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Abstract

Training large language models (LLMs) to
follow instructions has significantly enhanced
their ability to tackle unseen tasks. However,
despite their strong generalization capabilities,
instruction-following LLMs encounter difficul-
ties when dealing with tasks that require do-
main knowledge. This work introduces a spe-
cialized instruction fine-tuning for the domain
of computational argumentation (CA). The goal
is to enable an LLM to effectively tackle any
unseen CA tasks while preserving its general-
ization capabilities. Reviewing existing CA re-
search, we crafted natural language instructions
for 105 CA tasks to this end. On this basis, we
developed a CA-specific benchmark for LLMs
that allows for a comprehensive evaluation of
LLMs’ capabilities in solving various CA tasks.
We synthesized 52k CA-related instructions,
adapting the self-instruct process to train a CA-
specialized instruction-following LLM. Our ex-
periments suggest that CA-specialized instruc-
tion fine-tuning significantly enhances the LLM
on both seen and unseen CA tasks. At the same
time, performance on the general NLP tasks of
the SuperNI benchmark remains stable.

1 Introduction

Large language models (LLMs) have proven ef-
fective for various NLP tasks, including several
tasks from computational argumentation (CA), the
computational analysis and synthesis of natural lan-
guage arguments (Chen et al., 2024a). Initially,
it was common to fine-tune pretrained LLMs on
input-output pairs for a task (Devlin et al., 2019;
Radford et al., 2019). Figure 1(a) illustrates such
task-specific fine-tuning for the mining of claims
and premises from student essays. In contrast, re-
cent LLLMs are often instruction fine-tuned by ex-
posing them to highly diverse tasks' (Ouyang et al.,
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(a) CA task-specific fine-tuning
Input: Student essay 1 .
Output: Claims/Premises
e_o o -
Input: Student essay 2
oLLMe + Output: Claims/Premises —’ LLM

o o e : .
Input: Student essay n
Output: Claims/Premises
(b) General instruction fine-tuning
Translate the given text .
to English language.
o_eo _o -
Assess whether review
oLLMe + is positive or negative. —} LLM
o o e : . )
As a lawyer, you answer
this question as follows.
(c) CA-specialized instruction fine-tuning (this paper)
Write a counterargument
to this argument.
o [ ] { ]
Assess the cogency of .
oLLMe + this argument as 1-5. —’ LLM
o ¢ e : °

Mine all premises and .
claims from this essay.

Figure 1: Comparison of fine-tuning methods: (a) Opti-
mizing an LLM for a CA task on input-output pairs. (b)
Making an LLM instruction-following on highly diverse
tasks. (¢) Our method: Making an LLM an instruction-
following CA specialist on diverse CA-specific tasks.

2022; Taori et al., 2023), as shown in Figure 1(b).
This enables them to generate responses aligned
with specific task requirements described in the
instruction (Wang et al., 2022, 2023).

However, despite their strong generalization abil-
ities, instruction-following LL.Ms often struggle to
solve tasks that require domain knowledge (Lecler
etal., 2023; Castro Nascimento and Pimentel, 2023;
Yang et al., 2023). This limitation results from the
principle of general instruction fine-tuning to prior-
itize generalizability over specialization. It affects
CA tasks in particular, as they often center around

contextual guidance (Mishra et al., 2022; Wang et al., 2022).
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sophisticated context-related concepts from argu-
mentation theory (Wachsmuth et al., 2024).

Specifically, CA research in NLP focuses on
the mining, assessment, and generation of natural
language arguments (Stede and Schneider, 2018).
Despite recent advancements in LLMs, tackling
CA tasks remains challenging (Chen et al., 2024a)
due to their context-dependent specificities (e.g., in
newspaper articles vs. social media posts) (Haber-
nal et al., 2014) and their subjectivity (e.g., in as-
sessing argument quality) (Wachsmuth et al., 2017,
Romberg, 2022). In fact, providing context- and
argumentation-specific knowledge, such as details
about the debate setting and definitions of argumen-
tative concepts, has been stressed to be important
for task performance (Lauscher et al., 2022).

In this paper, we study the impact of conflating
the two learning paradigms of task-specific fine-
tuning and general instruction fine-tuning. That is,
we introduce the idea of specialized instruction fine-
tuning by combining a highly diverse set of general
tasks with a diverse set of tasks specific to a given
task domain, CA in our case. The goal is to obtain
an LLM that is highly proficient in CA while being
agnostic to the particular CA task it encounters and
maintaining generalization capabilities.

We hypothesize that providing an LLM with
argumentation-specific knowledge during instruc-
tion fine-tuning in a way that enables joint learning
of representations across tasks is key to address-
ing the limitations of both general-purpose and
task-specific LLMs in this domain. Through CA-
specialized instruction fine-tuning (Figure 1(c)),
we enhance the LLLM’s ability to mine argument
structure, assess argument quality, and generate
arguments across CA contexts, ensuring both ac-
curacy and versatility for the full spectrum of ar-
gumentation. We expect this to require many and
diverse CA tasks, exceeding what can be achieved
by merely combining existing tasks.

Towards the outlined goal, we create a large CA-
specific instruction fine-tuning dataset. Starting
from 105 seed tasks, derived from a total of 30 argu-
mentation corpora, we follow the self-instruct pro-
cess of Wang et al. (2023) to automatically generate
a diverse set of 52k CA-specific tasks (instructions
plus input-output pairs). By combining these tasks
with general instruction fine-tuning data in vari-
ous ways, we train instruction-following Gemma
(Gemma Team et al., 2024) variants for CA.

The seed tasks serve as a new CA bench-
mark. Our experiments suggest that our special-

ized instruction fine-tuning method (dubbed Argln-
struct) successfully generalizes toward unseen CA
tasks, outperforming a wide range of competitive
instruction-following LLMs in a zero-shot setting.
Moreover, we demonstrate on SuperNI (Wang et al.,
2022) that the LLM’s general instruction-following
abilities remain despite specialization.
Altogether, this paper’s main contributions are:

* A general method for specialized instruction
fine-tuning, instantiated for CA

* An extensive dataset for CA-specific instruc-
tion fine-tuning and benchmarking of LLMs

* Empirical evidence that our CA-specialized
instruction-finetuning effectively enhances an
LLM’s generalizability for unseen CA tasks’

