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Abstract

Large Language Models (LLMs) have achieved
impressive results across a broad array of tasks,
yet their capacity for complex, domain-specific
mathematical reasoning—particularly in wire-
less communications—remains underexplored.
In this work, we introduce WirelessMathBench
a novel benchmark specifically designed to
evaluate LLMs on mathematical modeling chal-
lenges to wireless communications engineering.
Our benchmark consists of 587 meticulously
curated questions sourced from 40 state-of-the-
art research papers, encompassing a diverse
spectrum of tasks ranging from basic multiple-
choice questions to complex equation comple-
tion tasks, including both partial and full com-
pletions, all of which rigorously adhere to phys-
ical and dimensional constraints. Through ex-
tensive experimentation with leading LLMs,
we observe that while many models excel in ba-
sic recall tasks, their performance degrades sig-
nificantly when reconstructing partially or fully
obscured equations, exposing fundamental lim-
itations in current LLMs. Even DeepSeek-R1,
the best performer on our benchmark, achieves
an average accuracy of only 38.05%, with a
mere 7.83% success rate in full equation com-
pletion. By publicly releasing WirelessMath-
Bench along with the evaluation toolkit, we
aim to advance the development of more ro-
bust, domain-aware LLMs for wireless system
analysis and broader engineering applications.

1 Introduction

Large Language Models (LLMs) have recently
demonstrated groundbreaking performance across
a diverse range of natural language tasks—from
general language understanding (Brown et al.,
2020; Wang et al., 2019b,a) and code genera-
tion (Liu et al., 2021) to elementary mathemat-
ical reasoning (Cobbe et al., 2021; Hendrycks
etal., 2021a). Advanced models such as OpenAl-
ol (OpenAl, 2024) and DeepSeek-R1 (Guo et al.,

Y
(@ Wireless Channel Reflection Modeling
\J

o®

L% Background

; BS D d thy
cocfficients of RIS; are given by 6;

Multiple Choice Question

hi = [MASK]

sion correctly represents the user-k effective channel

)62 + Nydiag(hi) 0, + Ndiag(6,) D diag(6,) ki

6, + Ny diag(hi) 01 + D di

2) 61

(C) N2 6 + Nihi 0, + Nadiag(0s) D diag(0:) his

(D) N2 0, + Ny diag(hu) 0y + Nodiag(02) D diag(6:) hiy

Answer: The correct expression is [A]

“"‘b Progressive Masking Fill-in-the-blank (Level ', 2, 3)

g(hiz) [MASK] + Ny

n 1: Which reflection vec

Z:;: Answer: hy, = N diag(hxa) 02 + Ny diag(hu) 01 + N diag(8) D diag(61) hi

hy = [MASK]
r the overall effective channel.

r Question: Write the full expressios
% Answer: hy = N diag(hiz) 02 1d

Figure 1: Example task from WirelessMathBench a
system model derivation from wireless communications
literature. The derivation progresses from a multiple-
choice question to progressive mask completion ques-
tions, and finally to the full formula derivation, testing
the model’s ability to reason through complex channel
reflections and matrix operations.

2025) have further extended these capabilities, es-
pecially when supplemented with chain-of-thought
strategies that enable clear, step-by-step solution
processes. Nevertheless, despite these notable
achievements, current state-of-the-art LLMs still
encounter significant difficulties when tackling
highly intricate problem statements. In particu-
lar, tasks that demand deep conceptual insights,
rigorous validation of physical feasibility, and
the careful management of tightly interrelated pa-
rameter sets continue to pose formidable chal-
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lenges (Mirzadeh et al., 2025; Zhang et al., 2023;
He et al., 2024).

In many engineering fields—wireless commu-
nications in particula—mathematical modeling is
indispensable. The design and analysis of modern
wireless systems require not only accurate numeri-
cal computation but also precise symbolic deriva-
tions that honor strict physical and dimensional
constraints. Tasks such as channel estimation (Yin
etal., 2013; Liu et al., 2022; An et al., 2023), beam-
forming (Chu et al., 2023; Spencer et al., 2004; Liu
et al., 2025b), and multi-antenna system (Huang
et al., 2020; An et al., 2024; Zheng et al., 2024; Liu
et al., 2025a) involve intricate matrix operations,
multi-stage derivations, and domain-specific lexi-
con. Even minor errors in symbolic manipulation
can lead to significant performance degradation or
non-compliance with industry standards (Bjornson
etal., 2013).

Although recent work has leveraged LL.Ms for
technical definition retrieval in wireless communi-
cations (Shao et al., 2024a; Maatouk et al., 2023;
Zou et al., 2024; Maatouk et al., 2024), few stud-
ies have directly addressed the challenges asso-
ciated with multi-step derivations and symbolic
manipulation in this specialized domain. This ob-
servation raises a broader question: To what extent
are LLMs capable of emulating the mathematical
derivations and analytical typically by an engineer
or researcher in the field of real wireless communi-
cations?

To bridge this gap, we introduce WirelessMath-
Bench a comprehensive benchmark specifically
designed to test LLMs on the real-work wireless
engineering orientation mathematical reasoning.
WirelessMathBench comprises 587 high-quality
questions sourced from 40 state-of-the-art papers,
each carefully annotated and validated by domain
experts to ensure accuracy. These questions span a
variety of system models (e.g., Multiple-Input and
Multiple-Output (MIMO), Non-orthogonal mul-
tiple access (NOMA), Reconfigurable Intelligent
Surfaces (RIS) ) and problem settings (e.g., channel
estimation, beamforming), encompassing multiple-
choice, fill-in-the-blank, and open-ended questions
at various levels. Tablel highlights key differ-
ences between WirelessMathBench and other math
benchmarks, ours is the only dataset of expert dif-
ficulty level and contains real-world engineering
problems. Figure 1 illustrates how a single math
formula escalates from a basic multiple-choice
query to a fully masked equation derivation, reflect-

ing the complexity of real-world wireless system
analysis.

Our extensive experiments show that while lead-
ing LLMs perform well on simpler tasks (e.g.,
multiple-choice questions with over 75% accuracy),
their performance drops dramatically on advanced
derivation tasks (progressive masking and complete
equations). Even the strongest model we evaluated,
DeepSeek-R1 (Guo et al., 2025), only manages
a 7.83% success rate in fully masked derivations,
underscoring a fundamental gap between current
LLM capabilities and the complex demands of
wireless systems analysis.

By publicly releasing WirelessMathBench along
with its evaluation toolkit, we aim to spur progress
toward LLMs that are not only fluent in natural
language but also capable of rigorous, domain-
specific mathematical reasoning. We envision that
WirelessMathBench will serve as a catalyst for in-
novation in mathematical reasoning capabilities,
domain-adaptive pre-training techniques, and ad-
vanced thought-chaining strategies, ultimately pro-
pelling LLMs toward more robust scientific and
engineering problem-solving.

2 Related Work

General-Purpose LLM Benchmarks. In recent
years, rapid advancements in LLMs—exemplified
by models such as GPT-3 (Brown et al., 2020),
GPT-4 (Achiam et al., 2023), LLaMA (Tou-
vron et al., 2023), Gemini (Team et al., 2023),
and DeepSeek-R1 (Guo et al., 2025)—have
spurred extensive evaluations on benchmarks like
GLUE (Wang et al., 2019b), SuperGLUE (Wang
et al., 2019a), and GSM8K (Cobbe et al., 2021).
However, despite covering a broad spectrum of
linguistic tasks, they typically lack the depth and
specificity required to evaluate rigorous mathemat-
ical modeling or the domain-specific symbolic rea-
soning needed for complex technical applications.

