_15 50-591_38 54.25()_4(, 52.30 52.17()_47 61.631_(,3 63.90()_14
Performance
macro f1 42.00 37.59023 46.2721)9 47.1200193 42.07 42.06()39 61.171_76 63.530_43
. micro f1 50.05 50890,86 50‘35050 49.91()‘21 62.30 61.27()‘82 62.471‘60 64.500.41
+ calibrated
macro f1 48.98 49.800.91 50430,68 49.890‘26 61.98 61.150483 62.361‘67 64.460‘40
ECE 0.1416  0.1833p.0020 0.403000321 0.3602p0250 | 0.3555 0.3511p00s0 0.316100230 0.2803¢.0108
Trustworthiness NLL 1.1762 1.2261()_()()21 3. 19861_4()1() 2.33900_2327 4.7484 3.8961()_()233 2.2599()_3255 1.9226()_2912
1IE 0.1599  0.152200001 0.04540.0200 0.0489 0107 | 0.0945 0.098700001 0.05870.0070 0.066300113
+ calibrated ECE 0.1010 0. 1027()‘0034 0.07200‘0129 0.04560‘0035 0.0709 0.04300‘0079 0‘06260‘0145 0~04950.0085
. . Manifestos Hate speech
Evaluation Metrics
ZSL ICL SFT SICL ZSL ICL SFT SICL
micro f1 20.87 19-290.16 37.541.10 38.122‘01 39.67 40.180,14 59.670‘47 61.332.05
Performance
macro f1 14.50 13.010.]9 35.76],23 37551,61 37.08 40090,08 58.01 1.01 59.48],79
. micro f1 ~ 33.63 31.000.37 38.580.46 38.330.33 43.87 45.110.46 59.890.17 59.58326
+ calibrated
macro f1 30.86 29.15053 37.57105 37.83()‘41 40.86 42.36()‘42 58.06()‘27 57.813_03
ECE 0.4319 0.476000018 0.200500723 0.21380,0376 | 0.3175 0.27080.0024 0.35410.0364 0.19280.1131
Trustworthiness NLL 3.7344 3.94230,0091 2-0725041637 2.02640.0751 1.3836 1.21360‘0057 4.47202.4332 208271.6186
1IE 0.1141  0.10060.0001 0.146990132 0.144600104 | 1.0112  0.242600007 0.03910.0286 0.14470.0963
+ calibrated ECE 0.0356 0.0721 0.0020 0.0487()_01 20 0.0654()_()()43 0.1107 0.1 1730_0045 0.0646()_()274 0.04530_()1 14
. . NLU++
Evaluation Metrics
ZSL ICL SFT SICL
micro f1 29.2 40.1 10_()9 79.98()_59 80.760_31
Performance
macro f1 40.26 51 .960‘04 80.58100 80.49()‘12
. micro f1 11.18 12.250'02 16.450472 21~004478
+ calibrated
macro f1 11.35 1 2.560,()5 21 .272,()5 27.073453
ECE 0.2311  0.129190001  0.01129,0007  0.00200.0007
Trustworthiness NLL 0.3435 0.2 140()_()()01 0.1 305()_0343 0.08390_0127
1IE 0.2268  0.14190.0001 0.00149.0007  0.00200 0007
+ calibrated ECE 0.4679 0.4559040()01 0.41 830‘()033 0.40980‘0049

Table 9: Full experiment results across 7 datasets with different learning methods. We report the mean value for 3
runs with different random seeds and list the variance in the subscripts. We color the Batch Calibration results in

grey.

