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Query: i want you to 
write a Rshiny code in 
rstudio to generate 
above visualization. 
Can you do that?

Coding; Screenshots and UI Elements

Task sub-field: Code Generation 
Image field: Interactive Tools
Keywords: Multiple complex visual 
elements; no domain knowledge.

Query: Explain this 
framework to me in detail 
and in chronological order. I 
am an aspiring consultant 
and I need to know this. Also 
give me potential issues and 
solutions that will come uo 
through this.

Knowledge; Document and Text-based Images

Task sub-field: Human and Culture 
Image sub-field: Diagrams
Keywords: Profitability framework; structured 
diagram; moderate reasoning.

Query:The image above represents a H&E stain of a 
skeletal muscle biopsy from a young boy who came 
into the clinic reporting muscle weakness. You are 
his doctor. Does the boy have Duchenne muscular 
dystrophy? Explain. Your answer should include an 
analysis of the biopsy (you can use arrows to point to 
various features) and be sure to list all features of the 
muscle that indicate diseased or healthy conditions.

Science; Medical Images

Task sub-field: Life Science/Medical 
Image sub-field: Pathology Slides
Keywords: Medical diagnosis; pathological analysis; fiber size variation; 
signs of necrosis and infiltration; specialized knowledge.

Figure 1: Examples of ProBench with varying lengths. We show the task and image fields in the header of each sample. Due to
space limitations, more diverse and longer samples are provided in the supplementary material.

Abstract
Solving expert-level multimodal tasks is a key
milestone in general intelligence. As the ca-
pabilities of multimodal large language mod-
els (MLLMs) continue to evolve, evaluation
of frontier multimodal intelligence becomes
necessary yet challenging. In this work, we in-
troduce ProBench, a benchmark of open-ended
user queries encapsulating professional exper-
tise and advanced reasoning. ProBench con-
sists of 4,000 high-quality samples indepen-
dently collected from professionals based on
their productivity demands. It spans across 10
fields and 56 sub-fields, including science, arts,
humanities, coding, mathematics, and creative
writing. Experimentally, we evaluate and com-
pare 24 latest models using MLLM-as-a-Judge.
Our results reveal that although the best open-
source models rival the proprietary ones, they
all face significant challenges in visual percep-
tion, textual understanding, domain knowledge,
and advanced reasoning.

1 Introduction

Solving expert-level multimodal tasks with multi-
modal large language models (MLLMs) represents
an important milestone toward achieving human-
level general intelligence. However, these tasks
require MLLMs to possess strong user query un-
derstanding, domain-specific knowledge, and ad-
vanced reasoning abilities. Ensuring their reliabil-
ity before deployment necessitates rigorous eval-

uation. To address it, we introduce ProBench, a
challenging and automatic evaluation benchmark
leveraging MLLM-as-a-Judge. ProBench consists
of 4,000 queries from professional users, cover-
ing diverse productivity demands to assess MLLM
capabilities in open-ended scenarios (Fig. 1).

One common benchmark to evaluating MLLM
performance with expert knowledge is MMMU
(Yue et al., 2024a). While effective for automatic
evaluation using predefined answers, these closed-
ended visual question answering benchmarks fail
to capture MLLM capabilities in open-ended user
interactions. Specifically, they do not adequately
assess MLLM ability to follow user instructions
or align with human preferences, both of which
are fundamental for real-world applications (Lu
et al., 2024; Luo et al., 2024; Chen et al., 2024b).
Similar limitations apply to other benchmarks, such
as MMMU-pro (Yue et al., 2024b), MMBench (Liu
et al., 2025), and others (Lu et al., 2023; Masry
et al., 2022; Singh et al., 2019; Wu et al., 2024).

Alternatively, MLLM-as-a-Judge is employed to
automatically evaluate model performance in open-
ended scenarios. However, existing benchmarks
fail to rigorously assess MLLMs on expert-level
professional tasks. Some (Chen et al., 2024b) are
artificially constructed by a small group of experts,
limiting their ability to reflect real-world user in-
teractions. The remaining benchmarks (Luo et al.,
2024; Lu et al., 2024), such as WildVision, are
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Figure 2: Comparison with WildVision (Lu et al., 2024) on
challenge levels of (a) text, (b) image, and (c) reasoning for
user instruction queries. To ensure a fair comparison, we
follow WildVision by selecting the top 500 highest-quality
queries from the single-round conversations.

mostly set in general chat environments and require
much less domain knowledge to solve.

