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Abstract

Correctly identifying characters and substrings
of words should be a basic but essential abil-
ity of any Language Model that aims to profi-
ciently understand and produce language. De-
spite so, the majority of Pre-trained Language
Models (PLMs) are "character-blind" and strug-
gle in spelling tasks, although they still seem
to acquire some character knowledge during
pre-training, a phenomenon dubbed Spelling
Miracle. To shed light on this phenomenon, we
systematically evaluate a range of PLMs with
different parameter sizes using a controlled bi-
nary substring identification task. Through a
series of experiments, we propose the first com-
prehensive investigation on where, when, and
how PLMs develop awareness of characters and
substrings, with a particular linguistic focus on
morphemic units such as prefixes, suffixes, and
roots.

1 Introduction

Current Pre-trained Language Models (PLMs) are
trained over large corpora of text leveraging the
Causal Language Modeling task (Bengio et al.,
2003): predicting the next token in a sequence
of tokens, where the criteria by which words are
split into tokens is obtained statistically using com-
pression algorithms such as Byte Pair Encoding
(BPE) (Sennrich et al., 2016). This approach pro-
duces a segmentation that encourages the encod-
ing of high-frequency words into single tokens
and splits low-frequency words into frequent sub-
tokens. This process results in models that are
"character-blind": they are not aware of charac-
ters and their pre-training objective is not designed
to learn representations of this knowledge. Despite
this, recent studies have revealed that PLMs exhibit
limited spelling abilities, a phenomenon dubbed
the Spelling Miracle (Liu et al., 2023).

Yet, the ability to identify characters and sub-
strings within words is apparently trivial but it’s

fundamental to robust language understanding.
Such knowledge is crucial not only in tasks that
require character information (spelling, solving ty-
pos, rhymes generation, etc.) but also in scenarios
where the understanding of a word, and therefore
the full meaning of a sentence, is strictly related
to the parts of which a word is composed. For in-
stance, in the sentence "this device can decaffeinify
any drink," the neologism decaffeinify might be
tokenized into [’dec’, ’affe’, ’in’, ’ify’]l. While
the model has an explicit representation for the -ify
suffix that can encode the meaning shift caused by
this morpheme, both the prefix de- and the root
caffe must be reconstructed via implicit character-
level knowledge. Due to the compositional nature
and the high productivity of language (60 % of the
new words a reader will encounter are morpholog-
ically complex, Angelelli et al., 2014), PLMs are
often faced with these challenges and, as shown
by Zheng et al. (2024), downstream performance
severely degrades with sentences involving mor-
phological neologisms.

Despite these observations, the emergence of
character and substring knowledge in character-
blind models remains an underlooked topic, par-
ticularly from a linguistic perspective. Moreover,
existing studies relied on training probing classi-
fiers (Kaushal and Mahowald, 2022; Itzhak and
Levy, 2022) or zero/few-shots prompting (Edman
et al., 2024) which have limitations (Belinkov,
2022; Laskar et al., 2024). To address this gap, we
propose an experimental setup that does not rely
on probing or prompting, and we extend current
studies by analyzing how PLMs identify substrings
of various lengths, at various positions, when this
competence emerges during pre-training and how
performance changes according to linguistic vari-
ables such as the substring being a morpheme (i.e.,

'The reported tokenization is performed by the
Pythia tokenizer: https://huggingface.co/EleutherAl/
pythia-1B.
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a prefix, suffix or a root). Specifically, we selected
decoder-only models from the Pythia family (Bider-
man et al., 2023) of different parameter sizes, lever-
aging the MorphoLex database (Sdnchez-Gutiérrez
et al., 2018) to construct our dataset.

Our main research questions are: (i) Do
character-blind models have an understanding of
the character composition of words? (ii) How does
this competence change according to model size,
substring length and position? (iii) When does
this competence emerge during pre-training? (iv)
Are morphemes recognized the most? If so, which
ones? (v) Are there linguistic and non-linguistic
variables that affect this competence?

2 Related Work

Assessing the character-level knowledge of PLMs
started to emerge recently as a research area. De-
spite so, few works target this phenomenon ex-
plicitly, often omitting the related linguistic as-
pects. Itzhak and Levy (2022) probed the embed-
ding matrix of PLMs to reconstruct complete word
spellings, finding that, curiously, GPT2-medium
and RoBERTa-large solved the task correctly 30%
of the time. Kaushal and Mahowald (2022) trained
probing classifiers to predict the presence or ab-
sence of a particular character/substring in a to-
ken, finding that larger models store more character
knowledge. Edman et al. (2024), Efrat et al. (2023),
Huang et al. (2023) and Suvarna et al. (2024) pro-
posed suites of tasks to evaluate PLMs that involve
character-related knowledge, ranging from sylla-
ble counting and rhyme word generation to inverse
spelling and misspelling correction. From a mor-
phological perspective, Lerner and Yvon (2025)
studied the ability of PLMs to perform affixation,
relating it to the generation of nonce words, find-
ing that prefixation is harder due to tokenization
artifacts.

