
Findings of the Association for Computational Linguistics: ACL 2025, pages 10850–10864
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Multi-word Measures: Modeling Semantic Change in Compound Nouns

Chris Jenkins and Filip Miletić and Sabine Schulte im Walde
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Abstract

Compound words (e.g. shower thought) pro-
vide a multifaceted challenge for diachronic
models of semantic change. Datasets describ-
ing noun compound semantics tend to describe
only the predominant sense of a compound,
which is limiting, especially in diachronic set-
tings where senses may shift over time. We cre-
ate a novel dataset of relatedness judgements of
noun compounds in English and German, the
first to capture diachronic meaning changes for
multi-word expressions without prematurely
condensing individual senses into an aggre-
gate value. Furthermore, we introduce a novel,
sense-targeting approach for noun compounds
that evaluates two contrasting vector representa-
tions in their ability to cluster example sentence
pairs. Our clustering approach targets both
noun compounds and their constituent parts,
to model the interdependence of these terms
over time. We calculate time-delineated dis-
tributions of these clusters and compare them
against measures of semantic change aggre-
gated from the human relatedness annotations.

1 Introduction

Novel uses of language (coining new senses of
words and phrases) are readily available at all times,
but not necessarily ‘sticky’ to the point that they see
widespread adoption, making the new sense appar-
ent in a sample of text. In addressing this challenge,
models of language change are aided by compar-
ing terms that may have changed against reference
points assumed not to have changed. Compound
nouns in English and German provide an exciting
test ground of hypothesized changing and refer-
ence terms for computational models of semantic
change, due to their sustained productivity in both
languages and diverse sets of possible relationships
between the meanings of the constituent words of
a compound, and the compound as a whole.

We compare changes and continuities in noun-
compound semantics from a historical perspective,

comparing the extent to which a compound like
gold mine might differ in its usage over time com-
pared with both its constituent words (gold, mine)
and with the use of further compounds that share
a constituent (e.g. silver mine, which lacks the
broader metaphorical sense that gold mine has –
see the first row of Table 1). In this way, we go
beyond existing work in lexical semantic change
detection that focuses on the change of individual
words without considering any mutual dependen-
cies with other words.

Unrelated “He never returned to
his architectural gold
mine of the prewar
period.”

“Next, there was a
copra plantation up
North, then a bogus
gold mine in Colom-
bia, a charter busi-
ness,...”

Related “One morning they
saw a workman stand-
ing on the brick wall,
who looked about
him as if quite at
leisure...”

“Most of the blast
from a car bomb
outside the French
embassy was ab-
sorbed by a thick
brick wall.”

Table 1: Two pairs of sentences and their average anno-
tation on the relatedness of the compound in bold.

Given that we do not know in advance with
how many senses a compound of interest was used
across ≈200 years, we use clustering methods1 to
find groups of contexts that are similar. We em-
ploy contextual word embeddings to represent the
target compounds, because they allow each target
to have multiple representations in the same space.
This lets us compare the contexts of compound
nouns across time periods, and to predict whether
the distribution of each target differs sufficiently
to constitute an overall change (via broadening or
narrowing the available set of senses). Importantly,
the development of these contexts is not considered
in isolation, but rather in terms of changes in the

1Code available at https://gitlab.com/cjenk/
sem-change-clustering/
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contexts of the compound’s constituent nouns, or in
terms of sets of noun compounds that share either
the same modifier or head constituent.

While most prior evaluations of semantic change
models only use aggregate quantitative ratings
of target words, we propose a multi-faceted as-
sessment. We evaluate our clustering approaches
in terms of (1) accuracy against pairwise gold-
standard example sentences that we annotated for
semantic relatedness, (2) with respect to multiple
measures of semantic change, which we obtained
by comparing average relatedness ratings across
time periods, and (3) by inducing individual senses
by clustering the graph of annotated examples.

We provide the following contributions: (1) A
novel dataset of relatedness ratings for English and
German noun compounds across diachronic con-
texts. (2) Expansion of the lexical semantic change
and semantic-relatedness clustering tasks to com-
plex lexical items (i.e., noun compounds). (3) Con-
trasting evaluation methods using in-context seman-
tic relatedness ratings, and measures of semantic
change in aggregate.

2 Prior Work

The precise definition of ‘compound’ can be diffi-
cult to arrive at (e.g. via constraints of structural
integrity), especially cross-linguistically. We take
after Bauer (2017) to view compounds as ‘word-
like’ (functioning as a whole like a word), while
being composed of more than one ‘word’ whose
contributions to the overall meaning we can ana-
lyze separately.

Computational Modeling of Noun Compounds
Modeling the diachronic development of com-
pound nouns builds on the well-established syn-
chronic task of predicting the degree of com-
positionality for a compound i.e., the extent to
which its components contribute to its overall
meaning (Baroni et al., 2014; Reddy et al., 2011;
Schulte im Walde et al., 2016a; Cordeiro et al.,
2019; Alipoor and Schulte im Walde, 2020; Miletic
and Schulte im Walde, 2023), typically using vec-
tor space representations created from the distri-
bution of terms from a corpus. Bringing the task
of compositionality prediction to a diachronic set-
ting, Dhar et al. (2019) use SVD to jointly train
Word2Vec embeddings for noun compounds and
their constituents, comparing them using cosine
similarity across different segments of a diachronic
corpus in order to estimate the degree of compo-

sitionality at different points in time. Other ap-
proaches include Mahdizadeh Sani et al. (2024),
who applied topic models to co-occurrence vectors
of noun compounds and their constituents, using
similarity comparisons at different time slices to
make binary high/low compositionality predictions.
To our knowledge there is no diachronic extension
to the gold-standard compositionality ratings that
exist for present-day English and German, nor is
there a general semantic change dataset for English
and German noun-compounds.