To fill this gap, in this paper, we aim to design an
open-ended benchmark that requires expert-level
knowledge for multimodal tasks. Our ProBench
is created from high-quality interactions within
100K real-world, professionally crowdsourced mul-
timodal conversations for productivity scenarios.
Specifically, samples are collected by encouraging
users to ask questions related to their daily pro-
fessional work, which usually require significant
expert-level knowledge. This distinction sets our
benchmark apart from prior works like WildVision
(Lu et al., 2024) (Fig. 2). For a comprehensive
evaluation, ProBench includes three tracks: single-
round, multi-round, and multi-linguistic conversa-
tions. They respectively span 10 task fields and
56 sub-fields, support 17 languages, and support
conversations with up to 13 conversation turns. An
overview of ProBench is presented in Fig. 3.

Leveraging MLLM-as-a-Judge (e.g., gpt-4o), we
assess 24 leading MLLMs on ProBench. Our
evaluation reveals several key limitations in state-
of-the-art MLLMs: i) current MLLMs struggle
in visual perception, textual understanding, do-
main knowledge, and advanced reasoning, suf-
fering from tasks like mathematics and planning;
ii) multi-linguistic understanding and long-context
reasoning during multi-round interaction remain
challenging for most existing MLLMs. Our main
contributions are summarized as follows:

• we introduce ProBench, an open-ended mul-
timodal benchmark tailored for professional
work scenarios requiring expert-level knowl-
edge, featuring 4,000 samples across 10 task
fields over 56 sub-fields. The benchmark also
features multi-round conversations up to 13
turns and multi-linguistic tracks in 17 lan-

(a)

(b)

(c)

Figure 3: ProBench overview. Distributions of (a) task fields
on the single-round track, (b) languages on the multi-linguistic
track, and (c) conversation rounds on the multi-round tracks.

guages;
• we design an automatic pairwise evaluation

pipeline using MLLM-as-a-Judge, achieving
79.9% agreement with human experts. The
evaluation is robust to different comparison
baseline and judge model choices. We also
provide a distilled version of Llama-vision to
support cost-effective local evaluations;

• we conduct comprehensive evaluations using
24 leading MLLMs, showing that ProBench
presents significant challenges for existing
MLLMs, in visual perception, advanced rea-
soning, and domain knowledge. This signifies
the need for more advanced multimodal mod-
els for high-value practical scenarios.

2 ProBench

Preliminary. The ProBench dynamically ranks
MLLMs by employing the ELO rating system, im-
plemented through statistical modeling based on
direct pairwise model comparisons. In the follow-
ing, we provide an overview. For further details,
please refer to (Elo, 1966; Hunter, 2004). Given N
MLLMs, an online ELO rating system compares
model i with rating ri and model j with rating
rj using the probability P (yi,j = 1). Here, yi,j

denotes the binary outcome, where yi,j = 1 indi-
cates that model i wins, and yi,j = 0 indicates that
model j wins. The probability is calculated by

P (yi,j = 1) =
1

1 + 10(ri−rj)/α
,

where α is a hyperparameter that serves as a scaling
factor, typically set to α = 400. The ELO rating is
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Figure 4: Framework of ProBench. Starting with 100K crowdsourced conversations, we identify high-quality user queries to
curate single-round, multi-linguistic, and multi-round tracks. Using MLLM-as-a-Judge, we benchmark and rank 24 state-of-the-
art MLLMs with ELO ratings. To ensure fairness, the ELO ratings are de-biased to remove confounder effects (e.g., MLLM
response formats), resulting in the final ProBench leaderboard. Icons in the figure are sourced from (Freepik et al., 2025).

dynamically updated after each model comparison.
Taking model i as an example, the rating is updated
according to the following rule:

rupti = ri +K × (si,j − P (yi,j = 1)) .

Similarly, K is a constant determining the mag-
nitude of rating adjustments, commonly set to
K = 32. The term si,j is a scalar representing
the actual outcome: 0 for a loss, 0.5 for a tie, and
1 for a win. This updating rule encourages that a
higher-rated model gains fewer points for a win,
and loses more points for a defeat, while a lower-
rated model experiences the opposite effect.

However, when using MLLM-as-a-Judge, the
comparison results can be sensitive to model pre-
sentation order and confounded by response style
variations (Li et al., 2024c). To address these
challenges, the ProBench incorporates the Bradley-
Terry model (Hunter, 2004) as an additional layer
atop the ELO system. For N MLLMs and M pair-
wise comparisons, each round 1 ≤ m ≤ M com-
pares model i and model j. We have Xwin

m ∈ RN

to indicate which model is presented first1, while
Xsty

m ∈ RS captures S stylistic differences between
the outputs of models i and j (e.g., word counts,
and use of markdown). The Bradley-Terry model
then refines the rating of model i as

rrefi = C +K × β̂i ,

β̂, γ̂ = argmin
β,γ

∑

m,i,j

ℓbce(β
⊤Xwin

m + γ⊤Xsty
m , si,j) ,

where ℓbce(·, ·) is the binary cross-entropy loss, C
is a baseline rating constant, β ∈ RN and γ ∈

1This bias can be easily mitigated by evaluating twice
while swapping the comparison order.