Differently from the aforementioned works,
our approach focuses specifically on character
and substring-level identification across different
lengths and positions, focusing also on linguisti-
cally meaningful units like prefixes, suffixes and
roots, with a particular emphasis on when and how
such knowledge develops throughout pre-training.

3  Our Approach

To assess a LLM’s knowledge of the character com-
position of its tokens and the sensitivity towards
sublexical morphemes, we developed a minimal

fine-tuning approach using a character-n-gram bi-
nary classification task: given a word w and a sub-
string n-gram that may or may not appear in w,
the source text is "Is n-gram inside w?", the ex-
pected output is {yes, no}. The n-gram length
varies between 1 (a single character) and 6 and can
be located at the start, the middle and the end of
w. This method produces 18 classes (6 n-grams
lengths times 3 positions). Relying on the Mor-
phoLex dataset, we kept an important distinction
between derived words, i.e. words formed via mor-
phological processes (re + load), and morpholog-
ically simple words, i.e. words with no meaning-
ful sublexical structure (load), and whether the
asked n-gram is a morpheme, i.e. a prefix ("dis-
like"), a suffix ("like-Iy"), a root ("un-like-ly"), or
a meaningless substring ("/-ike"). This distinction
allows us to measure performance for each of the
18 classes while also assessing the change in per-
formance between morphemic and non-morphemic
n-grams.

To ensure we are measuring the model’s exist-
ing character-level knowledge rather than injecting
it, each model is fine-tuned on a small, controlled
and balanced set of examples (both positive and
negative), which is just sufficient to teach the task
format. On the other hand, the test set is compre-
hensive, designed to extensively evaluate several
axes of character-related competence.

Since our focus is on the models’ competence
— specifically, their ability to store and access
character-level knowledge — rather than their gen-
erative performance (Hu and Levy, 2023), fine-
tuning provides a controlled way to target and
elicit the specific knowledge we aim to investigate.
To test whether the understanding of the charac-
ter composition of tokens comes from the models’
pre-training phase or from our fine-tuning setup,
we extend these experiments to the pre-training
checkpoints of the Pythia family, including random
initialized weights. This strategy provides a ro-
bust baseline and allows us to examine when and
how this knowledge emerges during pre-training,
as well as how morphological variables affect the
acquisition of this competence.

3.1 Dataset

To conduct our experiments we leveraged Mor-
phoLex (Sdnchez-Gutiérrez et al., 2018), a valuable
database of derivational morphological variables
for each complex word in the complete English
Lexicon Project (ELP, Balota et al., 2007). Mor-
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phoLex contains several word forms, each tagged
with a specific prefix-root-suffix signature (PRS)
and different morphological variables (affix and
root frequency, family size, productivity, and so
on). Our dataset is built as follows: using the PRS
structure, we focus on single-root words, words
containing exactly one prefix, words containing ex-
actly one suffix, and, lastly, words containing both
a prefix and a suffix. The single root set represents
morphologically simple words, the other sets repre-
sent morphologically complex words (also called
"derived"). By keeping only morphologically trans-
parent words (each morpheme must be fully intact
within a word) and removing inflected forms, we
obtained 23 639 words, of which 14 200 are mor-
phologically simple and 9439 are derived.

3.2 Models

We conduct our experiments using the Pythia
model family (Biderman et al., 2023), a suite of
decoder-only transformers of varying sizes pre-
trained on the Pile corpus (Gao et al., 2020). Specif-
ically, we employ the 70M, 160M, 410M, and 1B
models to assess how character- and morpheme-
related competence evolves with increasing model
size. Importantly, all the models share the same
tokenizer trained on the Pile with a vocabulary size
of 50 254, allowing for a fair comparison. Further-
more, to investigate the role of pre-training in the
development of this competence, we extend our
experiments to the following pre-training check-
points (where 1 step ~ 2 million tokens): step 0
(randomly initialized weights), 1, 4, 16, 32, 512,
1000, 2000, and 3000 (2% of pre-training).