Mathematical Reasoning Benchmarks. A par-
allel research stream has focused on the mathe-
matical and symbolic reasoning abilities of LLMs.
Early mathematical benchmarks (Amini et al.,
2019; Cobbe et al., 2021; Koncel-Kedziorski
et al., 2016; Ling et al., 2017; Hendrycks et al.,
2021b) evaluate models on elementary arith-
metic, algebra, and calculus problems. Re-
cently, as the complexity of the problem in-
creases, some benchmarks introduce competition-
level problems that combine mathematical logic
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Benchmark Diffuculty Level QuestionType Real Engineering Tasks #Test Size
GSMSK (Cobbe et al., 2021) Elementary School OE No 1,319
MATH (Hendrycks et al., 2021b) High School OE No 5,000
OCWCourses (Lewkowycz et al., 2022) University OE No 272
MMMU (Yue et al., 2024) University MC,OE No 1983
OlympiadBench (He et al., 2024) Competition OE No 8,476
WirelessMathBench Expert MC, FB, OE Yes 587

Table 1: Comparison of representative mathematical benchmarks with WirelessMathBench. Existing datasets
largely focus on elementary, high school, or Olympiad-level problems in purely theoretical contexts, while Wire-
lessMathBench targets real-world, expert-level engineering tasks under strict dimensional and physical constraints.
We note that open-ended (OE) tasks typically require free-form answers, MC indicates multiple-choice, and FB

refers to fill-in-the-blank.

and background knowledge (Yu et al., 2024;
Hendrycks et al., 2021a; Arora et al., 2023;
Frieder et al., 2024). For more advanced math-
ematical reasoning, datasets like MMMU (Yue
et al., 2024), OCWCourses (Lewkowycz et al.,
2022) and U-MATH (Chernyshev et al., 2024)
focuses on university-level mathematics prob-
lems. MiniF2F (Zheng et al., 2022), AlphaGeome-
try (Trinh et al., 2024), OlympiadBench (He et al.,
2024), and MathOdyssey (Fang et al., 2024) go
further to Olympiad-level problems that require
more advanced mathematical reasoning. Yet, these
datasets do not capture the unique constraints or
specialized notations found in applied domains like
wireless communications.

Domain-Specific Benchmarks. To overcome the
limitations of general-purpose evaluations, sev-
eral domain-specific benchmarks have been devel-
oped for tasks that demand technical precision and
specialized reasoning. For example, customized
benchmarks have been developed for legal docu-
ment analysis (Guha et al., 2024), chemical prop-
erty inference (Guo et al., 2023), and scientific
reasoning (Lu et al., 2022; Wang et al., 2024; Sun
etal., 2024). To evaluate LLMs in more specialized
domain tasks, recent works have introduced bench-
marks like MLAgentBenchmark (Huang et al.,
2024), which evaluates LLMs’ ability to solve ma-
chine learning tasks, Al-Researcher (Si et al., 2025)
evaluate can LLLMs generate research ideas, and
SWE-Bench (Jimenez et al., 2024) evaluate LLMs’
ability to solve real-world software engineering
tasks. These studies highlight that an in-depth
evaluation of LLMs in specialized fields reveals
that LL.Ms have strong potential in different profes-
sional fields.

LLMs vs. Symbolic Solvers in Engineer-
ing. Symbolic mathematics tools (e.g., Mathe-

matica (Wolfram, 2003), SymPy (Meurer et al.,
2017)) have traditionally dominated computation-
intensive engineering workflows. While these tools
excel at manipulating well-defined symbolic ex-
pressions, they fundamentally lack the capability
to translate unstructured natural language descrip-
tions into formal mathematical representations (An-
droutsopoulos et al., 1995; Manning and Schutze,
1999). This limitation is particularly pronounced
in wireless communications, where system models
require integration of domain knowledge, physical
constraints, and specialized notation. LLMs poten-
tially address this gap through their ability to pro-
cess natural language specifications and generate
corresponding mathematical formulations (Achiam
et al., 2023; Cobbe et al., 2021)—a capability crit-
ical for real-world engineering applications but
not comprehensively evaluated by existing bench-
marks.

LLMs in Wireless Communications. Wireless
communications impose stringent requirements on
mathematical precision, particularly for tasks such
as channel estimation, interference management,
and beamforming (Cadambe and Jafar, 2008; Shi
et al., 2011; Gesbert et al., 2010). Some prelimi-
nary works have explored the use of LLMs in wire-
less contexts, focusing on domain-specific knowl-
edge extraction and basic recall of technical stan-
dards (Maatouk et al., 2023; Shao et al., 2024a;
Maatouk et al., 2024). Notably, TelecomGPT (Zou
et al., 2024) has extended LLM capabilities to
higher-level tasks like wireless-specific code gen-
eration and formula completion. However, these
early works usually emphasize knowledge retrieval
or summarization, without considering testing what
tasks LLMs can accomplish in actual wireless com-
munication engineering systems.

In this work, we introduce WirelessMathBench
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Category Type Topic Category Number of Papers
RIS 19
MIMO 12
UAV 6
Model-based ISAC 6
Satellite
SIM
NOMA

Beamforming
Channel Estimation
Performance Analysis
Trajectory Design
Power Allocation
Resource Management

—_ =
A oo NN W

Problem-based

-
<>

Total

Table 2: Distribution of the WirelessMathBench bench-
mark papers according to model-based and problem-
based categories, along with their respective topic areas.
A total of 40 papers are included, covering key themes
in wireless communications. Note that some papers may
span multiple topic categories.

to address these gaps. Unlike existing wireless
or purely mathematical benchmarks, Wireless-
MathBench offers tasks that systematically com-
bine multiple-choice questions with progressively
masked formula derivations, all drawn from state-
of-the-art research papers. The goal is to evaluate
both symbolic reasoning and domain knowledge
under realistic conditions, capturing the nuanced
interplay of mathematical derivations and physi-
cal feasibility inherent in wireless communications.
By providing a diverse set of tasks and domain-
informed evaluation metrics, WirelessMathBench
aims to facilitate collaborative advances in both
LLMs and wireless communication engineering,
ultimately enabling more powerful Al-assisted so-
lutions for next-generation wireless networks.

3 The WirelessMathBench Benchmark

In this section, we present WirelessMathBench,
a new benchmark specifically designed to evalu-
ate LLMs on mathematical modeling tasks within
wireless communications. We begin by discussing
the rationale behind our benchmark design (Sec-
tion 3.1), followed by the details of our data col-
lection and annotation pipeline (Section 3.2). We
then explain how we construct questions of vary-
ing complexity levels, as well as our progressive
masking methodology (Section 3.3).

3.1 Design Principles

The creation of WirelessMathBench is motivated
by two core observations. First, recent work shows
that LLMs can effectively assist humans in highly

specialized tasks (Guha et al., 2024; Guo et al.,
2023; Lu et al., 2022), underscoring their potential
when provided with sufficient domain context. Sec-
ond, LL.Ms have demonstrated the capacity to han-
dle increasingly difficult mathematics, including
Olympiad-level challenges (He et al., 2024; Fang
et al., 2024). These findings suggest a substan-
tial opportunity to push the limits of LLMs in ar-
eas where complex, domain-specific mathematics—
such as wireless communications—plays a central
role.

Building on these insights, WirelessMathBench
is designed around two key principles:

1. Real-World Complexity. Each task is sourced
directly from peer-reviewed research, reflecting
the authentic modeling challenges faced in wire-
less systems.

2. Multi-Tiered Progression. Tasks range from
basic multiple-choice questions to fully masked
derivations, providing graduated levels of diffi-
culty that capture both foundational knowledge
and advanced reasoning.

3.2 Data Collection and Annotation

As illustrated in Figure 2, the data collection and an-
notation process for WirelessMathBench involves
four main steps: paper selection, system model ex-
traction, task curation, and domain expert review.

Paper Selection and Coverage. To capture the
authentic complexities of wireless communications,
we begin by identifying high-impact papers from
top-tier publication venues that are freely acces-
sible on arXiv. Table 2 summarizes the coverage
of model-based and problem-based categories; in
total, we select 40 papers spanning core techniques
(e.g., MIMO, NOMA, RIS) and research focuses
(e.g., channel estimation, beamforming). We em-
phasize works that feature nontrivial mathemati-
cal derivations—such as optimization formulations
and multi-stage channel modeling—over those lim-
ited to empirical or simulation-based heuristics. A
summary of the high-frequency keywords across
the dataset is shown in Figure 3, highlighting the
diverse wireless communication topics covered in
the benchmark. We aim to include tasks that reflect
the symbolic depth and physical constraints that are
indispensable for real-world wireless engineering
and state-of-the-art wireless research.
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Figure 2: Overview of the data collection and annotation pipeline for WirelessMathBenchThe process involves
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Figure 3: A word cloud illustrating the most frequent
keywords in the WirelessMathBench benchmark, which
reflects the range of wireless communication topics cov-
ered.

