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Abstract

Emotion Cause Triplet Extraction in Multi-
modal Conversations (MECTEC) has recently
gained significant attention in social media
analysis, aiming to extract emotion utterances,
cause utterances, and emotion categories si-
multaneously. However, the scarcity of re-
lated datasets, with only one published dataset
featuring highly uniform dialogue scenarios,
hinders model development in this field. To
address this, we introduce MECAD, the first
multimodal, multi-scenario MECTEC dataset,
comprising 989 conversations from 56 TV se-
ries spanning a wide range of dialogue con-
texts. In addition, existing MECTEC methods
fail to explicitly model emotional and causal
contexts and neglect the fusion of semantic in-
formation at different levels, leading to per-
formance degradation. In this paper, we pro-
pose M3HG, a novel model that explicitly cap-
tures emotional and causal contexts and ef-
fectively fuses contextual information at both
inter- and intra-utterance levels via a multi-
modal heterogeneous graph. Extensive experi-
ments demonstrate the effectiveness of M3HG
compared with existing state-of-the-art meth-
ods. The codes and dataset are available at
https://github.com/redifinition/M3HG.

1 Introduction

Emotion Cause Analysis in Conversations (ECAC)
aims at identifying emotions and their causes in
conversations, which is a crucial research field
in natural language processing (Li et al., 2022b;
Wang et al., 2023). However, most of ECAC re-
search (Li et al., 2022b; Wang et al., 2023; Zheng
et al., 2023; Chen et al., 2023) only focuses on the
textual contexts, overlooking other modalities (So-
leymani et al., 2017).

* Corresponding authors.
†This work was supported in part by the National Natu-

ral Science Foundation of China under Grant 62476202 and
62272343, in part by the Fundamental Research Funds for the
Central Universities.

To address this limitation, Wang et al. (2022) pro-
posed a new task called Multimodal Emotion Cause
Triplet Extraction in Conversations (MECTEC).
The task aims to simultaneously identify the emo-
tion utterance, the corresponding cause utterances,
and the emotion category (i.e., the utter-cause-
emotion triplet) from a conversation containing
three modalities: text, audio, and video. Figure 1
illustrates a multimodal conversation between a
mother and daughter. In this example, there are six
non-neutral utterances, and consequently, six utter-
cause-emotion triplets are identified. MECTEC
differs from ECAC in 1) multimodal contexts (i.e.,
text, audio, and video) resulting in more complex
emotional expression, and 2) multi-scale semantic
information from overall conversation and utter-
ance features like intonation and facial expressions,
which pose significant challenges.

Another major challenge in MECTEC is the
scarcity of datasets. While numerous text-based
datasets exist for ECAC, only one dataset, namely
the ECF dataset (Wang et al., 2022), is specifi-
cally designed for MECTEC. However, the videos
in ECF are all from the Friends TV series
with restricted speakers and scenarios, hindering
MECTEC model development. Therefore, in this
work, a new multimodal, multi-scenario MECTEC
dataset, namely MECAD, is constructed. To the
best of our knowledge, it is the first of its kind and
will greatly facilitate research in this field.

Constrained by the limited dataset, existing
MECTEC models have various deficiencies. Wang
et al. (2022) proposed a two-stage architecture that
predicts emotion and cause utterances separately.
However, this approach is computationally inten-
sive and prone to error accumulation. Therefore, re-
cent studies (Hu et al., 2024; Wang et al., 2023; Li
et al., 2024a) propose one-stage architectures using
graph neural networks or prompt engineering to ex-
tract utter-cause-emotion triplets. However, these
methods do not explicitly extract specific contexts
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Actually, this is 
pretty nice too.

.

Yan Luo:
What’s nice?
Yunjie Wei:

I haven’t had your 
cooking in a while.

Yan Luo:
I’ll cook for you 
whenever I’m free!

Yunjie Wei :
Okay.

Yan Luo:
How’s the job 
search?

Yan Luo:
Not easy for an 
old woman.

Yunjie Wei :

Utterance 1 Utterance 2 Utterance 3 Utterance 4 Utterance 5 Utterance 6 Utterance 7

Happy 😄 Happy 😄 Happy 😄 Happy 😄 Happy 😄 Neutral 😶 Sad 😭

cause

cause
cause

cause cause cause

MECTEC output (Utter-cause-emotion Triplets)

(U1, U3, happy), (U2, U1, happy), (U3, U3, happy), (U4, U3, happy), (U5, U4, happy), (U7, U6, sad)

Figure 1: An example of the MECTEC task. Each utterance contains three different modalities - text, audio, and
video. Arrows represent causal relationships that link the cause utterances to the corresponding emotion utterances.
The dashed box at the bottom lists all the <utter-cause-emotion> triplets identified in this example.

related to emotions and their causes. According to
emotion attribution theory (Weiner, 1985), the rela-
tionships of emotions and their causes are revealed
by specific contexts, such as emotional words in
texts, and intonations in audio and video conver-
sations. For example, in Utterance 3 in Figure 1,
a pleasant facial expression indicates happiness,
while “haven’t had your cooking” and a happy tone
reveal the cause. The example illustrates that emo-
tions and their causes depend on contextual cues
across multiple modalities, highlighting the neces-
sity of explicitly modeling their specific contexts.

In addition, previous work (Wang et al., 2022;
Hu et al., 2024; Wang et al., 2023; Li et al., 2024a;
Wei et al., 2020) fail to effectively identify the
cause utterances occurring after emotion utter-
ances. For example, in Utterance 1 in Figure 1, the
reason why Luo is happy cannot be obtained only
from the historical context of Utterance 1. To find
out the real cause of emotion in Utterance 1, the
whole conversation should be scrutinized, which is
overlooked by previous work.

Furthermore, existing models (Wang et al., 2022;
Hu et al., 2024; Wang et al., 2023; Li et al., 2024a)
fail to adequately extract semantic information at
different scales. As shown in Figure 1, the seman-
tic information that reveals the relationship of an
utterance and its cause not only resides in inter-
connections between utterances but also resides
in the intra-content of each utterance. Therefore,
it’s essential to comprehensively integrate seman-
tic information in different scales during modality
fusion.

To solve the aforementioned problems, we pro-
pose an MECTEC model based on the multimodal,
multi-scale, and multi-type node heterogeneous

graph, named M3HG. M3HG accurately extracts
emotion and cause-related contexts and fuses mul-
timodal, multi-scale semantic information using
multimodal heterogeneous graph attention network
(HGAT) with multi-type nodes.

Our contributions can be summarized as follows:
• The first Chinese multi-scenario MECTEC

dataset, MECAD, and an online sentiment
data annotation toolkit are constructed. The
dataset consists of 989 conversations with
10,519 utterances annotated with important in-
formation such as emotion labels, their causes,
and types of emotional causes. It will greatly
benefit the development of models in the
MECTEC and related fields.

• An efficient MECTEC model, namely M3HG,
is proposed to identify utter-cause-emotion
triplets from multimodal conversations. It ex-
plicitly extracts specific emotion and cause-
related contexts to find connections between
emotions and causes. Besides, it fully inte-
grates semantic information from inter and
intra-utterance levels to enhance the model’s
predictive ability.

• Extensive experiments are performed to verify
the performance of our proposed model and
other state-of-the-art models on MECAD and
ECF datasets. Experimental results reveal that
M3HG outperforms its counterparts, which
demonstrates the effectiveness of our model.