3.3 Experimental Setting

To design a training set that focuses solely on teach-
ing the task without injecting additional knowledge
into the models, we randomly extracted a small
subset of 200 words, evenly split between derived
and non-derived lemmas, from the overall dataset.
Importantly, none of them begin with the charac-
ters {a, h, o, v}. By excluding these letters, we
prevent the models from encountering n-grams in
the start position that begin with these characters,
ensuring they must generalize and leverage compe-
tence acquired during pre-training. Combined with
the experiments on randomly initialized weights,
this setup ensures the robustness of our experimen-
tal setting. The training set is entirely derived from
these 200 words. From the remaining dataset, we
randomly sample an additional 200 words to con-

Tokenization Substr. Tokens  Identity Flag

[“consci”, “ously”] [“ously”] True
[“consci”, “ous”, “ly”] [“ous”, “ly”] True
[“consci”, “ous”, “ly”] [“ously”] False

Table 1: Identity filtering process, exemplified for start
position.

struct a small validation set, while the rest is used
for testing, resulting in 95% unseen word tokens in
the test set. For any given word w, we generate char-
acter n-grams of incremental length with n € [1, 6],
starting from each character of w. To specify posi-
tional context, we prepend "_" to n-grams extracted
from the beginning of w, append "_" to those from
the end, and leave n-grams from the middle unmod-
ified. Given this approach, the word genesis would
result in the following list of n-grams: ['_g’, ’_ge’,
’_gen’,’_gene’,’_genes’,’_genesi’, ’¢e’, ’en’, ‘ene’,

enes’, ’enesi’, ’enesis_’, 'n’, 'ne’, ‘nes’, 'nesi’,

LIS I I S L S I P e R ]

‘nesis_’, ’e’, ’es’, ’esi’, ’esis_’, ’s’, ’si’, ’sis_’, ’1’,
’is_’, ’s_"]?, which exhaust every possible n-gram
of length between 1 and 6 in w, eventually inter-
cepting morphemes.

After computing the n-grams, we generate both
a positive and negative example for each. Nega-
tive examples are created by randomly selecting an
n-gram of the same length and position as the cor-
responding positive example from a list of n-grams
extracted from all the words in MorphoLex?. This
procedure ensures a balanced number of examples
for each class. Overall, by limiting the total number
of examples for each of the 18 classes to 300 (for
training and validation only), we obtained training,
validation, and test sets consisting of 5264, 5248,
and 1233 091 examples, respectively.

Importantly, we flag examples where the subto-
ken(s) of the n-gram is/are fully present in the
subtokens of the tokenized word and label them as
identity. For example, considering the word “con-
sciously” and the substring “ously”, the identity
flagging process is as illustrated in Table 1 (here
exemplified on end position, but analogous for start
and middle). We introduce this distinction because
these instances do not require the model to utilize
character-level knowledge but instead to simply ap-
ply an identity function. Moreover, tokens starting
with "G" (encoded space) are considered an identity
with their non-G counterpart. E.g., if liking is tok-
enized as ["Glik", "ing"] and the queried substring

2We excluded the cases where the n-gram is the word itself.

3The sets of n-grams used for generating negative examples
are computed separately for the training, validation, and test
datasets.
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Derived  Derived

Pythia | Overall Non-derived N.M.N. M.N.
70M 0.62 0.62 0.61 0.74
160M 0.75 0.78 0.73 0.87
410M 0.77 0.79 0.75 0.85
1B 0.83 0.85 0.81 0.91

Table 1: Overall F1-Score across model sizes and mor-
phological value.

lik is ["lik"] we would flag this example as identity.
This choice is motivated by the work of Lerner and
Yvon (2025) in which they found that word-initial
and word internal tokens (e.g. “Glik” and “lik”)
are often aligned in the embedding space.

Finally, each model (and each pre-training check-
point) is fine-tuned for a single epoch on the train-
ing set using a cross-entropy loss function com-
puted exclusively on the binary prediction tokens
(yes or no). Further details on training setup and
hyperparameters can be found in Appendix A.

3.4 Evaluation

The evaluation is conducted at multiple levels of
granularity by computing standard metrics such
as accuracy and macro F1-score. Specifically, we
measure performance for each position (start, mid-
dle, end) and for each n-gram length at each po-
sition; furthermore, we conduct these evaluations
separately for (1) morphologically simple words
("Non-derived"), for example: "Is _dr in drink?";
(2) derived words where the asked n-gram does not
overlap by length and position to the word’s mor-
phemes (abbreviated as "Derived N.M.N.", Non-
Morphemic N-gram), for example: "Is s/ in dis-
like?"; (3) derived words where both position and
length of the asked n-gram match exactly the mor-
pheme in the word (abbreviated as "Derived M.N.",
Morphemic N-gram), for example: "Is _dis in dis-
like?". This separation allows us to assess if PLMs
recognize morphemes better or worse than a mean-
ingless substring, with a further linguistic distinc-
tion between prefixes, suffixes and roots.

