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Abstract

Complex multi-hop question answering re-
quires large language models (LLMs) not only
to retrieve external knowledge but also to rea-
son over the retrieved information in order to
arrive at the final solution. This involves two
key challenges: (i) how to effectively explore
the solution space and generate more poten-
tially correct solution candidates, and (ii) how
to select the optimal solution from multiple
solution candidates, both of which require a
training-free approach without introducing a
more powerful teacher model. To address these
challenges, we propose Retrieval-Augmented
Monte Carlo Tree Self-Play with Reasoning
Consistency (RASPberry), which introduces a
more flexible action-level sampling granularity
compared to existing methods, leverages Monte
Carlo Tree Search for efficient solution space
exploration, and utilizes an enhanced version
of reasoning consistency to guide the selection
of the optimal solution. Experimental results
demonstrate that our proposed RASPberry ef-
fectively tackles the two challenges outlined
above, achieving more efficient RAG inference-
time scaling. Our code is available at https:
//github.com/BaixuanLi/RASPberry.

1 Introduction

Retrieval-Augmented Generation (RAG) (Fan et al.,
2024) enables Large Language Models (LLMs)
(Brown et al., 2020) to incorporate external doc-
ument knowledge during the question-answering
(QA) process, significantly enhancing the perfor-
mance of LLMs in single-hop QA. However, more
complex multi-hop QA (Yang et al., 2018; Ho et al.,
2020) presents greater challenges for LLMs. It re-
quires LLMs to not only identify relevant knowl-
edge from multiple documents but also to perform
reasoning based on it to derive the correct response.

Although a more powerful reasoner can currently
be trained through reinforcement learning (RL) to
extend reasoning capabilities with RAG (Guo et al.,
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Figure 1: The F1 score achieved in multi-hop QA.
Our RASPberry consistently achieves significant perfor-
mance improvements across all datasets and models.

2025), applying RL itself involves high complexity
and requires substantial computational resources.
As a result, the community is increasingly focus-
ing on a complementary and challenging problem:
how to achieve effective inference-time scaling
with RAG on a smaller LLM in a training-free
way, without the need for stronger teacher model
supervision, to address complex multi-hop QA
tasks. Specifically, two key challenges need to be
addressed to achieve this goal:

First, thoroughly exploring the solution space
to generate the correct candidate solutions. Al-
though current approaches combine chain-like
(Wei et al., 2022) or tree-like (Zhang et al., 2024d)
thinking structures with retrieval mechanisms,
along with multiple sampling strategies (Wang
et al., 2023), to achieve inference-time scaling in
RAG scenarios, these methods still face significant
limitations. Specifically, due to the constraints of
chain-like thinking structures, the model’s solution
paths often get trapped in local optima. While
tree-like structures offer more flexibility in solu-
tion exploration, traditional tree structures struggle
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Method #Action Re-Retrieval Sample Granularity ⊕ Final Selection

RAG-CoT (Wei et al., 2022) 2 ✗
+Beam: Token-Level ⊕ Log-Likelihood

RQ-RAG (Chan et al., 2024) 4 ✗
+BoN: Sequence-Level ⊕ Log-Likelihood

Self-RAG (Asai et al., 2024) 3 ✗
+SC: Sequence-Level ⊕ Answer Consistency

IRCoT (Trivedi et al., 2023) 3 ✓

RATT (Zhang et al., 2024d) 5 ✓ Sequence-Level ⊕ Correction & Integration

RASPberry (Ours) 7 ✓ Action-Level ⊕ Reasoning Consistency

Table 1: Comparison between the related top-notch baseline methods and our proposed RASPberry.

to evaluate all possible solution paths when faced
with complex problems (Zhang et al., 2024e). In
other words, neither approach is effective or effi-
cient in thoroughly exploring the solution space.
Although recent work has introduced Monte Carlo
Tree Search (MCTS) (Browne et al., 2012) to guide
the exploration of the solution space (Zhang et al.,
2024b; Qi et al., 2024), these methods do not
consider the actions required to integrate external
knowledge, and thus lack a suitable action set for
search tree expansion in RAG scenarios.

Second, accurately determining the correct
solution from the collection of generated can-
didate solutions. Without additional training or
stronger teacher model supervision, smaller LLMs’
self-scoring tends to be nearly random, leading
to failures of self-reward methods such as self-
verification (Weng et al., 2023). Moreover, since
smaller LLMs are more likely to produce incor-
rect solutions during multiple sampling attempts,
this also results in the failure of self-consistency
methods. Although the reasoning consistency (Qi
et al., 2024) alleviates this issue by considering the
consistency of the reasoning process rather than
just the answer, its design is tailored for scenarios
that do not rely on external document support. As
such, it is not fully applicable in RAG scenarios,
as it does not take into account the need to ensure
that the external documents supporting reasoning
remain consistent when computing consistency.

To address the two challenges, we propose
Retrieval-Augmented Monte Carlo Tree Self-Play
with Reasoning Consistency (RASPberry). Specif-
ically, RASPberry consists of two components,
each targeting one of the challenges: (i) Retrieval-
Augmented Monte Carlo Tree Self-Play enables
sufficient exploration of the solution space in
RAG scenarios by integrating the MCTS algorithm,
which generates a broader set of potentially correct
candidate solutions; (ii) Retrieval-Retained Rea-

soning Consistency is used to filter the candidate
solution paths obtained in (i), selecting the optimal
solution path as the final answer.

As shown in Figure 1, without the need for ad-
ditional training costs or a stronger teacher model,
RASPberry achieves stable and significant improve-
ments across three mainstream small LLMs (Bai
et al., 2023; Yang et al., 2024; Dubey et al., 2024)
and two complex multi-hop question answering
datasets (Yang et al., 2018; Ho et al., 2020), en-
abling effective inference-time scaling in RAG sce-
narios that require external document knowledge.