System Model Extraction. Our pipeline starts
by applying a specially designed LLM template
that systematically scans each research paper, iso-
lating key mathematical expressions and relevant
contextual descriptions. This initial extraction step
is semi-automated: LLMs produce a structured
draft containing a concise overview of the system
model, assumptions, and principal formulas. Sub-
sequently, domain experts review and refine these
drafts, ensuring that the extracted material is both
accurate (i.e., symbolically consistent with the orig-
inal text) and self-contained (i.e., providing enough
background to be understood independently). To
mitigate potential data contamination concerns, ex-
perts deliberately reformulate paper contexts in
original language, restructure equation presenta-
tions, and avoid word-for-word reproductions of
problem statements. These transformations ensure
that our task formulations differ substantially from
source materials that might appear in LLM training
corpora, thereby requiring genuine mathematical
reasoning rather than mere reproduction of mem-
orized content. This hybrid method combines the
scalability of automated extraction with meticulous

expert checks, ensuring the resulting text is accu-
rate, symbolically consistent, and sufficiently self-
contained for subsequent tasks while maintaining
necessary differentiation from publicly available
sources.

Task Curation. Once the system models have
been extracted, we systematically transform them
into precise question-answer pairs via a three-step
process:

1. Identify Core Equations: We select represen-
tative formulas from each paper—such as chan-
nel gain expressions, optimization objectives, or
multi-hop path-loss derivations—that encapsu-
late critical wireless engineering challenges.

2. Construct Questions: For each core equation,
we generate questions at varying levels of diffi-
culty. This includes: (a) multiple-choice ques-
tions targeting definitions or partial operations;
(b) progressively masked fill-in-the-blank ques-
tions that require incremental reasoning; and
(c) full equation completion tasks that demand
derivation of the entire expression.

3. Annotate and Review: Each question is accom-
panied by contextual notes, and domain experts
validate correctness and clarity. When neces-
sary, we refine notation or provide short explana-
tions to ensure the questions are self-contained
and can be tackled without external references

Domain Expert Review. Lastly, all questions
undergo a multi-round review by senior wireless
researchers. They verify notation accuracy and
domain applicability (e.g., check for appropriate di-
mensionality, and coherent modeling assumptions),
and remove any ambiguous or misleading content.
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The remaining problems constitute the final Wire-
lessMathBench dataset: a set of carefully selected
tasks that embody typical mathematical derivations
in advanced wireless communication engineering
and research. A detailed description of our expert
validation methodology, including reviewer qualifi-
cations and the verification workflow, is provided
in Appendix B.

3.3 Task Design and Masking Strategies

To full evaluate the capabilities of LLMs at differ-
ent levels of difficulty in mathematical modeling
of wireless communications, WirelessMathBench
incorporates three distinct task types. Each ques-
tion leverages real-world system equations derived
from state-of-the-art research papers, ensuring that
the benchmark reflects both conceptual diversity
and practical engineering relevance. At the same
time, each independent question is accompanied by
a brief description of the relevant wireless scenario
(e.g., UAV relay or multi-antenna beamforming),
providing the necessary domain and scenario back-
ground information.

Multiple-Choice Questions (MCQs). These
questions require the solver to select the correct
mathematical expression from a set of closely re-
lated distractors, with each MCQ carefully de-
signed to test the model’s ability to recognize and
recall key elements of wireless system modeling.
For example, a typical MCQ may present several
equations for a wireless channel, of which only
one formula satisfies both the correct dimensions
and the physical constraints of the system under
consideration.

Progressively masked fill-in-the-blank questions.
In this task, a system model formula is progres-
sively presented in a partially masked form across
three different masking levels. Each progressively
masked instance is treated as an independent sub-
problem, requiring the model to infer and recon-
struct the missing information at each stage. The
masking levels range from isolated single-variable
omissions to multi-variable occlusions, with vary-
ing degrees of accompanying prompt text to pro-
vide contextual guidance.

Full Equation Completion (FEC) question. For
the most challenging question, the full equation
is entirely hidden. The solver is provided with
only a succinct description of the wireless scenario
(for example, a base station-relay-user link with

Model Source Size
OpenAl-ol (OpenAl, 2024) unknown
DeepSeek-R1 (Guo et al., 2025) 671B
GPT-Family (OpenAl, 2024; Achiam et al., 2023) unknown
DeepSeek-V3 (Liu et al., 2024) 671B

Gemini-Famliy (Google DeepMind, 2024) unknown
Qwen2.5-Math (Yang et al., 2024) 7B, 72B
LLaMA (Grattafiori et al., 2024) 8B, 70B
LLaMA-3-8B-Tele (Maatouk et al., 2024) 8B
Mistral-7B (Jiang et al., 2023) 7B

Table 3: LLMs evaluated on WirelessMathBench.

specific path loss characteristics) and must derive
the complete expression from first principles. This
task assesses the model’s ability to reconstruct the
entire derivation—from fundamental definitions
(like channel gain or fading coefficients) to the final
expression—while ensuring dimensional accuracy
and adherence to domain-specific constraints (such
as path loss exponent and transmit power limits). It
represents the level of performance expected from
a human expert in wireless communications.

In summary, by combining MCQs, progres-
sively masked tasks, and full equation completions,
WirelessMathBench offers a comprehensive, fine-
grained evaluation of a model’s capability to per-
form both symbolic reasoning and domain-specific
derivations in wireless communications.

4 Experiments

We now present a comprehensive evaluation of
WirelessMathBench, focusing on how leading
LLMs handle wireless communications—specific
mathematical modeling. We begin by detailing
our experimental setup (Section 4.1), including
prompt design and model baselines, then discuss
our main results (Section 4.2), and conclude with
an error analysis that highlights key challenges
(Section 4.3).

4.1 Experiment Setup

Evaluation Workflow. All experiments are con-
ducted in a zero-shot setting using unified prompt
templates across different question types for con-
sistent evaluation. For each task in WirelessMath-
Bench, we provide the corresponding prompt to
each model and collect the answers it generates.
Our evaluation pipeline is now completed in two
main ways. For multiple-choice questions, we di-
rectly extract the output answers and compare their
consistency with the annotation results. For Pro-
gressive Masking Filling and Fully masked ques-
tions, since polynomials may have a certain number
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Progressive Masking Filling

Model MCQ FEC Avg. Acc
Level 1 Level2 Level3
DeepSeek-R1 76.00% 60.00% 34.91% 12.50% 7.83% 38.05%
OpenAl-ol 66.40% 59.17% 32.17% 8.04% 6.96%  34.55%
OpenAl-ol-mini 66.40% 53.33% 29.57% 10.711% 4.35%  32.87%
GPT-40 72.80% 42.50% 28.710% 6.25% 4.35% 30.92%
GPT4 53.60% 38.33% 1826% 3.57% 4.35% 23.62%
GPT-3.5-turbo 45.60% 7.50% 1043% 1.79% 1.74% 13.41%
DeepSeek-V3 7840% 50.00% 24.35% 625% 6.96% 33.19%
Gemini-2.0-flash 71.20% 40.83% 24.35% 536% 4.35% 29.22%
Gemini-1.5-pro 65.60% 43.33% 29.57% 9.82% 6.09%  30.88%
Gemini-1.5-flash 66.40% 37.50% 1391% 2.68% 4.35% 24.97%
Qwen2.5-Math-72B  70.40% 37.50% 26.09% 7.14% 6.09%  29.44%
LLaMA-3.3-70B 65.60% 38.33% 1739% 2.68% 6.09%  26.02%
Qwen2.5-Math-7B 5840% 21.67%  6.96% 446% 1.74%  18.82%
LLaMA-3-8B-Tele 40.80% 11.67% 4.35% 2.68% 087% 12.07%
LLaMA-3-8B 45.60% 10.83% 7.83% 2.68% 261% 1391%
Mistral 7B 38.40% 20.00% 4.35% 0.89% 0.87% 12.90%

Table 4: Experimental results of state-of-the-art LLMs on WirelessMathBench. The table shows the performance of
each model on MCQ, progressively masked filling and full equation completion tasks.

of possible answers, we use the help of LLMs (GPT-
40 is selected in our experiment) to complete the
evaluation, similar to(Fang et al., 2024; Chernyshev
etal., 2024). The overall performance is reported as
the average accuracy of all tasks. Detailed prompt
examples and scoring criteria are provided in the
Appendix C.