4 Results

Before presenting our experimental results, we note
that all models — except for Pythia 70M — achieved
near-perfect accuracy (> 99%) on the identity set
(44 110 examples). Since these cases rely solely on
identity matching rather than character-level knowl-
edge, the following sections focus exclusively on
non-identity cases.

4.1 Results on the fully pre-trained models

Table 1 presents the overall Fl-score for each
model distinguished by morphological category.
Results increase consistently at higher parame-
ter size, with Pythia-1B obtaining by far the best re-
sults. The improvement is especially relevant when
comparing 160M, 410M, and 1B to the smallest
model, Pythia-70M, which lags behind by a sub-
stantial gap. Across all models, F1-score is higher
for morphemic n-grams of characters rather than
meaningless substrings, especially in the derived
words class.

Table 2 provides a fine-grained overview of per-
formance across position, substring length and
morphological value*. Position considerably in-
fluences model performance: substrings at the
beginning of a word are recognized the most,
with Pyhtia-1B and 410M achieving F1 > 90%,
followed by the end of word n-grams as the second
best performing position. Pythia-70M, on the other
hand, deviates from this trend, performing better
on end-position substrings than on start-position
ones. Substrings in middle position are the hard-
est to identify, for which each model obtained a
substantially lower F1. The length of the n-gram
also affects performance: longer n-grams are gen-
erally recognized better than shorter ones, since
they probably carry some semantic signal that facil-
itates prediction. Models perform worst on single
characters, especially if they are located in mid-
dle and end position. Even the best-performing
model, Pythia-1B, achieves only 77% and 79% F1
for these classes, hence a 20% drop from start po-
sition n-grams of length 1. This suggests that, as
parameter size increases, character-blind PLMs
exhibit a high awareness of the starting letter
of a word but significantly lower awareness of
single characters at middle and end positions°.

Importantly, measuring F1 only on the substrings
in start position that begin with {a, h, o, v}, which
we excluded from the training set (see Section 3.3),
there is no significant drop in performance (max
-4% for Pythia-70M), indicating that models gener-
alized the task and are effectively leveraging infor-
mation acquired during pre-training (see Appendix
O).

Looking at the morphological classes, the evi-
dent increase for morphemic n-grams (underlined

*For more details on statistics about each class described
in Table 2, see Appendix B.
3See Figure 7 in Appendix for results on single characters.
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Morph. simple [ Derived N.M.N. [ Derived M.N.
len 70M 160M 410M 70M 160M 410M 70M 160M 410M 1B
1 0.63 0.82 0.59 0.76 0.92 0.54 0.75 0.91 0.93
2 | 052 | 084 051 081 088 057 |09 093
3 | 059 | 088 057 = 086 092 058 | 089
start 4 0.62 0.91 0.6 0.89 0.58 0.91
5 0.63 0.91 0.56 0.91
6 0.63 0.92 / / / /
all 0.62 b 0.86 0.57 0.89
1 0.58 0.68 0.72 0.59 0.66 0.71 / / / /
2 0.6 0.7 0.7 0.77 0.6 0.67 0.65 0.74 / / / /
3| 058 073 071 079 | 059 068 067 075 | 0.60 7082 079 [0ST
middle | 4 | 057 075 075 083 | 057 071 071 078 | 063 = 085 084 091
5 | 056 077 076 085 | 057 072 074 081 | 066 087 086 092
6 0.55 0.8 0.79 0.87 0.57 0.75 0.77 0.84 0.62 0.90 0.88 0.92
all 0.58 0.72 0.72 0.79 0.59 0.69 0.7 0.76 0.64 0.86 0.85 0.91
1 0.67 0.77 0.71 0.79 0.62 0.68 0.65 0.73 0.67 0.75 0.68 0.78
2 0.71 0.8 0.75 0.83 0.65 0.75 0.69 0.81 0.82 0.90 0.83 091
3 | 074 08 08 088 | 073 081 076 086 | 086 089 078  0.89
end 4 0.78 0.87 0.87 0.92 0.8 0.88 0.84 0.91 0.86 091 087 094
5 0.82 0.9 0.9 0.82 0.89 0.89 0.93 / / / /
6 0.84 0.91 0.93 0.84 0.9 0.9 / / / /
all 0.75 0.83 0.8 0.87 0.74 0.82 0.79 0.86 0.82 0.86 0.8 0.9

Table 2: Test set F1-score obtained by each Pythia model across different positions, lengths and morphological
categories. Some cells in the derived (morphemic n-gram) column reports "/" since there are not enough morphemes,
specifically if less than 100, for such category. We underline scores for morphemic n-gram of characters that
obtained higher results than meaningless substrings. Derived N.M.N. are non-morphemic n-grams, while Derived
M.N. are morphemic n-grams: for explanation, see sect. 3.4.