2 Related Work

The computational analysis and synthesis of ar-
guments in natural language, often referred to as
computational argumentation (CA), has its roots in
a long history of philosophical research (Aristotle,
ca. 350 B.C.E./ translated 2007), which has gained
significant attention from the NLP community in
recent years. The three main CA research areas
frequently covered are argument mining (Park and
Cardie, 2014; Boltuzi¢ and gnajder, 2014; Stab and
Gurevych, 2017a), argument assessment (Persing
and Ng, 2015; Wachsmuth et al., 2017; Gretz et al.,
2020), and argument generation (Syed et al., 2021;
Schiller et al., 2021; Wachsmuth et al., 2018a).
Although the contributions to each area are plen-
tiful, most works focus on one or a few tasks within
or across the areas. Many methods rely on super-
vised learning and single-domain datasets, limiting
generalizability (Waldis et al., 2024). Recently,
Chen et al. (2024a), Elaraby et al. (2024), Rescala
et al. (2024), and Cabessa et al. (2025) studied
the potential of LLMs to tackle a selection of min-
ing, assessment, and generation tasks. They ob-
tained promising results, showing that LLMs can
address multiple CA tasks, sometimes even with-
out explicit training. Beyond that, Wachsmuth et al.
(2024) propose to systematically instruct LLMs for
argument quality assessment with argumentation-
specific knowledge to enable knowledge sharing
across tasks and contexts. Despite these advances,
there remains a notable gap: no study has yet com-
prehensively evaluated LLMs across all three main

2Qur dataset and experiment code can be found under:
https://github.com/webis-de/ACL-25
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Figure 2: Overview of our methodology: We manually craft CA-specific seed tasks and prompt an LLM to generate
new CA-specific tasks in a loop by (1) generating new instructions, (2) filtering them for CA relevance and novelty,
and (3) generating corresponding instances. (4) After postprocessing, the generated CA-specific tasks from the task
pool are combined with existing general tasks to specialize an LLM for CA using instruction fine-tuning.

CA areas or operationalized a systematic frame-
work such as the one suggested by Wachsmuth
et al. (2024) to tackle CA tasks holistically.

To fill this gap, we use instruction fine-tuning as
it allows training a task-agnostic LLM for CA. In
general, instruction fine-tuning is just a supervised
training process. The key is the data used for fine-
tuning: By having instances with instructions, and
by diversifying these instances as much as possible,
the LLM learns that task specificities should be
abstracted from while instructions should always
be followed (Wang et al., 2024a).

Over the last years, multiple instruction fine-
tuning datasets have been collecting from existing
NLP tasks (Mishra et al., 2022; Wang et al., 2022).
The datasets usually consist of natural language
instructions and example instances, which are ei-
ther written manually by humans (Sanh et al., 2021;
Ouyang et al., 2022; Longpre et al., 2023) or cre-
ated synthetically (Honovich et al., 2023; Wang
et al., 2023; Taori et al., 2023; Chen et al., 2024b).
The importance of data diversity and selection was
further emphasized by Bukharin and Zhao (2023),
Li et al. (2024), and Wang et al. (2024a). Be-
sides evaluating instruction following capabilities
in terms of text generation performance on unseen
tasks (Chia et al., 2024; Dubois et al., 2024), new
ways of assessment were developed in which LLMs
compete against each other (Zheng et al., 2023; Chi-
ang et al., 2024), sometimes even replacing human
annotators as evaluators (Zheng et al., 2023).

Several instruction-following LLMs have been
developed and evaluated on these benchmarks
(Ouyang et al., 2022; Muennighoff et al., 2023;
Chung et al., 2024). However, standard instruc-
tion fine-tuning is purely generalization-oriented,
whereas we aim to balance between generalization
and CA specialization. By changing what data is

used, the LLM learns that not all task-specificities
should be abstracted from, but the domain special-
ization should be kept while following instructions.
This makes the LLM a computational argumenta-
tion expert, rather than a general talk solver as in
standard instruction fine-tuning.

Our method builds on the ideas of Self-Instruct
(Wang et al., 2023) and Alpaca (Taori et al., 2023).
Both generate 52k tasks starting from a small set
of manually-written seed tasks, showing that larger
amounts of diverse instructions can help improve
the performance of LLMs. However, we do not
focus on or start from general instructions but CA-
specific ones. Hence, we combine the CA-specific
knowledge of the structure, quality, and writing of
arguments with meta-knowledge of how to solve
tasks acquired by following general instructions.

3 Methodology

This section presents our methodology for the train-
ing of a specialized LLM for computational argu-
mentation (CA). We start by deriving a seed set
of instruction fine-tuning tasks from existing CA
tasks and datasets. This manually-annotated seed
data serves as a reliable basis for generating a large
set of diverse CA-specific tasks. Combining these
tasks with general NLP tasks, we then specialize an
LLM using instruction fine-tuning, dubbed Argin-
struct (Argumentation-specialized Instruction Fine-
Tuning). Whereas standard instruction fine-tuning
is, by concept, fully generalization-oriented, we
diversify instructions only within the task domain.
The CA-specific instructions enable the LLM to
deal specifically with any task from computational
argumentation. By still mixing in general instruc-
tion fine-tuning data, we further achieve that gen-
eralization capabilities are widely preserved. Fig-
ure 2 illustrates the methodology.
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3.1 Task Generation

Following instruction fine-tuning literature (Mishra
et al., 2022; Wang et al., 2022, 2023) we define a
task 7" = (1, .5) to consist of a natural language
instruction I and m > 1 input-output instances
S = {zj,y;}j2,. To instruction fine-tune a spe-
cialized LLM for CA, we propose to create a large
instruction fine-tuning dataset 7 = {71, ...,T,}
containing a large set of CA-specific but diverse
tasks by (1) generating new instructions, (2) filter-
ing for CA relevance and diversity, and (3) generat-
ing corresponding input-output instances.

Instruction Generation Building on research
in CA, we curate a collection of seed tasks, 7p,
across the three main research areas of CA: argu-
ment mining, argument assessment, and argument
generation (see Section 4.1). First, we manually
craft a set of £ > 0 natural language instructions
Ty ={I,..., I} by extracting task and term def-
initions from the papers and annotation guidelines.
For each I, we obtain the input-output instances
from the corresponding datasets to construct 7.

Following self-instruct (Wang et al., 2023), we
use 7o as the initial CA task pool, and gener-
ate new CA-specific instructions Z; using a pre-
trained LLM. Self-instruct is an iterative process
that uses prompting to create an instruction fine-
tuning dataset, where an LLM generates new train-
ing data by leveraging its own previous outputs as
few-shot examples. In each generation step 7, we
randomly sample a subset Z of size [ > 1 from
the instructions Zg U Z; in 7y where Z; contains
all instructions generated previously (in Section 4,
we set | = 8). Z is used as few-shot examples to
generate a new set of instructions Z;. To ensure that
the instructions in Z.; remain focused on CA, we
modify the self-instruct prompt to: “Come up with
a series of computational argumentation tasks.”

Instruction Filtering To filter the generated in-
structions Z; by CA relevance, we utilize the same
LLM using the prompt “Does the following task
fall into the field of computational argumentation?”
together with few-shot examples. For this, we ran-
domly sample CA-specific examples Z from our
seed instructions Zy as positive examples and not
CA-specific instructions Z_ from established in-
struction following datasets as negative examples
and append them to the prompt. Following the in-
struction filtering used in self-instruct (Wang et al.,
2023), a generated instruction that has been deemed

CA-relevant is added to the CA task pool only when
its ROUGE-L Fj-score similarity with any existing
instruction from Zg U Z; falls below a predefined
threshold 7 (we use 7 = 0.7 below). The instruc-
tion generation and filtering process is repeated
until we reach a predefined number of generated
instructions. In Section 5, we set this number to
52,445, roughly matching Taori et al. (2023).