2 Related Work

RAG for Multi-Hop Question Answering.
Multi-hop question answering (QA) (Yang et al.,
2018; Ho et al., 2020) presents a greater challenge
to the capabilities of LLMs. For example, consider
the question: “Which genus of flowering plant is
found in an environment further south, Crocosmia
or Cimicifuga?” This requires first retrieving doc-
uments containing information about Crocosmia
and Cimicifuga, then identifying their respective
locations, and subsequently reasoning based on
geographic information to draw a conclusion. In
other words, LLMs cannot directly answer based
on the documents alone but must perform a degree
of reasoning on top of this information.

Existing methods facilitate reasoning over re-
trieved documents by iteratively combining RAG
with the Chain-of-Thought (CoT) process (Trivedi
et al., 2023). Additionally, some works focus on
query rewriting and query decomposition prior to
retrieval to expand the range of retrieved docu-
ments (Chan et al., 2024). Meanwhile, Asai et al.
(2024) proposed a self-reflection mechanism for
post-reasoning self-correction. Furthermore, re-
cent research has explored the combination of tree-
like reasoning structures with RAG (Zhang et al.,
2024d) to further enhance the flexibility of solu-
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tion space exploration. However, unguided path
exploration becomes highly challenging when the
solution path is too complex. Moreover, the limited
set of executable actions increases the risk of the
solution path getting trapped in local optima.

As shown in Table 1, we propose RASPberry,
which utilizes Monte Carlo Tree Search (MCTS)
algorithm. Compared to traditional chain-like and
tree-like reasoning, MCTS offers more flexible
action-level sampling granularity and can estimate
the potential reward of the current path based on
simulation results to guide path exploration. Ad-
ditionally, we integrate all of the key RAG mech-
anisms mentioned above into the MCTS process,
resulting in a richer action set that further expands
the search space. We also introduce a final path
selection method to identify the optimal solution,
resulting in a more effective inference-time scaling.

Inference-Time Scaling for Reasoning. Recent
works primarily guide the optimization and expan-
sion of reasoning paths in LLMs by combining
a reward model aligned with human preferences
(Xie et al., 2024; Zhang et al., 2024a; Chen et al.,
2024a; Zhang et al., 2024c). However, this in-
troduces additional training costs. Alternatively,
some approaches employ MCTS methods for self-
refinement (Zhang et al., 2024b) or self-play (Qi
et al., 2024), enabling inference-time scaling in an
inference-only manner. However, the designs of
these works are focused on scenarios where only
the model’s internal parameterized knowledge is
used for solving, such as mathematical reasoning
or commonsense reasoning. Since these models do
not have the ability to access external document
knowledge, they fail to effectively adapt to the com-
plex multi-hop QA scenarios in RAG.

In this work, we propose RASPberry, which in-
troduces a rich and comprehensive action set tai-
lored for RAG scenarios, used for tree expansion
during the MCTS process. This enables an inte-
gration of the RAG mechanism with the MCTS
reasoning structure, allowing the LLM to not only
leverage its internal parameterized knowledge for
reasoning but also flexibly utilize external retrieved
documents to provide supportive information.

3 Preliminary

We introduce the mechanism of Monte Carlo Tree
Search (MCTS) (Browne et al., 2012), which is es-
sential for understanding our proposed RASPberry.
MCTS is a decision-making algorithm widely ap-

plied in games and complex decision-making pro-
cesses, which builds a search tree based on a pre-
defined set of actions and simulates possible out-
comes to estimate the value of each action. Typi-
cally, the MCTS comprises four key phases:

Selection: Starting from the root, the algorithm
navigates through promising child nodes based on
specific strategies (e.g., Upper Confidence Bound
applied to Trees, UCT), continuing until it reaches
a leaf node. The UCT is calculated as follows:

UCT (s, a) =
Q(s, a)

N(s, a)
+ c

√
lnNparent(s)

N(s, a)
, (1)

where Q(s, a) and N(s, a) denote the estimated
value and visit count of node s under action a, re-
spectively (initialized to 0), while Nparent(s) rep-
resents the visit count of s’s parent node. c is a
constant that balances exploitation and exploration,
which is empirically set to 2 in this work. Specif-
ically, if a node has no children, the node itself is
selected. If a node has children but not all have
been explored, an unexplored child is randomly
selected. If all children have been explored, the
child with the maximum UCT score is selected.

Expansion: At the leaf node, if it does not repre-
sent a terminal state (e.g., reaching the maximum
depth or arriving at the final solution), feasible child
nodes are added based on the current node’s action
set to represent potential future moves.

Simulation: From the newly added node, the
algorithm performs random simulations (often
termed rollouts), arbitrarily selecting moves until
the game reaches its terminal state, thereby evalu-
ating the node’s potential (estimated value Q).

Backpropagation: After the simulation, the
value of the terminal node (calculated based on
a custom reward function) is propagated back to
the root, updating the statistical data (visit counts
N , estimated values Q) of all visited nodes during
the simulation to guide future decisions.

Through iterative execution of these stages,
MCTS incrementally builds a decision tree, op-
timizing strategies in scenarios where the vast state
space makes direct computation infeasible.

4 RASPberry

As shown in Figure 2, our proposed RASP-
berry consists of two main components: Retrieval-
Augmented Monte Carlo Tree Self-Play (RA-MCT
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Retrieval-Augmented Monte Carlo Tree Self-Play Retrieval-Retained Reasoning Consistency

Selection Expansion Simulation Backpropagation

Repeated N times Question: What type of sport does Sergio Casal and Manuel Orantes have in common? 