RS are respectively known as the model strength
and style coefficients, and β̂i is a scaler indicating
strength of model i. This refinement known as style
control in the literature (Li et al.) compensates for
stylistic biases, ensuring a fair model performance
evaluation.
Overview. Our paper aims to establish a com-
prehensive and challenging benchmark for evalu-
ating MLLMs. The resulting ProBench is built on
two primary components: i) curating high-quality
conversations from a crowdsourced dataset, catego-
rized into single-round, multi-linguistic, and multi-
round tracks; ii) employing MLLM-as-a-Judge to
compare and rank MLLMs. In total, 3000, 500, and
500 conversations are selected for the single-round,
multi-linguistic, and multi-round tracks, respec-
tively, from an initial pool of 100K crowdsourced
user-MLLM conversations. An overview is pre-
sented in Fig. 4.

2.1 Benchmark establishment
The benchmark is curated based on three guiding
principles: i) diversity, selected user instruction
queries target to avoid redundancies while exten-
sively covering MLLM-based tasks; ii) MLLM-
driven, the chosen queries of conversations are tai-
lored to evaluate the unique capabilities of MLLMs
in the multimodal domain; iii) coherence, the
benchmark enables targeted evaluations for spe-
cific MLLM tasks, rather than providing undiffer-
entiated evaluations. We first describe the common
steps involved in curating the three tracks, followed
by a discussion of the track-specific methodologies.
Common step. We filter out short user instruc-
tion queries that contain excessive stop words, and
apply MinHash-based text deduplication (Lee et al.,
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2021) to retain a pool of non-redundant queries.
To address potential redundancy or irrelevance be-
tween the instructions and images within a user
query, we perform image-instruction deduplication.
This step removes queries that can be sufficiently
answered using only the textual instructions, lever-
aging an MLLM-based filter.
Single-round track. A language detector is em-
ployed to filter out non-English user instruction
queries. Starting with a pool of MLLM task and
sub-task fields derived from (Chen et al., 2024b),
we use an MLLM-based annotator to assign user in-
struction queries to existing fields or propose new
ones where necessary. Additionally, the annota-
tor assesses the challenge level of each query. To
ensure diversity, domain balancing is performed,
and overrepresented task fields are downsampled,
resulting in 3000 user instruction queries.
Multi-linguistic track. User instruction queries
are categorized by their languages, excluding all
English-based conversations. Based on frequency,
the queries are grouped into Portuguese (PT),
French (FR), Spanish (ES), German (DE), and an
“Other” category (e.g., Chinese, Vietnamese, and
more). An MLLM-based annotator is then used to
assess the challenges of the queries, with the 100
most difficult queries retained for each group.
Multi-round track. Similar to the single-round
track, we focus on user instruction queries in En-
glish for this track. Multi-round conversations are
required to feature interconnected queries across
rounds, demonstrating a progressive nature. To
achieve this, we identify the reasoning challenges
and interdependencies between queries within the
conversations, applying an MLLM annotator. Ul-
timately, the 100 most challenging independent
queries and 400 interconnected multi-round user
instruction queries are preserved.

Detailed prompts used for the above steps are
provided in the supplementary material. With the
ProBench, we are readily to assess and rank the
MLLMs.

2.2 MLLM-as-a-Judge and ranking

We evaluate MLLM performance in addressing
user instruction queries using a 5-point Likert
scale (Likert, 1932), by conducting pairwise com-
parisons against a baseline model (e.g., GPT-4o).
While evaluations by domain-specific human ex-
perts are considered as the gold standard, they are
resource-intensive, time-consuming, and challeng-
ing to scale for large-scale benchmarks. As an alter-

native, we employ MLLM-as-a-Judge as an approx-
imation of human expertise (Li et al., 2024c; Zheng
et al., 2023; Chen et al., 2024a). The MLLM-as-a-
Judge is guided by the following principles.

• Correctness: ensures the accuracy of infor-
mation, absence of factual errors, and align-
ments with known and visual knowledge. (For
the multi-linguistic track, response language
consistency is emphasized).

• Helpfulness: provides clear, practical, and
actionable guidance to address the user in-
struction query.

• Relevance: focuses on the prompt require-
ments, avoiding extraneous or tangential in-
formation.

• Conciseness: avoids unnecessary verbosity
while maintaining clarity and direct language.

• Completeness: covers all essential aspects of
the user instruction query, providing sufficient
information to address it.

Details of the prompts used to guide MLLM-as-a-
Judge are provided in the supplementary material.
Subsequently, we apply the ELO rating system, as
described in the preliminary section, to compute
the de-biased ratings of each MLLM. These ratings
are used for leaderboard comparisons, ensuring a
fair and consistent evaluation across models.