Instance Generation To obtain a task 7' =
(1, S) for each generated instruction I € Z;, we
mostly follow Wang et al. (2023), using the LLM
to first identify the task type for I and then gener-
ating the corresponding instances S based on the
task type. Duplicates in S and instances with the
same input but different outputs are filtered out.
Beyond the two task types generation and classi-
fication covered by Wang et al. (2023), we further
distinguish regression tasks to enable more fine-
grained evaluation with type-specific metrics. We
identify the task types for each generated I using
templated prompts with instructions sampled from
Ty as examples for each task type. Instances are
also generated using a templated prompt, providing
tasks from 7 representative of each task type.

3.2 LLM Instruction Fine-Tuning

To create our Arglnstruct model, we fine-tune a
pretrained LLLM on both the entire CA task pool
and general tasks, aiming to specialize in CA while
maintaining the generalization idea of instruction
fine-tuning. We format task instances into a prompt-
ing template for training and mask input tokens dur-
ing cross-entropy loss calculation, focusing solely
on the generated output tokens to help the model
retain pre-trained input interpretation skills while
ensuring accurate output generation (i.e., mapping
from input to output).

4 Data

This section first details the selection process for
CA seed datasets and tasks that serve as the basis
for Arglnstruct. Then, we present the resulting
CA-specific instruction fine-tuning dataset, which
integrates the seed tasks and newly generated tasks.

4.1 Task Generation using ArgInstruct

CA Seed Dataset Selection Initially, we manu-
ally collected 71 CA datasets from CA literature.
We started from datasets used in shared tasks of
the Argument Mining workshop series (6), and ex-
tended them based on CA papers from the survey of
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Source Text Genre Tasks Covered by the Dataset # Tasks

Boltuzi¢ and Snajder (2014) online user comments relation type classification 1
on Peldszus and Stede (2015) short argumentative texts  claim extraction, relation identific., function classific. 4
E Stab and Gurevych (2017a)* student essays argumentative span/relation identific., stance classific. =~ 4
'g Habernal and Gurevych (2017) user-generated web content persuasiveness detection, toulmin component extract. 2
= Stab et al. (2018) diverse web documents supporting/opposing argument detection 1
@ Reimers et al. (2019) web crawl sentences argument similarity prediction 1
E Poudyal et al. (2020) court decisions clause/premise/conclusion recognition, relation predict. 4
£ Hautli-Janisz et al. (2022)* broadcast political debates propositional/illocutionary relation identification 2
< Chen et al. (2022) amazon reviews unit segmentation/classific., helpfulness/relation predict. 4

Kuznetsov et al. (2022)* peer reviews pragmatic category tagging 1
« Persing and Ng (2015) student essays argument strength prediction 1
§ Habernal and Gurevych (2016a) online debates reason for convincingness prediction 18
E Abbott et al. (2016)* online debates agreement/attack/emotion/hostility/sarcasm prediction 5
§ Wachsmuth et al. (2017) online debates argument quality rating, argumentativeness detection 15
4 Habernal et al. (2018a) newspaper editorials warrant selection (argument reasoning comprehension) 1
£ Gretz et al. (2020)* crowd-sourced arguments  argument quality rating, stance prediction 2
E Friedman et al. (2021) crowd-sourced arguments  key point generation/matching 2
g Stein et al. (2021) online debates same side stance classification 1
2 Heinisch et al. (2022) online political debates (relative) novelty/validity classification 4

Ziegenbein et al. (2023) reviews, Q&A, debates inappropriateness (reason) classification 14
= Hasan and Ng (2014) ideological online debates reason identification 1
£ Skeppstedt et al. (2018) short argumentative texts — argument generation 1
8 Wachsmuth et al. (2018a)* short argumentative texts  argument synthesis 1
& Wachsmuth et al. (2018b) online debates counter argument generation 4
(3 Roush and Balaji (2020)* competitive formal debates extractive debate summarization 1
2 Schiller et al. (2021)* diverse web documents aspect-based generation 1
E Skitalinskaya et al. (2021) online debates suboptimal claim detection/improvement 4
g Syed et al. (2021)* online debates conclusion generation 1
% Alshomary et al. (2021) online debates belief-based generation, stance prediction 2

Stahl et al. (2023) learner essays enthymeme reconstruction, enthymeme detection 2

Table 1: Overview of the 30 selected CA seed datasets, categorized into argument mining, argument assessment,
and argument generation. The table includes the corresponding paper, text genre, and the kinds and numbers of

extracted CA seed tasks. The tasks from the 9 CA datasets

Lauscher et al. (2022) (30), as well as more recent
datasets found through searches in the ACL Anthol-
ogy and Google Scholar (35). We then categorized
each dataset into one or more CA areas based on
their usage in the literature: argument mining, ar-
gument assessment, and argument generation.> For
each subarea, we selected a subset of ten datasets,
consisting of the five most cited datasets along with
five additional, lesser-known datasets that cover a
diverse range of data sources. This process ensures
comprehensive coverage of CA and results in the
30 seed datasets listed in Table 1. The list of all 71
datasets can be found in Appendix A.

CA Seed Task Collection Given the seed data,
we obtained the set of CA seed tasks, 7q, from the
respective papers. Following our task definition,
we consider a task 7" = (S, I) to model a relation S
between inputs and outputs, which can be described
in natural language in the form of an instruction /.

3We categorized datasets containing tasks from multiple
subareas based on their main focus and then the task modeling.

marked with “x” are reserved for testing.

Intermediate steps (e.g., feature extraction or data
preprocessing) are not seen as individual CA tasks.
If papers contained multiple tasks (e.g., mining and
relation identification), each task was treated sep-
arately. We wrote the corresponding instructions
based on annotation guidelines or, when unavail-
able, the task descriptions in the papers. To ensure
tasks are self-contained, we included relevant term
definitions (e.g., class definitions) in the instruc-
tions (examples in Appendix B). In total, we ob-
tained a set of 105 seed tasks, 7o = {71,...,T105},
from the 30 seed datasets.

We categorized all see tasks into three task types:
classification, regression, and generation. There is
a noteworthy connection between task types and
CA subareas: argument mining tasks are typically
categorized as classification, argument assessment
tasks as regression, and argument generation tasks
as generation. However, exceptions exist; for in-
stance, argument mining can be modeled as a classi-
fication task at the sentence level or as a generation
task at the span level.
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CA Task Generation Based on the 105 seed
tasks, we generated 52,445 additional CA tasks.
By roughly matching the size of the general dataset
of Taori et al. (2023), we ensure comparability to
their results. Concretely, we used Meta-Llama-3-
70B as the LLM to generate new CA instructions
(step 1 in Figure 2), filter them by CA relevance
(step 2), and generate instances (step 3).