11590



SSTS

Systems Macro F1 ECE

Ori. Max Mean Majority A Ori. Max Mean Majority A
ZSL 42.00 14.79 | 0.1416 1 0.0634
+ Var-Prompt | 42.00 46.79 45.70 44.82 1479 | 0.1416 0.0782 0.1132  0.1374 | 0.0634
ICL 37.59 170.16 | 0.1833 1 0.0911
+ Var-IC 37.59 3775 3733 37.26 170.16 | 0.1833 0.1198 0.1749  0.1857 | 0.0635
+ Var-Prompt | 37.59 37.13 36.52 36.83 10.46 | 0.1833 0.1363 0.1838  0.2025 | 0.0470
+ Var-Both 37.59 3382 3533 35.78 1 1.81 ] 0.1833 0.0955 0.1832 02107 | 0.0911
FT 46.27 12.08 | 0.4030 4 0.1022
+ Var-Prompt | 48.11 47.43 48.35 48.33 170.24 | 0.3960 0.3008 0.3466  0.3973 | 0.0952
SupICL 47.12 170.79 | 0.3602 4 0.2402
+ Var-IC 47.12 4730 47.37 4731 170.25]0.3602 0.2755 0.3428 03615 | 0.0847
+ Var-Prompt | 47199 4770 47.88 47.91 10.08 | 02714 0.1698 0.2342  0.2801 | 0.1016
+ Var-Both 4799 47.18 47.56 47.54 10.43 ] 0.2714 0.1200 0.2296 02791 | 0.1514

Manifestos

Systems Macro F1 ECE

Ori. Max Mean Majority A Ori. Max Mean Majority A
ZSL 14.50 10.79 | 0.4319 1 0.1699
+ Var-Prompt | 1450 13.69 12.93 15.29 170.79 | 04319 0.2620 0.3349 04374 | 0.1699
ICL 13.01 10.68 | 0.4760 10.2828
+ Var-IC 13.01 13.50 13.46 13.69 170.68 | 04760 0.4146 0.4645 04689 | 0.0614
+ Var-Prompt | 13.01 1325 11.67 11.53 170.24 | 04760 0.2682 0.3661 04718 | 0.2078
+ Var-Both 13.01 11.19 11.50 11.21 1 1.51 | 04760 0.1932 0.3537 04796 | 0.2828
FT 35.76 10.73 | 0.2005 10.1343
+ Var-Prompt | 3539 36.49 35.66 3491 171.10 | 0.1435 0.0662 0.1049  0.1352 | 0.0773
SupICL 37.55 10.06 | 0.2138 1.0.0902
+ Var-IC 37.55 36.57 37.35 37.61 170.06 | 0.2138 0.1789 0.2096  0.2152 | 0.0349
+ Var-Prompt | 37.04 37.14 37.25 36.77 170.21 | 0.2285 0.1388 0.1912  0.2190 | 0.0897
+ Var-Both 37.04 36.67 37.15 37.50 170.46 | 0.2285 0.1236 0.1918  0.2303 | 0.1049

Hate Speech

Systems Macro F1 ECE

Ori. Max Mean Majority A Ori. Max Mean Majority A
ZSL 37.08 1 0.13 | 0.3175 1 0.0489
+ Var-Prompt | 37.08 36.54 36.95 36.95 10.13 ] 0.3175 0.2686 0.3024  0.3200 | 0.0489
ICL 40.09 1 1.10 | 0.2708 10.1112
+ Var-IC 40.09 40.01 39.98 40.49 170.40 | 0.2708 0.2332 0.2668  0.2694 | 0.0376
+ Var-Prompt | 40.09 41.03 41.19 41.05 171.10 | 0.2708 0.1944 0.2359 0.2745 | 0.0764
+ Var-Both 40.09 39.68 40.30 40.49 170.40 | 0.2708 0.1596 0.2366 0.2776 | 0.1112
FT 58.01 1 0.82 | 0.3541 1 0.1155
+ Var-Prompt | 5592 57.16 57.17 57.19 T1.27 | 0.3502 0.2386 0.2899  0.3448 | 0.1116
SupICL 59.48 170.74 | 0.1928 1 0.0777
+ Var-IC 59.48 59.98 59.82 59.83 170.50 | 0.1928 0.1413 0.1789  0.1905 | 0.0515
+ Var-Prompt | 58.66 59.96 60.10 59.86 171.44 | 0.2507 0.1648 0.2111  0.2457 | 0.0859
+ Var-Both 58.66 60.12 60.22 59.97 171.56 | 0.2507 0.1151 0.2057  0.2455 | 0.1356