Baselines. Table 3 (in the main text) lists the
principal models tested. We include leading rea-
soning models(e.g., DeepSeek-R1, OpenAl-ol),
large-scale general-purpose LLMs (e.g., GPT-4,
Gemini), and specialized models (e.g., Qwen2.5-
Math) to capture a broad range of capabilities.
For open-source models like LLaMA, we also ex-
plore domain-specific variants trained on a tele-
com corpus (e.g., LLaMA-3-8B-Tele) to gauge
the benefit of targeted adaptation. All hyperpa-
rameters follow each model’s respective default or
recommended settings, and no additional chain-of-
thought prompting is provided beyond the standard
instructions above.

4.2 Main Results

Table 4 presents the performance of sixteen
LLMs across five metrics in WirelessMathBench:
(1) Multiple-choice Question (MCQ) accuracy,
(2—4) progressive masking fill-in at three difficulty

levels (Level 1, Level 2, Level 3), (5) Full Equation
Completions (FEC), and the overall average accu-
racy (Avg. Acc). Our key findings are summarized
below:

Reasoning-Oriented Models Show Advantages.
Models that incorporate explicit chain-of-thought
or advanced reasoning techniques—like DeepSeek-
R1 and OpenAl-ol—consistently outperform sim-
pler large-scale baselines. The average accuracy of
DeepSeek-R1 is 38.05%, and the average accuracy
of OpenAl-ol is 34.55%, while the accuracy of
other large-parameter models hovers around 30%.
This suggests that explicit reasoning strategies con-
tribute substantially to managing multi-step sym-
bolic derivations in wireless communications tasks.
This performance gap stems primarily from reason-
ing models’ ability to decompose complex math-
ematical operations into sequential sub-steps—a
capability critical for the non-trivial matrix manip-
ulations and dimensionality constraints inherent in
wireless modeling tasks. As demonstrated in recent
works (Guo et al., 2025; Shao et al., 2024b), models
with explicit reasoning mechanisms excel at tasks
requiring symbolic consistency across multiple op-
erations, systematically tracking variables through
transformations and validating intermediate results.
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Strong MCQ Performance but Rapid De-
cline in Derivations. Several models, including
DeepSeek R1, V3, GPT-4, and Gemini-2.0, exceed
70% accuracy on MCQs, showing that they can
find the correct formula given background knowl-
edge and given error options, indicating that they
can understand the modeling process and matrix
operations in the communication domain to some
extent. However, these MCQ gains generally do
not extend to more complex derivation tasks, where
most models’ accuracy falls dramatically. For in-
stance, DeepSeek-V3 achieves the highest MCQ
score at 78.40%, drop to 6.25% in Level 3 masking
filling, and 6.96% in FEC.

Progressive Masking Emphasizes Multi-Step
Reasoning Gaps. When forced to reconstruct
partially hidden expressions, model performance
declines in proportion to the level of masking.
When forced to reconstruct partially hidden expres-
sions, model performance degrades with increasing
levels of masking. Models with implicit reason-
ing logic significantly outperform the others, with
DeepSeek-R1 in particular leading on these tasks—
achieving 60.00% at Level 1 and 33.91% at Level
2, suggesting more robust chaining of thoughts.
However, even DeepSeek-R1 struggles at level 3
(12.50%), highlighting the difficulty of maintaining
symbolic coherence under heavily masked condi-
tions.

Fully Masked Equation Completion Remains
Challenging. Most models attain only single-
digit accuracy (2-7%) in the FEC task, where the
entire equation is hidden. DeepSeek-R1’s 7.83%
and OpenAl-o01’s 6.96% are the best in this cate-
gory, but both remain low in absolute terms, indicat-
ing that fully reconstructing multi-step derivations
without partial clues poses a significant challenge.

Domain-Focused Models Show Improvements.
Models that are specifically tuned for mathematical
reasoning—such as Qwen2.5-Math—demonstrate
improved performance over other models with a
similar parameter count, both in terms of overall
average accuracy and on individual subtasks. In
particular, Qwen2.5-Math-72B achieves an aver-
age accuracy of 29.44%, which is on par with the
average performance of most commercial models.
However, fine-tuning general-purpose models like
LLaMA to telecom-specific data (e.g., LLaMA-3-
8B-Tele) yields only limited benefits. This is likely
because the telecom fine-tuning data predominantly

Irrelevant System Mixing\

Mismatch Expression\

Incomplete Expression\ 12%

2“/2/ Incorrect Equation Derivation
b
24%

. " . 31%
Partial Fill Mismatch

29%

Symbol Misinterpretation

Figure 4: Error distribution among 40 annotated
DeepSeek-R1 errors.

consists of wireless protocols, whereas the prob-
lems in WirelessMathBench require handling long
contexts and performing high-level mathematical
reasoning.

4.3 Error Analysis

To better understand the limitations of the model-
generated solutions, we randomly sampled and re-
viewed 40 failure answers by DeepSeek-R1 on the
progressively masked filling and fully masked equa-
tion tasks, grouping them into several recurring cat-
egories. Figure 4 summarizes the distribution of
these errors.

Partial Fill Mismatch (31%). A prevalent er-
ror pattern in progressive masking tasks involves
models correctly completing one masked element
while failing on others within the same expression.
This manifests as either merging separate place-
holders (e.g., combining +/pK Bp,i, and yll ¢y, into
one term), misplacing correct expressions, or de-
riving one placeholder correctly while producing
inconsistent expressions for interdependent vari-
ables. These errors persist despite explicit bound-
ary indicators, suggesting fundamental limitations
in LLMs’ ability to maintain symbolic consistency
across multiple related elements in complex wire-
less communication equations.

Symbol Misinterpretation (29%). This type of
error arises when the model chooses the wrong
symbol or omits key symbolic elements in the final
equation. An example is substituting Hpg instead
of HEL in a channel derivation.

Incorrect Equation Derivation (24%). Several
solutions fail to follow the correct derivation path,
either missing crucial intermediate steps or inject-
ing extraneous components. In longer sequences,
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a single early mistake (e.g., confusing pilot power
p with user transmit power pg) tends to propa-
gate, causing the final expression to be structurally
flawed despite appearing superficially similar.

Irrelevant System Mixing (11%). We also ob-
serve instances in which the model introduces ex-
traneous terms or assumes mismatched system set-
tings. For example, it might inject NOMA-based
interference factors into an RIS—-MIMO scenario
with no multi-user superposition, or switch to an
entirely different beamforming constraint uncon-
nected to the original problem statement.

Other Errors (4%). A small fraction of errors
are too context-specific to classify under the main
categories. These include incomplete expressions—
where the answer stops abruptly without filling the
entire formula—and mismatched expressions that
repeat known placeholders without substituting the
correct variables.

Overall, while the majority of failures fall into
coherent error patterns, it is evident that the model
struggles when tasks require nuanced symbol-to-
mask matching or integrative domain reasoning.
Therefore, strengthening the model’s ability to ac-
curately derive reasoning and align domain knowl-
edge is a key challenge for future improvements.