4.2 The Arglnstruct Dataset

Table 2 compares the statistics for the seed tasks
and the generated CA tasks. It can be seen that
the seed tasks cover rather few instructions (105)
but many instances (4.5M), while the generated
tasks have many diverse instructions (52,445) with
a single instance each. Classification (30,204) and
generation (20,071) dominate the generated tasks,
with fewer regression tasks (2,170), likely due to
LLMs’ limited exposure to regression tasks. Al-
though the generated instructions are shorter on
average (28.2 vs. 48.1 words), input lengths are
similar (50.7 vs. 64.3). The longer output length
(25.2 vs. 7.7) in the generated data likely stems
from the higher proportion of generation tasks.

Specialization To assess whether the generated
and filtered instructions are indeed CA-specific, we
follow Wang et al. (2023) and extract the root verb
and its first direct noun object for each generated in-
struction using the Berkeley Neural Parser (Kitaev
et al., 2019). Figure 3 shows the 20 most common
root verbs and their four most common direct noun
objects, which constitute 14% of all generated in-
structions. Overall, we see that most direct noun
objects are indeed argumentation-related, e.g., “ar-

gumentation”, “(counter-)argument” and “claim”.

Diversity To analyze the diversity of the gener-
ated instructions, we compute the ROUGE-L F;
similarity between each generated and seed instruc-
tion. The average similarity to the closest seed
instruction is 0.28, with a maximum of 0.70, which
was the similarity threshold 7 taken from Wang
et al. (2023). Examples of generated instructions
within the 10% closest to seed instructions are:

1;: “Extract the central claim from the following
argumentative text and predict its stance (pro
or con) with respect to the given topic.”

I5: “Determine which of these statements is true:
comment 1 attacks argument 2. comment 1
supports argument 2. comment 1 makes no
use of argument 2.”

counterargument
e"a‘e
nt 9"

Q}QJ eng
\a\((\ N ey
e N A Sy
S 9
{9 S &,
S e
S %,
¢ &g A %
S 2 o)
& 2

Figure 3: The 20 most common root verbs (inner circle)
and their top four direct noun objects (outer circle) in
our generated instructions highlight their CA focus.

While these instructions are close to existing CA
tasks, namely thesis extraction and stance detection
(1), and relation detection (I2), they introduce new
wordings that will likely lead to more robust fine-
tuning. Exemplary instructions with the lowest
maximal similarity to the seed instructions are:

I3: “For each elementary unit x, choose one propo-
sition y such that there exists a support relation
between x and y.”

14: “Generate a list of possible explanations for
why someone might believe something based
on their background and experiences.”

I3 is a form of argumentative relation extraction,
while I is an argument generation task that, to
our knowledge, has not yet been studied. The final
task involves identifying various fallacies, which
are related to CA but were not covered by the seed
tasks. For more examples, see Appendix C.

Quality To evaluate the quality of the generated
tasks, two authors of this paper manually evaluated
a random sample of 200 generated tasks. The anno-
tation protocol was adapted from the questionnaire
of Wang et al. (2023), assessing three key aspects:

(Q1: Does the instruction describe a valid CA task?
Q2: Is the input appropriate for the instruction?
Q@3: Is the output a correct and acceptable response

to the instruction and input?

The tendencies of our results are similar to those
reported by Wang et al. (2023), with 87% of the
instructions corresponding to valid CA tasks (()1),
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# Instructions # Instances Average Length
Classif. Regr. Generat. Total Classif. Regr. Generat. Total Instruct. Input Output
Seed tasks 60 23 22 105 3,997,517 86,870 465,652 4,550,039 48.08 64.28 7.70
Generated tasks 30,204 2,170 20,071 52,445 30,204 2,170 20,071 52,445 28.17 50.74 2521

Table 2: Number of instructions and instances in total and per task type (classification, regression, generation), and
the average length in words of instructions, non-empty inputs, and outputs for our CA seed and generated tasks.

75.5% of the input instances deemed appropriate
for their instructions (()2), and 62.5% of the out-
puts satisfying all correctness criteria (()3). Hence,
we conclude that, although the generated dataset
contains some noise, most of the generated tasks
are entirely or at least partially correct.

5 Evaluation

We now present our experiments to evaluate the
impact of specialized instruction fine-tuning. LLM
variants were trained on (a) CA seed tasks, (b) gen-
erated CA tasks, (c) general tasks, and (d) combina-
tions thereof. We then assessed their performance
on unseen instances of known CA tasks and their
generalizability to entirely unseen CA tasks.

5.1 Experimental Setup

Data We reserved 21 seed tasks (20% of 105)
from nine CA datasets as unseen test tasks (Ta-
ble 1), balancing across argument mining, assess-
ment, and generation. The remaining 84 seed tasks
were split into training, validation, and test sets,
using prior splits where available or a 7:1:2 ran-
dom split otherwise. For evaluation, we sampled
100 test instances per task, balancing labels for
classification and covering the full range for re-
gression, while generation tasks were sampled ran-
domly. The same sampling method was used to
assemble 52,445 instances from the training seed
tasks for our (seedCA) dataset.

Evaluation We use guided generation (Willard
and Louf, 2023) for classification and regression
tasks and open generation (up to 512 new tokens)
for generation tasks. For classification and regres-
sion, a finite state machine decodes model outputs
for direct comparison with ground-truth values.

Metrics To ensure meaningful comparisons, we
use task-specific evaluation metrics. For classifica-
tion, we report the micro-averaged F;-score on bal-
anced test sets. For regression, we use mean abso-
lute scaled error (MASE), which normalizes errors
with respect to a naive mean baseline, with scores

less than 1 indicating better performance and above
1 indicating worse (Hyndman and Athanasopoulos,
2021). For generation, we report the ROUGE-L
F;-score. Additionally, we calculate the mean rank
for each model, reflecting its performance across
datasets and tasks, providing a comprehensive mea-
sure of overall CA performance.

Models As base models, we use the recent LLM
Gemma-2-9B (Gemma Team et al., 2024) and an in-
struction fine-tuned variant, Gemma-2-9B-General.
The latter is obtained by fine-tuning Gemma-2-9B
on the general instruction dataset of Taori et al.
(2023), ensuring that it has not been exposed to
the SuperNI benchmark for general instruction fol-
lowing (Wang et al., 2022). Both models are then
instruction fine-tuned on equally-sized combina-
tions of seed CA tasks, generated CA tasks, and
general tasks (52k instances each). Details on hy-
perparameter tuning can be found in Appendix D.