ANLI

Systems Acc ECE

Ori. Max Mean Majority A Ori. Max Mean Majority A
ZSL 52.30 1 0.60 | 0.3555 1 0.0133
+ Var-Prompt | 52.30 51.70 51.60 51.60 10.60 | 0.3555 0.3422 0.3603 03640 | 0.0133
ICL 52.17 1 0.01 | 0.3511 1 0.0204
+ Var-IC 5217 5210 52.10 52.10 10.07 | 03511 0.3347 0.3506 03521 | 0.0164
+ Var-Prompt | 52.17 52.03 52.07 52.16 10.01 ] 03511 03375 03490 03506 | 0.0136
+ Var-Both 52.17 5170 51.80 51.80 10.37 ] 03511 0.3307 0.3510 03544 | 0.0204
FT 61.63 10.07 | 0.3161 1 0.0271
+ Var-Prompt | 61.53 61.56 61.37 61.37 170.03 | 0.3160 0.2890 0.3101 03184 | 0.0270
SupICL 63.90 10.47 | 0.2803 1 0.0303
+ Var-IC 63.90 63.87 63.73 63.83 10.03 | 0.2803 0.2293 0.2740  0.2839 | 0.0510
+ Var-Prompt | 63.97 6433 64.37 64.37 170.40 | 0.3022 0.2736 0.2917  0.3004 | 0.0286
+ Var-Both 63.97 6390 64.33 64.37 170.40 | 0.3022 0.2500 0.2853  0.3009 | 0.0522

Table 10: Full results of self-ensembling with different variations. We mark the cells of baseline systems without
self-ensembling and their results in grey. Numbers in bold represents the best metric values for each learning
method. A calculates the difference of performance and calibration error between the original results (Ori.) and
the best self-ensembled results, where green means better results and red means worse results. We run all the

experiments above 3 times if possible and show the mean values.
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SST-5

ZSL ICL SFT SICL
Performance = ECE  Performance @ ECE  Performance @~ ECE  Performance  ECE
Original* 38.08 0.2305 37.88 0.1802 50.28 0.4307 44.27 0.3931
Temperature Scaling™ 38.08 0.0626 37.88 0.0693 50.28 0.0804 44.27 0.0783
Original 42.00 0.1416 37.59 0.1833 46.27 0.403 47.12 0.3602
Self-Ensembling 46.79 0.0782 37.75 0.0955 48.35 0.3008 4791 0.1200
Hate Speech
ZSL ICL SFT SICL
Performance = ECE  Performance = ECE  Performance @~ ECE  Performance @ ECE
Original* 47.08 0.2327 40.21 0.2729 57.41 0.3952 57.50 0.2526
Temperature Scaling* 47.08 0.0658 40.21 0.0684 57.41 0.0539 57.50 0.0312
Original 37.08 0.3175 40.09 0.2708 58.01 0.3541 59.48 0.1928
Self-Ensembling 36.95 0.2698 41.19 0.1596 57.19 0.2386 60.22 0.1151
Manifestos
ZSL ICL SFT SICL
Performance = ECE  Performance @ ECE  Performance @~ ECE  Performance @ ECE
Original* 14.41 0.4362 19.33 0.4741 37.27 0.2591 35.87 0.2115
Temperature Scaling™ 14.41 0.0781 19.33 0.0800 37.27 0.0630 35.87 0.0930
Original 14.50 0.4319 13.01 0.4760 35.76 0.2005 37.55 0.2138
Self-Ensembling 15.29 0.2620 13.69 0.1932 36.49 0.0662 37.61 0.1236

Table 11: Comparison with Temperature Scaling and Self-Ensembling. Self-ensembling helps to improve both
performance and calibration where temperature scaling falls short in improving performance, making it a different
perspective in calibration compared to temperature scaling. * indicates that the experiment results are only reported
with 1 random seed.