2 Related Works

Emotion Cause Analysis in Conversations. Most
existing studies on ECAC focus on Causal Emotion
Entailment (CEE) and Emotion Cause Pair Extrac-
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tion in Conversations (ECPEC). CEE aims to iden-
tify which cause utterances trigger the non-neutral
emotions of the target utterances. Since CEE as-
sumes emotion utterances are given, most related
work (Poria et al., 2021; Li et al., 2022a; Zhang
et al., 2022; Gu et al., 2023) viewed CEE as an ut-
terance classification problem. However, because
emotions of utterances are often unknown in real-
world conversations, Li et al. (2022b) proposed the
ECPEC task which additionally predicts emotions
for the target utterances. Subsequent work (Wang
et al., 2023; Zhao et al., 2023) has incorporated
commonsense knowledge into GATs to improve
the model’s semantic understanding of emotions
and causes, achieving better performance. Besides,
some methods (Ding et al., 2020a,b; Wei et al.,
2020; Zheng et al., 2022) from models in the Emo-
tion cause Pair Extraction (ECPE) field are also
adapted for the ECPEC task.
Multimodal Emotion Cause Triplet Extraction
in Conversations. In recent years, multimodal con-
versation scenarios on social media platforms have
grown significantly, as more individuals share their
lives and express emotions through live stream-
ing and various online chats. To advance emotion
cause analysis in multimodal conversation scenar-
ios, Wang et al. (2022) introduced the MECTEC
task and released the ECF dataset. However, few
solutions have been proposed for this recently intro-
duced task. Li et al. (2024a) incorporated emotion
transition information into emotion-cause pair ex-
traction using a novel labeling constraint, while
Hu et al. (2024) fused semantic information across
modalities via prompt engineering. These meth-
ods treat multimodal fusion and contextual infor-
mation extraction for emotional causes as sepa-
rate processes. Furthermore, they fail to effec-
tively integrate semantic information across differ-
ent scales, which significantly hampers the overall
performance of models in the MECTEC task. To
address these issues, we propose a model that fully
integrates multi-scale semantic information from
different modalities, preventing the loss of con-
textual information during fusion and improving
triplet extraction accuracy.
Datasets for the ECAC Task. Table 1 summarizes
popular datasets in ECAC. Poria et al. (2021) in-
troduced the RECCON dataset for the ECAC task,
and Li et al. (2022b) extended it by building the
ConvECPE dataset. Given the multimodal nature
of conversations, Wang et al. (2022) developed the
ECF dataset for MECTEC. However, all scenes

Table 1: A summary of datasets for ECAC task. T, A, V
stand for text, audio and video respectively.

Dataset Modalities Sources # Instances

RECCON T Act and Daily 11,769
ConvECPE T Act 7,433

ECF T,A,V TV Friends 13,509
MECAD T,A,V 56 TV series 10,516

in ECF are drawn from the Friends, limiting the
diversity of conversation scenarios and contents.

3 Proposed MECAD Dataset

To facilitate the research in MECTEC and other
related fields, we constructed a multi-scenario
MECTEC dataset called MECAD. Compared with
ECF (Wang et al., 2022), MECAD has more diverse
conversation scenarios. In addition to labeling emo-
tion categories and their causes for each utterance,
we also categorized the types of emotion causes
(e.g., event, expression) and the modality of anno-
tation (i.e., text, audio, or video) to support future
studies in multimodal emotion cause analysis.

We selected the publicly available M3ED (Zhao
et al., 2022) dataset as our data source, which con-
tains 990 segments from 56 Chinese TV series.
However, M3ED dataset only contains conversa-
tion scripts, audios, and screenshots, lacking cor-
responding videos. Therefore, we endeavored to
collect the corresponding video segments based on
the conversation timestamps provided by M3ED.
We concatenated sentences to form 989 multimodal
conversations with 10,516 full utterances.

We invited 10 Chinese graduate students ma-
jored in Psychology to annotate the corresponding
cause utterances, the types of emotion causes and
the modal cues of annotations in the conversations.
To obtain high-quality annotations, we designed
detailed guidelines based on previous studies (Dir-
ven, 1997; Steptoe and Brydon, 2009), trained the
volunteers, and tested them with annotation cases.
Only those passing the test participated in the final
annotation process. Each volunteer was paid $50
for their annotations. Then, we randomly assigned
three qualified annotators for each conversation. If
divergence exists among annotations from different
volunteers, the final annotation for the utterance
is determined by majority voting. Two strategies
were used to review and revise incorrect annota-
tions: 1) Annotation consistency among the three
annotators for each TV series is calculated. For se-
ries with low consistency, the annotators rechecked
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and revised their labels as needed. 2) If disagree-
ments remained, a fourth annotator was invited to
relabel the utterances and make the final decision.

To enhance annotation efficiency and accuracy,
we developed an online multimodal conversation
emotion cause annotation tool. The interface of the
annotation tool is shown in Figure 3 in Appendix B.
This tool is highly reusable and user-friendly, mak-
ing it ideal for related research in the future.

We use Cohen’s Kappa (Cohen, 1960) to assess
pairwise agreement and Fleiss’s Kappa (McHugh,
2012) for overall consistency among annotators.
The Cohen’s Kappa results are in Appendix A, and
the Fleiss’s Kappa score of 0.6932 exceeds the
threshold of 0.61 (Landis, 1977), confirming the
statistical reliability of our annotations.

The dataset statistics and detailed analysis of
MECAD are presented in Figure 4 in Appendix A.
MECAD provides solid support for assessing the
performance and generalization capabilities of
MECTEC models in broader scenarios.

4 Framework of Proposed M3HG

4.1 Task Definition

Given a conversation C = {(Si,Ui)}1≤i≤n, where
Si denotes the speaker of the i-th utterance Ui, n
denotes the length of the conversation C, Ui =
{U t

i , U
a
i , U

v
i }, and t, a, v are the text, audio and

video modality, respectively. The goal of MECTEC
is to identify all the utter-cause-emotion triplets
from the conversation C:

P = {(U e
j ,U

c
j , y

e
j )}, (1)

where U e
j is the j-th utterance with emotion yej ,

U c
j is the corresponding cause utterance, and yej ∈
{Anger,Disgust,Fear, Joy, Sadness, Surprise} (Ek-
man, 1992).

4.2 Model Overview

M3HG is an end-to-end (E2E) MECTEC model, as
illustrated in Figure 2. It consists of four key com-
ponents: unimodal feature extraction, graph con-
struction, multi-scale semantic fusion, and emotion-
cause classification.

In unimodal feature extraction, M3HG extracts
local contextual representations for each utterance
using modality-specific feature extractors and uni-
modal encoders. In graph construction, M3HG
constructs a conversation interaction graph using
these feature representations to explicitly model

the emotion and cause-related contexts. In multi-
scale semantic fusion, M3HG combines semantic
information at different scales within the conversa-
tion interaction graph to produce a comprehensive
feature representation of both emotion and cause
contexts. In emotion-cause classification, emo-
tion and cause contextual representations are con-
catenated and used to extract utter-cause-emotion
triplets with with position embedding.

4.3 Unimodal Feature Extraction

First, we utilize SA-RoBERTa (Gu et al.,
2020), Wav2Vec2 (Baevski et al., 2020), and
DenseNet (Huang et al., 2017) to extract three fea-
ture representations Et, Ea, and Ev, from text,
audio, and video, respectively, where Et ∈ Rn×dt ,
Ea ∈ Rn×da , and Ev ∈ Rn×dv , and dt, da, dv
represent dimensions of the hidden layer represen-
tations of the three modalities. The extraction pro-
cess is described in Appendix C.1.

Then, we encode each feature representation
within an unimodal local context. For text, we
apply multi-head self-attention (Vaswani, 2017) to
Et to capture local contextual information, result-
ing in Ht. For Ea and Ev, we use a GRU-based
network (Li et al., 2024b) to extract local context
by leveraging the RNN structure’s capability to
handle temporal features, which is expressed as:

E′m = LN(Em +GRU(Em)),

Hm = LN(Em +E′m + FFN(E′m),
(2)

where Hm ∈ Rn×dm ,m ∈ {a, v}, LN denotes
layer normalization, and FFN denotes a feedfor-
ward neural network.

After encoding the local context for each modal-
ity, we obtain the sequence representations Ht,
Ha, Hv for text, audio, and video. We then apply
three linear layers to map Ht, Ha, Hv to H ′t,
H ′a, H ′v with the same dimension dh.