5.2 Results of ArgInstruct on CA Tasks

Table 3 reports the CA performance of the two
base LLMs and the LLMs trained with Arglnstruct
and its ablations, averaged across datasets. We
evaluate performance on (a) unseen test instances
of the training tasks and (b) test instances of the
completely unseen test tasks. Note that for the base
models, all instances and tasks are unseen.

On unseen instances, LLMs fine-tuned on the
respective training tasks (+seedCA) work best
(ranks 2.3 and 2.7), as expected. For unseen
tasks, combining seedCA, genCA, and general
performs best with either base model (both rank
2.0), outperforming ablated variants. This strongly
supports our hypothesis that specialized instruc-
tion fine-tuning enhances generalization on CA
tasks. Whether general instruction fine-tuning oc-
curs prior (Gemma-2-9B-General+seedCA,genCA)
or alongside CA-specific fine-tuning (Gemma-2-
9B+seedCA,genCA, general) has little effect on per-
formance, although the latter performs slightly bet-
ter on unseen instances. Appendix E reports the
results of the latter variant on all 105 tasks.
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Fine-Tuning Data

(a) Unseen CA Instances (b) Unseen CA Tasks

Approach seedCA genCA general F; T MASE| R-L T Rank| F; 1t MASE| R-L 1T Rank|
Gemma-2-9B (baseline) @) @) @) 45 1.6 39 90 45 4.2 15 10.7
+ seedCA o O O .65 1.1 S0 23 .65 2.5 23 5.7
+ genCA @) o @) Sl 2.7 45 8.7 .52 3.0 .30 6.3
+ general O O [ .50 2.1 32 100 .51 2.6 .29 6.7
+ seedCA, genCA o o O .61 1.6 49 40 .57 2.9 .26 5.7
+ genCA, general O o o 51 1.7 39 87 .50 3.0 17 8.3
+ seedCA, general > O o .59 1.0 48 40 .60 2.3 .30 4.0
+ seedCA, genCA, general ) ) Q .61 1.5 49 43 .65 2.5 32 2.0
Gemma-2-9B-General (baseline) O O O 48 23 34 11.0 .50 2.1 24 7.0
+ seedCA o O O .64 12 49 27 .63 2.1 32 4.3
+ genCA O o @ 49 2.6 44 93 52 2.6 .30 6.7
+seedCA, genCA (ArgInstruct) O o @) 57 13 49 40 657 197" 31T 20

Table 3: Main CA results on (a) unseen CA instances and (b) unseen CA tasks: Gemma-2-9B instruction fine-tuned
on 52k instances of CA seed (+seedCA), generated CA (+genCA), general (+general) tasks and their combinations.
The symbols represent the proportion of fine-tuning data coming from each source (O: 0%, ®: 33%, ®: 50%, @:
100%). O indicates prior use for general instruction fine-tuning. The best values are bold, the best per base model
underlined. Overall, both full specialized instruction fine-tuning variants (bold) achieve the best mean rank. 1 and I
denote significant improvements over the baseline and +seedCA respectively (Wilcoxon signed-rank test, p < .05).

Approach Fi1 1T R-L7T Rank|
Gemma-2-9B S50 43 3.0
+ seedCA, genCA, general .61 40 3.5
Gemma-2-9B-General 62 37 2.5

+ seedCA, genCA (Arglnstruct) 62 43 1.0

Table 4: Generalization results on SuperNI: Zero-shot
performance of Gemma-2-9B, its instruction fine-tuned
variant Gemma-2-9B-General, and our CA-specialized
LLMs. Arglnstruct performs best across all metrics.

5.3 Results of Arglnstruct on General Tasks

To assess if specialized instruction fine-tuning pre-
serves generalization capabilities, Table 4 shows
the performance of both base models and the full
CA-specialized LLMs on the SuperNI benchmark
of general NLP tasks (Wang et al., 2022). Un-
like above, the timing of general instruction fine-
tuning has an effect here: Our specialized LLM,
fine-tuned on general instructions first (Gemma-2-
9B-General+seedCA,genCA), performs best across
all metrics. Given its strong results on both CA and
general tasks, we designate it as our final model,
now referred to as the Arglnstruct model.

5.4 Comparison to Task-Specific Fine-Tuning

To assess the actual strength of our Arglnstruct
model, we compare it on specific CA tasks against
the current state-of-the-art (SOTA) on the entire
original test sets of six tasks — two each from ar-
gument mining, assessment, and generation (one
seen during training and one entirely unseen). This

reveals the trade-off between specializing in CA as
a whole and developing task-specific approaches.
As shown in Table 5, the SOTA approaches win
on all six tasks, but Arglnstruct achieves compara-
ble performance in three of them. We speculate that
the performance gap arises because the SOTA mod-
els (a) benefit from a larger number of task-specific
training instances and/or (b) are able to better ad-
just to the single task and data source. Nonetheless,
Arglnstruct is a strong and versatile model, offering
broad generalization across CA tasks in a zero-shot
setting. However, depending on the CA task, addi-
tional task-specific fine-tuning may further enhance
the performance of Arglnstruct for optimal results.

5.5 Comparison to General LLMs

To understand the instruction-following abilities of
our base model, we finally compare it against com-
petitive instruction-following LLMs of similar size
(Taori et al., 2023; Jiang et al., 2023; Gemma Team
et al., 2024; Grattafiori et al., 2024; OpenAl et al.,
2024). Table 6 shows the zero-shot performance of
all models alongside Majority and Random base-
lines. Arglnstruct outperforms all others in terms of
F; (.65). However, for regression tasks, no model
proves reliable, as all MASE scores are worse than
predicting the mean. In generation (R-L), GPT-4o-
mini appears slightly superior to our model (.32 vs.
.31), though its comparability may be limited due
to its unknown size. Overall, Arglnstruct achieves
the strongest result on unseen CA tasks, achieving
the best mean rank (2.33) across all models.
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Area Task (Source) Unseen Metric Arglnstruct Task-Specific SOTA
Mining Argument Detection & Classif. (Stab et al., 2018) Instances F; 1 .62 .73 (Wang et al., 2024b)
Relation Detection (Stab and Gurevych, 2017a) Task Fi 1 47 .84 (Cabessa et al., 2025)
Assessment Inappropriateness Classif. (Ziegenbein et al., 2023) Instances F; 1 74 .75 (Ziegenbein et al., 2023)
Argument Quality Rating (Gretz et al., 2020) Task MAE | 25 .13 (Bao et al., 2024)
Generation Enthymeme Reconstruction (Stahl et al., 2023) Instances R-L 1 .16 .17 (Stahl et al., 2023)
Argument Summarization (Roush and Balaji, 2020) Task R-L 1 .56 .57 (Roush and Balaji, 2020)

Table 5: Performance comparison of our Arglnstruct LLM with the state-of-the-art (SOTA) upper bound on six CA
seed tasks: three tasks were included in our training data (instances unseen), and three were entirely new to our
LLM (task unseen). In contrast, the SOTA models are trained in a supervised manner on the single task.

