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Abstract

Measuring the generalization ability of Large
Language Models (LLMs) is challenging due
to data contamination. As models grow and
computation becomes cheaper, ensuring tasks
and test cases are unseen during training phases
will become nearly impossible. We argue that
knowledge-retrieval and reasoning tasks are not
ideal for measuring generalization, as LLMs
are not trained for specific tasks. Instead, we
propose user behavior prediction, also a key
aspect of personalization, as a theoretically
sound, scalable, and robust alternative. We
introduce a novel framework for this approach
and test it on movie and music recommenda-
tion datasets for GPT-40, GPT-40-mini, and
Llama-3.1-8B-Instruct. Results align with our
framework’s predictions, showing GPT-40 out-
performs GPT-40-mini and Llama, though all
models have much room for improvement, es-
pecially Llama.

1 Introduction

"The central challenge in machine learning is that
we must perform well on new, previously unseen
inputs—not just those on which our model was
trained. The ability to perform well on previously
unobserved inputs is called generalization" - Good-
fellow (2016).

Utilizing large amounts of data for training, large
language models (LLMs) have achieved state-of-
the-art performance on existing and new evaluation
benchmarks, demonstrating remarkable capabili-
ties over varied use cases. However, increasing
training data makes models susceptible to data con-
tamination issues, where the model has been ex-
posed to the test data during training. For exam-
ple, GPT 3.0 (Brown et al., 2020) was exposed
to portions of test data, conflating its test scores.
Such issues question the efficacy of existing eval-
uation benchmarks in measuring LLMs’ general-
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izability. Hence, during evaluation, the model can
recall from its memory instead of learning the un-
derlying pattern, resulting in conflated performance
on existing datasets and a false sense of general-
ization. Distinguishing this memorization capacity
from learning transferable principles is a key chal-
lenge in measuring generalization in foundational
models (Chu et al., 2025). One might argue that
memorization, although a weaker form of general-
ization, suffices as long as LLMs perform well on
tasks of practical importance. However, since the
space of all problems is unknown, we do not know
in what situations a model might fail. Also, since
the world is dynamic, continuous memorization is
impractical, which generalization addresses. Thus,
not understanding models’ generalization capabili-
ties hampers their reliability.

Although several popular frameworks and bench-
marks (Chang et al., 2024) for evaluating LLMs’
knowledge, reasoning, alignment, and safety prop-
erties exist (Guo et al., 2023), it is unclear how
much of these properties are due to generalization
and how much can be achieved only through mem-
orization. Also, as LLMs’ compute capacity in-
crease, it becomes more difficult to create challeng-
ing evaluation benchmarks free from novel forms
of contamination, such as task contamination (Li
and Flanigan, 2024), leading to an uptake of com-
plex evaluation benchmarks (He et al., 2024) whose
practical utility is unknown (Zhou et al., 2023).
Hence, we ask what should be an ideal strategy
for evaluating LLMs’ generalization? The solution
must be robust to data contamination; it should be
dynamic, and time and cost-efficient, and it must
ensure the availability of distinct test sets, even if
models utilize al/ available data for training.

Since most available and high-quality LLM train-
ing data are human-generated, they capture human
behavior in a context at a time. Thus, although
LLMs are trained as next-word predictors, they
should essentially learn the intrinsic task of behav-
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ior prediction from context. To this end, we pro-
pose user behavior prediction or personalization as
a simple yet robust strategy for measuring LLM’s
generalization over a wide, potentially an infinite,
range of capabilities. Although existing studies
measure LLMs’ personalization capabilities (Lin
et al., 2023; Zhao et al., 2024; Wu et al., 2024; Dai
et al., 2023; Liu et al., 2023), deviating from the
standard definition, we propose a novel framework
that uses personalization to measure generalization.
By re-purposing existing resources, our method
presents a robust and cost-effective measure of gen-
eralization in practical settings, which presents a
perspective shift in how we utilize them.

In the following section, we argue our position
of using personalization to measure generaliza-
tion and empirically demonstrate an entropy-based
framework for measuring generalization. Defining
generalization as a model’s capacity to follow the
actual entropy change with varying context, we
first present a statistical framework that evaluates
the capacity of existing tasks as good generaliza-
tion benchmarks and then use recommendation sys-
tems as a use case to measure the generalization
capabilities of GPT-40, GPT-40-mini, and Llama-
3.1-8B-Instruct against a baseline. Overall, our
contributions are summarized below:

1. We propose user behavior prediction, a key
aspect of personalization, as a theoretically
sound, scalable, and robust alternative to mea-
suring generalization.