4.4 Graph Construction

To enable M3HG to fuse multi-scale semantic in-
formation across modalities, we construct a het-
erogeneous graph that represents both inter- and
intra-utterance connections, as well as cross-modal
interactions. The structure of this heterogeneous
graph can be denoted by G = (V, E ,R), where V
is the node set consisting of all graph nodes vi,R
is the relation set consisting of all relations rij be-
tween any two nodes vi and vj , and E is the edge set
consisting of all edges represented as (vi, rij , vj).

11419



𝑼𝟏𝒕

𝑼𝟐𝒕

𝑼𝒏𝒕

.	.	.

𝑯𝟏
"𝒕

	𝑯𝟐
"𝒕

𝑯𝒏
"𝒕

.	.	.

PLM

U
nim

odal 
Encoder

S1: Actually, this 
is pretty nice too. 
S2:What’s nice?...

Textual Modality

𝑼𝟏𝒗

𝑼𝟐𝒗

𝑼𝒏𝒗

.	.	.

𝑯𝟏
"𝒗

	𝑯𝟐
"𝒗

	𝑯𝒏
"𝒗

.	.	.

VFE

U
nim

odal 
Encoder

Visual Modality

...
Audio Modality

𝑼𝟏𝒂

𝑼𝟐𝒂

𝑼𝟏𝒂

.	.	.

𝑯𝟏
"𝒂

	𝑯𝟐
"𝒂

	𝑯𝒏
"𝒂

.	.	.

AFE

U
nim

odal 
Encoder

different speaker 

same speaker

global connection 

emotion connection

cause connection

utterance super-node

conversation super-node

emotional context node

causal context node 

𝒁𝟏𝒆

	𝒁𝟏𝒄
.	.	.	

𝒁𝒏𝒆

	𝒁𝒏𝒄

Position 
Embedding

Position 
Embedding

Em
otion M

LP

.	.	.	

😄

😫

	𝒆#𝟏

	𝒆#𝒏

Cause M
LP

.	.	.	

	𝒄#𝟏

	𝒄#𝒏

0/1

0/1

LP M
LP

.	.	.	

	𝒆𝒄%𝟏

	𝒆𝒄%𝒏

0/1

0/1

(a) Unimodal Feature Extraction (c) Emotion-cause Classification(b) Graph Construction and Multi-scale Semantic  Fusion

In
te

r-
ut

te
ra

nc
e-

le
ve

l 
Fu

si
on

In
tr

a-
ut

te
ra

nc
e-

le
ve

l 
Fu

si
on

N
ode-levelAttention

Sem
antic Attention

HAN
 Layer

PFFN
 Layer

Figure 2: The framework of proposed M3HG. It consists of three main components: unimodal feature extraction,
graph construction and multi-scale semantic fusion, and emotion-cause classification.

Nodes. To explicitly model emotion and cause-
related contexts in conversations, we model them
as emotional context nodes N e and causal con-
text nodes N c, respectively. To enable G to accu-
rately perceive the conversation information, we
model the whole conversation as a conversation
node. Each utterance is represented by an utter-
ance node. Both the utterance node and conversa-
tion node are designed as Super-Nodes containing
these modalities, denoted as SNu and SNd, since
they contain three modal features. Therefore, G
contains four types of nodes: N e, N c, SNu and
SNd.

N e and N c are first initialized with textual se-
quence representations H ′t, then updated with con-
textual information from the other two modalities,
which is described in Section 4.5. Each utter-
ance Super-Node SNu = {N t, Na, Nv} is initial-
ized using H ′t,H ′a,H ′v. The conversation node
SNd = {N t

d, N
a
d , N

v
d } is initialized by averaging

H ′t,H ′a,H ′v to capture global information.

Edges and Relations. There are five types of
Super-Edges connecting the aforementioned Super-
Nodes: same speaker (rss), different speaker (rds),
global connection (rgc), emotion connection (rec)
and cause connection (rcc). The same speaker edge
connects the utterance Super-Nodes SNu from the
same speaker. Inspired by the work of Shen et al.
(2021), we define the local context as K preceding
utterances from the same speaker of SNu, where
K is a hyper-parameter. The different speaker edge
connects the utterance Super-Nodes within the lo-
cal context from different speakers to SNu. The

bidirectional global connection edge connects all
the utterance Super-Nodes SNus with the conver-
sation Super-Node SNd, facilitating the propaga-
tion of global contextual information. The emotion
connection edge and the cause connection edge
connect SNu with its corresponding emotional
context node N e and causal context node N c, re-
spectively. They explicitly capture the emotion and
cause context specific to each utterance.

M3HG is the first MECTEC model capable of
handling situations where cause utterances ap-
pear after emotion utterances, as each utterance
is linked through the global connection node. The
detailed experiments in Appendix E.2 further val-
idate this capability. The pseudo-code of graph
construction and a constructed graph for the con-
versation in Figure 1 are provided in Appendix C.2
and Appendix C.3, respectively. The graph con-
struction process of M3HG can be expressed as:

G = (V, E ,R),
V = {SNu

i , N
e
i , N

c
i , SN

d}1≤i≤n,

SNu
i = {N t

i , N
a
i , N

v
i },

SNd = {N t
d, N

a
d , N

v
d },

R = {rss, rds, rgc, rec, rcc},
E = {(vi, rij , vj)}, vi, vj ∈ V, r ∈ R,

(3)

where superscripts u, e, c, d denote node types, and
m denotes three modalities. Based on the con-
structed graph G, the emotion and cause contexts
are effectively modeled.
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4.5 Multi-scale Semantic Information Fusion

Based on graph G, we designed a comprehensive
approach to integrate semantic information across
different modalities and scales. This mechanism
is implemented in two levels: intra-utterance fu-
sion which captures emotion and cause-related con-
texts within utterances, and inter-utterance fusion
which propagates semantic information among ut-
terances and conversation-level contexts. Both lev-
els leverage HGAT (Wang et al., 2019) to propa-
gate and fuse semantic information through vari-
ous meta-paths (Wang et al., 2019) within G. This
ensures thorough updates to node features by inte-
grating multi-scale semantic information.

The meta-paths in G are defined as:

Φ = {ϕ(vi, rij , vj)}, vi, vj ∈ V,
ϕ(vi, rij , vj) = vi

rij←→ vj , rij ∈ R,
(4)

where ϕ(vi, rij , vj) represents all paths that con-
nect node vi to node vj via edge type rij .
Intra-utterance-level Fusion. As shown in Fig-
ure 2, for each utterance Super-Node SNu, we
perform intra-utterance-level fusion by integrating
semantic information within the utterance. We de-
fine the meta-path Φintra for intra-utterance-level
semantic fusion for SNu

n as:

Φintra ={ϕ (Nm1 , Nm2 , rm1,m2)}
∪ {ϕ (Nm, N e, rm,e)}
∪ {ϕ (Nm, N c, rm,c)},

(5)

where m1,m2,m ∈ {t, a, v}, Nm represents the
nodes of modality m within the SNu, and rm1,m2

denotes the edges connecting Nm1 and Nm2 . rm,e

denotes edges connecting nodes Nm to the emo-
tional context nodes N e, facilitating the aggrega-
tion of emotional contexts conveyed by different
modalities within the utterance. Similarly, rm,c rep-
resents the edges that connect Nm to the causal con-
text nodes N c, enabling the aggregation of causal
contexts. Φintra effectively models the process of
semantic information fusion in a single utterance.