Model F; T MASE| R-L1 Rank]
Majority .38 1.2 18 6.33
Random .34 14 17 6.33
Alpaca-7B-it 44 2.3 .18 5.67
Gemma-2-9B-it .62 3.0 22 5.33
LLaMA-3-8B-it 48 2.5 22 6.00
Ministral-8B-it .50 2.6 24 5.00
Mistral-7B-it .61 2.1 .26 3.33
GPT-40-mini .59 1.5 32 2.67
Arglnstruct (Ours) .65 1.9 31 2.33

Table 6: Zero-shot evaluation of our Arglnstruct model
compared to recent instruction fine-tuned models of sim-
ilar size (besides GPT-40-mini), on our CA test tasks.

6 Conclusion

Despite their strong generalization capabilities,
instruction-following LLMs struggle with tasks
that require domain knowledge. We propose Arg-
Instruct, a new specialized instruction fine-tuning
method to address this issue for the domain of com-
putational argumentation (CA).

As a starting point, we have collected 105 CA
tasks from the literature and crafted natural instruc-
tions for each that serve as a benchmark for LLM-
based CA. Additionally, we have generated 52k
CA-specific tasks, adapting the self-instruct pro-
cess to bridge between generalization and CA spe-
cialization. We have then trained CA-specialized
instruction-following LLMs, combining the col-
lected and generated CA tasks with general instruc-
tion fine-tuning data. Our experiments suggest that
an LLM fine-tuned on the combined data performs
best on unseen CA tasks without losing its gen-
eral instruction-following capabilities. While the
LLM did not fully reach single-task SOTA results,
it is on par in half the tasks. At the same time, it
outperforms several existing instruction-following
models, including the proprietary GPT-40-mini.

We conclude that our Arglnstruct method de-
notes a substantial step towards overcoming the

domain challenges of LLMs, providing a bench-
mark dataset and a task-agnostic model for CA. We
expect that our method may be well-transferable
to other specialized NLP domains, for example, to
the educational domain. There, our method could
involve collecting seed tasks such as essay scoring,
feedback generation, text suggestion, and rewriting,
but we leave this to future work.

7 Limitations

The research proposed in this paper may have limi-
tations with respect to four aspects that we discuss
in the following: (1) Model training, (2) model
evaluation, (3) quality of the generated data, and
(4) generalizability to other domains.

Model Training We only use a subset of training
instances for the training of our models. While
this is a strength of our method in that we only
require ~ 500 instances per task, using all training
instances could further increase the performance of
models, and a different sampling of instances may
lead to slightly different results also depending on
the varying quality of training data instances.

Model Evaluation We point to the common
problem of evaluating generative models with au-
tomatic metrics (here, ROUGE-L). Beyond related
research, we at least used different measures to give
adequate insights into task-related differences. In
addition, we decided on a balanced evaluation of
100 instances per task to achieve a uniform, sys-
tematic setting. This is, of course, only an approx-
imation of evaluating the full datasets, such that
some values could change in tasks that are heavily
instance-dependent. While our comparison of the
models mentioned in this paper is fair, we do not
recommend taking these values blindly and com-
paring them directly to approaches from related
work that are evaluated on full test sets. However,
we hope that our analysis in Section 4, which uses
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the entire test sets, gives readers an idea about the
transferability. Finally, given the generally poor
performance of all LLMs on regression tasks, we
do not recommend using them for such tasks.

Quality of Generated Data Although we did our
best to select a representative subset of datasets, we
covered only a subset of the CA datasets found
during our literature search (30 out of 71). The
reason for this is the high manual effort required
to manually craft the instructions and load and
parse the respective datasets. However, we believe
that our methodology would benefit from having
more of these existing datasets, as it potentially
decreases the amount of data that needs to be gen-
erated and could lead to an increased quality of
the data in terms of diversity and instance quality.
While a manual examination of the generated data,
the statistics provided in the paper, and the man-
ual evaluation of the self-instruct method by Wang
et al. (2023) suggest a good quality of the data, we
ultimately do not know the quality of the generated
tasks, and whether their instances correctly match
their corresponding instructions.

Generalizability The success of the Arglnstruct
model depends significantly on the availability of a
diverse set of tasks to be used for instructions. Its
performance may be limited in domains where task
data is scarce or difficult to collect, affecting the
model’s generalizability. While we only instanti-
ated Arglnstruct for computational argumentation,
we expect and encourage future work to apply our
proposed methodology to other NLP areas that re-
quire specific domain knowledge.
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A Collected CA Datasets

Table 7 shows the complete list of the 71 CA
datasets considered.

B Exemplary Seed Instructions

This section provides examples of manually crafted
seed instructions for different tasks and datasets.
While listing all 105 instructions here would be
impractical, the complete set of seed instructions
can be found in the provided code.

Argument Mining

* Argument Detection & Classification (Stab
et al., 2018): “Given a sentence and a topic,
classify the sentence as a “supporting argu-
ment” or “opposing argument” if it includes
a relevant reason for supporting or opposing
the topic, or as a “non-argument” if it does
not include a reason or is not relevant to the
topic.”

Argument Component Classification (Stab
and Gurevych, 2017a): “Given the follow-
ing essay as context, and a list of argumen-
tative components extracted from the essay.
Label each argumentative component as “ma-

¢

jor claim”,

99 99

claim”, or “premise”.

Argument Assessment

* Inappropriateness Detection (Ziegenbein
et al., 2023): “An argument is appropriate
if the used language supports the creation of
credibility and emotions as well as if it is pro-
portional to its topic. Given the following
argument and the topic of the debate the argu-
ment appeared in. Decide whether the argu-
ment is Appropriate or Inappropriate.”

Overall Quality Rating (Wachsmuth et al.,
2017): “How would you rate the overall qual-
ity of the author’s argumentation on the scale
“1” (Low), “2” (Average) or “3” (High)?”

Argument Generation

* Enthymeme Reconstruction (Stahl et al.,
2023): “An enthymeme is defined here as any
missing argumentative discourse unit (ADU)
that would complete the logic of a written ar-
gument. Is there a problematic enthymematic
gap at the position marked with “<mask>" in
the following argument?”

Argument Summarization (Roush and Bal-
aji, 2020): “Create a word-level extractive
summary of the argument by “underlining”
and/or “highlighting” the evidence in such a
way to support the argument being made.”

C Exemplary Generated Instructions

Examples from the 10% generated instructions
with the highest maximal similarity to the seed
instructions are:

I5: “Consider the following arguments (argument
a and argument b). Would you agree with the
following statement? Argument a has worse
reasoning because it presents facts without
explaining their relevance to the claim.”

Ig: “Given a question, stance (yes vs. no) to-
wards this question and a premise, your task is
to form a counterargument against the given
stance using the given premise.”

I7: “Given two arguments, determine whether
they have the same stance towards their com-
mon topic.”