2. We empirically test our hypothesis using an
entropy-based framework and present results
for movie and music recommendations us-
ing GPT-40, GPT-40-mini, and Llama-3.1-8B-
Instruct.

3. We discuss the implications of our findings in
enabling generalization.

2 Generalization in the era of LLMs

In essence, generalization is a model’s ability to
perform well on unseen test data, given that the
test set measures the same task during model train-
ing, indicating the efficacy of the model in learning
the underlying patterns in the training data with-
out overfitting or underfitting, attaining a trade-off
between bias and variance (Bishop and Nasrabadi,
2006). LLMs, conceived as general-purpose mod-
els, are expected to follow instructions in natural

language and perform well on varied tasks, em-
ulating human-like behavior. However, current
task-centric evaluation schemes fail to measure the
generalization capacity of models holistically, of-
ten leading to conflated results. This deviation is
primarily due to the following factors.

2.1 Issues of Task-Centric Evaluation

Since training LLMs involves online data, it is cru-
cial to understand the nature of such data. Almost
all of the available online data pertain to human be-
havior. A data point is a user’s behavior in a specific
context in time, where the context (Zimmermann
et al., 2007; Bazire and Brézillon, 2005) character-
izes the situation and is the cumulative aggregate
of all user behaviors leading to that time. Any train-
ing dataset embodies such knowledge and patterns
and represents human behavior across time. Hence,
although LLM training involves the task of next-
word prediction, they are essentially trained on the
task of user behavior prediction from the context.
Thus, they should be evaluated on similar tasks to
meaningfully gauge their generalization capabili-
ties, which task-centric evaluation approaches fail
to measure holistically.

Also, unlike other statistical models, LLMs re-
quire sizable data for training, which has grown
with time. However, since the growth of the to-
tal stock of public human text data is asymptotic,
LLMs are projected to utilize all available data for
training between 2026 and 2032 or even earlier
(Villalobos et al., 2022, 2024), making it difficult
to guarantee that the test sets are unseen during
training. Although most open-weight LLMs uti-
lize publicly available online text data during pre-
training, the exact data splits used during training
are unknown. Also, the data used in the fine-tuning
and alignment phases is usually private, making it
hard to gauge data and task contamination.

Nearly exhausting all available data for training,
the probability of data contamination is high in new
test sets, which even synthetic approaches to data
creation will not mitigate. Hence, we need evalua-
tion frameworks that are novel and free from these
issues. Instead of investing in newer datasets, we
propose a perspective shift. We propose a frame-
work for measuring generalization by repurposing
existing personalization benchmarks, which can
be a robust test for generalization, as we shall see.
Prior to that lets introduce a formal description of
training data.
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2.2 A Formal Description of Training Data

Let U4 denote the set of all online users, where
U = {uy...u,}. Let ¢; denote the context at any
given time ¢, which is an aggregate of all user be-
havior till time ¢ — 1. Let B* = {bY, ..., b’} denote
all the behavior of user w till time £. A data point
is a user’s behavior b}’ to the context ¢; at time ¢,
where each user is a function that maps the con-
text to their behavior at a point in time. Psychol-
ogists, anthropologists, and linguists often clus-
ter human behavior by variables such as demogra-
phy. Such variables define the group’s behavior and
preferences across some dimensions. Adilazuarda
et al. (2024) formally terms such features as demo-
graphic proxies of culture, which capture the dif-
ferences of user groups across dimensions termed
semantic proxies (Thompson et al., 2020). Here,
we combinedly refer to these factors as proxies and
can represent any documented grouping such as
geodemography, or undocumented groupings such
as dog lovers. Let § = {4;...0; } represent the set
of all relevant user proxies following a distribu-
tion ps, where 0; € ¢ is a grouping of users U. A
dataset D is the set of all triples of contexts, user
proxies, and their behaviors, across time. We will
refer to this framework in the next sections.

3 Proposed Method

“It is not difficult to devise a paper machine which

will play a not very bad game of chess...Are there
imaginable digital computers which would do well
in the imitation game?" -Turing (1948).