Next, we incorporate node-level attention into
Φintra. For each meta-path in Φintra and nodes
vi ∈ {Nm, N e, N c}, the importance of its neigh-
bors Ni in Φintra is computed as:

αϕ
ij =

exp
(
σ
(
aT
ϕ ·

[
H ′

i ∥H ′
j

]))
∑

k∈Nϕ
i
exp

(
σ
(
aT
ϕ · [H ′

i ∥H ′
k]
)) , ϕ ∈ Φintra,

(6)

where σ denotes the activation function, and aϕ is
the node-level attention vector of meta-path ϕ. The
node representation of vi based on meta-path ϕ is
obtained by:

Zi = σ(
∑

j∈Nϕ
i

αϕ
ij ·H ′

j). (7)

This process yields the contextual features Zi ∈
R1×dh for nodes vi under the intra-utterance-level
meta-paths Φintra.
Inter-utterance-level Fusion. As illustrated in Fig-
ure 2, for any two utterance Super-Nodes SNu

i and
SNu

j in G, along with the conversation Super-Node
SNd, we perform inter-utterance-level fusion by
connecting SNu

i and SNu
j to SNd, thereby inte-

grating contextual information across utterances.
We define meta-paths Φinter for inter-utterance-
level fusion between SNu and SNd:

Φinter ={ϕ(Nm1
i , Nm2

j , rm1,m2)}
∪ {ϕ(Nm

i , Nm
d , rd,m)}

∪ {ϕ(Nm
j , Nm

d , rd,m)},
(8)

where m1,m2,m ∈ {t, a, v}, Nm
i and Nm

j rep-
resent the nodes of modality m inside SNu

i and
SNu

j , respectively, rm1,m2 denotes the edges con-
necting Nm1

i and Nm2
j , and rd,m represents the

edges connecting SNus to SNd in modality m.
The utterance information from each modality

can be passed to SNd though Φinter, which ac-
complishes inter-utterance-level fusion between ut-
terances. As a result, SNd comprehensively inte-
grates information across all three modalities. The
meta-path set Φinter models multimodal connec-
tions between utterances, enabling conversation
information aggregated in G.

Similar to Eq. 6 and Eq. 7, the contextual repre-
sentations of SNu and SNd are obtained under the
meta-path Φinter by the node-level attention block.

After performing multi-scale semantic fusion
with Φintra and Φinter, we apply the semantic at-
tention mechanism (Wang et al., 2019) to each node
embedding Zi, integrating multi-scale semantic
information from all three modalities. Following
(Chen et al., 2023), each fusion iteration is followed
by a position-wise feed-forward network (PFFN)
layer, which updates node features through a non-
linear transformation. The emotional context node
representation Ze

i and the causal context node fea-
ture representation Zc

i can be obtained at the end
of iterations of the multi-scale semantic fusion and
PFFN layers.
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4.6 Emotion-cause classification
For each utterance Ui, its Ze

i and Zc
i are fed into

the emotion-specific Multi-Layer Perceptron (Emo-
tion MLP) and the cause-specific Multi-Layer Per-
ceptron (Cause MLP) to predict its emotion cate-
gory ŷei and the cause indicator ŷci which indicates
whether Ui can be a cause utterance. For each
utterance pair Ui and Uj , we compute a relative
position encoding RPEij to capture the positional
relationship between Ui and Uj . We utilize the
RBF kernel function (Wei et al., 2020) to compute
RPEij , which captures the relative positional rela-
tionships between utterances through a nonlinear
relation. Ze

j , Zc
i and RPEij are then concatenated

and fed into a new MLP to determine whether Ui

is the cause utterance of Uj :

ŷecij = σ(MLP (Zj
e||Zi

c||RPEij). (9)

ŷecij represent the binary classification logits indicat-
ing whether Ui is the cause of Uj . Based on ŷecij ,
we can determine whether Uj , Ui and ŷej can form
a true utter-cause-emotion triplet.

4.7 Training
We use Focal loss (Ross and Dollár, 2017) to cope
with category imbalance in emotion-cause classi-
fication. Specifically, the loss of both emotion
prediction and cause utterance prediction and the
emotion-cause pair prediction, can be expressed as:

Lβ = − 1

Nβ

Nβ∑

i=1

αβ(1−ŷβi )γ log(ŷ
β
i ), β ∈ {e, c, ec}

(10)
where β represents the task type, Nβ denotes the
corresponding sample number of β, αβ is the cate-
gory balancing factor, and γ denotes the Focal loss
modulation parameter. These three training losses
are optimized jointly during the training process.

5 EXPERIMENTS

5.1 Experimental Settings
We conduct extensive experiments on two
MECTEC benchmark datasets, i.e., ECF (Wang
et al., 2022) and MECAD, which both contain data
of three modalities: text, audio, and video. Similar
to (Wang et al., 2022), we evaluate the model’s
overall performance using the F1 score. The F1
score is computed for utter-cause-emotion triplets
within each emotion category separately. Then the
weighted average F1 score is calculated across all

six emotion categories which is referred to 6 Avg.
In addition, as in (Wang et al., 2023), considering
the data imbalance among different emotion cat-
egories, we also report the weighted average F1
scores for the four main emotion categories except
Disgust and Fear, which is referred to 4 Avg. The
implementation details of the experiment are given
in Appendix D.

5.2 Baselines
Due to the limited research on the MECTEC task,
representative approaches in related fields of Emo-
tion Cause Pair Extraction (ECPE) and Emotion
Cause Pair Extraction in Conversations (ECPEC)
are considered. The ECPE and ECPEC tasks aim
to extract emotion-cause pairs from plain texts and
conversations, respectively.

We compare our model with seven baselines:
1) MC-ECPE-2steps (Wang et al., 2022) is a
two-step MECTEC architecture, which first ex-
tracts emotion utterances and cause utterances sep-
arately, and then performs pairing and filtering to
identify emotion-cause pairs. 2) HiLo (Li et al.,
2024a) is one of the SOTA approaches for the
MECTEC task, which fully utilizes conversion
information through a labeling constraint mech-
anism. 3) ECPE-2D (Ding et al., 2020a) is an E2E
framework for ECPE that uses 2D-Transformer to
model the interactions of emotion-cause pairs. 4)
RankCP (Wei et al., 2020) is a GAT-based ap-
proach for ECPE to extract emotion-cause pairs by
ranking. 5) UECA-Prompt (Zheng et al., 2022) is
one of the SOTA methods for ECPE, which decom-
poses the task into multiple objectives and converts
them into sub-prompts. 6) SHARK (Wang et al.,
2023) is the SOTA method for ECPEC that incor-
porates commonsense into GATs to improve the
model’s semantic understanding of emotions and
causes. 7) GPT-4o is one of the most powerful
large language models (LLMs) for open-domain
conversations. Details of prompts are provided in
Appendix F.

5.3 Experimental Results
Table 2 shows the experimental results of M3HG
and seven baseline models evaluated on the ECF
dataset and the MECAD dataset. Our model
demonstrates an excellent performance both on the
ECF dataset and the MECAD dataset.
Results on the ECF dataset. First of all, as shown
in Table 2, among all the baseline models, the E2E
approaches such as SHARK and HiLo deliver the
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Dataset Method Modality Anger Disgust Fear Joy Sadness Surprise 6 Avg. 4 Avg.