3 Experiment

3.1 Experimental setup
Implementation detail. All MLLMs are bench-
marked using the vllm (Kwon et al., 2023) and
Hugging Face (Wolf, 2019) codebases, with
greedy sampling employed for response generation.
For MLLMs with limited context lengths (e.g., a
4096 token context in Molmo-7B-D-0924), slid-
ing window generation is applied to handle longer
inputs. Our MLLM judge utilizes gpt-4o-2024-08-
06 with greedy sampling for consistent and repro-
ducible evaluation. For pairwise comparisons in
Elo rating calculations, we set gpt-4o-2024-05-13
as the baseline, evaluate each model twice by swap-
ping the presentation order for each user query, and
de-bias the ELO ratings by following the method-
ology of (Li et al., 2024c).
MLLM. We evaluate 24 leading MLLMs: gpt-
4o-mini-2024-07-18 (Hurst et al., 2024), gpt-4o-
2024-08-06 (Hurst et al., 2024), gpt-4o-2024-05-13
(Hurst et al., 2024), claude-3-5-sonnet-20241022
(Anthropic, 2024), gemini-1.5-pro-002 (Team et al.,
2023), gemini-1.5-flash-002 (Team et al., 2023),
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Table 1: Comparisons of state-of-the-art MLLMs on the single-round track are presented using the following abbreviations:
Sci. (Science), Cd. (Coding), CW. (Creative Writing), IE. (Information Extraction), Perc. (Perception), Knowl. (Knowledge),
Arts (Arts), Plan. (Planning), Math (Mathematics), and Mt. (Metrics). We provide ELO ratings for each task, followed by an
overview that includes the average number of output tokens (#Token), 95% confidence interval (95% CI), win rate (WR), and
overall ELO rating. The MLLMs are sorted by the overal ELo rating in each group of model size.

Model Task-Specific ELO Ratings Overview

Sci. Cd. CW. IE. Perc. Knowl. Arts Plan. Math. Mt. #Token 95% CI WR Elo

Proprietary MLLMs
claude-3-5-sonnet-20241022 µ 1228 1252 1259 1211 1213 1272 1236 1192 1197 1251 405 (-7, 8) 65.84 1228
gemini-1.5-pro-002 µ 1151 1145 1105 1100 1110 1067 1107 1095 1134 1147 500 (-8, 10) 50.58 1118
gpt-4o-2024-05-13 µ 1114 1114 1114 1114 1114 1114 1114 1114 1114 1114 491 (0, 0) 50.00 1114
gpt-4o-mini-2024-07-18 µ 1049 1074 1165 1094 1096 1101 1130 1102 1037 1159 526 (-8, 10) 47.12 1094
gpt-4o-2024-08-06 µ 1096 1112 1050 1097 995 1080 1032 1058 1175 1015 374 (-7, 7) 44.98 1079
gemini-1.5-flash-002 µ 1025 877 1092 1007 1022 1011 993 946 1035 1087 493 (-8, 9) 35.33 1009

70B+ Open-source MLLMs
Pixtral-Large-Instruct-2411 124B 1230 1194 1280 1242 1224 1250 1245 1221 1175 1266 715 (-8, 8) 65.97 1229
InternVL2_5-78B 78B 1083 1018 1051 1091 1031 1084 1042 1073 1065 1023 558 (-7, 10) 42.85 1064
Qwen2-VL-72B-Instruct 72B 1009 914 965 991 986 960 962 921 998 970 557 (-9, 9) 31.37 978
Molmo-72B-0924 72B 828 733 953 859 903 881 862 817 871 852 301 (-12, 8) 18.46 856
NVLM-D-72B 72B 780 877 991 810 849 835 767 881 838 725 561 (-10, 10) 16.63 834
Llama-3.2-90B-Vision-Instruct 90B 830 751 624 754 806 842 626 769 940 662 448 (-11, 10) 12.89 782
llava-onevision-qwen2-72b-ov 72B 696 735 762 726 767 689 663 679 853 620 360 (-11, 12) 10.09 734

10B+ Open-source MLLMs
Pixtral-12B-2409 12B 1028 965 1099 1031 1024 1057 1047 1083 996 1063 659 (-5, 8) 39.1 1037
Aria-Chat 3.9/25.3B 990 982 985 937 998 1034 1019 974 973 1016 675 (-7, 8) 32.88 990
InternVL2_5-38B 38B 1000 979 1028 987 1021 904 932 1041 1026 933 521 (-9, 9) 32.5 987
InternVL2_5-26B 26B 890 816 1008 894 944 876 864 964 880 896 490 (-10, 8) 22.59 900
Llama-3.2-11B-Vision-Instruct 11B 671 541 681 702 766 761 624 524 744 614 531 (-13, 16) 7.93 688