Alan Turing observed that a problem is easier
when there is an end goal. He argued that ma-
chines that can mimic humans in dynamic scenar-
ios are much more intelligent than machines that
are good at universal tasks such as playing the game
of chess, where the rules of the game are already
known (Turing, 1950). Ludwig Wittgenstein made
a much more fundamental observation about lan-
guage since its rules constantly evolve. Language,
as a mode of communication, is meaningful only
in the context of the situation, which factors in
users and their surroundings. Consider the famous
"builder’s language" thought experiment Wittgen-
stein (1953), where he depicted language as a com-
munication tool in the context of social activity be-
tween builder A and assistant B. Builder A is build-
ing with blocks, pillars, slabs, and beams. Builder
B has to pass the stones in the order specified by
A. They use a language consisting of the words

"block," "pillar," "slab," and "beam." Builder A
calls out an item that Builder B brings. Hence, the
builders developed their pragmatic language using
only four words, creating what Wittgenstein called
a "complete primitive language." The words lose
their pragmatic meaning without the context and
the builders.

In the current context of LLMs, the ability to
perform complex reasoning tasks, such as writing
code or solving math problems, although difficult
for many humans, are shallower measures of in-
telligence and generalization since they are univer-
sal tasks. However, the ability to solve the same
task, mimicking a specific person, is much more
challenging than solving the task like any person.
Extending Turing’s definition, we argue that any
machine that can mimic individual users from its
training data is the most robust test of intelligence
and the strongest measure of generalization. Hence,
we propose measuring a model’s capacity for per-
sonalization as a robust test of its generalization.

3.1 Personalization as a Test for
Generalization

With the objective of delivering relevant informa-
tion to an individual or a group of individuals
(Kim, 2002), personalization broadly means tailor-
ing something for an individual without their active
participation (Fan and Poole, 2006; Vesanen, 2007).
Unlike customization, where individual users are
actively involved in tailoring the outcome by speci-
fying their preferences, personalization is without
the user’s active control and usually involves pas-
sively understanding user preferences from their
actions (Sundar and Marathe, 2010). Considering
personalization as a mode of individuation, Lury
and Day (2019) defines it as a recursive approach
that "involves forms of de- and re-aggregating, in
which a variety of contexts are continually included
and excluded" to determine the best possible group
affiliation of users. Hence, personalization is a
pathway that starts with an initial broad assump-
tion about a user’s background, which is constantly
refined over time based on their behavior until their
optimal preferences are determined (Schmitt, 1999;
Dhar and Wertenbroch, 2000; Hanley et al., 2006;
Droe, 2006; Wilken et al., 2011; Rogers et al., 2014;
Tahmasbi et al., 2018).

The core tenet of digital personalization is
that the underlying algorithm should better un-
derstand the user’s background and preferences
with more interactions to facilitate delivering better-
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personalized content over time. At the risk of an-
thropomorphizing, LLMs’ generalizability is the
ability to emulate human-like behavior in real-
world applications, which requires understanding
human behavior in practical settings. Statistically,
it involves generalizing past behavior patterns to
predict future behavior, thus embodying Turing’s
philosophy that intelligent machines should be ca-
pable of mimicking human behavior. We argue that
any model (algorithm) that can perform well in the
personalization task is more generalizable. In the
following subsection, we formalize this notion of
generalization.

3.2 A Statistical Framework for Levels of
Generalization

As discussed in Section 2.2, since LLMs learn from
the entirety of human behavior data, any task ulti-
mately involves group behavior prediction given a
context, where the proxy represents the size of the
user group, which might vary from an individual
to the entire human population. Hence, any proxy
that can reduce the entropy of behavior prediction
more than any random subset of similar size is
a meaningful proxy. A model’s capability to use
such proxies to predict the outcome is a test of its
generalizability.

Given a task 7T, let BT € {b;...b,} represent
the set of all behaviors from all users across time.
Let p(b;|;) represent the probability of a behav-
ior b; € BT for proxy §; € §. The generalization
capacity of a model 6 for the task is inversely pro-
portional to the expected difference between the

cross-entropy H (iig;) and the true entropy H (Bg;)
for each proxy d;, as defined below:

H(B) == > p(bild;) logp(bils;) (1)
biEBT

H(BE) == > plbild;) logp(bild, 0) ()
b,eBT

Depending on the dependence of the behavior
and the proxy, the notional complexity of a task is
a continuum from weak to strong as below:
Weakest Case (BT 1l U|c;): Tasks where the
behavior depends on the context ¢; and is inde-
pendent of individual users I/ or their proxies d,
making them notionally less complex. Most knowl-
edge and reasoning-based tasks such as MMLU
(Hendrycks et al., 2020), GSM8K (Cobbe et al.,
2021), GLUE (Wang, 2018), etc, are examples of

such kinds, which measure universal patterns inde-
pendent of proxies, hence notionally weakest test
sets for generalizability.