Lexical Semantic Change (LSC) Detection A
general formulation of the LSC task as given in
SemEval-2020 Task 1 (Schlechtweg et al., 2020) is
to identify words that have gained or lost senses be-
tween two time-separated subcorpora, contrasting
with words that were stable. The task was defined
with binary and graded variants. Although the LSC
task is ultimately to predict that a word’s meaning
has changed, some means of representing polysemy
may help to detect the expansion or contraction of
possible senses for a word, potentially coexisting
with other, stable senses. To give a contrasting ex-
ample: the newer meaning of computer (machine)
has superseded computer (occupation), while rock
(stone) coexists with the newer rock (music genre).

Corpus-based LSC detection techniques make
use of the assumption that a change in a term’s
meaning can be apprehended through changes in
the context that the term appears in. Essentially,
this is an articulation of the distributional hypothe-
sis (Harris, 1954)2, which can be interpreted either
weakly, that the meaning of a term correlates with
its contextual use, or more strongly, that meaning
is exactly defined by the set of contexts that the
term is employed in (Arseniev-Koehler, 2021). We
tend toward the former, correlational interpretation
of the distributional hypothesis, which better fits
our focus on the dynamic nature of semantics.

Diachronic Representations Since many exist-
ing approaches to LSC detection operate in terms
of aggregate meaning changes, static representa-
tions (e.g. Word2Vec; Mikolov et al., 2013) have
been widely utilized. When used in LSC detec-
tion, static representations are created separately
using separate time-delineated corpora, and subse-
quently the two vector spaces are aligned to enable
direct comparisons between the two representations

2Stated even more strongly by Firth: “The use of the word
‘meaning’ is subject to the general rule that each word when
used in a new context is a new word.” (Firth, 1957, p.190)
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of each word of interest (Hamilton et al., 2016;
Schlechtweg et al., 2019). The nature of static rep-
resentations collapses all senses in which a given
token is used into a single representation, making
it difficult to interpret how a word’s meaning may
have changed, only that some change is apparent
in aggregate. By allowing for the same word or
sequence of words to have multiple vector repre-
sentations, contextualized representations obviate
the need to align separate vector spaces in order to
compare uses from separate (sub)corpora, and have
the potential to represent multiple senses of a word
in the same embedding space. The larger parameter
space of contextual models (prototypically BERT;
Devlin et al., 2019) necessitates a corresponding
compression of the number of unique tokens in the
model’s vocabulary through the use of sub-word
tokenization algorithms like SentencePiece (Kudo
and Richardson, 2018). Work such as Giulianelli
et al. (2020), Martinc et al. (2020), and Kanjirangat
et al. (2020) shows that contextualized embeddings
can be clustered to obtain predictions of LSC. How-
ever, they are much more resource-intensive than
static embeddings to use, as noted by Montariol
et al. (2021).

Word-in-Context and Word-Sense Induction
The Word-in-Context dataset (Pilehvar and
Camacho-Collados, 2019) was developed to ex-
pand typical semantic understanding benchmarks
deliberately towards words that require more sup-
porting context to be understood. The English
Word-in-Context test set contains very few noun
compounds, always in closed form (e.g. pocket-
book), and is derived from synchronic lexical re-
sources like WordNet (Miller, 1995), limiting its
comparability with our present investigation. The
German dataset from the cross-lingual Word-in-
Context dataset (Raganato et al., 2020), does how-
ever contain many noun compounds. This dis-
crepancy may be only a consequence of the ortho-
graphic differences between English and German,
and not an explicit decision to exclude or include
complex nouns.

Periti and Tahmasebi (2024), in their survey on
the use of contextualized word embeddings for the
LSC task, note that many approaches skip directly
from semantic proximity judgments (like those
of the Word-in-Context datasets) directly to the
quantification of meaning shifts over time, while
skipping over an intermediate task of Word Sense
Induction — the explicit clustering of in-context

word uses into separate senses.

3 Corpora and Annotated Data

In this section we introduce the diachronic corpora
that our clustering models operate over, as well as
the annotated gold-standard data that we produced
to evaluate the models.

3.1 Diachronic Corpora

For both English and German, we use diachronic
corpora spanning roughly 200 years. For English
we use the Cleaned Corpus of Historical American
English (CCOHA) (Davies, 2012; Alatrash et al.,
2020). It contains texts dating from 1810 to the
2010s, balanced by decade as well as genre (news-
papers, magazines, fiction/non-fiction books).

For German, we use the Deutsches Textarchiv
(DTA) (Berlin-Brandenburgische Akademie der
Wissenschaften, 2022). The DTA is a reference
corpus of the German language, containing texts
from 1472 to 1969, with a focus on the 17th through
19th centuries. It is curated3 to balance between
fiction, non-fiction, and scientific writing, but not
necessarily the relative amount of text per year.

We use data from two eras in either corpus, as
shown in Table 2. Each ‘early’ and ‘late’ era has
a buffer period between it, to help us to strike a
greater contrast between the eras, since all cross-
era comparisons are at least 70 years apart.

3.2 Annotated Data

We introduce our sets of 19 English and 43 Ger-
man target compounds (Table 4, full German set
in Appendix D), which were derived from existing
compositionality datasets, and describe our proce-
dure for annotating these compounds’ meanings in
the diachronic corpora.