ECF

Pipline MC-ECPE-2steps△ T, A, V 24.39 0.00 0.71 38.84 21.60 40.24 29.32 31.92

E2E

ECPE-2D△ T 25.13 0.00 0.00 41.25 21.62 43.24 30.80 33.55
RankCP T 28.29 12.03 3.52 38.69 22.17 37.67 30.58 32.48
UECA-Prompt△ T 27.37 12.85 7.91 37.96 22.51 39.53 30.75 32.49
SHARK* T 28.65 10.42 5.33 40.41 25.35 40.45 32.24 34.33
HiLo* T, A, V - - - - - - 33.04 35.81

LLMs GPT-4o (5-shots) T 28.49 17.76 12.35 31.11 27.27 33.89 29.13 30.30

M3HG (ours)
T 34.47 18.17 12.72 43.28 32.22 45.82 37.46 39.95
T, A 35.53 18.71 17.07 47.73 30.97 46.72 39.10 40.97
T, V 34.05 18.18 19.57 46.23 32.10 48.50 38.90 40.72
T, A, V 36.08 23.33 9.88 49.03 32.41 47.46 40.07 41.96

MECAD

Pipeline MC-ECPE-2steps T, A, V 28.43 0.00 0.23 22.45 27.67 45.14 22.01 24.83

E2E

ECPE-2D T 28.12 0.00 0.56 24.30 28.01 35.87 25.32 28.54
RankCP T 29.79 12.50 3.06 21.79 29.31 32.36 26.29 28.32
UECA-Prompt T 28.54 12.12 5.32 20.84 29.67 34.17 25.91 27.87
SHARK T 30.22 10.16 4.10 25.84 30.21 34.59 27.58 29.99
HiLo* T, A, V - - - - - - - -

LLMs GPT-4o (5-shots) T 36.65 20.08 8.45 24.52 17.89 39.77 27.16 28.42

M3HG (ours)
T 35.85 18.05 15.38 25.95 29.13 42.11 30.81 32.55
T, A 37.29 21.03 15.89 27.15 30.34 42.78 32.16 33.73
T, V 36.91 20.48 16.91 25.47 30.96 43.14 31.95 33.52
T, A, V 38.34 21.89 8.79 28.10 31.17 43.29 32.82 34.59

Table 2: Performance comparison of different methods on the MECTEC task. △ denotes the results are from (Wang
et al., 2023). ∗ denotes the results are from the original paper (Wang et al., 2023; Li et al., 2024a). The best results
and the second best results are in bold and underlined, respectively. Since HiLo (Li et al., 2024a) is not publicly
available, we only report the results of HiLo on the ECF dataset.

best performance, indicating that the E2E frame-
work is more effective compared to the two-step
pipeline frameworks. In contrast, M3HG adopting
three modalities outperforms the SOTA E2E model
HiLo, with 21.28% and 17.17% improvement in
6 Avg and 4 Avg scores, respectively. We attribute
this improvement to M3HG’s ability to effectively
extract semantic information at inter-utterance and
intra-utterance levels, which enables the model to
accurately pair emotion utterances and cause ut-
terances. Specifically, in two challenging emotion
categories which have limited training samples, i.e.
Disgust and Fear, M3HG also exhibits high per-
formances. For example, compared to GPT-4o,
which achieved the second highest F1 scores in
the Disgust and Fear categories, M3HG shows im-
provements of 31.36% and 58.46%, respectively.

When only incorporating the text modality, the
6 Avg and the 4 Avg scores of M3HG are 37.46
and 39.95. When incorporating audio and video
with the text modality separately, the performance
of M3HG is improved to 39.10, 38.90 of 6 Avg
scores and 40.97, 40.72 of 4 Avg scores. When
incorporating all three modalities, M3HG achieves
the highest performance with 40.07 of 6 Avg scores
and 41.96 of 4 Avg scores. Meanwhile, it can be
observed that M3HG outperforms all the baseline
models even when only using the text modality,
demonstrating its superiority on the ECF dataset.

Results on the MECAD dataset. As shown in

Table 2, M3HG also achieves the highest results on
the MECAD dataset. Compared to the second best
model SHARK, M3HG adopting three modalities
achieves the improvement of 19% on the 6 Avg
scores and 15.34% on the 4 Avg score. Furthermore,
despite GPT-4o’s superior semantic comprehension
abilities, its performance on the MECAD dataset
remains suboptimal, with its 6 Avg score and 4 Avg
score of 27.16 and 28.42. Therefore, the few-shot-
based LLM approach still struggles to effectively
handle the MECTEC task. As shown in Table 2,
M3HG exhibits a universal highest performance on
the MECAD dataset, demonstrating the superiority
and robustness of M3HG when dealing with multi-
conversation scenarios.

More detailed experimental results and the abla-
tion study on M3HG are presented in Appendix E.

6 Conclusion

In this work, we propose the first multimodal
and multi-scenario Chinese emotion-cause analysis
dataset, MECAD, for MECTEC and related emo-
tion cause analysis tasks. Compared to ECF, the
only existing dataset for multimodal emotion-cause
analysis, MECAD offers more diverse conversation
scenarios. It helps to enhance the generalizability
and applicability of MECTEC models in complex
social media environments. Moreover, MECAD
is a valuable resource for cross-cultural emotion
analysis and recognition. Furthermore, we propose
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a generalized MECTEC framework named M3HG,
which deeply extracts emotional and causal con-
texts, while effectively integrating semantic infor-
mation across multiple granular levels. Extensive
experiments on the ECF dataset and the MECAD
dataset demonstrate the superiority of our method
compared to the existing state-of-the-art methods.

Limitations

There are also some potential limitations in this
work. First, the process of emotional and causal
context extraction does not integrate external
knowledge, which limits the model’s accuracy for
emotion prediction and cause prediction. In the
future, we plan to integrate external knowledge
into our model and leverage the advanced seman-
tic extraction capabilities of current LLM technol-
ogy to facilitate deeper and more precise emotion
cause analysis. Second, M3HG cannot handle ex-
cessively long conversations, as its input length is
constrained by the language model used. Further-
more, M3HG may suffer from error propagation in
the multimodal fusion process when emotion labels
have uneven information across modalities. This
imbalance can lead to inaccurate predictions, espe-
cially when modalities conflict. This challenge is
common in current multimodal models for emotion-
cause analysis and suggests an area for future im-
provement.

Ethical Considerations

We did not use real-world conversations in our data
collection because such conversations may violate
the privacy of the speaker. The effect of recruiting
actors to play the roles is the same as in the TV
series, but the scenes are not as diverse as in the
TV series. Therefore, we use TV series as the
data source. To further protect privacy, all data
annotations were anonymized and de-identified,
ensuring that our data collection adheres to ethical
standards.
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A Dataset Statistics and Analysis of
MECAD

To ensure the annotation quality of MECAD, we
calculated Cohen’s kappa (Cohen, 1960) scores for
every co-annotated data between two annotators,
as shown in Figure 4. The Cohen’s kappa (Cohen,
1960) scores across all annotators are consistently
around 0.6, indicating a good level of annotation
consistency.

After the labeling was completed, we computed
Cohen’s kappa scores separately for data that were
not co-labeled between the two labelers, as shown
in Figure 4. Table 3 lists some statistics of the
MECAD dataset. The dataset contains a total of
989 conversations, 10,516 utterances, and 8,077
emotion cause pairs from 56 different TV series,
which ensures the size and diversity of the dataset.
Similar to M3ED (Zhao et al., 2022), we used TV-
independent data segmentation to ensure the abil-
ity to validate model robustness as a benchmark
dataset. The average number of utterances and the
average length of an utterance of a conversation are
similar in the training, validation, and test sets. At
the same time, we can find that the average relative
positions of the emotion cause pairs are all around
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Figure 3: The interface of the developed online multi-
modal conversation emotion cause annotation toolkit.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a1
0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

0.6570 0.6791 0.7140 0.6718 0.6479 0.6884 0.6189 0.6510 0.6825

0.6570 0.6367 0.6826 0.5752 0.5734 0.6196 0.6438 0.6498 0.6259

0.6791 0.6367 0.6425 0.6133 0.6260 0.6970 0.6775

0.7140 0.6826 0.6425 0.6366 0.6753 0.6831 0.7061 0.6472 0.6683

0.6718 0.5752 0.6133 0.6366 0.6366 0.6623 0.6408

0.6479 0.5734 0.6753 0.6734 0.6983 0.6826 0.7193

0.6884 0.6196 0.6831 0.6734 0.7339 0.6968

0.6189 0.6438 0.6260 0.7061 0.6366 0.6983 0.7339 0.6938 0.6510

0.6510 0.6498 0.6970 0.6472 0.6623 0.6826 0.6968 0.6938 0.6669

0.6825 0.6259 0.6775 0.6683 0.6408 0.7193 0.6510 0.6669

Figure 4: Schematic representation of Cohen’s Kappa
scores for the common labeled portion between every
two annotators. A blank section indicates that there is
no common annotation data between two annotators.