5 Conclusion

We introduced WirelessMathBench, the first
benchmark that comprehensively evaluates LLMs’
abilities to domain-specific mathematical engineer-
ing tasks in wireless communications. By pre-
senting a broad range of tasks—from multiple-
choice questions to progressively masked fill-
in-the-blank and full equation completions—
WirelessMathBench assesses how well models han-
dle real-world wireless communications mathemat-
ical engineering challenges. Our experiments show
that, although many leading LLMs perform well on
simpler question types, their ability to reconstruct
equations deteriorates significantly when partial
or full derivation is required, exposing a critical
shortfall in current LLM-assisted scientific inno-
vation. Future work will expand the scope and
complexity of these wireless challenges, with the
aim of enhancing LLMs’ mathematical reasoning
and domain adaptation. By advancing their integra-
tion into the next-generation wireless systems, we
ultimately strive toward the development of more
capable, general-purpose Al solutions for scientific

and engineering applications.

Ethical Considerations

This paper focuses on the development of a bench-
mark for evaluating language models on mathemat-
ical modeling tasks in wireless communications.
The source data of WirelessMathBench is curated
from open-access research papers, ensuring that
the benchmark is built on publicly available infor-
mation. Meanwhile, we resummarize the papers
and anonymize the content to prevent any poten-
tial privacy concerns. In experiments, we follow
all licensing agreements and terms of service for
the models evaluated, ensuring that our work is
conducted in compliance with ethical guidelines.

Limitations

While WirelessMathBench provides a comprehen-
sive evaluation of LLMs on wireless mathematical
modeling tasks, several limitations remain. First,
it mainly covers text-based problems (e.g., sym-
bolic derivations), missing other key data types
like antenna diagrams, simulation plots, and Ra-
dio frequency (RF) measurements measurements,
which are crucial for real-world wireless tasks. Sec-
ond, while WirelessMathBench spans topics from
MIMO to RIS, it may not cover all emerging ar-
eas, such as quantum communication or terahertz
systems. Third, our automated evaluation checks
the final symbolic equivalence and dimensionality
plausibility but may miss incorrect reasoning at in-
termediate steps. Lastly, all tests were done in a
zero-shot setting. While this reflects real-world use,
it does not explore whether fine-tuning or retrieval-
based methods could improve results. Future ver-
sions of WirelessMathBench may include training
splits to support domain adaptation and wireless-
specific fine-tuning.
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A Dataset Details

A.1 Topics and Papers Selection

Our study addresses modern wireless communica-
tion challenges by selecting topics based on three
key criteria that ensure both the academic rigor and
practical relevance of our work. First, we target
topics that have undergone peer review and have
been accepted by prestigious journals such as IEEE
Transactions on Wireless Communications (TWC),
IEEE Transactions on Communications (TCOM),
and IEEE Journal on Selected Areas in Communi-
cations (JSAC), as well as by top-tier conferences
including IEEE International Conference on Com-
munications(ICC) and IEEE Global Communica-
tions Conference (Globalcom), and for which corre-
sponding arXiv versions are available. Second, we
focus on communication system modeling that en-
tails complex, multi-step mathematical derivations.
These derivations are designed to closely mimic
the challenges encountered in real-world wireless
communication scenarios, capturing the intricate in-
terplay between theoretical constructs and practical
system constraints. Third, we ensure topic diversity
by covering a wide range of wireless communica-
tion scenarios and problem domains. Specifically,
our study encompasses seven major communica-
tion scenarios and six key problem areas, including
interference management, spectrum optimization,
network coding, and energy efficiency.

A.2  ArXiv Data Processing

Our data processing pipeline is similar with (Maa-
touk et al., 2024). First begins with the removal of
all comments from the LaTeX files using Google’s
arXiv LaTeX Cleaner'. We then parse the LaTeX
source to extract the core technical content by sep-
arating the main text and mathematical expressions
from non-essential elements such as comments,
figures, and tables. For submissions comprising
multiple files linked via \input commands, we uti-
lize the latexpand tool? to flatten the document
into a single file, ensuring all dependencies are re-
solved. To address the variability introduced by
author-defined macros (e.g., via \newcommand or
\def), we automatically expand these using the
de-macro?, replacing custom macros with their
full definitions and normalizing all mathematical

"https://github.com/google-research/
arxiv-latex-cleaner

2https://ctan.org/pkg/latexpand

Shttps://ctan.org/pkg/de-macro

expressions to a consistent LaTeX format. Non-
informative content such as acknowledgments and
extensive bibliographies are removed to focus on
technical material and to ensure anonymity in
dataset construction by removing all author infor-
mation from the articles.

B Expert Validation Methodology

This appendix details the expert validation process
employed to ensure the quality and correctness of
all questions in WirelessMathBench.

B.1 Expert Qualifications

Our expert review team comprised five individuals
with established expertise in wireless communica-
tions:

e Senior Doctoral Student (1 member)

— Approximately 5 years of research expe-
rience in wireless communications

— Multiple first-author publications in rep-
utable journals (IEEE TWC, IEEE TVT)

¢ Postdoctoral Researchers (2 members)

— Each with around 10 years of profes-
sional research experience focused on
wireless communications

— Each has published over 10 first-author,
peer-reviewed papers in top journals
(IEEE TWC, IEEE JSAC, IEEE TVT)

— Both have served as reviewers for top-
tier journals for many years

— Each has garnered more than 1,500
Google Scholar citations

* Senior Faculty Members (2 members)

— Each with more than 25 years of research
experience in wireless communications

— Extensive publication records with over
40,000 Google Scholar citations

— Leadership positions in research institu-

tions and significant contributions to the
field

B.2 Cross-Verification Protocol

To ensure the highest quality of our benchmark, we
implemented a rigorous cross-verification protocol:

1. Each question in WirelessMathBench was re-
viewed by a minimum of two experts.
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2. Experts independently verified both the math-
ematical correctness and clarity of each ques-
tion.

3. When disagreements arose, the reviewers en-
gaged in detailed discussions until consensus
was reached.

4. For particularly complex derivations, a third
expert was consulted to provide additional ver-
ification.

5. All multiple-choice distractors were examined
to ensure they represented plausible but incor-
rect options.

This protocol ensured that all questions accu-
rately reflected real-world wireless communica-
tions challenges while maintaining clear formu-
lation and unambiguous answers.

B.3 Review Workflow

The question development and verification process
followed a structured workflow:

1. Initial Extraction: Semi-automated extrac-
tion of system models from research papers.

2. Question Formulation: Transformation of
system models into question-answer pairs
with varying difficulty levels.

3. First Review: Initial expert review focus-
ing on mathematical correctness, dimensional
consistency, and domain applicability.

4. Refinement: Modification of questions based
on first review feedback.

5. Second Review: Independent validation by a
different expert, focusing on clarity and peda-
gogical value.

6. Consensus Discussion: Resolution of any
discrepancies between reviewer assessments.

7. Final Approval: Acceptance of questions
into the benchmark dataset after successfully
passing all reviews.

Throughout this process, reviewers paid particu-
lar attention to:

» Dimensional consistency of all equations

* Proper use of notation and symbols

* Physical feasibility of the models

* Clarity and unambiguity of question formula-
tion

» Appropriate difficulty level classification

This multi-stage review process ensured that
WirelessMathBench contains high-quality ques-
tions that authentically represent the mathematical
challenges in wireless communications.

C Prompt Templates

For clarity and reproducibility, we provide exam-
ples of our prompt templates. Figure 10 shows a
template for the paper summarization task. Fig-
ure 11 illustrates the prompt used for question gen-
eration. Figures 12 and 13 present templates for
multiple-choice and fill-in-the-blank questions, re-
spectively. Finally, Figure 14 displays the prompt
used for LLM-based evaluation of model-generated
answers.

D Model Configurations and
Hyperparameters

In our WirelessMathBench experiment, a total of
16 models were tested. All model tests followed
the same template and set default parameters, and
all results are the results of a single run.

D.1 Closed-source Models

For models such as OpenAl-ol, GPT-40, GPT-4,
GPT-3.5-turbo, Gemini-2.0-flash, Gemini-1.5-pro,
and Gemini-1.5-flash, we utilize their official API
interfaces. These models are invoked via their re-
spective API endpoints with standardized default
parameters to ensure consistency and reproducibil-
ity across all experiments.

D.2 Open-source Models

Our local experiments employ several open-source
models deployed across different environments:

+ AliyunCloud Deployment*: Qwen2.5-Math-
72B and DeepSeek-V3 are deployed on the
AliyunCloud platform.