3.2.1 Noun Compounds and Compositionality
We used two sets of ratings of compositionality,
i.e., the degree to which a constituent part of a com-
pound contributes to the overall meaning of the
compound, one for each language: German (868
total entries) (Schulte im Walde et al., 2016b) and
English (280 total entries) (Cordeiro et al., 2019).
These ratings were collected using the annotator’s
overall understanding of the terms, either without
any explicit context for the German compounds, or
interpolated from three example sentences for the

3https://www.deutschestextarchiv.de/
doku/ueberblick
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Corpus Early Era Tokens Late Era Tokens

CCOHA 1830–1859 51M 1980–2009 92M
DTA 1700–1759 33M 1870–1909 36M

Table 2: Descriptive statistics for diachronic corpora.

Corpus Targ. Ex. Pairs Ratings (skipped) Avg. ρ Agr.

CCOHA 19 393 2702 (111) 0.33
DTA 43 899 5144 (308) 0.28

Table 3: Annotated sentence pairs and IAA.

English compounds. Numerical ratings are given
for each compound with respect to its modifier
(for these languages, the first) or head (second)
constituent. Higher values indicate a stronger re-
lationship between the meaning of the constituent
and the compound as a whole. Examples of highly
compositional compounds (with respect to the head
constituent) include wedding day (head: day), and
Seewasser (en: seawater - lit: ‘sea’ + ‘water’, head:
Wasser), while nest egg (financial savings) and
Zeughaus (en: armory - lit: ‘stuff’ + ‘house’) are
examples of non-compositional compounds with
respect to their modifier.

3.2.2 Compound Relatedness Judgments
In order to evaluate our system in its ability to
distinguish between multiple senses of the same
term, we collected diachronic in-context ratings
of compounds’ meanings — see Table 1 for ex-
ample sentence pairs. To collect these ratings, we
used an annotation schema inspired by the DURel
dataset (Schlechtweg et al., 2018)4. Starting from
the compositionality datasets described above, we
selected 19 English compounds and 43 German
compounds based on a minimum frequency thresh-
old applied to each era (10 for English and 20 for
German5). Each use of a compound was presented
to annotators including the context of the previous
and subsequent sentence from the CCOHA or DTA
corpora. They were asked to rate the relatedness
of the use of the compounds on a scale from 1 (un-
related) to 4 (identical), with an option to skip the
example pair if there was not sufficient evidence
to make a decision. Sentence pairs were randomly
sampled to form three groups: pairs of sentences
occurring within either the early or the late era of
the diachronic corpora, or sentence pairs traversing

4We used the platform Phitag: https://phitag.ims.
uni-stuttgart.de/

5Different thresholds were used because the English targets
occurred less frequently than the German targets

Target µ(E) µ(L) µ(C) ∆L JSD

field work 2.06 2.92 2.42 0.86 0.00
ins. company 2.77 3.52 3.21 0.76 0.13
nest egg 2.26 2.98 2.53 0.72 0.22
silver spoon 2.17 2.89 2.30 0.72 0.27
winter solstice 3.21 3.61 3.26 0.40 0.00
bank account 3.00 3.38 3.28 0.38 0.00
wedding day 3.52 3.64 3.6 0.12 0.00
brick wall 2.55 2.54 2.96 -0.01 0.21
fairy tale 2.61 2.36 2.73 -0.25 0.15
mother tongue 3.39 2.92 3.33 -0.47 0.00
love song 3.18 2.61 2.78 -0.57 0.24
balance sheet 3.38 2.76 2.96 -0.62 0.03
foot soldier 3.20 2.54 2.79 -0.66 0.16
pocket book 3.11 2.25 1.68 -0.86 0.36
market place 3.04 2.14 2.30 -0.90 0.38
gold mine 2.88 1.94 2.49 -0.93 0.33
elbow room 2.71 1.77 2.84 -0.94 0.24
ground floor 3.57 2.59 3.33 -0.99 0.18
calendar month 3.81 2.62 2.73 -1.19 0.00

Ruhestand 2.43 3.58 2.27 1.16 0.28
Rechtsstreit 2.63 3.74 3.51 1.10 0.11
Uhrwerk 2.48 3.44 2.21 0.97 0.16
Triebwerk 2.22 3.14 1.88 0.92 0.41
· · · · · · · · · · · · · · ·
Mauerwerk 3.11 3.16 3.22 0.05 0.03
Sonnenstrahl 2.88 2.9 3.18 0.02 0.07
Heerführer 3.37 3.36 3.57 -0.01 0.00
Sonnenlicht 3.01 2.96 3.04 -0.05 0.03
Bergwerk 3.33 3.24 2.99 -0.08 0.03
· · · · · · · · · · · · · · ·
Windspiel 3.08 2.43 2.81 -0.65 0.17
Sonnenblume 3.34 2.70 3.23 -0.65 0.11
Salzwasser 3.44 2.67 2.86 -0.76 0.21
Feldzug 3.53 2.46 3.42 -1.07 0.13

Table 4: List of compounds (top: all English targets;
bottom: sample German targets), and average related-
ness ratings (1: unrelated; 4: identical) for each era,
across the two eras, and JSD across eras from clustered
annotation graph. Sorted by ∆Late.

the two eras. Following Schlechtweg et al. (2018),
we calculate the mean relatedness rating for each
target within each era, as well as for the set of pairs
annotated across eras (Table 4). Lower mean rat-
ings within either era point to a greater degree of
polysemy at that time. The difference between the
late era mean and early era mean (∆Late) serves
as a measure of the change in use-relatedness over
time, which could be attributed to new senses being
used (negative values), or their falling out of use
(positive values), while higher values of the aver-
age relatedness rating of pairs that are compared
across both eras (µ(Compare)) indicate a weaker
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change between the two eras.
Participants were recruited through Prolific6 and

were paid an average of £8.57/hour for their work.
In total, 58 English-speaking and 107 German-
speaking participants were recruited, who anno-
tated a total of 393 English sentence pairs and
899 German sentence pairs (see Table 3 and Ap-
pendix D, including translations).