Table 3: MECAD statistics. Rel pos of ec pairs denotes
the relative position between emotion utterances and
cause utterances in emotion-cause pairs.

Statistic Train Val Test Total

# TV series 38 7 11 56
# conversations 684 126 179 989
# uttrs 7,516 1,168 1,832 10,516
# spkrs 421 87 118 626
Avg. uttrs/conversation 10.99 9.27 10.24 10.63
Avg. uttr length 18.30 18.80 18.15 18.33
Avg. rel pos of ec pairs 0.72 0.73 0.55 0.69
Max. rel pos of ec pairs 13 7 6 13
Min. rel pos of ec pairs -14 -5 -9 -14
Emotion uttrs with cause 4,526 743 1,062 6,331
ec pairs 5,788 977 1,312 8,077

61.2%

34.3%

3.4%

1.0%

0.2%

Cause Type
event
opinion
emotional_influence
self_reflection
greeting

63.9%

26.7%

9.4%

Modality
t
a
v

Figure 5: Percentage of five cause types in the MECAD
dataset and percentage of modal basis for emotion cause
inferences.

1, indicating that most of the emotions in the con-
versation are caused by the previous utterance.

We referred how the ECF (Wang et al., 2022)
dataset categorizes the emotion causes and added a
new category called Self Reflection, which differs
from the remaining four categories by indicating
that emotions may be triggered by an individual’s
introspection or self-reflection, such as recollec-
tions of past events or worries about the future.
As shown in Figure 5, the event type is the cause
type with the largest share, indicating that most
of the emotions are caused by specific events in
the conversation. Notably, 36.1% of the causes of
emotion in our dataset are reflected in both audio
and video modalities, which exemplifies the need
for multimodal scene studies.

B The Annotation Toolkit of MECAD

To enhance annotation efficiency and accuracy,
we developed an online multimodal conversation
emotion cause annotation tool based on web tech-
nology1. As illustrated in Figure 3, the toolkit’s
homepage presents a list of conversations assigned
to the corresponding annotators, along with the
progress of their annotations. The conversation an-

1The annotation tool has been open-sourced at https://
github.com/redifinition/MECAD-MECTEC
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notation page displays speaker information, video
segments, corresponding scripts, and configurable
annotation items, enabling annotators to quickly
and efficiently complete their annotations.

With flexible and modifiable web pages, re-
searchers can utilize our annotation tools in dataset
constructions for further multimodal sentiment
analysis studies.

Algorithm 1 Super-Node-based Graph Construc-
tuon for a Conversation
1: Input: the conversation {S1 : U1, S2 : U2, ..., SN :

UN}, speaker identity p(·) satisfies p(Ui) = Si, the di-
rect context window K

2: Output: Super-Node-based M3HG: G = (V, E ,R)
3: V ← {(SN1

u, N
1
e , N

1
c ), ..., (SN

N
u , NN

e , NN
c ), SN1

d}
4: E ← ∅
5: R← {rss, rds, rgc, rec, rcc}
6: for i ∈ {2, 3, ..., N} do
7: c← 0, w ← i− 1
8: while w > 0 and c < K do
9: if p(Uw) = p(Ui) then

10: E ← E ∪ {(SNw
u , SN i

u, rss)}
11: c← c+ 1
12: else
13: E ← E ∪ {(SNw

u , SN i
u, rds)}

14: end if
15: w ← w − 1
16: end while
17: end for
18: for i ∈ {1, 2, ..., N} do
19: E ← E ∪ {(SN i

u, N
i
e, rec)}

20: E ← E ∪ {(SN i
u, N

i
c , rcc)}

21: E ← E ∪ {(SN i
u, SN

i
d, rgc)}

22: end for
23: return G = (V, E ,R)

C Design Details of M3HG

C.1 Multimodal Feature Extracting

Text : We splice all the textual modal utterances
and the corresponding speakers in the conversa-
tion and add a number of special tokens to get
the textual modal input sequence: Xt = {<
cls_token > S1 : U t

1, < sep_token >, . . . , <
cls_token > Sn : U t

n, < sep_token >}, where
< cls_token > and < sep_token > denote the
classification token and the separation token used
in the pre-trained language model (PLM), respec-
tively. To allow conversations that exceed the max-
imum input sequence length of the PLM to retain
as much contextual information as possible when
they are fed into the PLM, we sequentially truncate
the last tokens of the maximum-length utterances
of the conversation during preprocessing until the
maximum sequence length requirement of the PLM
is met. The input sequence Xt is then fed into the

PLM to obtain a sequential representation of the
entire conversation:

It = PLM(Xt), (11)

where It ∈ RL×dt , L is the length of the in-
put sequence and dt is the hidden dimension of
the PLM. To obtain the sequence representation
of each utterance, we make a weighted average
of the sequence representations of the tokens of
each conversation in It to obtain the sequence rep-
resentation of each utterance Et ∈ RN×dt ,where
N denotes the number of utterances of that con-
versation. We selected Speaker-Aware RoBERTa
(SA-RoBERTa) (Gu et al., 2020) as the PLM.

Audio : After resampling the audio to 16khz,
we input it into an audio feature extraction model
(AFE) to get a sequential representation of the au-
dio modality of the conversation:

Ea = AFE(Xa), (12)

where Ea ∈ Rn×da , and da is the hidden layer
dimension of the audio feature extraction model.
We choose Wav2Vec2.0 (Baevski et al., 2020) as
the audio feature extraction model.

Video: We first sample the video at equal inter-
vals as a sequence of images over several frames to
obtain the input sequence Xv, Xv ∈ RF×df×df

of the video modality, where F is the number of
sampled frames and df is the size of the picture.
The image sequences are then fed into the video
feature extraction model (VFE) to get a sequence
representation of the video modalities:

Ev = V FE(Xv), (13)

where Ev ∈ Rn×dv and dv is the hidden layer
dimension of the video feature extraction model.
We select the pre-trained DenseNet
(Huang et al., 2017) as the audio feature extraction
model.

C.2 Pseudo-code of Graph Construction

The pseudo-code of the graph construction process
is shown in Algorithm C.2.

C.3 An Example of the Graph construction

If K = 1, the graph constructed for the conversa-
tion in Figure 1 is shown in Figure 6.
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Table 4: Performance comparison of different methods for conversations with varying numbers of utterances. The
best results and the second best results are in bold and underlined, respectively.

Method

ECF MECAD

num_utt ≤ 10 num_utt > 10 num_utt ≤ 10 num_utt > 10

6 Avg. 4 Avg. 6 Avg. 4 Avg. 6 Avg. 4 Avg. 6 Avg. 4 Avg.

RankCP 31.50 33.29 29.34 31.88 27.19 29.23 25.11 27.13
SHARK 33.68 35.57 31.49 33.17 28.32 30.75 27.01 29.41
GPT-4o 30.08 31.56 28.42 29.36 26.34 27.82 27.79 28.88
M3HG (T) 39.18 41.25 36.18 38.98 31.95 33.40 29.94 31.90
M3HG (T, A, V) 41.95 40.42 38.67 41.09 33.76 35.21 32.10 34.12

𝑼𝟏

𝑯𝑵𝟏𝒖

𝑼𝟐
𝑯𝑵𝟐𝒖

𝑼𝟒
𝑯𝑵𝟒𝒖

𝑼𝟕
𝑯𝑵𝟕𝒖

𝑼𝟑

𝑯𝑵𝟑𝒖

𝑼𝟓

𝑯𝑵𝟓𝒖

𝑼𝟔

𝑯𝑵𝟔𝒖

𝑼𝟒

𝑯𝑵𝟒𝒖

Figure 6: Super-Node-based edges and relations con-
structed from a conversation in MECAD with K = 1.
The utterance Super-Nodes of the two speakers are
shown in gray and blue, respectively. The black solid
and dashed lines denote the Super-Edges between the
same speaker and different speakers, respectively, and
the red dotted lines denote the Super-Edges between
the utterance Super-Nodes and the conversation Super-
Nodes.