Candidate Solution: 

Masked Solution: 

Record Candidate 
Solution Paths

(b) 

(a) MCTS with RAG 

<Rephrased Question> <Subquestions> <Retrieved Documents>

<Rephrased Question> <Subquestions> <Retrieved Documents>

To answer the question, through document analysis, we derive: ... both Sergio Casal and
Manuel Orantes have experience in tennis.  <Answer> Tennis </Answer>

To answer the question, through document analysis, we derive: ... both Sergio Casal and
Manuel Orantes have experience in tennis.  <Answer> Tennis </Answer>

Completed Solution 1: <Rephrased Question> <Subquestions> <Retrieved Documents>
To answer the question, through document analysis, we derive: ... both Sergio Casal and
Manuel Orantes have baseball in common.  <Answer> Baseball </Answer> 

Completed Solution 2: <Rephrased Question> <Subquestions> <Retrieved Documents>
To answer the question, through document analysis, we derive: ... both Sergio Casal and
Manuel Orantes have tennis in common.  <Answer> Tennis </Answer>  

Inconsistent

Consistent

Nodes on the current path
Newly expanded node
Simulated answer node

...

...

...

...

Figure 2: Our proposed RASPberry consists of Retrieval-Augmented Monte Carlo Tree Self-Play (left) for solution
candidates generation and Retrieval-Retained Reasoning Consistency (right) for final solution discrimination.

Self-Play in §4.1) for solution space exploration
and generation of candidate reasoning paths, and
Retrieval-Retained Reasoning Consistency (RR-
RC in §4.2) for optimal final path selection.

4.1 Retrieval-Augmented MCT Self-Play
As shown in Figure 2 (left) (a), we tightly inte-
grate the MCTS in §3 with RAG, where each tree
node represents the response generated by the LLM
given all previously generated content along the
current path after executing a specific action, serv-
ing as a unit in constructing the overall solution
path. The details are as follows:

Reasoning Actions in the RAG Setting. In order
to make the MCTS algorithm more adaptable to
the RAG setting, we design a comprehensive action
set that incorporates nearly all the key concepts of
RAG for constructing the search tree. Specifically,
the action set consists of seven actions, which are:

◦ A1: Query decomposition (Zhou et al., 2023).
◦ A2: Query rephrasing (Ma et al., 2023).
◦ A3: Document retrieval (Ram et al., 2023).
◦ A4: Document analysis (Wei et al., 2022).
◦ A5: Answer extraction (Wei et al., 2022).
◦ A6: Critical rethinking (Asai et al., 2024).
◦ A7: Document re-retrieval (Trivedi et al., 2023).

{A1, A2} are query optimization actions, aimed at
enhancing query understanding and improving the
retrieval of relevant documents by decomposing
the query into multiple subqueries or rephrasing
it in different ways. {A3, A7} are actions for
document retrieval, with A7 differing from A3 in
requiring an assessment of the need for further
retrieval and the construction of a follow-up query
based on existing information before execution.

{A4, A5, A6} are reasoning and analysis actions
based on the retrieved documents, incorporating
self-reflection for error correction and ultimately
extracting an answer that addresses the user query.

Based on these, we define the action set A =
{A1, A2, A3, A4, A5, A6, A7}. At each step i,
MCTS executes an action ai from A. We then use
ai to prompt the LLM to generate the next node
state si, based on the previously generated solution
path r⊕s1⊕s2⊕ ...⊕si−1, where r represents the
root, i.e., the user query, and s represents the rea-
soning steps (node states) generated by the LLM.
Additionally, it is important to note that certain ac-
tions require partial orders. For example, {A6, A7}
can only happen after A4, and {A4, A5} can only
happen after A3. More details on action-related
prompts can be found in Appendix B.

MCTS Reward Function. For the calculation
of the estimated value Q of each node, we adopt
a method similar to that used in AlphaGo (Silver
et al., 2017), scoring each intermediate node based
on its contribution to the final correct answer. That
is, actions that more frequently lead to the correct
answer are given higher scores, making them more
likely to be selected during the tree expansion.

During the simulation, when a valid answer node
is reached, we score the answer node using Self-
Consistency (SC) (Wang et al., 2023). Specifically,
we sample M candidate answers and choose the
most frequent answer as the final answer for the
current path. The estimated value of the answer
node sd is given by Q(sd, ad) = m/M , where
m is the count of the most frequent answer. This
score is then backpropagated along the solution
path P = r ⊕ s1 ⊕ s2 ⊕ ... ⊕ sd, meaning the
score of each intermediate node si is updated as
Q(si, ai) = Q(si, ai) +Q(sd, ad).
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Solution Space Exploration with MCTS Rollout.
Starting from the root node r (the user query), we
iteratively explore solution space by following the
MCTS procedure outlined in §3, performing multi-
ple rounds of simulation (rollout) to achieve more
accurate node value estimations. When the search
reaches a terminal node (either the answer node or
the maximum tree depth), we obtain a solution path
from the root node r to the terminal node sd.

However, while traditional MCTS selects one
path as the final solution based on a specific met-
ric (Browne et al., 2012), defining a reliable single
metric to select a solution path that contains the
correct answer is challenging without incurring
additional training costs (Qi et al., 2024). There-
fore, as shown in Figure 2 (left) (b), we collect
all valid paths (paths containing the answer node)
generated during the MCTS rollout as candidate
solution paths. Subsequently, an additional valida-
tion process (in §4.2) is applied to filter the final
path, significantly reducing the difficulty for small
LLMs in selecting the optimal solution path.

4.2 Retrieval-Retained Reasoning Consistency
Inspired by the Reasoning Consistency (RC) in
rStar (Qi et al., 2024), we propose Retrieval-
Retained Reasoning Consistency (RR-RC) to better
adapt to the RAG setting. Unlike RC, which ran-
domly selects a reasoning step to begin masking,
RR-RC ensures that, after masking, the retrieved
documents in the remaining solution path provide
sufficient information to support subsequent rea-
soning steps, as illustrated in Figure 2 (right).