4 Clustering Pipeline

We cluster our target compounds with the goal
of matching the semantic relatedness judgments.
We use the k-Means algorithm7 to cluster context-
sensitive vector representations of our target terms
in order to group instances with related meanings
together, and to separate unrelated meanings. The
value of k was estimated experimentally for each
run, by using silhouette scores (Rousseeuw, 1987;
Kanjirangat et al., 2020) to select a value of k be-
tween 4 and 328. The vector representation and the
set of related terms that are clustered along with the
target compounds both vary across experiments.

4.1 Vector Representations

We experiment with two different vector represen-
tations (and their joint, concatenated use). The
first representation is derived from the BERT mod-
els. As an alternative approach, we also experi-
ment with second-order random-indexing, because
we expect this representation to be more isotropic
than the BERT-derived representations (Ethayarajh,
2019), potentially making them easier to cluster.

BERT Representations We domain-adapt a
monolingual BERT model for German and English
on the corresponding full diachronic corpus. See
appendix B.1 for settings. For each target, a BERT
embedding is created for each time the target ap-
pears in the relevant corpus, by feeding that sen-
tence through the domain-adapted BERT model,
and taking the first four layers of hidden states for
each of the (potentially several) tokens correspond-
ing to a particular span where the the target occurs,
and averaging these together. We refer to Miletic
and Schulte im Walde (2023) on noun-compound
compositionality using BERT to inform our selec-
tion of layers.

6https://www.prolific.com/
7https://scikit-learn.org
8Early experiments indicated a general decrease in perfor-

mance for higher values of k.

Second-Order Random-Indexing We use a sec-
ond, simpler vector representation (random index-
ing), derived from Basile et al. (2015). A base
vocabulary of representations is first created by tak-
ing each vocabulary item from the BERT model’s
tokenizer and assigning it a sparse vector of length
1, 000, with a random assignment of ten 1s and ten
−1s, with the remaining dimensions set to zero.
This is represented in the third row (rand. vecs)
of Figure 1. Next, the set of all first-order con-
text words is gathered, by searching for each target
compound’s uses in the corpus, and adding the
words found in a bi-directional window of 5 space-
delimited (lemmatized) tokens (1st row of Figure 1).
These first-order context lemmas are filtered using
a method derived from (Schütze, 1998).9 Repre-
sentations are created for each first-order context
lemma by again searching the full corpus to find
the same 5-lemma window on either side of the
first-order context term (2nd row of Figure 1), and
summing the random-indexing vectors (the base
vocabulary of vector representations) correspond-
ing to each one,10 and then averaging the vector by
the number of occurrences of the term in the cor-
pus. Turning back to the target compounds: each
is ultimately represented by averaging the repre-
sentations of each of its (first order) context words
(in a 5-lemma window), making the representation
an aggregation of the second-order contexts that
these first-order contexts occur in (flowing in the
reverse direction of the arrows in Figure 1). In rare
cases where the target has no available first-order
contexts, its representation is formed by averaging
the random-indexing vectors corresponding to the
target compound itself.

Combining Representations When both BERT
and second-order random-indexing representations
are used together, the vectors are simply concate-
nated. In all cases, the feature vector for each
example is normalized.

4.2 Clustering Modes

Instances from both eras of the corpus are clus-
tered together; the year that any given instance is
drawn from is only used for post-hoc inference

9We first filter the context set using a per-language stop-
word list from NLTK (Bird and Loper, 2004), then select the
1, 500 contexts most dependent on the presence of a target
compound, using a χ2 based criterion, and another 1, 500 lem-
mas selected by (highest) frequency in the first-order contexts.

10Note that these are subdivided using the granularity of the
BERT SentencePiece tokenizer.
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1st looks like we’ve found a gold mine of an opportunity here .

2nd he looks to be a tough customer !

rand. vecs 0, 1, 0, -1, . . . -1, 0, 0, 0, . . . 0, 0, 1, 0, . . .

Figure 1: Construction of second-order random-index
vectors. First-order contexts of target ‘gold mine’ are
identified. Contexts of those contexts are represented
by a vocabulary of random sparse vectors.

after clustering has been completed. All of our
configurations include examples from the full set
of target compounds, but vary in the inclusion of
additional items.

The compounds-only setting does not include
any additional items, which serves as a baseline. In
the compound-constituent setting, we take advan-
tage of the variable relationship that compounds’
potentially numerous senses have with the mean-
ing of their constituents (e.g. the relationship be-
tween silver spoon and spoon differs between the
metaphorical and literal use of the compound),
and cluster all target compounds and their con-
stituents together. Head constituents and modifier
constituents are included in separate runs.

In the constituent family sets (CFS) setting, we
cluster all our target compounds together with other
compound nouns that share a single constituent
with a target compound, e.g. gold mine, copper
mine, coal mine share the head constituent mine.
As with compound-constituent clustering, sep-
arate runs are performed for related compounds
that share modifier constituents, and those that
share head constituents. The CFS compounds were
obtained by searching the corpora for all noun
compounds that contained the corresponding con-
stituent, filtered to include only sequences of ex-
actly two nouns, not preceded or followed by an-
other noun. Some cleaning of the resulting list
of potential compounds was performed to remove
words that are not noun compounds, e.g. Beispiel
is a combination of the preposition bei with the
noun Spiel (game), and is thus rejected. In total,
103 shared-constituent compounds were gathered
for English, and 640 for German. Although we do
not have relatedness ratings for these sets of related

gold mine +





∅
gold × 4
mine × 4
gold chain × 1, gold dust × 1, ...
iron mine × 1, silver mine × 1, ...