7B+ Open-source MLLMs
InternVL2_5-8B 8B 824 806 983 880 914 840 915 895 835 868 644 (-11, 8) 20.45 878
Qwen2-VL-7B-Instruct 7B 803 689 827 877 861 816 736 680 858 833 787 (-9, 10) 15.40 818
MiniCPM-V-2_6 8B 644 599 767 659 812 676 673 667 656 681 646 (-12, 10) 7.97 689
llava-onevision-qwen2-7b-ov 7B 605 570 807 683 809 681 715 608 573 724 575 (-13, 10) 7.93 688
Molmo-7B-D-0924 7B 536 304 720 631 638 655 681 531 613 603 310 (-14, 12) 5.41 617
Molmo-7B-O-0924 7B 457 134 623 483 681 599 606 380 428 528 296 (-18, 19) 3.54 540

Aria-Chat (Li et al., 2024b), InternVL2_5-8B
(Wang et al., 2024b), InternVL2_5-26B (Wang
et al., 2024b), InternVL2_5-38B (Wang et al.,
2024b), InternVL2_5-78B (Wang et al., 2024b),
Pixtral-12B-2409 (Agrawal et al., 2024), Pixtral-
Large-Instruct-2411 (Agrawal et al., 2024), Qwen2-
VL-7B-Instruct (Wang et al., 2024a), Qwen2-VL-
72B-Instruct (Wang et al., 2024a), MiniCPM-V-
2_6 (Yao et al., 2024), Llama-3.2-11B-Vision-
Instruct (Dubey et al., 2024), Llama-3.2-90B-
Vision-Instruct (Dubey et al., 2024), Molmo-7B-
O-0924 (Deitke et al., 2024), Molmo-7B-D-0924
(Deitke et al., 2024), Molmo-72B-0924 (Deitke
et al., 2024), NVLM-D-72B (Dai et al., 2024),
llava-onevision-qwen2-7b-ov (Li et al., 2024a), and
llava-onevision-qwen2-72b-ov (Li et al., 2024a).

3.2 Experimental result

Tab. 1 and Tab. 2 present the evaluation results. Our
key observations are summarized into the following
five folds: i) best open-source models rival the best
proprietary MLLMs. claude-3-5-sonnet-20241022
and Pixtral-Large-Instruct-2411 respectively be-
longing to proprietary and open-source MLLMs
consistently achieve leading ELO scores across
all three tracks. Both models significantly outper-

form the baseline gpt-4o-2024-05-13; ii) training
recipe outweighs model size. While scaling pa-
rameters can generally enhance performance, the
performance of MLLMs can be size-agnostic, with
greater emphasis placed on the training recipe (i. e.,
optimization stratge and training data quality). For
example, Pixtral with 12B parameters and Aria-
Chat with 3.9B activated parameters (out of a total
of 25.3B) per token consistently demonstrate first-
tier performance; iii) reasoning tasks remain the
hardest. On the single-round track, most MLLMs
generally perform well on writing-based tasks (e.g.,
creative writing). However, their performance on
logic-intensive tasks is notably poor, similar to
findings in prior LLM studies (Ahn et al., 2024;
Quan et al., 2025). The two tasks separately exhibit
the lowest Spearman correlation with overall ELO
ratings and receive the lowest scores among task
fields. Similarly, among all open-source models,
performance also suffers significantly in planning
tasks, which have the lowest average score (exclud-
ing coding); iv) multi-linguistic tasks challenge
MLLMs. MLLMs face significant challenges in
multi-linguistic tasks, with 11 out of 24 MLLMs
showing an overall ELO decrease compared to their
performance on the single-round track. Notably,
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Table 2: Comparisons of state-of-the-art MLLMs on the multi-linguistic and multi-round tracks. We provide an overview that
shows the average number of output tokens (#Token), 95% confidence interval (95% CI), win rate (WR), and overall ELO
rating for each of the track. Refer to our supplementary material for comparison details on different languages and rounds. The
MLLMs are sorted by the overall ELo rating on the multi-linguistic track in each group of model size.

Model Overview on multi-linguistic track Overview on multi-round track

#Token 95% CI WR Elo #Token 95% CI WR Elo
Proprietary MLLMs

claude-3-5-sonnet-20241022 µ 485 (-21, 29) 74.58 1301 1477 (-20, 18) 70.82 1268
gpt-4o-2024-05-13 µ 585 (0, 0) 50.00 1114 1563 (0, 0) 50.00 1114
gemini-1.5-pro-002 µ 629 (-20, 20) 59.11 1178 1425 (-26, 19) 53.88 1141
gpt-4o-2024-08-06 µ 480 (-17, 26) 60.35 1187 1052 (-22, 18) 45.41 1082
gpt-4o-mini-2024-07-18 µ 657 (-21, 16) 45.84 1085 1749 (-17, 24) 55.16 1150
gemini-1.5-flash-002 µ 567 (-25, 19) 28.47 954 1388 (-16, 19) 38.14 1030