Average Case (B7 1L Ulce, 05, where §; ~ ps):
Tasks where the outcome is independent of indi-
vidual users but dependent on their proxies and
the context are notionally more complex. For ex-
ample, cultural evaluation benchmarks that require
group-specific reasoning are stronger test sets for
generalizability (Li et al., 2024b; AlKhamissi et al.,
2024; Nadeem et al., 2021; Nangia et al., 2020;
Wan et al., 2023; Jha et al., 2023; Li et al., 2024a;
Cao et al., 2023; Tanmay et al., 2023; Rao et al.,
2023; Kovac et al., 2023).

Strongest Case (B” Il U|c, d;, where 6; ~ p;s):
Tasks where the outcome depends on individual
users are notionally most complex. For example,
user-specific tasks, such as item recommendation,
necessitate reasoning from a user’s perspective and
are notionally more complex and best evaluation
benchmarks for generalizability (Nagarnaik and
Thomas, 2015; Ko et al., 2022).

3.3 Hypothesis

A
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Figure 1: (Left) Hypothesized Behavior. (Right) Hy-
pothesized Model Comparisons.

As depicted in Figure 1 (left), ideally, the distribu-
tion of the target H (Bg;) and cross-entropy H (Bg;)
should be equal. When for a model testfad under
different cases the points (H (Bg;), H (B({)) are
plotted on a graph, ir} the ideal case of generaliza-
tion, H(Bj)) = H(Bf). Or in other words, the
points should lie on the X=Y lir}e. However, in
reality, we expect H(B] ) < H(Bj). This gap is
expected to be small when H (B:{_) is high (i.e., the
average case of generalization when only proxies
are used to predict behavior). We expect, therefore,
the plot to follow the X=Y line for large X, but
then flatten out or even rise for lower X. The point
at which this inversion of behavior happens is the
point when the model can no longer generalize to
specific users’ or groups’ behavior. As depicted
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in Figure 1 (right), we hypothesize the inversion
point to change across models, where a lower inver-
sion point indicates a better generalizable model.
Where do current LLMs lie in this framework of
generalization? We put our hypothesized statistical
framework to test in the next sections.

4 Measuring Generalization via
Personalization

Recommendation systems, at their core, are person-
alization engines. They are predictors of a user’s
future behavior based on some observed past behav-
ior. We test our proposed statistical framework in
Section 3.2 and experiment with movie and music
recommendations, where the task is to recommend
a list of N items based on the user’s history.

4.1 Dataset and Preprocessing

We experiment with the MovieLens' (Harper and
Konstan, 2015) and last.fm? (Celma, 2010) datasets
since both these datasets contain demographic in-
formation and are widely used in recommendation
systems literature. Also, since recommendation
datasets are known to be very sparse, we prepro-
cess both datasets to reduce sparsity. Collected
by GroupLens Research, the MovieLens dataset
(movies dataset) contains 1 million ratings of ap-
proximately 3,900 movies made by 6,040 Movie-
Lens users, along with their demographic informa-
tion such as gender, age, and occupation. This is
a well maintained dataset and extensively used in
recommendation systems (Goyani and Chaurasiya,
2020) literature. As a post processing step, we re-
move users with occupation listed as ‘others’ and
restrict to demographic groups (combination of age,
gender and occupation) containing at least 30 users.

Containing the music listening habits of nearly
1,000 users, along with their demographic informa-
tion such as gender, age, and country, the last.fm
dataset (music dataset) is widely used in music rec-
ommendation literature (Schedl, 2016). It has also
impacted research pertaining to music and mood
(Cano et al., 2017), and other cultural and behav-
ioral studies (Chen et al., 2010; Putzke et al., 2014).
However, the number of users from each coun-
try follows a long-tailed distribution. Hence, as a
post processing step, we derive the continent proxy
based on country and restrict to users from Europe,

"https://grouplens.org/datasets/movielens/1m/
2http://last.fm/

North America, South America, and United King-
dom who have at least 5,000 interactions.

4.2 Setup

Experiments: We set up the experiments as a be-
havior prediction task and experiment with the fol-
lowing three levels of proxies:

(A) Demography and history: We provide demog-
raphy D and prior interactions h as the proxy in the
context. For example, "recommend 10 movies from
the candidates C' for 25-30-year-old self-employed
females who have watched the Titanic and Pather
Panchali." This is equivalent to the Average Case
of measuring generalization, as discussed in Sec-
tion 3.2.