ZSL ICL SFT SICL
Performance = ECE | Performance @ ECE | Performance = ECE | Performance @ ECE
Original* 1441 0.4362 19.33 0.4741 37.27 0.2591 35.87 0.2115
Temperature Scaling* 14.41 0.9333 19.33 0.9333 37.27 0.9333 35.87 0.9333
Original 14.50 0.4319 13.01 0.4760 35.76 0.2005 37.55 0.2138
Self-Ensembling 15.29 0.2620 13.69 0.1932 36.49 0.0662 37.61 0.1236

Table 12: Temperature scaling is sensitive to the selection of supervised labelled data. When choosing a batch
of label-imbalanced supervised labelled data from Manifestos, temperature scaling may fail in this case. On the
other hand, self-ensembling method doesn’t have this problem due to its training-free nature. * indicates that the
experiment results are only reported with 1 random seed.
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Figure 4: The confidence histograms and reliability diagrams of SFT and SICL on SST-5 with or without self-

ensembling using max probability.

dicates the potential of self-ensembled language
models in producing better and more reliable pre-
dictions.

D Prompting templates

D.1 Prompting templates for main
experiments

We provide the prompting templates for different
datasets when comparing learning methods as fol-
lows.

SST-2

Classify this sentence's sentiment into
'positive' or 'negative': <SENTENCE>
<LABEL>

RTE

Does Sentencel entails Sentence2?
Sentencel: <SENTENCE1>

SENTENCE2: <SENTENCE2>

<LABEL>

ANLI

Does the premise entails the hypothesis?
Premise: <PREMISE>

Hypothesis: <HYPOTHESIS>

<LABEL>

SST-5

Classify this sentence's sentiment into
"terrible"”, "bad", "neutral”, "good"” or
"great”: <SENTENCE>

<LABEL>

NLU++

Here is a sentence: '<SENTENCE>'
Try to answer this question if possible
with 'yes' or 'no': '<QUESTION>'

<LABEL>

Manifestos

Which category about US society does the
sentence belong to from "other”, "external
relations”, "freedom and democracy”,
"political system”, "economy”, "welfare
and quality of life"”, "fabric of society”,
"social groups": <SENTENCE>

<LABEL>

Hate Speech

Classify this sentence's sentiment into
"hate"”, "neutral” or "support"”: <SENTENCE>
<LABEL>

D.2 Prompting templates for Var-Prompt

Below show the various templates for prompt cy-
cling. All the prompting templates are manually
written without specific crafting.

ANLI

Does the premise entails the hypothesis?
Premise: <PREMISE>

Hypothesis: <HYPOTHESIS>

<LABEL>

Premise: <PREMISE>

Hypothesis: <HYPOTHESIS>
Given the premise, is the hypothesis
entailed?
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. . SST2 SST5
Evaluation Metrics
ZSL ICL SFT SICL ZSL ICL SFT SICL

acce 96.38 96.810.I2 96.810.04 96.890»()5 52.76 50.59()_13 52-930.28 53-470.87
Performance

macro f1 - 38.01 31.280.32 44.65 53 4391104

. acc 96.87 97.000'03 96.780'05 96.920'03 50.59 52.010415 51.830426 51.950‘04

+ calibrated

macrofl = 49.33 50.85()‘13 51-00038 51.07()‘03
Trustworthiness ECE 0.9291 0.93690‘0001 0.93400‘0011 0.9380()‘()()03 0.2309 0.306500018 0. 1689()0093 0. 1744()‘0076
+ calibrated ECE 0.7937 0.800090002 0.79300.0001 0.79880.0008 | 0.0925 0.111790014 0.10700.0049 0.10670.0014

. . Manifestos Hate Speech
Evaluation Metrics
ZSL ICL SFT SICL ZSL ICL SFT SICL

micro f1 28.37 31 .37()_ 18 37.04()_29 38.25()_44 54.33 52.84()_()6 64.44()_51 62.78()_58
Performance

macro f1 | 21.71 25.350.22 337162 35.550.41 47.15 46.49.54 61.720.40 60.27¢31

. microﬂ 37.38 37.960}36 38.750}35 38.830'35 46.60 47.490433 61.072457 56.360464

+ calibrated

macrofl 35.26 35.990'35 36.170'37 36.960'59 43.65 44.78()‘35 59.23233 54~800A66
Trustworthiness ECE 0.4514 0.38390‘0027 0.11 160‘0258 0.10660‘0153 0.2309 0.1935()‘0015 0-104700446 0-071300063
+ calibrated ECE 0.0402  0.03820.0067 0.044700063 0.033500070 | 0.0956 0.107600017 0.029700127 0.0474 0040