« NVIDIA NIM Deployment’: DeepSeek-R1 and
LLaMA-3.3-70B are run on NVIDIA NIM cloud
platform.

4ht’cps: //bailian.console.aliyun.com/
Shttps://build.nvidia.com/
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 HuggingFace Transformers®: Other models—
including Qwen2.5-Math-7B, LLaMA-3-8B-
Tele, LLaMA-3-8B, and Mistral-7B—are run
on local Nvidia A6000s, using the HuggingFace
Transformers library to load pre-trained models.

E Example Output

To demonstrate the gradation of complexity in
WirelessMathBench and illustrate model perfor-
mance across different task types, we present repre-
sentative outputs from OpenAl-ol and DeepSeek-
R1, two high-performing models in our evaluation.

Figure 5 illustrates a multiple-choice task as-
sessing MRC channel combining gain recognition,
where models must select the correct mathemati-
cal formulation from similar distractors. Figures 6,
7, and 8 exemplify the progressive masking ap-
proach at increasing difficulty levels—from Level
1 (single variable substitution) to Level 3 (complex
structured completion with conjugate conditions).
Figure 9 demonstrates a Full Equation Completion
task requiring the derivation of a phase-shift matrix
formulation for stacked intelligent metasurfaces.

These examples corroborate our quantitative
findings that model accuracy deteriorates substan-
tially with increasing task complexity, even for
state-of-the-art LLMs. Notably, all models struggle
with complex dimensionality constraints and conju-
gation operations in higher-level tasks, suggesting
fundamental limitations in their ability to maintain
multi-step symbolic consistency in specialized en-
gineering contexts.

F Chain-of-Thought Experiments

This section presents additional experiments explor-
ing the impact of Chain-of-Thought (CoT) prompt-
ing on model performance in WirelessMathBench.

F.1 Zero-shot Chain-of-Thought Prompt
Template

For our CoT experiments, we modified our stan-
dard prompt templates to explicitly request step-by-
step reasoning. The following shows the addition
made to our base prompts:

Provide a step-by-step explanation of
your reasoning process before giving
your final answer.

6https://huggingface.co/docs/transformers/en/
index

F.2 Performance Comparison

Table 5 presents the comparison of model perfor-
mance with and without Chain-of-Thought prompt-
ing across different task types.

F.3 Discussion of Chain-of-Thought Results

Our experiments with Chain-of-Thought (CoT)
prompting yielded several interesting observations:

* Limited overall improvement: Contrary
to expectations, CoT prompting led to only
marginal average accuracy improvements
across most models, and in some cases, even
decreased performance.

* Task-dependent effects: CoT showed small
gains on simpler tasks (MCQ), but often hin-
dered performance on more complex tasks
(Level 2-3 masking and FEC). This suggests
that explicit reasoning may introduce errors in
complex symbolic manipulations when mod-
els lack robust mathematical reasoning capa-
bilities.

* Performance gap persistence: Even with
CoT prompting, models like GPT-40 and
DeepSeek-V3 still significantly underper-
formed compared to models with built-in rea-
soning capabilities (DeepSeek-R1, OpenAl-
ol), indicating that the ability to reason
effectively about wireless communications
problems cannot be induced solely through
prompting.

* Reasoning overflow: In more complex tasks,
we observed that CoT often led models to
generate overly verbose reasoning chains that
deviated from the critical path needed to solve
the problem, potentially introducing errors.

These findings highlight that while CoT can of-
fer some benefits for simpler tasks, addressing the
fundamental challenges in complex mathematical
modeling for wireless communications likely re-
quires architectural improvements and specialized
training rather than prompting strategies alone. Fu-
ture work could explore more structured reasoning
approaches or domain-specific fine-tuning to en-
hance performance on WirelessMathBench.

Disclosure

In the process of writing this paper, we partially
utilized ChatGPT as a language polishing tool to
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Progressive Masking Filling

Model MCQ FEC Avg. Acc
Levell Level2 Level3
DeepSeek-R1 76.00% 60.00% 3491% 12.50% 7.83% 38.05%
OpenAl-ol 66.40% 59.17% 32.17% 8.04% 696%  34.55%
GPT-40 72.80% 42.50% 28.70% 625% 4.35% 30.92%
GPT-40 (w cot) 72.00% 40.00% 23.48% 4.46% 522%  29.03%
GPT-4 53.60% 3833% 1826% 3.57% 435% 23.62%
GPT-4 (w cot) 58.40% 3250% 14.78%  3.57% 4.35% 22.72%
GPT-3.5-turbo 4560% 7.50% 1043% 1.79% 1.74% 13.41%
GPT-3.5-turbo (w cot) 48.80% 11.67%  8.70% 268% 2.61% 14.89%
DeepSeek-V3 78.40% 50.00% 24.35% 625% 6.96% 33.19%
DeepSeek-V3 (w cot) 73.60% 50.00% 20.00% 6.25% 6.09% 31.19%
Gemini-2.0-flash 71.20% 40.83% 24.35% 5.36% 4.35% 29.22%
Gemini-2.0-flash (w cot) 73.60% 40.00% 24.35% 8.04% 4.35% 30.07%
Gemini-1.5-pro 65.60% 43.33% 29.57% 9.82% 6.09%  30.88%
Gemini-1.5-pro (w cot) 69.60% 3833% 2522% 7.14% 3.48% 28.75%
Gemini-1.5-flash 66.40% 37.50% 1391% 2.68% 4.35% 24.97%

Gemini-1.5-flash (w cot) 68.80% 32.50% 17.39% 2.68% 522% 25.32%

Table 5: Performance comparison of models with and without Chain-of-Thought (CoT) prompting on Wireless-
MathBench.

improve the clarity and quality of the text. How-
ever, all research ideas, data analyses, and conclu-
sions were independently conceived and confirmed
by the authors.
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Q_id:liu2023detecting_q3_mc.

MRC combining yields SINR with coherent combining gain (numerator) and
Backgroud interference\/noise terms (denominator). Key components include LoS power
||gx|%, estimation quality 7,,z, and covariance trace tr(©y)

Question ‘Which numerator represents coherent combining gain?

— 2
A: (llgell® + pKtr(Oy))
- M
Optioins B: (Hng2 + 2 et ’Ymk)
C: (gl + pKt(©1) + Xy 7o)
2
D: (llgell® + pKt(©4) + Xty k)
Correct Answer @
OpenAl-ol

{

"explanation": "In MRC combining, the coherent combining gain in the numerator of the SINR expression
represents the squared magnitude of the combined channel gains. The gain is proportional to the square of the sum
of the deterministic LoS component and the estimated channel components.\n\nThe LoS power is given by \
(\[\bar {\mathbf{g}} k\|*2\). The estimation quality per antenna is given by \(\gamma_{mk}\) for antennas \(m =
1,\,\ldots,\,M\).\n\nTherefore, the total coherent combining gain is represented by:\n\[\n\left(

\|\bar{\mathbf{g}} k\[*2 +\sum_{m=1}"{M} \gamma_{mk} \right)*2\n\]\n\nThis expression corresponds to
**QOption B**.\n\nOptions A and D include \(pK\mathrm {tr}(\pmb{\Theta} k)\) in the numerator, which typically
represents interference or noise terms, not the coherent signal gain.\n\nOption C does not square the sum, which is
inconsistent with the fact that coherent combining gain is proportional to the square of the combined channel
gains.\n\nTherefore, Option B is the correct representation of the coherent combining gain in the numerator.",

"answer": "B"

}

DeepSeck-R1
D]
{

"explanation": "The coherent combining gain in MRC arises from the constructive addition of signal
components across antennas, leading to a squared term in the SINR numerator. The key components include the
LoS power ||gx||2, estimation quality ETI‘LI Ymk»> and covariance trace pKtr(0©y,). These terms collectively
contribute to the effective signal power after combining. Option D correctly incorporates all three components
within a squared sum, reflecting the coherent gain from both deterministic (LoS) and statistical (estimation quality,
covariance) channel properties. Other options either omit critical terms (e.g., covariance trace in B) or lack the
necessary squaring operation (C), which is essential for coherent gain.",

"answer": "D"

}

Figure 5: An example question and the corresponding output from LLMs for a multiple-choice task.
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Q_id:liu2021deep_q1_fillin_1.