Specifically, for solution path P = [r ⊕ s1 ⊕
s2...⊕ sk]⊕ ...⊕ sd, we mask the reasoning steps
starting from a randomly selected step i (i < d),
which is behind the last document retrieval step
(i > k). And the content before the last document
retrieval step k is kept unchanged to ensure that
the necessary retrieved information accessible to
the model is retained. Subsequently, we provide
masked solution path Pmasked = [r⊕ s1 ⊕ s2...⊕
sk] ⊕ ... ⊕ si−1 as prior information to the LLM
to complete the subsequent reasoning steps. As
shown in Figure 2 (right), we compare the gen-
erated answer after completion with the original
answer. If they are consistent, we consider the
solution path to be a valid path for final selection.

To improve efficiency, unlike the peer discrimi-
nation mechanism introduced by rStar (which re-
quires extra effort to select a model with similar
capabilities), RR-RC uses the same model for self-

discrimination as the one used to generate the solu-
tion paths. Additionally, during the completion
process in RR-RC, we introduce the Best-of-N
Sampling (BoN) mechanism to encourage the com-
pletion of more diverse solution paths. The under-
lying intuition is that, in the absence of a teacher
providing feedback, one can self-verify by adopt-
ing different reasoning approaches while given a
predefined solution path. If the same answer can
be obtained through different reasoning paths, we
can consider the answer more likely to be correct,
without the need for peer verification from others.

Final Solution Path Selection. After applying
RR-RC to all candidates, we compute the final
score of each solution path in the filtered solution
paths by integrating its reward with the estimated
value of the answer node obtained from rollouts.
Specifically, given the filtered answer set Af after
applying RR-RC and the unfiltered answer set Au

before its application, we compute the final score
R(ans) of each answer ans in Af as:

R(ans) = Q(ans) +
Nf (ans)

Nu(ans)
, (2)

where Nf (ans) and Nu(ans) represent the fre-
quency of ans in Af and Au, respectively. We
posit that answers retained to a greater extent af-
ter RR-RC filtering are more likely to be correct.
Q(ans) denotes the estimated value of answer ans
during simulation. Finally, we select the solution
path corresponding to the answer with the highest
final score R as the final solution path.

5 Experiments

In this work, we select three mainstream small
LLMs, namely LLaMA-3.1-8B-Instruct (Dubey
et al., 2024), Qwen-2.5-7B-Instruct (Yang et al.,
2024), and Qwen-2-7B-Instruct (Bai et al.,
2023). Additionally, we choose two commonly
used knowledge-intensive multi-hop QA datasets,
namely HotpotQA (Yang et al., 2018) and 2Wiki-
MultiHopQA (2WikiQA) (Ho et al., 2020), both
of which are based on wiki documents. We divide
the supporting documents in the dataset by their
respective topics, embed them into text vectors us-
ing a mainstream dense retriever (BGE-M3 (Chen
et al., 2024b)), and then use FAISS (Douze et al.,
2024) to maintain a local vector database for re-
trieval. Furthermore, we include a wide range of
baseline methods for comparison, categorized into
single-round and multi-round RAG baselines:
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Dataset Method
LLaMA-3.1-8B-Ins Qwen-2.5-7B-Ins Qwen-2-7B-Ins

P R F1 P R F1 P R F1

HotpotQA

RAG-CoT 38.42 51.77 38.55 41.54 42.77 41.06 39.33 39.92 38.84
RQ-RAG 34.97 36.92 34.63 32.50 31.20 31.23 41.56 42.24 41.01
Self-RAG 28.57 30.00 28.99 29.60 28.27 28.59 28.18 29.33 27.55
IRCoT 37.32 39.93 37.24 39.78 40.35 39.42 44.66 46.42 44.35
RATT 58.72 60.89 58.29 18.98 19.77 18.87 13.92 15.18 14.34
RASPberry (Ours) 70.54 69.44 68.89 59.98 65.43 60.51 56.69 60.72 56.85

2WikiQA

RAG-CoT 20.33 20.13 20.04 24.97 25.67 25.26 23.27 23.62 23.39
RQ-RAG 26.67 27.17 26.60 25.50 25.00 25.07 27.68 28.78 28.02
Self-RAG 14.40 15.47 14.72 17.42 18.03 17.56 14.75 15.03 14.87
IRCoT 31.63 31.07 31.13 34.67 37.32 35.21 27.77 29.17 27.75
RATT 34.70 35.50 34.35 15.23 15.90 15.07 13.49 15.38 14.06
RASPberry (Ours) 45.00 44.83 44.87 52.07 56.37 53.25 35.19 36.23 35.27

Table 2: Overall performance comparison, P represents precision, while R represents recall.

(a) Single-Round RAG Baselines. (i) RAG-CoT,
which is RAG combined with naive CoT (Wei et al.,
2022). (ii) RQ-RAG (Chan et al., 2024), which
adds query rewriting and subquery decomposition.
(iii) Self-RAG (Asai et al., 2024), which incorpo-
rates self-reflection for reasoning results.

(b) Multi-Round RAG Baselines. (i) IRCoT
(Trivedi et al., 2023), which enables iterative in-
terleaving of RAG and CoT. (ii) RATT (Zhang
et al., 2024d), which integrates RAG with a tree-
like structure (Tree-of-Thought (Yao et al., 2024)).

It is important to note that for all methods in
our experiments, we adopt a unified dense retrieval
mechanism and set the number of returned docu-
ments per retrieval to 4 by default. Design differ-
ences and further implementation details are pro-
vided in Table 1 and Appendix A.