(B) Only history: We only provide prior interac-
tions as the proxy in the context. The intended sub-
group is users who have interacted with at least 60%
of the items in the history. For example, "recom-
mend 10 music from the candidates for users who
have listened to Bohemian Rhapsody and Comfort-
ably Numb." This is equivalent to the Strongest
Case of measuring generalization.

(C) Only demography: This is the default and the
Weakest Case of measuring generalization case
where we solely provide the demographic proxies
as context. The intended subgroup is all users from
the demography. For example, "recommend 10
movies from the candidates for 25-30-year-old self-
employed females."

We experiment with varying lengths of history,
such as 0, 1, 3, 5, 10, and 20, and also intersections
of demographic proxies, such as combining age,
gender, and occupation for movies and gender and
continent for music. For each setup, we follow
Algorithm 1 to sample the candidate items. The
target distribution is the aggregated probability of
a subset of the un-interacted items for all users
defined by the proxy (C2), along with items the
group will never interact with (C). For Setup B
we input D = {()} as the demographic proxy.
Prompts: In each setup, we prompt models to rec-
ommend a ranked list of 10 items from a candidate
list of 50 items for the users defined by the speci-
fied proxies in the context. Appendix A.1 depicts a
sample prompt from the movie domain. Our test set
comprises approximately 5,000 prompts for each
domain. Table 1 shows the distribution of prompts
for each setting in both domains.

Models: We conducted experiments using GPT-40
(Achiam et al., 2023), GPT-40-mini, Llama-3.1-8B-
Instruct (Dubey et al., 2024), and a random baseline
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model where 10 recommended items were selected
randomly from a pool of 50 candidates. For all
experiments, the temperature parameter was set
to 0. Running each combination (levels of proxy)
incurred a cost of approximately USD 30 for GPT-
40 and USD 2 for GPT-40-mini. Thus, the total
expenditure for GPT-based experiments was ap-
proximately 6 x USD 32 = USD 192. Llama exper-
iments, on the other hand, were executed on two
48 GB NVIDIA RTX 6000 Ada GPUs, requiring
around 18 hours to complete all settings across both
domains.

Evaluation: Since we only prompt the model
to generate a ranked list of 10 items, we approxi-
mate the prediction distribution over 50 items by
imposing the ground distribution. We sort the tar-
get probabilities in descending order and assign
the top 10 probability scores to the model’s predic-
tion. The remaining 40 items, which are not in the
model’s prediction, are sorted in descending order
of their target probabilities and assigned the remain-
der of the target probabilities. Thus providing an
optimistic estimate of the model predictions.

Algorithm 1 Candidate selection algorithm

1: procedure CANDIDATE SELECTION

2 Input: Inventory I, Demography D, K=50
3 for history h € {0,1,3,5,10,20} do

4 if » > 0 then

5: Iy,: Sample h random items from [
6 uyp,: Users with >= 60% of I, + D.
7 if luy| < 3 then

8 Break

9: else
10 Continue
11: end if
12: else
13: up: Users with D.
14: end if
15: 1 = Set of all items interacted by uy,.
16: Cy = K /2 random items from ¢

17: Cy = K-IC1l random items from I;-1j,
18: Candidates = Random shuffle C; + Co
19: Target distribution: F'req(Candidates)
20: end for
21: end procedure
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To test our hypothesis from Section 3.3, we cal-
culate the cross-entropy between the target proba-
bility distribution and the model’s estimated distri-
bution and plot the results. To smooth the graphs,
we bucket the target entropy in 200 bins and aver-
age the cross-entropy score at each interval. We cal-
culate a rolling average of the cross-entropy scores
with a window length of 30 and fit an order four
polynomial regression curve to visualize the inflec-
tion point.