Further exemplary instructions from the 10%
generated instructions with the lowest maximal
similarity to the seed instructions are:
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Argument Mining

Argument Assessment

Argument Generation

Al-Khatib et al. (2016b)
Al-Khatib et al. (2016a)
Alhindi and Ghosh (2021)
Bar-Haim et al. (2017)
Boltuzi¢ and Snajder (2014)%
Chen et al. (2022)%
Eckle-Kohler et al. (2015)
Ein-Dor et al. (2020)

Feger and Dietze (2024)
Grundler et al. (2022)
Habernal and Gurevych (2017)0
Haddadan et al. (2019)
Hautli-Janisz et al. (2022)°
Hidey et al. (2017)
Kuznetsov et al. (2022)°
Lauscher et al. (2018)
Liebeck et al. (2016)
Mayer et al. (2020)

Ong et al. (2014)

Park and Cardie (2018)
Peldszus and Stede (2015)°
Poudyal et al. (2020)"
Reimers et al. (2019)”
Rinott et al. (2015)

Schaller et al. (2024)
Shnarch et al. (2018)
Shnarch et al. (2020)

Stab et al. (2018)7

Stab and Gurevych (2017a)%
Stahl et al. (2024)
Toledo-Ronen et al. (2020)
Trautmann (2020)
Trautmann et al. (2020)
Visser et al. (2019)
Wambsganss et al. (2020)

Abbott et al. (2016)"

Ajjour et al. (2019)

Beck et al. (2021)

Friedman et al. (2021)%
Gleize et al. (2019)

Gretz et al. (2020)°
Habernal et al. (2018a)%
Habernal et al. (2018b)
Habernal and Gurevych (2016b)
Habernal and Gurevych (2016a)°
Heinisch et al. (2022)°
Persing et al. (2010)

Persing and Ng (2013)
Persing and Ng (2014)
Persing and Ng (2015)%
Persing and Ng (2016)
Sobhani et al. (2015)

Stab and Gurevych (2017b)
Stein et al. (2021)"

Toledo et al. (2019)

Vamvas and Sennrich (2020)
Wachsmuth et al. (2017)%
Walker et al. (2012)
Ziegenbein et al. 2023)°

Alshomary et al. 2021)"
Eden et al. (2023)

Hasan and Ng (2014)7

Jo et al. (2020)

Roush and Balaji (2020)%
Schiller et al. (2021)¥
Skeppstedt et al. (2018)%
Skitalinskaya et al. (2021)%
Stahl et al. (2023)%

Syed et al. (2021)%
Wachsmuth et al. (2018a)%
Wachsmuth et al. (2018b)”

Table 7: The list of all 71 considered CA datasets. The 30 datasets selected as seed datasets for generating CA tasks
are marked with “Q”.

Igl

Igl

“Classify the type of logical fallacy commit-
ted in the argument (ad hominem, appeal to
emotion, appeal to ignorance, appeal to popu-
larity, appeal to tradition, circular reasoning,
confirmation bias, false dichotomy, genetic
fallacy, post hoc ergo propter hoc, red herring,
slippery slope, straw man, tu quoque).”

“This task requires you to identify whether
each statement below expresses a subjective
opinion or objective fact. please read all in-
structions carefully before starting! subjec-
tive opinions are personal judgments about
things that cannot be proven true or false ob-
jectively. they reflect individual preferences
and values rather than empirical observations
or established knowledge. objective facts are
verifiable pieces of information derived from
observation, experimentation, measurement,
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calculation, etc... they describe physical real-
ity independent of human perception or inter-
pretation. examples include historical events,
scientific laws, mathematical formulas, etc.”

“Given a hypothetical scenario wherein there
exists conflict over ownership rights pertain-
ing to certain property located within disputed
territory between two neighboring countries;
construct logical sequence of steps leading up
towards resolution through negotiation pro-
cess involving both parties concerned along-
side third party mediator appointed mutually
agreed upon basis taking into account all rel-
evant factors such as historical background
surrounding issue at hand.”



D Hyperparameter-Tuning

We use adapter-based low-rank adaptation (LoRA)
(Hu et al., 2021) with » = 16, an amplification
factor of 32, and a dropout rate of 0.05 to enhance
training efficiency. To determine an optimal learn-
ing rate, number of epochs, and batch size, we use
Optuna (Akiba et al., 2019) for hyperparameter op-
timization. Ultimately, all models are trained for 7
epochs with a learning rate of 9.88 x 107>, an ef-
fective batch size of 64, cosine learning rate decay,
and a warmup ratio of 0.05.

E Arglnstruct: Task Results

Table 8 and 9 show the performance of our Argin-

struct model for the 100 sampled test instances for
all 105 CA seed tasks.

F Arglnstruct for CA Tasks: Dual
General Instruction-Finetuning

Table 10 presents the CA performance of the
base models and LLMs trained with Arglnstruct
and its ablations. For completeness, we also in-
clude variants using the already instruction-fine-
tuned Gemma-2-9B-General as the base model,
along with additional general instruction fine-
tuning (+general) integrated into CA-specific fine-
tuning. However, this does not lead to further im-
provements in CA performance.
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Source Task Split F; 1+ MASE| R-L1

Abbott et al. (2016) Predict Agreement test - 2.28 -
Predict Respect test - 2.09 -
Predict Factuality test - 1.94 -
Predict Nice test - 2.16 -
Predict Sarcasm test - 3.15 -
Alshomary et al. (2021) Stance Prediction train  0.42 - -
Belief Based Claim Generation train - - 0.13
Boltuzi¢ and Snajder (2014) Stance Detection train  0.39 - -
Chen et al. (2022) Review Helpfulness Prediction train - 1.02 -
Relation Detection train  0.63 - -
Unit Segmentation Prediction train - - 0.95
Init Classification Prediction train - - 0.69
Friedman et al. (2021) Key Point Matching train  0.76 - -
Key Point Generation train - - 0.31
Gretz et al. (2020) Quality Assessment test - 1.54 -
Stance Prediction test  0.92 - -
Habernal et al. (2018a) Argument Reasoning Comprehension train - - 0.89
Habernal and Gurevych (2016a) Classify More Convincing Argument train  0.83 - -
Classify More Details Argument train  0.53 - -
Classify More Balanced Argument train  0.62 - -
Classify More Credible Argument train  0.56 - -
Classify More Clear Argument train  0.53 - -
Classify More On-Topic Argument train  0.46 - -
Classify More Provoking Argument train  0.57 - -
Classify More Smart Argument train  0.50 - -
Classify Less Attacking Argument train  0.75 - -
Classify Less Language-issues Argument train  0.66 - -
Classify Less Unclear Argument train  0.55 - -
Classify Less Facts Argument train  0.45 - -
Classify Less Reasoning Argument train  0.53 - -
Classify Less Relevant-reasons train  0.52 - -
Classify Not An Argument train  0.70 - -
Classify Nonsense Argument train  0.55 - -
Classify Off-topic Argument train  0.79 - -
Classify Generally weak Argument train  0.51 - -
Habernal and Gurevych (2017)  Detect Persuasive Documents train  0.64 - -
Extract Toulmin Components train - - 0.52
Hasan and Ng (2014) Reason Identification train - - 0.56
Hautli-Janisz et al. (2022) Propositional Relations Identification test 0.45 - -
Illocutionary Relations Identification test  0.23 - -
Heinisch et al. (2022) Novelty Classification train  0.53 - -
Validity Classification train  0.75 - -
Relative Novelty Classification train  0.39 - -
Relative Validity Classification train  0.43 - -
Kuznetsov et al. (2022) Pragmatic Tagging test - - 0.24
Peldszus and Stede (2015) Argumentative Role Determination train  0.79 - -
Function of Segment Determination train  0.36 - -
Unit Attachment Identification train  0.63 - -
Argumentative Text Creation train - - 0.21
Central Claim Extraction train - - 0.79
Persing and Ng (2015) Classifying Argument Strength train - 2.05 -