In an IRS-assisted MU-MIMO system, the base station receives signals through
both direct and IRS-reflected paths. The observation matrix X combines the

Backgroud channel matrix Hyp, IRS phase-shift matrix P, and additive noise Zj. Here,
$MS is BS antennas, N IRS elements, and C' pilot symbols.
Question What noise term completes the received signal equation?
Equation X, =H,P+ [MASK]
Correct Answer
OpenAl-ol
penAl-o
{

"explanation": "The additive noise term \(\boldsymbol{Z}_k\) completes the received signal equation by
accounting for random disturbances in the system.",

"answer": "\boxed{\boldsymbol{Z} k}"

}
DeepSeek-R1
{

"explanation": "In the given IRS-assisted MU-MIMO system, the received signal equation combines the channel
matrix $\boldsymbol {H} k$, IRS phase-shift matrix $\boldsymbol {P}$, and additive noise
$\boldsymbol{Z} k$. The additive noise term $\boldsymbol{Z} kS is explicitly mentioned in the
background context as part of the observation matrix $\boldsymbol{X} kS$. The equation structure
$\boldsymbol{X} k =\boldsymbol{H} k \boldsymbol{P} + [MASK]$ directly implies that the missing term
is the additive noise $\boldsymbol{Z}_k$, which aligns with standard wireless communication models where
noise is added linearly to the signal component.",

"answer": "\boxed {\boldsymbol{Z} k}"

}

Figure 6: An example of a level 1 progressively masked fill-in-the-blank task. The figure shows both the question

and the LLLM’s output as it begins to reconstruct the missing parts of the equation.
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Q_id:zhao2024dual_q1_fillin_2.

In RIS-aided ISAC systems, the effective channel combines direct BS-user
links and RIS-reflected paths. The RIS phase matrix ® enables configurable

Backg
ackgroud signal reflections. Channel matrices maintain Ny X Np dimensions through
proper conjugation.
Question What matrix configures RIS phase shifts?
Equation Hc,k = HBU,k + [MASK]@[MASK]

Correct Answer Hgyyi| and HgR

OpenAl-ol
P HRU,k and HBR

{

"explanation": "The two missing channel matrices are \(\mathbf{H}_{\text{RU},k}\) and \
(\mathbf{H}_{\text{BR}}\).",
"answer": "\boxed {\mathbf{H} _{\text{RU} k}},\boxed{\mathbf{H} _{\text{BR}}}"

¥
DeepSeek-R1
Hgrux| and |Hgr
{

"explanation": "In RIS-aided systems, the effective channel combines the direct BS-user path (H_{BU,k}) and
the RIS-reflected path. The reflected path involves the channel from BS to RIS (H_{BR}) and RIS to user
(H_{RU,k}), with the RIS phase matrix ® in between. Matrix multiplication order ensures dimensions align:
H _{RUk} (N UXxN R)-®(N_RxN_R) -H _{BR} (N_R xN_B)results in N_U x N_B, matching
H_{BU,k}. Thus, the missing terms are H {RU,k} and H {BR}.",

"answer": "\boxed {\mathbf{H} {\text{RU}k}},\boxed{\mathbf{H} {\text{BR}}}"

}

Figure 7: An example of a level 2 progressively masked fill-in-the-blank task.
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Q_id:xu2021a_ql1_fillin_3.

Satellite line-of-sight channels use planar antenna arrays with spatial

correlation. The LoS component g, depends on Rician factor k, path-loss S,
Backgroud . .

and user angles 0y (elevation), wy, (azimuth). Array response vector +b{ell}

uses wavelength A and element positions c,,.

Provide scaling factor and first element's phase

Question
Equation barg, = [MASK][e/1ASKI, . eit0uanTex]
Correct Answer KBy and | €(6y, "-’k)Tcl
K+ 1
OpenAl-ol KB
d
K +1 an @

{
"explanation": "The scaling factor for the LoS component is \sqrt{\dfrac {\kappa_k \beta k} {\kappa k + 1}}

due to the Rician factor and path-loss. The first element's phase is zero because the array factor at the origin is

zero, so the exponential term becomes e”{j0}=1.",
"answer": "\boxed{\sqrt{\dfrac{\kappa_k \beta_k} {\kappa_k + 1}}},\boxed{0}"

}

DeepSeck-R1 K
B | ond £(61, wi) ey
K+ 1

{

"explanation": "The scaling factor for the LoS component $\bar{\mathbf{g}} k$ combines the path-loss
$\beta_k$ and Rician factor $\kappa_k$ as $\sqrt{\frac{\kappa_k \beta_k} {\kappa_k + 1}}$. The first
element's phase is determined by the inner product of the array response vector function $\pmb{\ell}(\theta_k,
\omega_k)$ with the first antenna element's position $\mathbf{c} 13.",

"answer": "\boxed {\sqrt{\frac{\kappa k \beta k} {\kappa k + 1}}}\, \boxed {\pmb {\ell}(\theta_k,

\omega_k)"T \mathbf{c} 1}"

Figure 8: An example of a level 3 progressively masked fill-in-the-blank task. Notice that both OpenAl-ol and
DeepSeek-R1 encountered difficulties in correctly interpreting the conjugate condition required by the task.
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Q_id:an2023stacked_q1_fillin_4.

In a stacked intelligent metasurface (SIM) with L layers and N meta-atoms per
layer, each layer applies a diagonal phase-shift matrix to incoming signals.
Denote the matrix of the I-th layer by ®'. The diagonal entries contain the

{

}

Backgroud . . .
ackaro phase terms eﬂ%, controlling how each meta-atom shifts the wave\u2019s

phase.","question_text":"Write the full expression for the phase-shift matrix of
layer [.

Question "Write the full expression for the phase-shift matrix of layer .

Equation & = [MASK]

Correct Answer diag (ejall7 (8]49!27 RN ejglN)
OpenAl-ol

. ol ol ol
dlag(eﬁl, e, .., e’HN) ‘

"explanation": "The phase-shift matrix \( \boldsymbol{\Phi}"1\) is a diagonal matrix with elements \(
eM{j\theta n"l} \) along the diagonal for each meta-atom \( n = 1, 2, \dotsc, N \). Using the \( \mathrm {diag} \)
function and following the LaTeX protocols: functions in roman font, scaled parentheses via \( \Bigl( \) and \(
\Bigr) \), commas with small spaces via \(,\, \), and braced exponents \( e"{\{...\} } \), the expression becomes:",

"answer": "\boxed {\mathrm {diag}\Bigl( e"{j\theta™l 1},\, e"{j\theta™] 2},\, \dotsc,\, e"{j\theta®] N} \Bigr)}"

DeepSeck-R1

{

}

. ol ol ol
diag (6]91, e, .., efeN)

"explanation": "The phase-shift matrix for layer  in a SIM is a diagonal matrix where each diagonal entry
corresponds to the phase shift e applied by the n-th meta-atom in the [-th layer. Using the diag function with
scaled parentheses and properly formatted arguments, the matrix is constructed as diag (ejgll, ej"l27 ceey e .

"answer": "\boxed{\mathrm{diag}\Bigl( e"{j\theta_1"1},\, e"{j\theta 271} ,\, \ldots,\, e"{j\theta_ N"1} \Bigr)}"

Figure 9: An example of a Full Equation Completion (FEC) task.
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Paper Summary Prompt Template.