70B+ Open-source MLLMs
Pixtral-Large-Instruct-2411 124B 966 (-23, 22) 73.81 1294 2593 (-23, 19) 69.73 1259
Qwen2-VL-72B-Instruct 72B 834 (-18, 21) 47.56 1097 1608 (-21, 19) 32.24 985
InternVL2_5-78B 78B 841 (-14, 20) 42.71 1063 2015 (-21, 20) 44.84 1078
NVLM-D-72B 72B 907 (-17, 25) 21.99 894 1371 (-35, 33) 8.49 701
Llama-3.2-90B-Vision-Instruct 90B 968 (-29, 21) 20.92 883 1350 (-36, 24) 9.88 730
Molmo-72B-0924 72B 426 (-27, 19) 18.90 861 967 (-28, 25) 18.64 858
llava-onevision-qwen2-72b-ov 72B 534 (-27, 24) 11.95 767 1176 (-31, 26) 10.30 738

10B+ Open-source MLLMs
InternVL2_5-38B 38B 868 (-20, 18) 43.98 1072 1734 (-18, 21) 34.68 1004
Pixtral-12B-2409 12B 1199 (-14, 22) 35.73 1012 2264 (-19, 20) 40.48 1047
Aria-Chat 3.9/25.3B 1014 (-23, 17) 35.33 1009 2321 (-27, 12) 23.92 913
InternVL2_5-26B 26B 814 (-28, 19) 17.70 847 554 (-27, 28) 15.77 823
Llama-3.2-11B-Vision-Instruct 11B 2027 (-29, 21) 8.40 699 2094 (-38, 32) 6.03 637

7B+ Open-source MLLMs
Qwen2-VL-7B-Instruct 7B 1216 (-24, 22) 12.25 772 2004 (-34, 25) 9.48 722
InternVL2_5-8B 8B 1021 (-22, 20) 11.95 767 1835 (-25, 22) 11.77 764
MiniCPM-V-2_6 8B 890 (-36, 35) 4.44 581 1861 (-33, 37) 5.35 615
Molmo-7B-D-0924 7B 406 (-52, 33) 4.32 576 923 (-34, 26) 5.04 604
llava-onevision-qwen2-7b-ov 7B 686 (-68, 37) 3.07 514 1743 (-30, 30) 6.58 653
Molmo-7B-O-0924 7B 512 (-73, 51) 1.95 433 925 (-49, 37) 3.43 534

llava-onevision-qwen2-7b-ov experienced the most
substantial decline; v) multi-round evaluation en-
hances model performance separability. Multi-
round tasks usually demand long-context reasoning
across turns, amplifying performance gaps among
MLLMs. MLLMs that underperform in single-
round tasks exhibit significantly lower ELO scores.
This trend is particularly evident in open-source
MLLMs with 7B+ and 10B+ parameters (exclud-
ing Pixtral-12B-2409).

3.3 Ablation and discussion

Performance declining with difficulty. We eval-
uate the ELO rating variances of MLLMs by cate-
gorizing user queries into easy and hard groups.
The results are presented in Fig. 5. Existing
MLLMs tend to exhibit a noticeable performance
decline compared to the baseline gpt-4o-2024-
05-13 as the reasoning challenge level increased
from easy to hard, while MLLM with poor perfor-
mance typically deteriorates further on the harder
queries. This observation aligns with human
intuition that more challenging tasks inherently
provide better separability when evaluating the
MLLM performance, highlighting the limitations
of most MLLMs in effectively handling complex
user queries.

Error analysis. We analyze scenarios in which
the state-of-the-art MLLM underperforms relative
to the baseline. Fig. 6 (a) illustrates the shortcom-
ings of the MLLM compared to the baseline across
five evaluation aspects, highlighting completeness
and correctness as the primary issues. Fig. 6 (b)
categorizes the error types in the MLLM losses
relative to the baseline. Overall, the analysis un-
derscores the need of state-of-the-art MLLM to
improve their visual perception, textual understand-
ing, domain knowledge, and reasoning capability.

Robustness of ProBench. We study the setting
of our evaluation protocol on the 500 most chal-
lenging queries from the single-round track. Specif-
ically, Fig. 7 considers two set of experiments: i)
comparisons of using three top-performing MLLM
as the judge (i. e., gpt-4o-2024-08-06, claude-
3-5-sonnet-20241022, and Pixtral-Large-Instruct-
2411); ii) explorations of three baseline mod-
els (i. e., gpt-4o-2024-05-13, claude-3-5-sonnet-
20241022, and Pixtral-12B-2409) in comparisons,
representing different model scales. The results re-
veal a high degree of agreement within our evalua-
tion process, with an average Spearman correlation
coefficient of 0.979 among the different MLLM
judges and 0.983 among the baseline models, high-
lighting our robustness and consistency.
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Figure 5: Ablation study of reasoning challenge. We show the ELO ratings of MLLMs on two levels: easy and hard.