Figure 2: Possible sampling options of related terms per
instance of target gold mine, depending on clustering
mode.

compounds, we are interested in using them as
an alternative foil to the compounds’ constituents,
to contrast between senses like the metaphorical
meaning of gold mine: source of abundance, or
financial opportunity, which is not shared by other
mine compounds.

Sampling Procedure Due to time complexity
constraints for clustering large numbers of exam-
ples, and also frequency asymmetry between many
compounds and their much more frequent con-
stituents, we use the following sampling procedure
to prevent the target compounds from being over-
whelmed by non-target examples, and to keep the
total number of examples manageable.

We target a maximum number of instances, 15k.
In order to be able to evaluate the clustering perfor-
mance over pairs of sentences that were annotated,
we first include all such pairs as a (nearly) uniform
initial sample. Further uses are sampled until the
maximum is reached, by first randomly selecting an
era (weighted by total tokens in that sub-corpus),
and then randomly selecting a target compound
(weighted by the target’s frequency in that era).
Every time a compound target, e.g. gold mine, is
sampled in this way, one of the following types of
additional uses is sampled (see Figure 2): modifier
constituent (gold), head constituent (mine), com-
pounds from the target’s modifier family set (one
each: gold chain, gold dust, . . . ), compounds from
the target’s head constituent family set (one each:
iron mine, silver mine, . . . ). As the constituent
words tend to be more numerous, they are sam-
pled at a ratio of four constituents for each target
compound.

Experimental Configurations We experimen-
tally altered the following parameters and set-
tings in our clustering runs: the vector representa-
tion: either BERT vectors, second-order random-
indexing vectors, or both representations concate-
nated together. Additionally, the following five set-
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tings were used to include additional targets which
were clustered alongside the target compounds:
no additional targets (targetscompounds), head con-
stituents (targetshead−const), modifier constituents
(targetsmod−const), compounds in the same head
constituent family set(targetshead−cfs), or com-
pounds in the same modifier constituent family set
(targetsmod−cfs).

5 Evaluation

5.1 Evaluating via Relatedness Ratings

We compare clustering runs against pairs of sen-
tences rated for the relatedness of the meanings of
target compounds. This involves two simplifying
assumptions to enable direct comparisons: binariz-
ing the 1-4 relatedness rating given by the anno-
tators, and simplifying the representational space
of a clustering run by binarizing the outcome of
clustering: either a pair of examples is in the same
cluster, or not. We use accuracy scores to treat true
positives with the same weight as true negatives (it
is just as important that unrelated examples are in
different clusters, as it is that related examples are
clustered together).

A secondary perspective on the annotated sen-
tences was achieved by using the WUG (Word
Usage Graph) tool (Schlechtweg et al., 2021;
Schlechtweg, 2023; Schlechtweg et al., 2024) to
cluster the annotated sentence pairs such that pairs
that were mutually rated as similar tend to form
clusters, and pairs rated maximally dissimilar are
not clustered together, using a variation of correla-
tion clustering (Bansal et al., 2004). This method
gives us a view of the desired structure of clus-
ters. See Figure 3 in Appendix D for a clustering
example.

We evaluate our system clusters against these
annotation clusters using the v-Measure (Rosen-
berg and Hirschberg, 2007), the harmonic mean
of homogeneity (extent to which clusters contain
only one class) and completeness (extent to which
all members of a gold class are clustered together)
– analogous to the f-measure which combines the
contributions of precision and recall.

5.2 Evaluating Semantic Change Measures

We compare several methods for measuring seman-
tic change in the aggregate for each of our target
compounds (internal measures) against aggregate
measures of change derived from our dataset of
relatedness ratings (external measures).

5.2.1 Internal Change Measures
PRT Our first approach to comparing represen-
tations between eras is to use the cosine distance
between prototype (PRT) representations for each
era, where the prototypes are obtained by averag-
ing the representations for each target’s instances
in the era. This serves as a measure of seman-
tic change (Giulianelli et al., 2020; Martinc et al.,
2020) with relatedness ranging from 0 (identical)
to 1 (orthogonal), i.e., relatedness decreases with
greater distance.

APD Following Giulianelli et al. (2020), we also
compute the average pairwise distance (APD) of
all individual representations of compounds or con-
stituents paired across the two eras, using cosine
distances. This measure has the same range from 0–
1 as the PRT measure, and lower distances indicate
greater relatedness between the two eras.

Jensen-Shannon Divergence We can character-
ize the cluster membership of each target as a prob-
ability distribution across k clusters. This allows
us to use the Jensen-Shannon divergence (JSD) as
a measure of the difference between two distribu-
tions, yielding a value between 0 (identical distri-
butions) and 1 (maximally unrelated distributions).
Our intuition is that a term whose sense distribution
does not change over time should have its instances
in each era clustered into a similar distribution of
clusters, or vice versa, and that this aggregate mea-
sure of the divergence between two distributions
reflects this (dis)continuity.

We compute the JSD between the cluster distri-
butions for each target’s instances in time tearly and
in time tlate. We refer to this as JSD(tearly, tlate).

5.2.2 External Change Measures
The above internal change measures are compared
against the delta later (∆(L)) and average com-
pare (µ(C)) per target ratings introduced in section
3.2.2. We collapse the two kinds of change (inno-
vative and reductive) represented by the ∆(L) into
one by taking its absolute value. We also compare
against the compositionality ratings, taking them
as an indirect measure of change, by relying on
the hypothesis that noun compounds tend toward
non-compositionality over time (Bybee, 2015). In
this way, we expect to see a negative correlation
between increased compositionality and greater se-
mantic change. Finally, for each target, we calcu-
late the JSD for the distribution of clustered an-
notated uses for the early and late time periods,
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reproducing the graded change measure from Se-
mEval 2020 Task 1 (Schlechtweg et al., 2020). All
external change measures other than composition-
ality are shown in Table 4.