D Implement Details of the Experiment

For the ECF dataset, we use the pre-trained
RoBERTa-large2 model to initialize the fea-
ture extraction parameters of the text modality.
For audio modality, we use the wav2vec2-base-
960h3 model and for video modality we use the
DenseNet (Huang et al., 2017) model. For the
MECAD dataset, we use the chinese-roberta-wwm-
ext-large4 model for the initialization of textual
modal features, the wav2vec2-large-chinese-zh-cn5

model for the extraction of audio modal features,
and the DenseNet model is also applied to the video
modal. In our experiments, none of the parameters
of the PLM were frozen. During the construction
of the graph, we set the hyperparameter K to 3.

2https://huggingface.co/FacebookAI/
roberta-large

3https://huggingface.co/facebook/
wav2vec2-base-960h

4https://huggingface.co/hfl/
chinese-roberta-wwm-ext-large

5https://huggingface.co/wbbbbb/
wav2vec2-large-chinese-zh-cn

During training, we use the AdamW (Loshchilov,
2017) optimizer with batch size and learning rate
set to 16 and 5e-6, respectively, and perform a pa-
rameter update after every two mini-batches. Our
model is trained for 50 epochs on the training set,
and the checkpoints corresponding to the highest
values of the weighted average F1 scores of the
six emotions on the validation set are used as the
results of the test set.

E Supplementary Experimental Results
of M3HG

E.1 Ablation Study

Effect of different modules. We conduct abla-
tion studies to verify the effectiveness of differ-
ent modules in M3HG on the two datasets using 6
Avg and 4 Avg scores. As shown in Table 6, w/o
N e&N c indicates no use of emotional and causal
context nodes in graph construction. Consequently,
emotion-cause pair prediction is performed directly
based on the features of each utterance node. w/o
inter-fusion and w/o intra-fusion denote the ab-
sence of inter-utterance and intra-utterance multi-
modal fusion, respectively, during multi-scale se-
mantic information fusion. Our model outperforms
the state-of-the-art baselines even without utiliz-
ing the previous three mechanisms. Specifically,
the performance of M3HG degrades on both ECF
and MECAD datasets when removing the emo-
tional and causal context nodes, demonstrating the
necessity of explicitly modeling the emotion and
cause-related contexts. Moreover, removing both
intra-utterance and inter-utterance semantic fusion
results in a drop in the model’s performance, the
former of which causes a more significant degrada-
tion. It highlights the importance of effectively fus-
ing semantic information at different scales within
heterogeneous graphs, particularly within individ-
ual utterances.
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Table 5: Performance comparison of different methods on four subtasks. The best results and the second best results
are in bold and underlined, respectively.

Dataset Method EP ER CE EC

P R F1 P R F1 P R F1 P R F1

ECF
SHARK 59.00 61.21 60.74 40.34 45.65 42.83 69.25 66.13 67.64 50.12 46.31 48.14
GPT-4o(5-shots) 45.17 78.62 57.37 36.42 42.70 36.76 57.02 84.85 68.21 32.90 61.13 42.78
M3HG (T) 71.36 75.11 73.19 52.24 45.63 46.60 72.32 68.40 70.30 58.03 52.05 54.88

MECAD
SHARK 69.30 67.02 68.14 39.38 36.93 38.12 64.18 66.36 65.24 49.02 42.87 45.74
GPT-4o(5-shots) 71.41 63.69 67.33 38.69 36.59 34.22 65.03 69.26 67.08 39.68 41.77 40.70
M3HG (T) 72.34 67.84 70.02 43.35 40.98 41.66 66.12 70.24 68.12 54.82 46.42 50.27

Table 6: Ablation results.

Dataset Model 6 Avg. 4 Avg.

ECF

M3HG 40.07 41.96
w/o all modules 36.81(↓3.26) 38.57(↓3.39)

w/o Ne&Nc 38.13(↓1.94) 40.11(↓1.85)
w/o inter-fusion 39.56(↓0.51) 41.14(↓0.82)
w/o intra-fusion 39.12(↓0.95) 40.86(↓1.10)

MECAD

M3HG 32.82 34.59
w/o all modules 30.37(↓2.45) 32.27(↓2.32)

w/o Ne&Nc 30.94(↓1.88) 32.79(↓1.80)
w/o inter-fusion 32.57(↓0.25) 33.91(↓0.68)
w/o intra-fusion 32.16(↓0.66) 33.33(↓1.26)

1 2 3 4 5 6
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36

6 
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(%
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Figure 7: Results of M3HG with various K values.

Effect of the hyperparameter K. The hyperpa-
rameter K is closely related to the spatio-temporal
complexity of the M3HG’s graph construction. We
vary the size of K (ranging from 1 to 6) to test its
effect, and the result of the M3HG on both datasets
is shown in Figure 7. The performance of M3HG
on both datasets initially improves with increasing
K and then declines, with the best performance
observed at K = 3.

E.2 In-Depth Analysis

The impact of conversation length. To evaluate
the performance of M3HG in handling longer con-
versations, we present a comparison of the perfor-
mance of M3HG and other baseline models across
conversations of varying lengths, as shown in Ta-
ble 4. We observe that M3HG outperforms all base-
line models in scenarios involving conversations
with more than 10 utterances, which account for

Table 7: Performance comparison of different methods
for conversations in which cause utterance appears after
emotion utterances. The best results and the second best
results are in bold and underlined, respectively.

Method
ECF MECAD

6 Avg. 4 Avg. 6 Avg. 4 Avg.

SHARK 29.15 30.54 25.49 27.51
GPT-4o 28.21 29.45 26.42 27.76
M3HG (T) 35.48 37.01 29.18 30.93
M3HG (T, A, V) 38.25 40.01 31.27 33.09

42.65% and 43.38% of all conversations in the ECF
and MECAD datasets, respectively. In long con-
versations, baseline models, including GPT-4o, fail
to effectively extract global contextual information,
thereby missing a number of triplets. Our model,
through semantic fusion at different scales within
multimodal heterogeneous graphs, effectively cap-
tures more triplets by extracting contextual infor-
mation from long conversations.
Model performance when cause utterance ap-
pears after emotion utterances. A key chal-
lenge in the MECTEC task is when the cause of a
speaker’s emotion is revealed later in the conver-
sation, requiring the model to effectively capture
and interpret the global context of the conversation.
To further emphasize the superior performance of
M3HG in handling cases where the cause utterance
appears after the emotion utterance, we identified
and filtered all such conversations from the ECF
and MECAD datasets. The performance of M3HG,
compared with two other representative models,
is shown in Table 7. M3G demonstrates superior
performance, while SHARK suffers a greater per-
formance drop compared to M3HG. Although the
performance drop for GPT-4o (5-shots) is less pro-
nounced, its overall performance remains unsatis-
factory.
Model performance on four subtasks. To evalu-
ate M3HG’s performance more comprehensively,

11429



Yunru Chen:⼲嘛这样看着我啊？ (Why are you looking 
at me like that?)𝑼𝟏

Junjie Mo: 没事啦，不⽤客⽓。 (It’s nothing, no need to 
thank me.)𝑼𝟐

Yunru Chen: 你是不是跟李⼦维⼀样，觉得我说的那些
话，都是乱编的？ (Are you like Ziwei Li, thinking that 
what I said was all made up?)

𝑼𝟑

Junjie Mo: 我相信你说的都是真的啊，在你的梦⾥，真
的有那么⼀个⼈，你很喜欢他，他也很喜欢你，⽽且… 
(I believe what you said is true. In your dream, there was 
really someone you liked a lot, and he liked you too, 
and…)

𝑼𝟒

Junjie Mo: 没事啦 (It’s nothing.)𝑼𝟓

Yunru Chen: ⽽且什么，你说啊？ (And what? Tell me!)𝑼𝟔

Junjie Mo: 也许⽐起李⼦维，我更希望你喜欢的，只是
你梦⾥那个王诠胜。 (Maybe, compared to Li Ziwei, I 
wish you’d like only the Wang Quansheng in your dream.)