Table 13: Experiment results with different learning methods using FlanT5-x1. We report the mean value for 3 runs
with different random seeds and list the variance in the subscripts. We color the Batch Calibration results in grey.

SST5
Systems Macro F1 ECE
Ori. Max Mean Majority A Ori. Max Mean Majority A
ZSL 38.01 15.53 | 0.2309 1 0.0898
+ Var-Prompt | 38.01 43.54 41.80 42.65 15.53 | 02309 0.1411 0.1971  0.2210 | 0.0898
ICL 31.28 13.95 | 0.3065 4 0.1171
+ Var-IC 31.28 30.57 30.85 3091 1037 ] 03065 0.2653 03035 03070 | 0.0412
+ Var-Prompt | 31.28 3475 34.71 34.77 173.49 | 0.3065 0.2358 0.2714 0.2798 | 0.0707
+ Var-Both 31.28 35.23 33.75 33.51 13.95 | 0.3065 0.1894 0.2730 0.2846 | 0.1171
FT 44.65 13.33 | 0.1689 4 0.0730
+ Var-Prompt | 47.06 47.98 47.15 47.01 170.92 | 0.1656 0.0959 0.1425 0.1660 | 0.0697
SupICL 4391 171.26 | 0.1744 1 0.0740
+ Var-IC 4391 4391 44.05 44.00 10.14 | 0.1744 0.1376 0.1738  0.1742 | 0.0368
+ Var-Prompt | 4421 4479 44.69 44.78 170.58 | 0.1688 0.1278 0.1536  0.1666 | 0.0410
+ Var-Both 4421 4517 44.60 44.41 170.96 | 0.1688 0.1004 0.1488  0.1638 | 0.0684
Hate Speech
Systems Macro F1 ECE
Ori. Max Mean Majority A Ori. Max Mean Majority A

ZSL 47.15 10.59 | 0.2309 4 0.0508
+ Var-Prompt | 47.15 46.57 47.30 47.74 170.59 | 02309 0.1801 0.2041  0.2194 | 0.0508
ICL 46.49 11.09 | 0.1935 4 0.1052
+ Var-IC 4649 47.03 4694 46.74 170.54 | 0.1935 0.1301 0.1800 0.1901 | 0.0634
+ Var-Prompt | 46.49 47.44 47.06 47.57 171.08 | 0.1935 0.1257 0.1625 0.1836 | 0.0678
+ Var-Both 4649 47.45 46.80 46.68 171.09 | 0.1935 0.0883 0.1581 0.1867 | 0.1052
FT 61.72 1 0.72 | 0.1074 1 0.0572
+ Var-Prompt | 60.04 60.71 61.00 60.86 170.96 | 0.0873 0.0502 0.0719 0.0887 | 0.0371
SupICL 60.27 11.84 | 0.0713 1 0.0437
+ Var-1C 60.27 60.88 60.72 60.68 170.61 | 0.0713 0.0424 0.0636 0.0729 | 0.0289
+ Var-Prompt | 60.37 60.97 61.50 61.45 171.13 | 0.0883 0.0427 0.0649 0.0793 | 0.0456
+ Var-Both 60.37 61.69 62.11 61.74 1T 1.74 | 0.0833 0.0276 0.0588 0.0816 | 0.0557

Table 14: Results of self-ensembling with different variations using FlanT5-x1. For simplicity, we omit the variance
of 3 runs and only show the mean values. The notations follow previous patterns.
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<LABEL>

Is the hypothesis entailed by the premise?
Premise: <PREMISE>

Hypothesis: <HYPOTHESIS>

<LABEL>

### Instruction: Determine whether the
hypothesis is entailed by the premise.

Premise: <PREMISE>

Hypothesis: <HYPOTHESIS>

<LABEL>

SST-5

Classify this sentence's sentiment into
"terrible”, "bad", "neutral”, "good" or
"great"”: <SENTENCE>

<LABEL>

<SENTENCE>

is this sentence 'great', 'good', 'neutral’,
'bad' or 'terrible'?