4.3 Results and Observations

Trends of Generalization Figure 2 plots the re-
gression curve for the movies domain. We ob-
serve the following: (i) The inflection point in all
three setups is much lower for LLMs than the ran-
dom baseline, indicating that models generalize
to a certain degree. However, they widely dif-
fer in absolute numbers, where Llama performs
much worse than GPT-40 and GPT-40-mini, and
slightly better than the random baseline. Both the
curves for the GPT-based models are closer to the
ideal X=Y line, and GPT-4o slightly outperforms
GPT-40-mini in all setups, with a lower inflection
point. (ii) Since a lower target entropy signifies
fewer users in a proxy, which necessitates more
specific predictions, an increase in cross-entropy
with decreasing target entropy indicates that the
models are not capable of personalizing predic-
tions to smaller subsets of users, and hence will
not be good at modeling each individual. This is
also evident from Setup C, which only prompts
using demography and no history, and hence the
weakest test of generalization. Almost following
the X=Y line, the inflection points in all models
are much lower than in other setups, signifying
that models can generalize using broader proxies
and fail when the number of representative users
in a proxy decreases. (iii) The inflection point is
lower in setup A than B, signifying that combining
demography and history enables model prediction.
This indicates that providing cultural information
can enable personalization-based tasks.

Figure 3 plots the regression curve for the music
domain. We observe the following: (i) All mod-
els perform much worse than in movies. Their
inflection points are much higher. The predictions
deviate from the X=Y line in all three setups, sig-
nifying the model’s incapability of generalization
using the proxies. (ii) GPT-4o performs best in
all setups, where Llama is closer to the random
baseline. This signifies that music prediction is in-

herently more difficult than movie prediction since
the music dataset contains more interactions than
movies, indicating that people listen to more music
than watch movies. This can also signify that the
set of proxies used in the experiment is not opti-
mal for personalizing music. (iii) The inflection
point of GPT-40 in Setup C is lower, indicating its
generalization capabilities using broader proxies.
Also, similar to movies, the inflection point of all
models is lower in setup A than B, signifying that
combining demography and history enables model
prediction.

Overall and Proxy-wise distributions

We also plot the demographic and history-wise dis-
tributions of the cross-entropy in both domains in
Figures 4 to 7. The term "(Def)" represents the
default setting where no prior history is provided.
In the left-most and second-from-right plots of the
figures, this default setting is further broken down
by demographic proxies. It reflects the model’s re-
sponses when tasked with recommending the next
10 music or movie items from a given list, without
being influenced by any prior context. This setup
aims to capture the model’s intrinsic tendency to as-
sociate items with specific cultural proxies. For the
right-most and second-from-left plots, "(Def)" in-
dicates a scenario where the model is probed using
all proxies combined but still without any history.
In this case, the model is presented with a list of
music or movie items and asked to predict the next
10 items solely based on the given list, without any
prior history or proxy influence. This configuration
is designed to assess the model’s inherent affinity
for items within the provided list.

Plotting the demographic proxy-wise distribu-
tion, in Figures 4, 5, and 6 for GPT-40, GPT-40-
mini, and Llama, we observe that the models are
incapable of generalizing when the combination
of demographic proxies increase, irrespective of
the size of history, which is the Strongest Case
for measuring generalization, according to our pro-
posed framework in Section 3.2. For example, in
movies (leftmost chart), the cross-entropy increases
when a combination of all proxies is used along
with history (Proxy = All). We see a similar trend
in music (second from right), where although the
target entropy decreases with more proxies (Proxy
= Gen & Conti), the cross-entropy increases.

In both domains (second from left and right-
most), we see models exhibiting a similar behavior
with different lengths of history, where the cross-
entropy increases with more history, which is the
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Figure 7: Random Demographic Proxy and History-wise distributions for Movie (Left 2) and Music (Right 2)

Strongest Case for measuring generalization. This
indicates the model’s incapability to adeptly uti-

lize the context, which is a known phenomenon
(Mukherjee et al., 2024).
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We further plot the results of each demographic
proxy and history independent in Section A.2 (Ap-
pendix A). Overall, our experiments indicate the
viability of our proposed framework in Section
3.2 for measuring generalization using existing
personalization-based tasks. We clearly see that
models are capable of generalization to a certain
degree till they reach an inflection point. Although
GPT-40 and GPT-40-mini models perform better
than LLlama and a random baseline, the results in-
dicate a strong generalization gap and much room
for improvement.

5 Discussion

1. What is the difference between personaliza-
tion and personalization as a measure of gener-
alization? Personalization as a measure of gener-
alization is a theoretical framework for measuring
generalization through the lens of personalization,
not on improving personalization itself. Unlike ex-
isting personalization techniques (Sun et al., 2023;
Hwang et al., 2023; Zhang et al., 2024), which are
evaluated using accuracy-based metrics (e.g., F1,
NDCG, MAP), our method analyzes generalization
by examining cross-entropy over the model’s re-
sponse distribution. This fundamental difference in
objectives and metrics makes direct comparisons
with prior works inherently challenging.