5.1 Main Results

As shown in Table 2, we compare the performance
of various baselines with RASPberry. Notably,
except for RATT and RASPberry, which adopt a
unique final path selection strategy, all other base-
lines employ the commonly used Best-of-N (BoN)
strategy based on likelihood evaluation of gener-
ated sequences. Additionally, since RAG-CoT, RQ-
RAG, and Self-RAG are all single-round RAG pro-
cesses, we set their sampling sequence count to 3
(BoN@3) by default. On the other hand, IRCoT,
RATT, and RASPberry are multi-round RAG, so
in addition to setting their sampling count to 3, we
configure the number of RAG rollouts to 8.

It is worth noting that RASPberry consistently

outperforms the baseline across all datasets and
models. Although RATT, which incorporates tree-
like thinking structure, demonstrates superior per-
formance under certain experimental settings (us-
ing LLaMA-3.1-8B-Instruct on HotpotQA), even
in such cases, RASPberry achieves a 10.6 point
higher F1 score. Furthermore, RASPberry consis-
tently maintains a significant performance improve-
ment over RATT across all experimental settings.

5.2 Comparison with Adaptive RAG Baselines

Model Method F1

LLaMA-3.1-8B-Ins

FLARE (Jiang et al., 2023) 56.83
DRAGIN (Su et al., 2024) 45.14
TAARE (Zhang et al., 2024f) 59.96
RASPberry (Ours) 68.89

Table 3: Overall performance comparison with adaptive
RAG baselines on HotpotQA.

As shown in Table 3, we compare the perfor-
mance of our proposed RASPberry with state-of-
the-art adaptive RAG approaches. The results in-
dicate that RASPberry consistently outperforms
both confidence-based adaptive RAG methods such
as FLARE and DRAGIN, as well as model-based
approaches like TAARE. This demonstrates that
RASPberry is capable of generating more effec-
tive reasoning paths by making wiser decisions,
particularly regarding when to perform retrieval.

5.3 Comparison of Sampling Strategies

Meanwhile, we also explore the use of alternative
sampling strategies, beyond Best-of-N (BoN), for
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Method Beam@3 BoN@3 SC@3

LLaMA-3.1-8B-Ins
RAG-CoT 54.47 38.55 56.39
RQ-RAG 56.47 34.63 49.94
Self-RAG 47.15 28.99 42.81
IRCoT 56.70 37.24 43.23

RATT ———— 58.29 ————
RASPberry (Maj) ———— 66.27 ————
RASPberry (Ours) ———— 68.89 ————

Qwen-2.5-7B-Ins
RAG-CoT 49.42 41.06 51.94
RQ-RAG 52.31 31.23 49.11
Self-RAG 53.69 28.59 49.32
IRCoT 53.12 39.42 47.05

RATT ———— 18.87 ————
RASPberry (Maj) ———— 60.02 ————
RASPberry (Ours) ———— 60.51 ————

Table 4: Comparison with different sampling strategies
on HotpotQA. Maj represents (answer) majority vote.
All configurations are the same as those in Table 2.

the remaining baselines, specifically Beam Search
(Beam) and Self-Consistency (SC).

As shown in Table 4, although Beam Search,
which applies a finer-grained token-level sampling
strategy, and SC, which clusters answers based
on semantic consistency and selects the majority
cluster, can alleviate some of the issues caused by
the coarser sequence-level sampling of BoN, token-
level sampling tends to get stuck in local optima.
Furthermore, due to the capability limitations of
small LLMs, the correct answers obtained through
sampling are often in the minority, which leads to
suboptimal performance with SC on small LLMs.

In contrast, our proposed RASPberry adopts
a more flexible action-level sampling granularity
(which lies between token-level and sequence-level,
with different actions having different preset output
lengths). Additionally, by integrating the MCTS al-
gorithm, previously executed actions (stored as tree
node states) can be reused in different subsequent
actions, further extending the sampling scope of
the solution space. Combined with RR-RC, which
guides the final path selection by considering the
solution paths’ validity, RASPberry consistently
achieves superior performance compared to exist-
ing methods that use various sampling strategies.

5.4 Scaling Efficiency Analysis

To validate the scalability advantage of our pro-
posed RASPberry (i.e., analyzing whether the

method can incorporate more correct candidate so-
lutions as the number of samples increases), we
configured different rollouts (reflecting the number
of samples) and compared it with various scalable
baselines. It is important to note that we only com-
pared methods capable of multi-round retrieval,
specifically IRCoT and RATT, to ensure that the re-
trieved information is similarly scalable, avoiding
issues related to insufficient external information in
single-round RAG that could skew the comparison
of their scalability. We measured the maximum
achievable F1 score under ideal configurations (i.e.,
selecting the optimal answer from the candidate
solutions) as the number of rollouts increased. To
evaluate the scalability, we fitted a linear model to
the performance expansion and used the slope of
the fitting line to quantify the scalability (a larger
slope indicates better scalability).
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Figure 3: Performance comparison on HotpotQA under
different number of rollouts. The dashed line represents
the linear fit, with the slope indicated.

As shown in Figure 3, even with a relatively
low number of samples (2 rollouts), our proposed
RASPberry outperforms the baseline methods. Fur-
thermore, both variants of IRCoT (IRCoT-BoN
and IRCoT-SC) and RATT fail to achieve effective
scalability in reasoning, as they exhibit minimal
or even deteriorating performance with an increas-
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ing number of rollouts (with slopes less than 1, or
even negative). In contrast, RASPberry demon-
strates effective and efficient scalability, achieving
a performance scaling slope greater than 2. This
confirms that our proposed RASPberry is able to
more thoroughly explore the solution space and is
less likely to get stuck in local optima.

5.5 The Effectiveness of RA-MCT Self-Play
To independently verify the effectiveness of RA-
MCT Self-Play in exploring the solution space
within RASPberry, we removed RR-RC, which
is responsible for final path selection, and instead
simply employed a majority vote mechanism to
select the most frequent answer from the candi-
date solutions. As shown in Table 4, even in this
scenario, our proposed method demonstrates non-
trivial performance improvement, confirming that
RA-MCT Self-Play alone is capable of effectively
exploring more correct answers as candidate solu-
tions. However, it is important to note that applying
our proposed, more tailored RR-RC further leads
to a significant performance gain.