Task: Act as an expert in wireless communications and mathematical modeling.
You will be provided with a research paper in the field of wireless communications.
Your goal is to extract and summarize the mathematical system modeling contained in
the paper.
<<STRUCTURE REQUIREMENTS>>
1. **Model Extraction**:
a) Identify ALL system equations with context
b) For each equation:
i) List ALL variables with units/dimensions
i1) Specify underlying assumptions
iii) Note domain restrictions

2. **Summary Organization®*:
\paragraph {Background} (2-3 sentences contextualizing the model)
\paragraph {Key Assumptions} (bullet points with $\bullet$)
\paragraph {Parameter Definitions} (table-like structure using \quad)
\paragraph {Core Equations} (numbered with original labels if available)

3. #*Equation Formatting™*:
- Vectors: \boldsymbol{v}
- Matrices: ‘\mathbf{M}
- Operators: \mathrm {diag}, \mathrm {tr}
- Complex numbers: j for imaginary unit
- Dirac notation: ‘\delta(\cdot)
- Alignment: \begin{align*}...\end {align*}

<<CONTENT GUIDELINES>>

« **Variable Explanations**:
- For each symbol: $\theta$ \quad (Type: Phase shift; Domain: [0,2x); Unit: rad)
- Matrix dimensions: $\mathbf{H} \in \mathbb{C} " {N\times M}$
- Distinguish similar symbols: $h_{1j}$ vs Sh_{i}*{()}$

« **Model Validation**:
- Verify dimensional consistency
- Check boundary conditions
- Confirm parameter unit homogeneity

« **Special Notation**:
- Estimated quantities: $\hat {\mathbf{x}}$
- Time derivatives: $\dot{\mathbf{v}}$
- Optimal values: $\mathbf{\Theta}"\ast$

<<EXAMPLE OUTPUT>>

\paragraph {Background}

Consider an RIS-assisted mmWave system with $K$ single-antenna users
communicating via $NS$ RIS elements...

<Key Assumptions>

\textbf{1) Effective Channel Representation. }\\

The received signal at the BS from user \(k\) combines the single-reflection and
double-reflection links......

The equivalent channel from user \(k\) to the BS is

\begin {equation}‘label {eq:EffectiveChannel}

\end {equation}

<Parameter Definitions> such as $\boldsymbol {h} {k1} ‘\in \mathbb{C}~{N \times
1}3$ is the channel from user \(k\) to \(\mathrm {RIS} 1\).

\paragraph { System model with equations.}

Figure 10: This template is used to generate concise summaries of research papers.
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Question Generat

n Prompt Template.

Task: Act as an expert in wireless communications and mathematical modeling.
You will generate exam-style questions from research paper summaries with the
following strict requirements:

<<STRUCTURE REQUIREMENTS>>
1. **Per Equation Processing**:
a) Identify ALL system model equations, explain each symbol in the equation in
background
b) For EACH equation:
i) Mask the RHS with [MASK]
ii) Generate 1 MCQ with 4 plausible options
iii) Create 4 progressive fill-in-the-blank subquestions with:
- 25%, 50%, 75%, and 100% key symbols masked
- Variable masking in different positions
iv) Ensure each subquestions can be answered independently and full self-
containment (no external references)

2. **Question Components**:

- For MCQs:
*\textbf{Background}: Contextual info in 3-5 lines
*\textbf{Equation}: Masked equation in display math mode
*\textbf{Question}: Explicitly ask to replace [MASK]
*\textbf{Options}: 4 LaTeX-formatted choices (A)-(D)
*\textbf{ Answer} : Detailed derivation walkthrough

- For Fill-in-the-blanks:
*\textbf{Masked Equation}: Progressive symbol replacement
*\textbf{Question}: Specific term request
*\textbf{Answer}: Complete equation with \boxed{} for solutions

<<CONTENT GUIDELINES>>
« **Distractor Design**:
- Below are some common error types:

1) Matrix dimension mismatches
2) Incorrect sequence (61 vs 62)
3) Missing diag() operators
4) Channel matrix transposition errors
5) Incorrect matrix multiplication
6) Incorrect vector/matrix dimensions
7) Random mistakes

« **Mathematical Rigor**:
- Use \mathrm {diag} () for diagonalization
- Replace symbolic writing in the problem appropriately, but ensure correctness
- Verify matrix multiplication compatibility

« **Pedagogical Elements**:
- Add \underbrace annotations in answers
- Use $;$; for proper equation spacing
- Include \text{} descriptions for terms

« **Masking Strategy**:
- Mask variables not operators
- Progressively increase masked terms:
1) 25%: Single critical variable
2) 50%: Two interdependent terms
3) 75%: Multiple components
4) 100%: Full equation recall

« **Blank Positioning™**:
- 25% mask: Key parameter (e.g., 6 values)
- 50% mask: Combined terms (e.g., N_jdiag(h_kj))
- 75% mask: Structural components
- 100% mask: Entire RHS

<<FORMATTING RULES>>
« Strict LaTeX compliance:
- Equations in $$ $$/equation* environments
- \boldsymbol for vectors/matrices
- \mathrm for operators (diag, etc)
- \quad spacing between equation terms

« Section headers with:
\textbf{\Large Question X (System Component)}

\vspace{-0.5em} % Compact vertical spacing

<<EXAMPLE TEMPLATE>>

Figure 11: This prompt template converts paper summaries into detailed question—answer pairs.
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Multiple-Choice Question Prompt Template.

You are a domain expert in Wireless Communication. Please answer the
following multiple-choice question.

**Background Context**
{background}

**Multiple-Choice Question**
{question_text}

**Relevant Equation™**
{equation or "No equation provided"}

{options_str}

**Formatting Requirements**

{latex_core rules}

- Explanations requiring math must use . . . for inline equations
- Maintain consistent notation with question context

**Response Instructions®*

1. Select ONE letter choice (A-D)

2. Provide technical reasoning in the explanation field

3. Present your final answer in a JSON format. This should include: answer and
explanation

Your output should be formatted as a JSON object enclosed in Markdown code
blocks tagged with 'json'. For example:
‘json
i
"explanation": "<explanation>"
"answer": "C",

3

Figure 12: This template is designed for answering multiple-choice questions. The model is guided to choose the
correct mathematical expression from a set of closely related options.

11007



Fill-in-the-Blank and Full equation Completion Question Prompt Template.

You are a domain expert in Wireless Communication. Please answer the
following fill-in-the-blank question.

**Background Context**
{background}

**Problem Statement (Blanks marked with [MASK])**
{question_text}

**Equation to Complete**
{equation or "No equation provided"}

**Strict LaTeX Protocol**
{latex_core rules}
5. Each [MASK] requires a separate \boxed{{...} }
6. Final answer line format:
The final answer is \boxed{{...}},\boxed{{...} },...

**Submission Requirements**

1. Answer box number corresponds to the [MASK] number
2. Use EXACT formatting from the equation/question

3. No natural language in boxed answers

4. Technical explanation in the 'explanation' field

Your output should be formatted as a JSON object enclosed in Markdown code
blocks tagged with 'json'. For example:
‘json
{{
"explanation": "<explanation>*,
"answer": "\boxed {<answerl>}, \boxed {<answer2>}, \boxed {<answer3>}",

y

Figure 13: Prompt template used for fill-in-the-blank and full equation completion tasks. It directs the model to
reconstruct missing parts of equations using contextual cues and domain knowledge, simulating a step-by-step
derivation process.
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LLM Evaluation Answer Prompt Template.

You are an expert in wireless communications and mathematical modeling. Your task
is to evaluate a student's answer against the correct answer.
Follow these evaluation criteria strictly:

1. **Mathematical Equivalence:** Check if the student's answer is mathematically
equivalent to the correct answer.

2. ** Answer Format:** The student's answer should be in the same format as the
correct answer.

3. **All blanks should be filled.** All the blanks should be filled with the correct
answer.

4. **Scoring:** Output a score of "1" if the student's answer 1s correct (i.e.,
mathematically equivalent) or "0" if it is not.

Please provide your final output as a JSON object (enclosed in Markdown code blocks
tagged with 'json') with the following format:

json
H

"SCOI‘e": Illll
H
or
json
H

"SCOI‘e": IlOll
H
Here is the background:
{background}

Here is the question:
{question}

Here is the question:
{question}

Here is the correct answer:
{true_answer}

Here is the student's answer:
{student_answer}

Evaluate the student's answer based solely on the above information and output only
the JSON object with the score.

nn

Figure 14: This evaluation prompt template standardizes the process of assessing model-generated answers. It
ensures that responses are judged consistently based on their correctness, completeness, and adherence to the
required domain-specific reasoning.
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