6 Results and Discussion

6.1 Evaluation via Relatedness Ratings

In Tables 5 and 6, we report the minimum, maxi-
mum, and average scores across experimental set-
tings, holding either the type of vector representa-
tion or target set constant.

Pairwise Accuracy We evaluate our models’
performance over the set of annotated sentence
pairs (Table 5). For both languages, runs using
the second-order random-indexing representations
alone scored better than the BERT representations,
but this difference was more pronounced for the
German experiments. The concatenation of the
two representations (Vecsboth) produced very sim-
ilar results as using BERT representations alone.
Across both languages, configurations not involv-
ing any additional targets (targetscompounds) were
either the best performing (English) or near-best
(German). For English, the best configurations us-
ing additional targets included the head-CFS, and
for German the modifier constituents.

Comparing System and Annotated Clusters
For the English experiments in Table 6, all three
types of representations had the same maximum
V-measure score of 0.39, while configurations that
used BERT vectors had a slightly higher average
V-measure. Configurations that included additional
clustering targets scored higher than clustering
compounds alone, with the best results (0.39) ob-
tained with the head-CFS configurations.

The German experiments in Table 6 show a large
contrast between the configurations using BERT
vectors and those without, the former scoring about
twice as high. V-measure scores according to items
included in clustering were largely similar, with the
exception of mod-CFS, which were 0.10 worse on
average (at 0.19) than the other configurations.

We found a strong, highly-significant negative
correlation (ρ = −0.84) between the accuracy and
V-measure scores for the German experiments. No
significant correlation was found for the English ex-
periments. This discrepancy confirms our interest
in contrastive evaluation criteria, and warrants fur-
ther investigation, e.g., by exhaustively annotating

all example pairs for a single target, to see if accu-
racy and V-measure scores would converge. The
much larger performance gap between 2nd-order
random-indexing and BERT vectors for German
we attribute to sub-word tokenization issues arising
from the German compounds’ greater lengths.

6.2 Correlation with Change Measures

Taking the highest performing configurations in
terms of accuracy and V-measure (separately) for
each language, we evaluate the clustering results
from each configuration for how well they corre-
late with measures of semantic change. We opera-
tionalize change in this way to capture distinctions
between targets that are more stable or more dif-
ferent, recognizing that there are many possible
differences between our diachronic subcorpora ex-
ternal to the semantic change or stability of our
target compounds. In Table 7, we report the Spear-
man’s ρ correlation between four external measures
of change derived from the relatedness ratings, and
three internal measures.

All internal measures have the same relatedness
polarity. The expected correlation direction with
the external measures is: positive for |∆(L)| and
JSDanno, negative for µ(C) and the composition-
ality ratings.

Best Configurations by Accuracy Table 7 re-
ports correlations obtained from the results of the
two best performing configurations, ranked by pair-
wise accuracy on the annotated example pairs, one
for each language. Both configurations used 2nd-
order random-indexing representations, and had
a low best-k of 4, while they differed in that the
German configuration included head constituent
family sets, while the best English run clustered
the target compounds alone – as such, it is not eval-
uated against compositionality ratings, since these
depend on a particular constituent.

All of the internal change measures exhibited a
significant correlation with the µ(Compare) exter-
nal change measure in English, where the strongest
correlation of ρ = −0.64 was observed with the
APD metric. APD, however, was not significantly
correlated with the English |∆(Late)| measure,
where both the PRT measure and the JSD of target
compounds across the two eras did show small but
significant correlations.

For the German configuration, the strongest sig-
nificant correlations between internal and exter-
nal change measures were weaker (ρ = 0.37 and
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ρ = 0.35), between the PRT and the |∆(Late)|
and compositionality ratings, respectively. A simi-
lar correlation of ρ = 0.32 was found between the
APD and compositionality ratings, however, the
polarity of the correlations with compositionality
ratings are contrary to our expectations. This may
be due to the nearly 200 year gap between the end
of the DTA data and the compositionality ratings,
underscoring the need for in-context composition-
ality annotations.

Best Configurations by V-Measure Regarding
the highest V-measure scores in Table 7 comparing
output clusters with the clustered graph of relat-
edness annotations, only two pairs of internal and
external measures of change were found to have a
significant Spearman’s ρ correlation, both involv-
ing the English configuration: PRT and µ(C) and
APD and µ(C). The magnitude of these correla-
tions was stronger than their equivalent from the
best English system in terms of pairwise accuracy,
but the significance level was lower.

Sense Aggregation The measures more sensi-
tive to separate senses (JSD of system clusters,
JSD of clustered annotations) were generally worse
than internal measures of change that aggregated
the representations. The small correlation seen
with the best English system in terms of accuracy’s
JSD(e,l) measure against µ(C) and |(∆(L))| mo-
tivates future work to improve the representations
in terms of dis-aggregated senses.

en de

Setting Min. Max. Avg. Min. Max. Avg.

VecsBERT 0.40 0.44 0.42 0.28 0.31 0.29
Vecs2nd 0.44 0.50 0.47 0.45 0.55 0.51
Vecsboth 0.40 0.47 0.43 0.27 0.30 0.28

targetscompounds 0.43 0.50 0.46 0.27 0.54 0.37
targetshead−const 0.42 0.46 0.44 0.28 0.47 0.35
targetsmod−const 0.40 0.49 0.43 0.30 0.55 0.39
targetshead−cfs 0.44 0.47 0.45 0.27 0.55 0.37
targetsmod−cfs 0.40 0.44 0.42 0.29 0.45 0.34

Table 5: Accuracy scores for clustering of annotated
sentence pairs.