2. Why is personalization interesting and useful
for studying generalization in LLMs? Besides
the theoretical arguments provided earlier, here we
list some compelling practical reasons for favor-
ing personalization as an evaluation strategy for
generalization.

Generalizing from learned knowledge: Since the
context length of current models is limited, per-
sonalization requires reasoning using more context,
which might be outside the model’s context length.
Thus, it is a robust measure of a model’s generaliz-
ability as its capacity to leverage the learned world
knowledge during training.

Balancing worldviews: Since personalization re-
quires tailoring things for an individual, a gener-
alizable model should be capable of balancing be-
tween universal and individual-specific knowledge
for performing tasks.

Dynamicity: Personalization evades the issue of
models memorizing training examples and recall-
ing during inference, since individual preferences
change over time. Hence, a model can’t blatantly
memorize each user’s behavior to perform well in

personalization tasks.

Cost efficiency and ROI: Our evaluation frame-
work is highly cost-effective compared to creating
entirely new benchmarks from scratch. Developing
"challenging" test beds for model generalization
requires substantial human and computational re-
sources to resolve data scarcity and contamination
issues (see Section 2). In contrast, our approach
repurposes existing personalization tasks to assess
generalization, eliminating the need for costly new
dataset creation.

LLMs as world models: Agentic models (Shavit
et al.; Acharya et al., 2025) require universal knowl-
edge, which is less dependent on individual users.
Although LLMs have exhibited tremendous capac-
ity as agents, they must model each individual to
be world models.

6 Conclusion

We propose a statistically motivated framework
using personalization to assess generalization in
LLMs. Since LLMs are trained on vast human-
generated data, we argue that true generaliza-
tion lies in predicting human behavior rather than
specific tasks. This philosophically aligns with
Wittgenstein’s language games and Turing’s imita-
tion game, though with a key distinction with the
latter: while Turing’s test requires mimicking any
human, our framework challenges models to repli-
cate a specific user at varying complexity levels.
This shift has profound philosophical and mathe-
matical implications, only some of which we could
explore in this paper.

We would like to highlight the lack of datasets
where complex user behaviors or preferences are
available alongside their demographic proxies,
which will enable us to conduct large-scale and
more extensive studies of generalization.

Limitations

The empirical study presented here is limited in sev-
eral ways: First, we explore only two kinds of be-
havior preferences - movies and music; the choices
were motivated by the availability of large pub-
lic datasets of user preferences or behavior, where
we have some demographic proxies for the users.
These experiments do not tell us how models gen-
eralize for more complex user behaviors or other
kinds of demographic proxies (including psycho-
logical features such as personality traits). Sec-
ond, we experiment only with English prompts and
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Latin script. It will be interesting to compare a
model’s generalization in the English language and
Latin script to that of other languages and scripts,
especially when the prompt is expressed in those
languages/scripts. Third, our experiments only con-
sider three models - GPT4-0, GPT4-0-mini, and
Llama-3.1-8B-Instruct. Since both of the GPT
models are closed-source and behind a pay wall,
we are aware that reproducing our experiments in-
dependently would incur additional cost. Extend-
ing the study to more open-weight models, apart
from Llama, would be important to understand the
robustness of the proposed framework.

Our theoretical framework assumes that it is pos-
sible to estimate the true distributions of user be-
havior from large samples, which might not be the
case if user behavior is non-stochastic or chaotic.
Furthermore, the datasets used in this study may
not be large enough for estimating user behavior at
a global or national scale, which implies that our
estimates might have large noise terms, leading to
significant over- or under-estimations of models’
generalizability.

Ethical Implications

Being a theoretical and exploratory study, our work
has no direct risks or harms. Nevertheless, we as-
sume in our work that the behavior of users can be
estimated in a statistical sense for groups of differ-
ent sizes, and for a certain definition of groups, the
entropy of these distributions is small. It is possible
to misinterpret this assumption as a promotion of
the idea of stereotypical behaviors of certain groups.
We warn against such interpretations. The only two
assumptions made here are (a) user behaviors can
be stochastically modeled (a common assumption
made across many branches of social sciences, such
as Economics and Psychology), and therefore, (b)
there are latent variables that determine such behav-
iors. Although we have used “demographic prox-
ies" as a term for these latent variables and used
certain proxies (country, age, gender, etc.) in our
experiments, we do not promote the idea that users
from the same demographic group display similar
behavior. The terminology is borrowed from previ-
ous work (Adilazuarda et al., 2024); however, the
proposed framework is agnostic to any anthropo-
logical or psychological theory of human behavior.
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A Appendix
A.1 Prompts

# Al Rules

- Output response as a Python list only.