Moreover, as shown in Figure 3, as the number
of MCTS rollouts increases, RA-MCT Self-Play
gradually explores more correct solutions, rather
than being confined to local optima like other base-
lines. This further demonstrates the effectiveness
of RA-MCT Self-Play in RASPberry.

Method (BoN+SC)@3 RR-RC (Ours)

LLaMA-3.1-8B-Ins
RAG-CoT 31.39 45.79
RQ-RAG 41.96 43.42
Self-RAG 28.53 35.39
IRCoT 40.31 52.89

Table 5: Performance of baselines with simple joint ef-
fect (BoN+SC) and our proposed RR-RC on HotpotQA.

5.6 The Effectiveness of RR-RC
To independently verify the effectiveness of RR-
RC, which is responsible for path selection in
RASPberry, we first applied RR-RC to the baseline
methods. As shown in Table 5, although our pro-
posed RR-RC incorporates the evaluation strategies
of BoN and SC, it differs from directly merging
BoN and SC evaluations (where the total score,
obtained by summing the scores from BoN and
SC methods, is considered as the final evaluation
score). RR-RC, on the other hand, integrates both

the consistency and validity of reasoning paths
into the evaluation criteria, ensuring that the final
selected solution is more reliable. Compared to
merely merging BoN and SC, RR-RC is able to
select a more accurate final solution. However, it
is important to note that, due to the inherent limita-
tions in the exploration efficiency of the baselines’
solution space, the RR-RC method may not directly
yield significant advantages, as its evaluation still
requires considering the confidence in the candi-
date paths generated during the process.

Model Discrimination F1

LLaMA-3.1-8B-Ins

Random Select 51.79
Majority Vote 66.27
Self-Verification 55.09
Self-Integration 16.95

RR-RC (Ours)
Self-Naive 64.75
Self-BoN 68.89
GPT-4o-Mini 70.39

Optimal 87.75

Table 6: Performance on HotpotQA with different final
solution selection methods (discriminator). Optimal
represents the performance upper bound achieved when
always selecting the optimal solution.

However, for our proposed RA-MCT Self-Play,
which can effectively explore the solution space,
combining it with the RR-RC method yields sig-
nificant advantages. As shown in Table 6, we
compared various mainstream solution selection
methods and confirmed that, for small LLMs, the
performance difference between Self-Verification
(which is based on self-scoring) and Random Se-
lect (which randomly chooses a candidate solution
as the final answer) is minimal. Additionally, when
we apply RR-RC without the BoN strategy, using
only a single sampled path to complete the reason-
ing process (Self-Naive) introduces a certain level
of randomness, leading to performance instability,
which is due to the inherent limitations of small
LLMs. However, when we use a stronger model as
the discriminator (GPT-4o-Mini), even without the
BoN strategy, it can still select more correct final
solutions. Notably, when the BoN is applied to RR-
RC on small LLMs (Self-BoN), the performance
achieved is comparable to that of using a stronger
model, further demonstrating the efficiency and
scalability of our proposed RR-RC.
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5.7 The Effectiveness of the Action Set

To evaluate the effectiveness and non-redundancy
of the designed action set, we conducted an abla-
tion study by selectively removing actions.

Action P R F1

Ablation on A1 +A2 87.42 84.64 84.85
Ablation on A4 77.37 75.25 75.30
Ablation on A6 88.70 87.00 86.97
Ablation on A7 84.31 82.42 82.58
All (Ours) 89.34 87.91 87.75

Table 7: Ablation study on the effectiveness of our RAG
action set (LLaMA-3.1-8B-Ins on HotpotQA).

As shown in Table 7, RASPberry achieves the
best performance when using the full action set.
Notably, removing A4 (Document Analysis) leads
to the most significant performance degradation, as
detailed document reasoning is critical for solving
complex multi-hop QA tasks. In summary, each
action in the RASPberry action set is essential for
generating higher-quality solution paths.

5.8 The Robustness of RASPberry Across
Different Retrievers

To evaluate the robustness of RASPberry under
different retriever configurations, we replace the
default dense retriever (BGE-M3) with a sparse re-
triever (BM25). This allows us to analyze whether
the weaker semantic retrieval capabilities of the
BM25 would severely affect RASPberry’s perfor-
mance in generating candidate solution paths.

Retriever P R F1

w/ Sparse Retriever (BM25) 86.21 83.17 83.50
w/ Dense Retriever (BGE-M3) 89.34 87.91 87.75

Table 8: Optimal performance of RASPberry (LLaMA-
3.1-8B-Ins) on HotpotQA with different retrievers.

As shown in Table 8, we report the performance
achieved by the optimal solution paths generated
by RASPberry under different retriever settings.
While the use of BM25 does lead to some degrada-
tion in retrieval quality, and consequently a slight
drop in the QA performance, the impact is rela-
tively limited. Overall, RASPberry maintains a
stable level of performance, which further demon-
strates its robustness across different retrievers.

6 Conclusion

For complex multi-hop question answering, exist-
ing methods fail to ensure (i) effective exploration
of the solution space and (ii) correct selection of
the final solution. To address these challenges, we
propose RASPberry. Compared to existing meth-
ods, RASPberry enables more effective solution
space exploration. Additionally, we adopts an en-
hanced version of reasoning consistency tailored
to the RAG scenario, offering a more comprehen-
sive final solution selection. Overall, our proposed
RASPberry achieves more effective and efficient
RAG inference-time scaling in a training-free man-
ner, without the need for a stronger teacher model.