start
middle
end
morpheme

i |

Figure 1: Top/bottom 15 n-grams for each model distinguishing by position (color) and by whether it might have
morphological value (dashing). Each n-gram reported has a minimum of 100 occurrences (50 positives and 50

negatives).

in Table 2) varies with respect to position and
length: the gain on prefixes is only marginal, but
more marked for smaller models and for prefixes
of length 2, which are the most productive (un-,
im-, re-, etc.). On the other hand, performance on
roots, which carry strong semantic information,
is substantially higher than meaningless middle-
position substrings. Similarly, suffixes, which are
closely related to morphosyntax (-ly, -er, -ness),
are recognized more accurately than meaning-
less end-position substrings. Interestingly, perfor-
mance degrades on derived words when the queried
n-gram is not a morpheme ("Derived N.M.N." in
Table 2), suggesting that, for morphologically com-

plex words, models are more aware of morphemes
than of meaningless substrings.

Although bigger models perform better,
Pythia-410M, curiously, deviates from the size-
performance rank only on suffixes, performing
worse than the 160M and 70M models. One
hypothesis for this phenomenon could be that
Pythia-410M has a 2x deeper architecture (24
layers) than the 160M model, leading to a different
convergence dynamic.

4.1.1 Focus on character n-grams

A more in-depth analysis confirms the relation be-
tween parameter size and n-gram position. Figure
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Figure 2: Difference in F1 score performance on the
n-gram when it has morphemic value and whenever
it occurs without a morphological function. Positive
values indicate a performance gain when the n-gram is
morphemic.

1, which represents the 15 best and worst perform-
ing n-grams for each model, shows that as model
size increases, the top 15 shift from mostly end-
position n-grams (light green bar) to mostly start-
position n-grams (dark green bar). We can also see
that the bottom class is mostly populated by middle
n-grams (white bar), except for Pythia-70M. It is
likely that smaller models perform better on end n-
grams as they might be leveraging morphosyntactic
information to recover suffixes. This is shown by
the fact that, although the best-performing n-grams
are not often morphemes (marked with hatchings),
many n-grams in the top 15 are either substrings
or superstrings of affixes, sometimes even combin-
ing two degrees of derivation. For example, in the
70M and 160M models several n-grams include Iy
(-tly, -ingly, -ally, -edly, etc.), while in the 410M
and 1B models some top performing n-grams cor-
respond to the beginning of prefixes (und-, unde-,
inte-). Despite not necessarily segmenting words
precisely at linguistic boundaries, it seems that
morphemic information is nonetheless valuable
for the models. This is especially true for smaller
ones, which perform better on suffixes, carrying
important morphosyntactic information, while big-
ger models gain awareness of prefixes, which have
a more semantic impact on the word.

It is also worth noting that, when n-grams have
both a morphemic and non-morphemic function
(fast-er vs. corn-er), there are some performance
differences. The extent of this delta is, however,
very affix and model specific. We report in Figure
2 the normalized delta in F1 score for such cases®.
We selected only n-grams of characters that have
at least 100 positive and 100 negative examples,

SThe delta is normalized against the maximum F1 between
morphemic and non morphemic n-gram score.

both when used as a morpheme and when used
as a meaningless substring (therefore, a minimum
of 200 vs 200 examples). The n-grams -er and
-y, when acting as suffixes, increase the F1 on all
models tested, suggesting a strong sensitivity to the
morphosyntactic role of these affixes. On the other
hand, among the observed prefixes, performance
gain in F1 is generally restricted to the 70M model.
Due to the small number of considered n-grams,
further research is required to extend this analysis
and effectively assess the impact of morphological
value for homographic n-grams.

4.2 On the emergence of character-level
competence

Figure 3 presents the performance of each pre-
trained checkpoint fine-tuned on our task, dis-
tinguishing by position and morphological value.
Overall, the earliest pre-training steps — including
random initialization — perform at or below a major-
ity class baseline, with no meaningful fluctuations.
Each model begins to show an increase in F1-score
between steps 32 and 512, corresponding to ap-
proximately 64 million to 1 billion tokens of pre-
training. These results confirm that our fine-tuning
approach does not inject enough character-related
knowledge to solve the task, hence providing strong
evidence that pre-training with a language model-
ing objective implicitly induces some character-
level knowledge, although a substantial amount
of data is required for the emergence of this
competence and significantly more is needed
to reach higher performance, showing the emer-
gent nature of this ability in character-blind PLMs.
Model size does not influence the point of emer-
gence, but bigger models achieve higher results,
although with no substantial performance gap be-
tween the 160M, 410M, and 1B models. The trends
in which this competence emerges vary based on
position and morphological value: performance
generally improves earlier for morphemes (dot-
ted lines in Figure 3) than for meaningless sub-
strings, particularly for suffixes and roots. No-
tably, performance for start and middle positions
continues to improve beyond step 3000, except
for Pythia-70M which achieves significantly lower
scores and reaches an early performance plateau
on these positions. In contrast, awareness on suf-
fixes, which are closely related to morphosyntax,
emerges much earlier, around steps 512 and 1000
reaching a plateau between steps 2000 and 3000.
Interestingly, after step 3000, even Pythia-70M ex-
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Figure 3: Fl-scores obtained by each pre-train checkpoint on our test set. Position is distinguished column-wise,
linestyles and markers distinguish between n-grams of morphologically simple (non-derived) words and morphemic
n-grams of derived words. Baselines reported for this distinction are obtained by predicting always "yes".