<LABEL>

<SENTENCE>

Among "terrible”, "bad"”, "neutral”, "good"
or "great"”, the sentence's sentiment is
<LABEL>

### Instruction: Classify the input
sentence's sentiment into into "terrible”,
"bad”, "neutral”, "good" or "great".
Input: <SENTENCE>

### Response: <LABEL>

Manifestos

Which category about US society does the
sentence belong to from "other"”, "external
relations”, "freedom and democracy”,
"political system”, "economy”, "welfare
and quality of life"”, "fabric of society”,
"social groups”: <SENTENCE>

<LABEL>

<SENTENCE>
Which category about US society does
the sentence belong to?

<LABEL>

<SENTENCE>

Among "other"”, "external”, "democracy”,
"political”, "economy"”, "welfare",

"fabric"”, "group"”, the sentence's US
societal category is <LABEL>

### Instruction: Classify the input
sentence's US societal category into

"other"”, "external”, "democracy”,
"political”, "economy”, "welfare",
"fabric"”, "group”.

Input: <SENTENCE>
### Response: <LABEL>

Hate Speech

Classify this sentence's sentiment into
"hate"”, "neutral” or "support": <SENTENCE>
<LABEL>

<SENTENCE>
Is the sentence hate, neutral or support?
<LABEL>

<SENTENCE>
Among "hate”, "neutral” or "support”, the
sentence's sentiment is <LABEL>

### Instruction: What's the sentiment of
input sentence among "hate”, "neutral”
or "support"?

Input: <SENTENCE>

### Response: <LABEL>

D.3 Prompting templates for Var-Prompt in
ablation studies

We use ChatGPT to generate paraphrased prompt-
ing templates for Var-Prompt. The instruction we
give to ChatGPT is as follows.

Paraphrase the provided templates and keep
the keywords in <> in the meantime. Show me
5 different paraphrased results.

The template is:
<TEMPLATE>

We paraphrase the prompting templates for SST-
5 and Hate Speech datasets and randomly sam-
pled 4 paraphrased candidates. These templates
share similar wording and structure with the human-
written templates. We conduct experiments with
these 8 templates in total and use max probability
when self-ensembling. We provide the candidates
below for reference.

SST-5

11595



<SENTENCE>\nThe sentiment expressed by
<SENTENCE> falls into the categories of
"terrible,” "bad,” "neutral,” "good,"

or "great,"” and it is labeled as <LABEL>

Evaluate the sentiment expressed by
<SENTENCE>, placing it in the categories
of "terrible,” "bad," "neutral,” "good,"
or "great,"” and indicate the sentiment
as <LABEL>

Evaluate the emotional tone of this statement
and categorize it as "terrible,” "bad,"
"neutral,” "good,"” or "great": <SENTENCE>
<LABEL>

Analyze the emotional inclination of the
following statement, categorizing it as

"terrible,” "bad," "neutral,” "good," or
"great”: <SENTENCE>

<LABEL>

Hate Speech

Assess whether the sentiment in this
sentence falls under "hate,” "neutral,"”
or "support”: <SENTENCE>

<LABEL>

Appraise the sentiment expressed in this
sentence and assign it to one of the
categories: "hate,"” "neutral,” or "support”
: <SENTENCE>

<LABEL>

Categorize the sentiment of <SENTENCE> as
either "hate,” "neutral,” or "support,"
with the assigned label being <LABEL>.

Determine the emotional tone of <SENTENCE>,

categorizing it as "hate,"” "neutral,” or
"support,” and mark the sentiment as <LABEL>.

11596