Limitations

Although our proposed RASPberry achieves effec-
tive and efficient inference-time scalability in multi-
hop QA, due to computational limitations, we have
only explored a training-free, inference-only design
path. Future work could focus on treating MCTS
as a automatic process for synthesizing long rea-
soning chains, and then filtering out high-quality
reasoning paths that align with human preferences.
These solution paths could be used as preference
data to fine-tune the LLM’s internal parameters via
reinforcement learning, enabling the model to di-
rectly generate the desired high-quality reasoning
chains during inference. This would facilitate a
more integrated and streamlined process.

Ethical Considerations

It is widely acknowledged that LLMs are capable
of generating predictions that exhibit bias. This
issue becomes especially pronounced when the in-
put queries possess sensitive characteristics. In
light of some potential issues, this study advocates
for usage under research purposes. Appropriate
care should thus be taken when applying such ap-
proaches for any non-research purpose.

In this study, our use of existing artifacts is
consistent with their intended purposes. All the
datasets and models used in this work are publicly
available. Specifically, LLaMA-3.1-8B-Instruct
have Llama 3.1 Community License Agreement1.
Qwen-2.5-7B-Instruct, Qwen-2-7B-Instruct, Hot-
potQA dataset, and 2WikiMultiHopQA (2WikiQA)
dataset have Apache-2.0 license2.

1https://huggingface.co/meta-llama/Llama-3.1-
70B-Instruct/blob/main/LICENSE

2https://www.apache.org/licenses/LICENSE-2.0
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A Implementation Details

In this work, we set the default configurations of
RASPberry as follows:

Parameter Default Value

MCTS Configuration
Number of Rollouts 8
Max Tree Depth 10
MCTS Exploration Weight 2.0

LLM Configuration
Number of Votes 3
Temperature 0.8
Top-K 40
Top-P 0.95

Table 9: Default configurations of our RASPberry.

In the experiments, we used the following
datasets: HotpotQA3 and 2WikiMultiHopQA4

(2WikiQA). The LLMs employed are LLaMA-3.1-
8B-Instruct5, Qwen-2.5-7B-Instruct6, and Qwen-2-
7B-Instruct7. For all baseline methods, we set the
model configurations identical to those in Table 9.
For single-round RAG baselines, we set the round
to 1. For multi-round RAG baselines, we set the
round to 8, aligning with the number of rollouts in
MCTS to ensure fairness.

B Prompt Examples

Since both the HotpotQA and 2WikiQA datasets
are multi-hop question-answering datasets based
on wiki knowledge, we construct a unified set of
prompts for these datasets. For each action that
requires generation by the LLM, we provide five
demonstrations in the prompts. Specifically, the
prompts for different actions are provided in the
color boxes below.

3https://hotpotqa.github.io
4https://github.com/Alab-NII/2wikimultihop
5https://huggingface.co/meta-llama/Llama-3.1-

8B-Instruct
6https://huggingface.co/Qwen/Qwen2.5-7B-Instr

uct
7https://huggingface.co/Qwen/Qwen2-7B-Instruc

t
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A1: Query Decomposition

Given an input question, decompose it into multiple smaller and indivisible sub-questions. The orig-
inal question will be enclosed in <Original Question> and </Original Question>. Corresponding
sub-questions should be enclosed in <Subquestions> and </Subquestions> tags.
<Question>
In what school district is Governor John R. Rogers High School, named after John Rankin Rogers,
located?
</Question>
<Subquestions>
1.Where is Governor John R. Rogers High School geographically located?
2.What is the name of the school district that includes Governor John R. Rogers High School?
</Subquestions>
<Question>
Which Australian racing driver won the 44-lap race for the Red Bull Racing team?
</Question>
<Subquestions>
1.Which 44-lap race was won by a driver for the Red Bull Racing team?
2.Which Australian racing drivers are part of the Red Bull Racing team?
3.Which Australian racing driver, as part of the Red Bull Racing team, won the 44-lap race?
</Subquestions>
<Question>
What star of *Parks and Recreation* appeared in November?
</Question>
<Subquestions>
1.Which actors are considered stars of *Parks and Recreation*?
2.What event or appearance involving a star of *Parks and Recreation* occurred in November?
3.Which specific star of *Parks and Recreation* made an appearance in November?
</Subquestions>
<Question>
Which genus of flowering plant is found in an environment further south, Crocosmia or Cimicifuga?
</Question>
<Subquestions>
1.What are the typical environments where the genus Crocosmia is found?
2.What are the typical environments where the genus Cimicifuga is found?
3.Which environment, associated with Crocosmia or Cimicifuga, is located further south?
</Subquestions>
<Question>
In what year did the man who shot the Chris Stockley, of The Dingoes, die?
</Question>
<Subquestions>
1.Who was the man who shot Chris Stockley, a member of The Dingoes?
2.In what year did the man who shot Chris Stockley die?
</Subquestions>
<Question>
{User Query}
</Question>
<Subquestions>
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A2: Query Rephrasing

Given an input question, rephrase it into a more intuitive and easier-to-understand version. The
original question is enclosed within <Original Question> </Original Question> tags, and the corre-
sponding rephrased question is enclosed within <Rephrased Question> </Rephrased Question>
tags.
<Original Question>
In what school district is Governor John R. Rogers High School, named after John Rankin Rogers,
located?
</Original Question>
<Rephrased Question>
What school district is Governor John R. Rogers High School in?
</Rephrased Question>
<Original Question>
Which Australian racing driver won the 44-lap race for the Red Bull Racing team?
</Original Question>
<Rephrased Question>
Who is the Australian racing driver that won a 44-lap race for the Red Bull Racing team?
</Rephrased Question>
<Original Question>
What star of *Parks and Recreation* appeared in November?
</Original Question>
<Rephrased Question>
Which actor from *Parks and Recreation* made an appearance in November?
</Rephrased Question>
<Original Question>
Which genus of flowering plant is found in an environment further south, Crocosmia or Cimicifuga?
</Original Question>
<Rephrased Question>
Between Crocosmia and Cimicifuga, which plant genus is typically found further south?
</Rephrased Question>
<Original Question>
In what year did the man who shot the Chris Stockley, of The Dingoes, die?
</Original Question>
<Rephrased Question>
What is the year of death for the man who shot Chris Stockley, of The Dingoes?
</Rephrased Question>
<Original Question>
{User Query}
</Original Question>
<Rephrased Question>
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A4: Document Analysis