Compl. Concis. Corre. Helpf. Relev.
claude-3-5-sonnet-20241022 53.06% 7.73% 24.01% 12.40% 2.80%
gemini-1.5-pro-002 37.91% 8.28% 30.28% 19.36% 4.17%
gpt-4o-2024-08-06 52.44% 8.88% 19.60% 17.44% 1.64%
gpt-4o-mini-2024-07-18 29.88% 11.82% 39.78% 12.18% 6.34%
gemini-1.5-flash-002 38.03% 6.38% 27.64% 23.42% 4.53%
Pixtral-Large-Instruct-2411 21.73% 8.94% 55.77% 9.15% 4.40%
InternVL2_5-78B 46.58% 5.79% 28.37% 16.95% 2.32%
Qwen2-VL-72B-Instruct 35.35% 4.75% 43.24% 13.84% 2.82%
Molmo-72B-0924 47.77% 3.05% 37.09% 10.35% 1.74%
NVLM-D-72B 42.97% 5.19% 34.16% 14.11% 3.57%
Llama-3.2-90B-Vision-Instruct 35.71% 3.42% 41.82% 13.46% 5.59%
llava-onevision-qwen2-72b-ov 48.43% 2.30% 34.38% 13.11% 1.78%
Pixtral-12B-2409 25.85% 7.16% 51.44% 10.90% 4.65%
InternVL2_5-38B 49.97% 4.49% 28.93% 14.81% 1.80%
Aria-Chat 32.22% 6.21% 48.15% 9.77% 3.66%
InternVL2_5-26B 42.54% 3.49% 38.94% 12.70% 2.33%
Llama-3.2-11B-Vision-Instruct 31.17% 3.85% 49.05% 11.71% 4.22%
InternVL2_5-8B 34.01% 6.33% 42.65% 13.04% 3.97%
Qwen2-VL-7B-Instruct 47.23% 5.49% 31.93% 12.98% 2.37%
MiniCPM-V-2_6 40.48% 3.32% 41.28% 12.60% 2.32%
llava-onevision-qwen2-7b-ov 28.76% 5.34% 44.58% 16.61% 4.71%
Molmo-7B-D-0924 33.44% 2.27% 51.73% 8.77% 3.79%
Molmo-7B-O-0924 36.37% 1.54% 46.92% 12.30% 2.86%

(a)

Text. Perc. Reas. Know. Reje.
21.25% 33.97% 32.95% 3.82% 8.02%
24.89% 36.50% 30.80% 3.91% 3.91%
20.95% 40.85% 29.71% 6.23% 2.25%
21.12% 36.64% 38.51% 3.54% 0.20%
28.55% 25.16% 29.06% 6.92% 10.31%
20.28% 39.59% 36.48% 3.65% 0.00%
23.39% 37.51% 34.51% 4.06% 0.53%
21.85% 34.33% 37.21% 5.88% 0.72%
21.95% 38.24% 32.93% 4.58% 2.29%
29.86% 31.35% 30.98% 7.19% 0.62%
21.46% 33.97% 26.48% 5.21% 12.88%
24.67% 38.80% 28.02% 4.19% 4.31%
23.39% 37.51% 34.51% 4.06% 0.53%
24.28% 39.48% 29.14% 6.10% 1.00%
21.08% 40.46% 32.57% 5.60% 0.28%
22.86% 32.91% 34.92% 8.15% 1.16%
21.33% 31.95% 34.69% 5.66% 6.37%
20.86% 38.12% 33.53% 6.99% 0.50%
26.16% 32.70% 32.80% 7.95% 0.40%
24.20% 33.11% 32.34% 7.15% 3.19%
30.56% 31.45% 27.89% 5.74% 4.35%
27.06% 32.03% 29.16% 8.89% 2.87%
29.76% 30.85% 29.86% 7.94% 1.59%

(b) (c)
Figure 6: Error analysis. We study cases where MLLM underperforms compared to the baseline. (a) The distribution of
losing cases of the MLLM across five evaluation aspects: completeness (Compl.), conciseness (Concis.), correctness (Corre.),
helpfulness (Helpf.), and relevance (Relve.). (b) The distribution of error types in losses of the MLLM, categorized into five
types: textual understanding error (Text.), visual perceptual error (Perc.), reasoning error (Reas.), lack of domain knowledge
error (Know.), and refusal to answer (Reje.). (c) Color bar of the heatmap.