hibits a sharp increase in Fl-score only for the
end position, particularly on suffixes, suggesting
that even small models can acquire an understand-
ing of suffixes given enough pre-training data. In
middle position, performance on roots, which
carry strong semantic information, is substan-
tially higher and emerges earlier than mean-
ingless substrings, on which models struggle the
most. After step 3000, the steep increase in perfor-
mance of bigger models for the start and middle
position of non-morphemic n-grams suggests that
the amount of pre-training data is essential for de-
veloping character awareness, especially for non
linguistically relevant substrings. Pythia-1B im-
proves significantly on non-morphemic n-grams
in middle position, by far the most difficult class
across all models. This suggests that awareness of
n-grams in middle position, not so relevant to
solve language modeling, benefits not only from
the amount of pre-training data but also from
model size.

4.2.1 Focus on character n-grams

To have a closer look at the emergence of model’s
competence during pre-training according to the
different n-gram positions considered, we report
in Figure 4 the percentage of each position among
the best 100 performing n-grams. After step 512,
before which models perform below baseline, a
peculiar trend emerges for each size: while middle
position n-grams get less represented among the
top 100, end position substrings start to emerge in
the immediately following checkpoints (red line
in Figure 4). But, for bigger models, after step
3000, start positions n-grams become the most
represented (blue line). Specifically, at the end
of pre-training, the best 100 performing n-grams
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Figure 4: Percentage of top-100 n-grams (start, middle
and end) for each model and pre-training checkpoint.

for the Pythia-70M are prevalently in end position,
Pythia-160M reaches a balanced presence between
start and end position substrings, while for both
Pythia-410M and 1B the top 100 gets almost en-
tirely populated by n-grams in start position. This
trend suggests a strong relation between model size,
n-gram position, and the emergence of character-
level awareness: the character composition at
the end of a word is learned earlier during pre-
training and small models perform best in such
class. Later, as the pre-training data increases,
bigger models perform better on substrings lo-
cated at the beginning of a word.

4.3 Impact of linguistic features

Our results highlight a clear role of morphologi-
cal information in substring recognition. For this
reason, we further investigated whether other lin-
guistic parameters also influence performance. To
this end, we selected several linguistic features and
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[ n-gramlength | wordlength | word freq | Freq HAL | FamSize | PFMF P pP*
70M 0,04 -0,02 -0,04 -0,01 -0,01 0,00 / /
morph. simple 160M -0,04 -0,08 -0,09 -0,05 0,00 / /
) 410M 0,14 -0,08 -0,07 -0,08 /
1B -0,08 -0,09 -0,09 /
derived 70M 0,03 -0,03 -0,03 0,05
(non-morphemic 160M 0,14 -0,07 -0,05 0,04
n-gram) 410M 0,12 -0,09 -0,05 0,04
1B 0,14 -0,09 -0,08 0,03
derived 70M 0,02 n.s. -0,08 0,14
(morphemic 160M 0,10 n.s. -0,14 -0,06
n-gram) 410M 0,12 -0,02 -0,18 -0,19
1B 0,14 n.s. -0,22 -0,10

Table 2: Effect size, measured through rank biserial correlation, of variation between the class of correct predictions
and the class of incorrect predictions. Backslash indicates that the feature does not apply to that class, while "n.s."
indicates that variation (measured through the Mann-Whitney U-test) was not statistically significant.

examined whether their presence differs signifi-
cantly between correctly and incorrectly predicted
instances. To assess statistical significance, we
applied the Mann-Whitney U-test to compare the
two groups. When significant differences were
found, we computed the rank biserial correlation to
measure effect size. The selected features include
n-gram length, word length, and word frequency,
using Wikipedia’ as the reference corpus. Addi-
tionally, we incorporated morphology-based fea-
tures derived from MorphoLex, which computes
frequency values based on the English Lexicon
Project (ELP). Among these features, we consid-
ered the frequency ranking of a morpheme within
its morphological family (PFMF), the total num-
ber of words sharing the same morpheme (Fam-
Size), and the summed token frequency of all words
containing the morpheme (FreqHAL). We also in-
cluded two measures of morphological productiv-
ity: the likelihood that a word containing a given
morpheme is a neologism (P) and the likelihood
that a neologism contains a given morpheme (P*).