...{Previous Actions}...
To answer the question, through document analysis, we derive: Based on the content provided in
the document:
<Document Analysis>
1.Document 1 describes Rogers High School in Arkansas, managed by the Rogers School District.
This is not relevant to the query about “Governor John R. Rogers High School.”
2.Document 2 describes Rogers High School in Minnesota, part of Elk River School District 728.
This is also not related to the query.
3.Document 3 describes John R. Rogers High School in Spokane, Washington, part of Spokane
Public Schools (District No. 81). While it shares a connection with John Rankin Rogers, it is not
the school in question.
4.Document 4 provides information about Governor John R. Rogers High School, located in the
Puyallup School District of Washington, United States. It specifically states that this school is
named after the former governor John Rankin Rogers and opened in 1968.
**Conclusion:** Governor John R. Rogers High School is located in the **Puyallup School
District**.
</Document Analysis>

...{4× demonstrations}...

...{Previous Actions}...
To answer the question, through document analysis, we derive: Based on the content provided in
the document:
<Document Analysis>
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A5: Answer Extraction

...{Previous Actions}...
Summarizing the information above, now we extract the answer, the answer is:
<Answer>
Puyallup School District of Washington
</Answer>
...{Previous Actions}...
Summarizing the information above, now we extract the answer, the answer is:
<Answer>
Barcelona
</Answer>
...{Previous Actions}...
Summarizing the information above, now we extract the answer, the answer is:
<Answer>
Lowestoft
</Answer>
...{Previous Actions}...
Summarizing the information above, now we extract the answer, the answer is:
<Answer>
Crocosmia
</Answer>
...{Previous Actions}...
Summarizing the information above, now we extract the answer, the answer is:
<Answer>
1987
</Answer>
...{Previous Actions}...
Summarizing the information above, now we extract the answer, the answer is:
<Answer>
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A6: Critical Rethinking

...{Previous Actions}...
By rethinking the above content, we can find that:
<Rethinking>
To critically rethink whether the information and analysis provided can reliably generate the
conclusion that “Governor John R. Rogers High School is located in the Puyallup School District
of Washington,” let’s analyze the key points and logical consistency:
**Review of the Provided Information:**
1.**Documents Relevant to the Query:**
• **Document 4** explicitly mentions **Governor John R. Rogers High School** and states that
it is in the **Puyallup School District of Washington, United States**. It also confirms the school’s
name, connection to John Rankin Rogers, and establishment date (1968).
• **Document 3** discusses a similarly named **John R. Rogers High School**, located in
Spokane, Washington, and part of Spokane Public Schools. While related to the same individual, it
is a different school.
2.**Irrelevant Documents:**
• **Documents 1 and 2** describe Rogers High Schools in Arkansas and Minnesota, respectively.
These schools do not match the query’s specified name or location.
3.**Analysis of Document Alignment:**
• Document 4 directly matches the query by providing the specific name, location, and school
district of Governor John R. Rogers High School.
• The analysis appropriately dismisses Documents 1, 2, and 3 as unrelated to the query.
**Reconsideration of Logical Flow:**
1.The document analysis correctly identifies Document 4 as the authoritative source for answering
the query.
2.The irrelevant documents do not introduce any conflicting information.
3.The naming distinction between “Governor John R. Rogers High School” (Puyallup) and “John
R. Rogers High School” (Spokane) is clearly maintained.
**Conclusion Verification:**
Based on the information provided in Document 4, the conclusion that “Governor John R. Rogers
High School is located in the Puyallup School District of Washington” is well-supported and
logically derived. There is no ambiguity or conflicting evidence that undermines this conclusion.
</Rethinking>

...{4× demonstrations}...

...{Previous Actions}...
By rethinking the above content, we can find that:
<Rethinking>
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Re-retrieval Necessity in A7: Document Re-retrieval

<Document Analysis>
Based on the retrieved documents, there is insufficient information to conclusively answer the
question ...
To accurately answer the question, additional context or documents specifically detailing ... Ex-
panding the scope of the search to include ... may help locate the necessary information.
</Document Analysis>
According to the document analysis, do we need to retrieve more documents to answer the question?
Respond with Yes or No.
Response: Yes
<Document Analysis>
Based on the content provided in the document:
...
**Conclusion:** The team that featured in both the 2011 and 2012 Copa del Rey Finals is
**Barcelona**.
</Document Analysis>
According to the document analysis, do we need to retrieve more documents to answer the question?
Respond with Yes or No.
Response: No

...{3× demonstrations}...

</Document Analysis>
{Current Document Analysis}
</Document Analysis>
According to the document analysis, do we need to retrieve more documents to answer the question?
Respond with Yes or No.
Response:
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Remaining Query Construction in A7: Document Re-retrieval

<Original Question>
In what year did the man who shot Chris Stockley, of The Dingoes, die?
</Original Question>
<Document Analysis>
...
</Document Analysis>
Given the original question and the document analysis, please create a remaining question that
requires further retrieval.
<Remaining Question>
What is the year of death for Dennis Allen, the Melbourne drug dealer who shot Chris Stockley of
The Dingoes?
</Remaining Question>

...{4× demonstrations}...

<Original Question>
{User Query}
</Original Question>
<Document Analysis>
...
</Document Analysis>
Given the original question and the document analysis, please create a remaining question that
requires further retrieval.
<Remaining Question>
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