Table 8: Performance of our Arglnstruct model on all 105 CA seed tasks. The split indicates whether the task was
seen during training (train) or is a completely unseen task (test). The performance is always measured on the 100
sampled instances from the test split of the respective task data. (Part 1/2)
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Source Task Split F; ¥ MASE| R-L?

Poudyal et al. (2020) Argument Clause Recognition train  0.60 - -
Clause Relation Prediction train  0.58 - -
Premise Recognition train  0.52 - -
Conclusion Recognition train  0.66 - -
Reimers et al. (2019) Argument Similarity train  0.51 - -
Schiller et al. (2021) Aspect Controlled Argument Generation test - - 0.11
Skitalinskaya et al. (2021) Claim Revision Improvement train  0.51 - -
Suboptimal Claim Detection train  0.50 - -
Claim Improvement Suggestions train  0.37 - -
Claim Optimization train - - 0.72
Stab et al. (2018) Argument Identification train  0.70 - -
Stab and Gurevych (2017a) Identifying Argumentative Relations test  0.67 - -
Stance Recognition test  0.70 - -
Identifying Argument Components test - - 0.67
Classifying Argument Components test - - 0.67
Stahl et al. (2023) Detect Enthymemes train  0.50 - -
Reconstruct Enthymemes train - - 0.17
Stein et al. (2021) Same Side Stance Classification train  0.54 - -
Syed et al. (2021) Conclusion Generation test - - 0.21
Wachsmuth et al. (2017) Rate Local Acceptability train - 0.95 -
Rate Local Relevance train - 0.88 -
Rate Local Sufficiency train - 0.94 -
Rate Cogency train - 1.00 -
Rate Credibility train - 0.55 -
Rate Emotional Appeal train - 0.83 -
Rate Clarity train - 0.99 -
Rate Appropriateness train - 0.63 -
Rate Arrangement train - 1.21 -
Rate Effectiveness train - 1.05 -
Rate Global Acceptability train = - 1.11 -
Rate Global Relevance train - 0.87 -
Rate Global Sufficiency train = - 1.02 -
Rate Reasonableness train - 0.96 -
Rate Overall Quality train - 0.88 -
Wachsmuth et al. (2018a) Synthesize Argument train - - 0.20
Wachsmuth et al. (2018b) Same Debate Opposing Counters test - - 0.46
Same Debate Counters test - - 0.24
Same Debate Opposing Argument test - - 0.30
Same Aebate Argument test - - 0.19
Ziegenbein et al. (2023) Inappropriateness Detection train  0.72 - -
Toxic Emotions Detection train  0.70 - -
Missing Commitment Detection train  0.65 - -
Missing Intelligibility Detection train  0.70 - -
Other Inappropriateness Detection train  0.80 - -
Excessive Intensity Detection train  0.78 - -
Emotional Deception Detection train  0.78 - -
Missing Seriousness Detection train  0.62 - -
Missing Openness Detection train  0.64 - -
Unclear Meaning Detection train  0.71 - -
Missing Relevance Detection train  0.76 - -
Confusing Reasoning Detection train  0.72 - -
Detrimental Orthography Detection train  0.83 - -
Reason Unclassified Detection train  0.62 - -

Table 9: Performance of our Arglnstruct model on all 105 CA seed tasks. The split indicates whether the task was
seen during training (train) or is a completely unseen task (test). The performance is always measured on the 100
sampled instances from the test split of the respective task data. (Part 2/2)
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Fine-Tuning Data (a) Unseen CA Instances (b) Unseen CA Tasks
Approach seedCA genCA general F;T MASE| R-L 1 Rank| F;1 MASE| R-L1 Rank|

+ seedCA, genCA (Arglnstruct)
+ genCA, general

+ seedCA, general

+ seedCA, genCA, general

57 1.3 49 47 65 1.9 31 1.7
48 1.8 43 10.0 50 29 31 9.3
59 15 49 47 63 23 31 53
.55 1.3 48 60 57 22 29 5.7

Gemma-2-9B O O O 45 1.6 .39 10.0 .45 4.2 15 13.7
+ seedCA ° O O .65 1.1 .50 23 65 25 .23 77
+ genCA O ([ O S1 2.7 45 9.7 .52 3.0 .30 6.7
+ general O O o .50 2.1 32 11.7 .51 2.6 .29 8.0
+ seedCA, genCA o o O .61 1.6 49 43 .57 2.9 .26 7.0
+ genCA, general O o o Sl 1.7 .39 9.7 50 3.0 17 10.7
+ seedCA, general > O > 59 1.0 48 43 60 23 .30 4.3
+ seedCA, genCA, general ¢ L) L) 61 1.5 49 43 65 25 32 2.7
Gemma-2-9B-General O O @) 48 23 .34 123 .50 2.1 24 9.3
+ seedCA ° O O 64 12 49 27 63 21 32 5.0
+ genCA O o O 49 2.6 44 10.7 .52 2.6 .30 6.7
+ general O @) o 51 2.1 .35 11.3 .50 2.3 27 8.7

d o O

O o o

d O o

Q C) )

Table 10: Full version of Table 3 containing all dataset combinations for the Gemma-2-9B-General approach.
Performance on unseen CA instances and unseen CA tasks: Evaluation of Gemma-2-9B trained to follow instructions
on 52k instances of CA seed tasks (+seedCA), generated CA tasks (+genCA), general tasks (+general) and
combinations of these. The symbols represent the proportion of fine-tuning instances coming from each source (O:
0%, ®: 33%, D: 50%, @: 100%). O indicates that the data was used beforehand to perform general instruction
fine-tuning. Performance is evaluated on (a) unseen CA instances from the training tasks and (b) unseen CA test
tasks. The best values are bold, the best per base model underlined.
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