- Do not output any extra text.

- Do not wrap the response in Python markers.
- Do not assign the list to any variable.

- List values in double-quotes.

You are proficient in recommending new movie for users to watch based on their background, previous
view history, or a combination of both.

The user is a 25-34 years old Male clerical/admin.

The user has previously watched the following movies: [’Out of Sight (1998)’, "Horse Whisperer, The
(1998)’, *Star Wars: Episode V - The Empire Strikes Back (1980)’, Odd Couple II, The (1998)’,
’Marathon Man (1976)’].

From the candidates listed below, recommend the next 10 movie for the user to watch based on the
user’s background, previous view history, or a combination of both.

Format your response as a Python list of item names. The list must be ranked from the most likely to
the least likely movie.

Candidates: [Mr. & Mrs. Smith (1941)’, *Blue Velvet (1986)’, *Freedom for Us (A nous la liberté )
(1931)’, *White Balloon, The (Badkonake Sefid ) (1995)’, *Fear, The (1995)’, *Barefoot Executive,
The (1971)’, ’Barb Wire (1996)’, *Jungle Book, The (1967)’, ’Matrix, The (1999)’, ’24-hour Woman
(1998)’, "Heat (1995)’, *Fish Called Wanda, A (1988)’, ’Independence Day (ID4) (1996)’, ’Dead Calm
(1989)’, ’Phantasm III: Lord of the Dead (1994)’, *To Be or Not to Be (1942)’, ’Rain Man (1988)’,
’Carnosaur (1993)’, "Heathers (1989)’, *Gaslight (1944)’, *Get Bruce (1999)’, ’Omen, The (1976)’,
’Bedknobs and Broomsticks (1971)’, "Herbie Rides Again (1974)’, ’Buck and the Preacher (1972)’,
’Wallace & Gromit: The Best of Aardman Animation (1996)’, *Friday the 13th Part 3: 3D (1982)’,
’Meatballs (1979)°, *Cabin Boy (1994)’, ’8 Heads in a Duffel Bag (1997)’, *Mariachi, El (1992)’,
’Contender, The (2000)’, *When a Man Loves a Woman (1994)’, "Henry Fool (1997)’, ’Beetlejuice
(1988)’, ’Requiem for a Dream (2000)’, ’Raven, The (1963)’, *’Grand Day Out, A (1992)’, ’Miami
Rhapsody (1995)’, *Tales From the Crypt Presents: Demon Knight (1995)°, ’Sticky Fingers of Time,
The (1997)’, ’Opposite of Sex, The (1998)’, ’Saving Private Ryan (1998)’, ’Naked Gun 33 1/3: The
Final Insult (1994)’, *Trigger Effect, The (1996)’, ’ Among Giants (1998)’, ’Spaceballs (1987)’, ’Bloody
Child, The (1996)’, ’Snow White and the Seven Dwarfs (1937)’, "Man Who Knew Too Much, The
(1934)’]

A.2 Additional Plots
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Domain Setting # History | Freq
No Proxy (Def) 0 1
1 300
3 300
No Proxy 5 300
10 89
20 5
Age (Def) 0 7
1 300
3 300
Age 5 300
10 147
20 5
Gender (Def) 0 2
1 300
Movie 3 300
Gender 5 300
10 110
20 5
Occupation (Def) 0 17
1 300
3 300
Occupation 5 300
10 112
20 2
All (Def) 0 51
1 300
3 300
All 5 300
10 43
No Proxy (Def) 0 1
1 246
3 249
No Proxy 5 246
10 240
20 11
Country (Def) 0 17
1 250
3 249
Country 5 248
10 208
20 9
Continent (Def) 0 4
1 250
. 3 249
Music Continent 5 249
10 249
20 11
Gender (Def) 0 2
1 249
3 247
Gender 5 249
10 250
20 13
Gen & Conti (Def) 0 8
1 246
3 248
Gen & Conti 5 249
10 171
20 6

Table 1: Number of examples across all experiment settings.
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Figure 9: GPT-40-mini detailed plot for Movie
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Figure 11: Random detailed plot for Movie
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Figure 13: GPT-40-mini detailed plot for Music
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Figure 14: Llama detailed plot for Music
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Figure 15: Random detailed plot for Music
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