Judge alignment with human expert. To val-
idate the effectiveness of MLLM-as-a-Judge, hu-
man annotators are tasked with rating the compar-
isons using a 5-point Likert scale. Our evaluation
protocol achieves an agreement of 79.9% with hu-
man expert, indicating a strong ability of MLLM-
as-a-Judge to simulate human preferences accu-
rately. These findings demonstrate the viability of
ProBench as an automatic, large-scale, and chal-
lenging benchmark for evaluating the assistance
capabilities of MLLMs in professional productiv-
ity scenarios. By effectively aligning with human
judgments, ProBench provides a reliable automatic
framework for advancing MLLM development and
assessment.

Future work and limitation. Although our
ProBench has provided valuable insights into the
performance and capabilities of MLLMs, several
limitations remain that warrant further exploration.

One key limitation is potential bias in the bench-
mark tasks, which may not fully capture the di-
versity of real-world productivity scenarios for
MLLMs. Future work could focus on expanding
the benchmark to include a broader range of chal-
lenging tasks, potentially through the data synthe-
sis (e.g., diffusion models and MLLMs), to im-
prove the diversity. By addressing these challenges,
ProBench can continue to evolve as a robust and
comprehensive tool for advancing the development
and evaluation of MLLMs.

3.4 Distilled local evaluator

Considering the high API cost of using gpt-4o-
2024-08-06 as the judge, we fine-tune a local eval-
uator to enable cost-effective and GPU-friendly
evaluations for future MLLMs. We use the widely
spread Llama-3.2-11B-Vision-Instruct as our back-
bone model. The Qwen and Pixtral MLLM fam-
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Figure 7: Ablation study of MLLM-as-the-Judge. (a-c) Pairwise comparisons of Elo scores for MLLMs evaluated using different
MLLM judges. They are gpt-4o-2024-08-06, claude-3-5-sonnet-20241022 (claude-3-5-sonnet), and Pixtral-Large-Instruct-2411
(Pixtral-Large), respectively. (d-f) Comparison of using gpt-4o-2024-05-13, claude-3-5-sonnet-20241022 (claude-3-5-sonnet),
and Pixtral-12B-2409 (Pixtral) as baselines. The red line in each plot indicates the best-fit curve for visualization.

ilies are reserved for testing, with the remaining
data allocated for training. Our network is trained
to distill both the reasoning and decisions of us-
ing gpt-4o-2024-08-06 as the judge. The network
achieves an average root mean squared error of
32.58 in Elo ratings.

4 Related work

The evolution of MLLM-as-a-Judge is largely in-
spired by the concept of LLM-as-a-Judge (Li et al.,
2024c; Dubois et al., 2024; Zheng et al., 2023),
which aims to automatically measure the alignment
between MLLMs and human preferences. While
pairwise comparison (Li et al., 2024c; Chen et al.,
2024a) is considered as most preferred, it suffers
from biases introduced by factors such as the pre-
sentation order of MLLM outputs, verbosity, and
markdown styles. To mitigate these issues, style
control has been proposed (Li et al.), using statisti-
cal modeling to de-bias these confounding effects,
thereby improving the MLLM judges.

Other approaches, such as few-shot judging,
have also been explored, but they face challenges
such as reliance on the few-shot example selection
and increased evaluation costs (Zheng et al., 2023).
Existing MLLM-as-a-Judge leaderboards can be
specified to (Luo et al., 2024; Lu et al., 2024; Chen
et al., 2024a). However, these often focus on a nar-
row scope of MLLM capability dimensions (Luo
et al., 2024; Lu et al., 2024), or rely on artificially
posed evaluations by a limited number of human ex-
perts (Chen et al., 2024b), making them inadequate

for assessing MLLMs on professional tasks. Con-
sequently, they fail to capture the dynamic nature
of real-world human and MLLM interactions for
a comprehensive assessment of MLLM capabili-
ties. In contrast, this work introduces a challenging
benchmark, ProBench, curated from large-scale
crowdsourced datasets reflecting real-world profes-
sional productivity scenarios. It features three dis-
tinct evaluation tracks: single-round, multi-round,
and multi-linguistic conversations, across various
task fields, offering a robust framework for evaluat-
ing MLLM performance in real-world scenarios.

5 Conclusion

This paper introduces the ProBench, which features
single-round, multi-round, and multi-linguistic
tracks to enable a comprehensive and challeng-
ing assessment of the alignment between MLLMs
and human preferences across diverse professional
productivity demands. By employing MLLM-as-
a-Judge, the benchmark evaluates MLLM pair-
wisely, achieving 79.9% agreement with human
expert judgments, and underscoring its reliability.
Through benchmarking 24 leading MLLMs, our
results reveal significant shortcomings of existing
MLLMs, particularly in visual perception and rea-
soning. Furthermore, models often struggle with
multi-linguistic and multi-round tracks, highlight-
ing the challenges of diverse language requirement
and complex interactions. It reveals valuable in-
sights for future MLLM developments. We hope it
inspires successors.
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