The results of our analysis are presented in Table
2. Variation is almost always statistically signif-
icant, and most exceptions concern word length
when testing derived words with morphologically
motivated n-grams. These findings further confirm
the influence of linguistic features on models’ abil-
ity to recover character-level information. The lack
of significance in these specific cases suggests that
word length, which is typically a predictive mea-
sure, becomes less relevant when clear linguistic
information is present.

The effect size is strongest for n-gram length,
which consistently yields high results across mor-
phological classes for all models except the 70M.
The positive direction indicates that longer n-grams
are more likely to be correctly predicted. Notably,

"We used the 2021 English Wikipedia dump.

Mean Number of Subtokens
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Figure 5: Fl-score across frequency intervals for each
model on morphemic n-grams. The dashed line indi-
cates the average number of subtokens per frequency
bin. The marker size reflects the number of data points,
where the first frequency bin has 1198 occurrences and
the last one has 254.

n-gram length is the only feature where the effect
size is lowest on derived words with morphemic
n-grams and highest on morphologically simple
words, also indicating that clear linguistic informa-
tion reduces the relevance of length effects.

Concerning frequency-effects variables, effect
sizes are more pronounced for morphemic n-grams.
In particular, for this class, high PFMF® and
low word frequency impact performance, with
the effect strengthening as model size increases.
This suggests that lower-frequency words and
morphemes facilitate the identification of mor-
phemic substrings. A negative correlation be-
tween substring identification and word frequency,
without morphological distinction, was also found
by Kaushal and Mahowald (2022).

Figure 5 shows the trend between word fre-
quency and performance of morphemic n-grams,
reporting also the average number of subtokens

8The PFMF feature, whose effect on performance has a
positive direction (opposite to word frequency), is expressed
as a ranking, with lower values indicating higher frequency.
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per frequency interval® (represented by the dashed
line): single-subtoken words perform worst, while
multi-subtoken words perform best. This observa-
tion is supported by a strong positive Spearman cor-
relation across all models between the average F1-
score and the number of subtokens per frequency
bin'? (for the 70M, 160M, 410M, 1B models, re-
spectively, p = .63, p = .77, p = .82, p = .85,
all p < 0.005). These results further suggest that
models access morphological information in low-
frequency words more easily when they are seg-
mented into multiple subtokens. This effect is
more accentuated in bigger models.

5 Conclusion

Our study explores whether and how character-
blind PLMs acquire knowledge of the character
composition of words, a competence often dubbed
the Spelling Miracle. By systematically evaluating
a family of decoder-only Transformers on a simple
yet controlled binary substring identification task,
we shed light on the extent to which these mod-
els internalize character-level structure, how this
phenomenon evolves during pre-training, and the
influence of linguistic features such as morphologi-
cal composition and frequency.

Our findings confirm that substantial amounts
of data are necessary for character knowledge to
emerge. Although the point of initial emergence is
roughly consistent across parameter scales, larger
models exhibit superior final performance, under-
scoring the interaction between data scale and
model size. Moreover, the trend of emergence
varies depending on n-gram position, morphologi-
cal value, and model size. Morphemic substrings,
especially suffixes and roots, carrying morphosyn-
tactic and semantic information, are recognized ear-
lier and better compared to meaningless substrings
in the same positions. On the other hand, bigger
models develop a high awareness of the starting n-
grams of a word as pre-training data increases. Per-
formance advantages for morphemic n-grams are
especially evident in low-frequency words, which
often split into multiple subtokens, suggesting that
segmentation may guide models to develop more
character-informed representations. These results
highlight the emergent nature of character-level
awareness in character-blind PLMs. Methodolog-

?Subtokens are obtained using the Pythia tokenizer.
10Bins are computed using quantiles (g = 50) over log-
transformed frequency values.

ically, our experiments suggest that even a sim-
ple fine-tuning approach can serve as a diagnostic
tool for knowledge acquired during pre-training,
offering a complementary approach to few-shot
prompting and probe-based methods. By systemat-
ically dissecting where, when, and how PLMs learn
about characters and substrings, our work provides
both conceptual and empirical grounding for the
Spelling Miracle'!.