𝑼𝟕

(Surprise,1,1), (Sad,3,3), (Sad,5,7), (Surprise,6,4), 
(sad,7,7)Ground Truth

(Surprise,1,1), (Sad,3,3), (Surprise,6,6), (Sad,7,6)SHARK

(Anger,3,1), (Surprise,6,4), (Sad,7,7)GPT-4o (5-shots)

(Surprise,1,1), (Sad,3,3), (Sad,5,7), (Anger,6,5)M3HG

Zongming Tan: 怎么了？(What's going on?)𝑼𝟏

Di An: 我也不知道，总觉得有⼈在跟着我。(I don't know. I always 
feel like someone's following me.)𝑼𝟐

Zongming Tan: 你刚回来不久，上海本⾝就没⼏个朋友，谁会跟着你。
(You just came back not long ago, and you don't have many friends in 
Shanghai itself, who would follow you.)

𝑼𝟑

Di An: 我也觉得奇怪，加上今天已经好⼏次了，总觉得有⼈在跟着
我，⼀回头，⼜什么都没有，你说，会不会是我⾃⼰的幻觉，还是？
(I also think it's strange, plus it's been several times today, I always 
feel that someone is following me, and when I turn around, there's 
nothing.)

𝑼𝟒

Zongming Tan:安迪，别胡思乱想，可能就是⼯作太⾟苦，太累了。
(Andy, don't get any ideas, it's probably just a case of working too 
hard and being too tired.)

𝑼𝟓

Di An: 可能吧，也许是我今天没有吃早餐，低⾎糖了，所以才有幻
觉。(Maybe, maybe I'm hallucinating because I didn't eat breakfast 
today and I'm low on blood sugar.)

𝑼𝟔

(Fear,2,2), (Fear,4,2), (Fear,4,4)Ground Truth

(Fear,4,4)SHARK

(Surprise,1,1), (Fear,2,2), (Sad,4,4), (Anger,5,5), (Sad,6,6)GPT-4o (5-shots)

(Fear,2,2), (Fear,4,3), (Fear,4,4)M3HG (T)

(Fear,4,2), (Fear,4,4), (Sad,6,6)M3HG (T+A+V)

Figure 8: Comparison of utter-cause-emotion triplet on two test samples.

we define the following four subtasks:
• Emotion Extraction (EP): Predict whether

an utterance expresses an emotion (binary
classification), same as SHARK.

• Emotion Recognition (ER): Predict the emo-
tion category of an utterance (multi-class clas-
sification).

• Cause Extraction (CE): Predict whether an
utterance is a cause utterance (binary classifi-
cation), same as SHARK.

• Emotion-Cause Pair Extraction (EC): Pre-
dict whether two utterances of a conversation
form an emotion-cause pair (binary classifica-
tion).

Table 5 demonstrates the performance compari-
son between M3HG and other SOTA models across
the four subtasks. For the EP subtask, M3HG per-
forms the best across both datasets. It is worth
noting that GPT-4o (5-shots) achieves a high re-
call on the ECF dataset. This phenomenon can be
attributed to the more pronounced label sparsity
in the ECF dataset compared to MECAD. As a
result, GPT-4o (5-shots) frequently predicts that
an utterance carries emotion, leading to a higher
recall. For the ER subtask, M3HG achieves the
best results across both datasets. This demonstrates
M3HG’s ability to effectively extract the emotional
context embedded in utterances. For the CE sub-
task, M3HG performs best, demonstrating the im-
portance of integrating the cause prediction subtask

into the model during training. For the EC subtask,
GPT-4o (5-shots) similarly exhibits high recall on
the ECF dataset. This is due to the severe label
sparsity problem in the ECF dataset, compared to
MECAD, which leads GPT-4o to predict as many
emotion-cause pairs as possible.

E.3 Case Study

To demonstrate the superiority and limitations of
M3HG, we present a case study that compares the
prediction results of M3HG with those of two other
representative models (i.e. SHARK, GPT-4o (5-
shots)), using two sample conversations from the
MECAD dataset. As shown in Figure 8, the first
test sample demonstrates that M3HG outperforms
the other models in prediction accuracy, while GPT-
4o exhibits the poorest performance. This can
be attributed to M3HG’s use of a multimodal het-
erogeneous graph and a specially designed con-
versation super-node, which effectively captures
global contextual information. These features en-
able M3HG to more accurately handle scenarios
where the cause utterance appears after the emotion
utterance.

In the second sample, M3HG (T+A+V) is less
effective than M3HG (T) in predicting Utterance
6 as “Sad” and Utterance 2 as “Neutral”. This is
because the combination of text and context in Ut-
terance 2 conveys the speaker’s worried and fearful
mood, while the video and audio signals suggest a
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Table 8: An example of prompt for ChatGPT.

Input

Instruction

You are an expert in sentiment analysis and identification of emotional causes. I will give you a conversation
between multiple speakers. You are required to extract the utter-cause-emotion triplet for a given utterance.
First, infer the emotion label for the utterance (select one from: Anger, Disgust, Fear, Joy, Sadness, Surprise
or Neutral). Then, identify the index(es) of the cause utterance(s) that triggered this emotion (the index
should represent the utterance(s) from the conversation that caused the emotion, and it must be non-
negative. Multiple indices should be separated by commas). If the predicted emotion is Neutral, there is no
corresponding cause utterance. The output should follow the format: emotion label, cause utterance indices.
Examples of the expected output format: Example 1: happy,3. Example 2: sad,3,4,5. Example 3: neutral.

Demonstrations

Input Conversation :
{ 1. Fang Sijin: First, change your clothes, then head to this address. A decoration company will be coming
over shortly. You’ll need to supervise their work and see how you can help. }
{ 2. Zhu Shanshan: Wait, am I really responsible for this? I don’t know anything about decoration. }
{ 3. Fang Sijin: You’ve been handing out flyers for two days now. Have you gotten any interested customers? }
{ 4. Zhu Shanshan: But you only told me to distribute the flyers; you never ask for phone numbers! }
Candidate Utterances:
{ 1. Fang Sijin: First, change your clothes, then head to this address. A decoration company will be coming
over shortly. You’ll need to supervise their work and see how you can help. }
{ 2. Zhu Shanshan: Wait, am I really responsible for this? I don’t know anything about decoration. }
Target Utterance:
{ 2. Zhu Shanshan: Wait, am I really responsible for this? I don’t know anything about decoration. }
Target emotion labels and cause index(es):
[Suprise, 1]
Input Conversation :
......
Candidate Utterances:
......
Target Utterance:
......
Target emotion labels and cause index(es):
......

Output output example [Happy, 1, 2]

calmer demeanor. This discrepancy likely caused
M3HG (T+A+V) to mispredict the emotions in this
case. Nevertheless, M3HG still outperforms all
other baseline models, demonstrating its robust-
ness and superior predictive capability even under
challenging conditions.

F Prompt Design for ChatGPT

We use the GPT-4o model of OpenAI public
API (version up to May 13, 2024) and design a
prompt elaborately to test the performance on the
MECTEC task. The prompt (i.e., the input of Chat-
GPT) includes three parts:

• Instruction. We use instructions to guide the
ChatGPT on what it needs to do. Our instruc-
tion is as follows:

You are an expert in sentiment analysis and
identification of emotional causes. I will
give you a conversation between two or more
speakers. You need to extract the utter-cause-
emotion triplet of the given utterance.

Meanwhile, we provide a detailed description
of the output formats required for ChatGPT,
as illustrated in Table 8.

• Demonstrations We achieve the few-shot
in-context learning of ChatGPT by adding
demonstrations. We use the 5-shot in-context

learning due to the limitations of the input
length. Each demonstration includes a conver-
sation as input and a target utterance as the
target for prediction.

Except for the aforementioned two parts, we also
need to describe the conversations to be predicted
and the corresponding target utterance. An exam-
ple is shown in Table 8.
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