6.3 Conclusion

In this paper we introduced a novel, sense-targeting
clustering approach and a novel dataset of relat-
edness judgments of English and German noun-
compounds, evaluating contrasting vector repre-
sentations without prematurely collapsing senses
into prototypes, using a range of contrastive eval-

en de

Setting Min. Max. Avg. Min. Max. Avg.

VecsBERT 0.26 0.39 0.34 0.21 0.38 0.33
Vecs2nd 0.22 0.39 0.28 0.14 0.21 0.17
Vecsboth 0.26 0.39 0.33 0.23 0.39 0.35

targetscompounds 0.22 0.32 0.28 0.17 0.39 0.31
targetshead−const 0.27 0.36 0.33 0.21 0.38 0.32
targetsmod−const 0.22 0.37 0.32 0.17 0.37 0.29
targetshead−cfs 0.39 0.39 0.39 0.16 0.38 0.30
targetsmod−cfs 0.26 0.29 0.27 0.14 0.23 0.19

Table 6: Mean V-measure scores for each target, com-
paring system and annotated clusters.

µ(C) |∆(L)| Compos. JSDanno

acc vm acc vm acc vm acc vm

English
PRT −0.54∗ −0.70∗ 0.47∗ 0.08 −0.44 0.17 0.55
APD −0.64∗∗−0.70∗ 0.32 0.23 −0.55 0.45 0.65

JSDe,l −0.50∗ −0.63 0.51∗ −0.05 −0.14 0.22 0.41

German
PRT 0.08 0.07 0.37∗ 0.22 0.35∗ 0.03 0.05
APD 0.11 0.19 0.26 0.19 0.32∗ −0.05 −0.01

JSDe,l −0.12 −0.01 0.18 0.14 0.20 −0.11 0.15

Table 7: Spearman’s ρ correlations between internal
(rows) and external (columns) semantic change mea-
sures. Best configs per language in terms of accuracy
(acc) and V-measure (vm):
Accuracy: English: best k:4, 2nd−order,compounds.
German: best k:4, 2nd−order,head−cfs;
V-measure: English: best k:8, 2nd−order;head−cfs.
German: best k:30, both,compounds

∗ : p < 0.05, ∗∗ : p < 0.01

uation criteria. We find reason to continue explor-
ing the use of simpler vector representations in
data-limited historical settings, due to their higher
performance in terms of pairwise accuracy, but
evaluation in terms of V-measure caution against
over-interpreting this result. The inclusion of con-
stituents or constituent-family sets in clustering did
not result in a decisive improvement over cluster-
ing with compounds alone, however, both the most
accurate German configuration and the English con-
figuration with the highest average V-measure in-
cluded head-CFS, suggesting that further refine-
ment of target selection and sampling may improve
this approach. All internal measures of seman-
tic change were correlated with English external
change measures, but they largely failed to align
for German, in spite of both languages’ best con-
figurations having similar accuracy scores. Overall,
we recommend relying on |∆(L)| as an external
measure of change, and find prototype and average
pair-wise distances to be reliable default options
for internal measures.
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Limitations

The CCOHA does not contain any orthographic
normalization layer, like the DTA does (see 3.1),
so it is possible that we fail to consider some uses
of our target items that are merely spelled in a non-
standard way. That the CCOHA data is relatively
modern, and only sourced from American-English
texts should reduce (but not completely eliminate)
the effects of purely orthographic variation on our
analysis.
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A Corpora Details

A.1 CCOHA

Since the dataset includes texts from the more re-
cent past, its curators redact 10 tokens after every
200 tokens, to comply with copyright restrictions.

A.2 DTA

We use orthographic modernization provided in the
DTA to avoid string-mapping errors (e.g. mapping
uses of ‘ſ’ to the modern ‘s’).

B Configurations

B.1 Domain Adaptation

For both languages, we domain-adapted the base
models for 3 epochs over the respective corpora.
We used a learning rate of 5e-5, masking 15% of
tokens, 768-dimensional hidden layer, vocabulary
of 30k, with a maximum sequence length of 128 to-
kens. We used a Nvidia GeForce RTX A6000 GPU,
running for approximately 130 hours (English) and
43 hours (German).

We use bert-base-german-cased
(https://www.deepset.ai/
german-bert) and bert-base-uncased
(Devlin et al., 2019) (https://huggingface.
co/bert-base-uncased) for German and
English, respectively. Each model is domain-
adapted on the full diachronic corpus using
lemmatized text, to reduce the set of possible
string representations of our target items (due to
e.g. inflections for plural use).

B.2 Packages, versions

We used the following Python (version 3.10.4)
packages (name, version):
nltk: 3.7, numpy: 1.23.3, scikit-learn:
1.2.2, scipy: 1.10.1, spacy: 3.5.0, torch:
1.13.0, transformers: 4.24.0.

C Instructions for Annotators

C.1 English

You will be presented with a series of examples of
the same target word used in two different contexts.
Each target word is highlighted in green, and the
sentence containing the target word is bordered
by �� icons. The task is to rate each pair of
contexts for how similar the meanings of the green-
highlighted words are (in these uses):

• from 1 (unrelated)

• to 4 (identical)

There is a separate rating for situations where you
can’t decide – this could happen if there is not
enough context to tell what is meant by an example.