Limitations and Future Work

While our study provides valuable insights into the
ability of pre-trained language models (PLMs) to
recognize characters, substrings, and morphemes,
it has some limitations that should be acknowl-
edged. First, our experiments focus primarily on
substring awareness in PLMs, but we do not ex-
plicitly assess how this competence translates into
downstream tasks. Future work could explore
whether substring sensitivity has a measurable im-
pact on real-world NLP applications.

Another limitation concerns the impact of to-
kenization strategies. Many PLMs utilize sub-
word tokenization methods like Byte-Pair Encod-
ing (BPE) or WordPiece, which can introduce bi-
ases in how substrings are recognized. Investigat-
ing this issue with character-level models or alter-
native tokenization approaches in a follow-up study
could help clarify these effects.

Additionally, while we examine when substring
awareness emerges during pre-training, our find-
ings are constrained by the availability of specific
models and checkpoints. Different architectures,
training objectives, or corpora may lead to varia-
tions in this phenomenon, requiring broader valida-
tion across a wider range of models. Similarly, our
analysis is conducted in controlled settings with
predefined substrings and morphemes, which may
not fully capture the complexity of morphological
variation across languages. Extending this work to
multiple linguistic families would help assess the
generalizability of our conclusions.

Despite these limitations, our findings contribute
to a deeper understanding of how PLMs process
substrings and morphemes, offering a foundation
for future research on character-level linguistic
competence in neural language models.

'Code is available at the following repository: https:
//github.com/snizio/Beyond-Spelling-Miracle
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A Training Details

The experiments were carried out using two
NVIDIA GeForce RTX 4090 GPUs. All models
share always the same hyperparameters, except
for the learning rate, and tuning strategies. We
fine-tuned each model using a linearly decaying
learning rate starting from two orders of magnitude
lower than the one used during the pretraining of
the Pythia models, as follows:

* Pythia-70M: Ir = 1e-05
* Pythia-160M: Ir = 6e-06
* Pythia-410M: Ir = 3e-06
* Pythia-1B: Ir = 3e-06

All models were fine-tuned for one epoch using
a batch size equal to 16 and the Adam optimizer
with no weight decay. The loss function, CE, is
computed only on the generated tokens (yes, no)
and not on the entire sequence as usually done
with decoder language models. Figure 6 reports
validation loss and the number of examples for
each validation step.

Importantly, in order to avoid the introduc-
tion of the special character "G" to the n-gram,

Validation loss during fine-tuning

1.2
—8— pythia-70m
10 pythia-160m
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Figure 6: Validation set loss during fine-tuning. The
X axis reports the total number of examples for each
validation step.

simple derived N.MLN.  derived M.N.

1 25919 17941 271

2 25182 16022 2315

3 23416 16029 1032

start 4 20796 16772 590
5 16007 16296 443

6 10347 14425 15

all 121667 97485 4666

1 104492 101835 0

2 86693 99393 11

3 60515 81092 260

middle 4 39222 62927 862
5 22576 45612 660

6 11881 30763 373

all | 325379 421622 2166

1 27352 17515 1323

2 25262 14380 5405

3 22805 13952 3472

end 4 19892 14959 2065
5 15025 15967 54

6 9837 14198 14

all 120173 90971 12333

Table 2: Descriptive table showing the instance count
for each class.

which would signal a token after a whites-
pace, we add a new special token "[N_GRAM]",
whose embedding is trained during fine-tuning,
and wrap the queried n-gram like so: "Is
[N_GRAMIi[N_GRAM] inside skii?".

B Dataset Statistics

In Table 2 are reported the statistics of the dataset
used in our experiments for each class considered
(positions, lengths, and morphological categories).
As mentioned in the main body of the paper, in our
evaluation, we discard classes where there are less
than 100 occurrences. Specifically, from the Mor-
phoLex dataset we kept words with a PRS (prefix-
root-suffix) structure of {0-1-0}, {1-1-0}, {1-1-1},
and {0-1-1}. The number of examples for the mo-
tivated n-grams in middle position is low due to
the fact that roots in middle position are only taken
from the relatively small {1-1-1} subset, which con-
tains words with a prefix, a root, and a suffix. We
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Figure 7: F1 score for each character at each position, sorted by descending character frequency.

excluded from our derived M.N. set roots in start-
and end-position: this allowed us to have a per-
fect comparison strategy between non-morphemic
n-grams in start position and prefixes, middle posi-

tion and roots, end position and suffixes.

C Further details on n-gram results

Figure 7 reports F1 scores for each character, sorted
by frequency, at different positions (start, middle,
or end of a word), also showing how there is prac-
tically no drop on ablated characters {a, h, o, v}.
Curiously, a positive trend between character fre-
quency and Fl-score is observable only for the

middle position.
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