C.2 German (translated from English)
Sie werden eine Reihe von Beispielen sehen, in de-
nen dasselbe Zielwort in zwei verschiedenen Kon-
texten verwendet wird. Jedes Zielwort ist grün her-
vorgehoben, und der Satz, der das Zielwort enthält,
ist mit�� -Symbolen umrandet. Die Aufgabe
ist, jedes Paar von Kontexten nach der Ähnlich-
lichkeit der Bedeutungen der grün hervorgehobe-
nen Wörter zu bewerten (in diesen Verwendungen):

• von 1 (kein Bezug)

• bis 4 (identisch)

Es gibt eine gesonderte Bewertung für Situatio-
nen, in denen man sich nicht entscheiden kann –
dies kann passieren, wenn nicht genügend Kon-
text vorhanden ist, um zu erkennen, was mit einem
Beispiel gemeint ist.

D Annotated Examples

Sentence pairs to be annotated were randomly sam-
pled from the corpora. Each pair was rated by
5-10 annotators; 10 English annotators’ and 34
German annotators’ ratings were excluded due
to their failure across a set of three hand-written
quality-control questions or (pairwise, averaged)
inner-annotator agreement lower than Spearman’s
ρ = 0.1. The average inner-annotator agreement of
ρ = 0.33 (English) and ρ = 0.28 (German) should
be considered in light of the overall quantity of the
annotators, and their lack of professional linguistic
training, when compared with e.g. the annotators
of DURel (Schlechtweg et al., 2018).
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Target µ(Early) µ(Late) µ(Compare) ∆Late JSD(e,l )

Ruhestand (retirement) 2.43 3.58 2.27 1.16 0.28
Rechtsstreit (legal dispute) 2.63 3.74 3.51 1.10 0.11
Uhrwerk (clockwork) 2.48 3.44 2.21 0.97 0.16
Triebwerk (engine) 2.22 3.14 1.88 0.92 0.41
Murmeltier (marmot) 2.21 3.06 2.58 0.85 0.32
Eisenwerk (iron works) 2.84 3.48 2.06 0.65 0.27
Trauerspiel (tragedy) 2.64 3.28 2.55 0.64 0.19
Stückwerk (piece work) 2.31 2.70 2.53 0.39 0.38
Streitsache (litigation) 3.03 3.42 3.30 0.39 0.00
Zeughaus (armory) 2.58 2.94 2.73 0.37 0.21
Gesichtszug (facial expression) 3.11 3.45 3.40 0.34 0.11
Feuerwerk (firework) 2.86 3.20 2.45 0.34 0.24
Kartenspiel (card game) 3.03 3.34 3.22 0.31 0.03
Wortspiel (wordplay) 3.19 3.42 3.15 0.23 0.03
Schauspiel (play (theater)) 2.52 2.75 2.39 0.23 0.27
Hausstand (household) 2.46 2.68 2.23 0.22 0.47
Grundfläche (footprint (floor)) 3.21 3.4 3.14 0.20 0.10
Meerwasser (seawater) 3.14 3.31 3.25 0.17 0.11
Eifersucht (jealousy) 3.15 3.32 2.97 0.16 0.20
Sündenfall (lapse (religious)) 2.94 3.06 2.93 0.11 0.07
Sonnenuhr (sundial) 3.58 3.65 3.24 0.08 0.03
Tagewerk (day’s work) 2.35 2.41 2.52 0.06 0.28
Mauerwerk (masonry) 3.11 3.16 3.22 0.05 0.03
Sonnenstrahl (sunbeam) 2.88 2.9 3.18 0.02 0.07
Heerführer (general (military)) 3.37 3.36 3.57 -0.01 0.00
Sonnenlicht (sunlight) 3.01 2.96 3.04 -0.05 0.03
Bergwerk (mine) 3.33 3.24 2.99 -0.08 0.03
Ziegenbock (male goat) 2.42 2.32 2.73 -0.10 0.27
Sonnenschein (sunshine) 3.28 3.18 3.02 -0.10 0.17
Kreuzzug (crusade) 3.21 3.10 2.94 -0.11 0.17
Brunnenwasser (well water) 3.31 3.20 3.46 -0.12 0.07
Seewasser (seawater) 3.23 3.09 2.95 -0.14 0.20
Zitronensaft (lemon juice) 3.91 3.75 3.78 -0.16 0.11
Stockwerk (story / floor) 3.38 3.17 2.99 -0.21 0.07
Kinderspiel (child’s play / something easy) 2.35 2.05 2.15 -0.30 0.36
Wunderwerk (marvel, miracle) 2.87 2.54 2.41 -0.33 0.38
Bildhauer (sculptor) 3.50 3.15 3.55 -0.36 0.00
Leinöl (flax seed oil) 3.59 3.19 3.44 -0.39 0.00
Rehbock (male deer) 3.08 2.61 2.81 -0.47 0.14
Windspiel (wind chimes) 3.08 2.43 2.81 -0.65 0.17
Sonnenblume (sunflower) 3.34 2.70 3.23 -0.65 0.11
Salzwasser (salt water) 3.44 2.67 2.86 -0.76 0.21
Feldzug (campaign) 3.53 2.46 3.42 -1.07 0.13

Table 8: Full list of German target compounds, and average relatedness ratings (1: unrelated; 4: identical) for each
era, across the two eras, and JSD across eras from clustered annotation graph. Sorted by ∆Late. Reference English
translations only for predominant sense.
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Figure 3: Example Correlation Clustering of annotation graph by WUG tool. Each node represents an example
sentence where ‘ground floor’ was used. Numbers in each node are cluster labels and numbers on edges are
aggregated relatedness values.

CCOHA (EN)

Early-era

1830 1859

Late-era

1980 2009

DTA (DE)

Early-era

1700 1759

Late-era

1870 1909

Figure 4: Timeline with full range and selected early and late eras for each corpus.
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