
Findings of the Association for Computational Linguistics: ACL 2025, pages 10731–10746
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Self-play through Computational Runtimes improves Chart Reasoning

Tautvydas Misiunas* Hassan Mansoor Jasper Uijlings Oriana Riva Victor Carbune
Google DeepMind

Abstract

Vision-language models (VLMs) achieve im-
pressive zero-shot performance on multimodal
reasoning tasks. Oftentimes, best reported per-
formance is achieved with a zero- or a few-
shot prompt. Asking the model solving the
same task using a different approach, such
as through code generation, can hurt perfor-
mance. In addition, training sets are typically
no longer useful for improving model perfor-
mance through few-shot learning, due to their
use in training. Indeed, we observe that auto-
prompting techniques such as DSPy (Khattab
et al., 2023), when applied on training sets,
do not produce few-shot examples that signif-
icantly improve validation performance. Fur-
ther, when used in conjunction with program-
of-thought prompting, performance becomes
even worse.

Our work overcomes these limitations by in-
troducing a novel self-play programming inter-
face which leverages the ability of VLMs to
first generate code to decompose a complex vi-
sual reasoning task in sub-tasks, then use itself,
or other models, as a tool to solve decomposed
tasks. Our approach enables DSPy to not suf-
fer from performance drops, when applied it-
eratively on training sets. Furthermore, it out-
performs zero-shot baselines on difficult chart
reasoning benchmarks. We report the perfor-
mance of our approach on ChartQA, PlotQA
and ChartFC. This enables large models, such
as Gemini or GPT to autonomously learn how
to use themselves as tools and iteratively im-
prove without the need for additional data.

1 Introduction

The ability of vision-language models (VLMs) to
understand scientific charts is key to enable auto-
mated and efficient data analysis. The diversity
and complexity of these charts make this a chal-
lenging problem, as evidenced by the emergence
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of several benchmarks such as ChartQA (Masry
et al., 2022), PlotQA (Methani et al., 2020), and
ChartFC (Akhtar et al., 2023).

Most recent breakthroughs have been obtained
through pre-training and fine-tuning using carefully
constructed data mixtures and scalable model ar-
chitectures (Anil et al., 2023; OpenAI et al., 2024;
McKinzie et al., 2024). We posit that the bene-
fits for downstream users of these models stem
more from the ability and flexibility to perform vi-
sual in-context learning (ICL) on any given task,
rather than the performance on the specific down-
stream task. Not only the task of interest may not be
present in the data mixture, but the various training
stages may inadvertently degrade performance be-
cause of the large number of tasks involved. There-
fore, an emerging class of approaches leverages vi-
sual ICL capabilities (Alayrac et al., 2022) for solv-
ing such tasks without modifying the base model;
an LLM orchestrates tools (Hu et al., 2023), writes
code (Surís et al., 2023; Stanić et al., 2024; Gupta
and Kembhavi, 2023) or a mix of both (Castrejon
et al., 2024; Yang et al., 2023; Yao et al., 2023;
Khattab et al., 2023). Beyond a certain scale (McK-
inzie et al., 2024), ICL successfully enables com-
bining image understanding with code generation.

Our work introduces a technique for perform-
ing iterative few-shot example mining, through an
approach that improves upon performance of exist-
ing methods such as DSPy (Khattab et al., 2023)
by extracting additional learning signals from ex-
isting training sets. We focus our method devel-
opment on some of the most difficult benchmarks
available today for chart understanding, specifically
ChartQA (Masry et al., 2022), PlotQA (Methani
et al., 2020), and ChartFC (Akhtar et al., 2023).

We leverage a self-refinement approach (Madaan
et al., 2023) to overcome trivial execution errors
and the task metric using the golden labels from
the training set (Stanić et al., 2024). Our method is
visualized in Figure 1. The method treats training

10731

mailto:tautis@google.com


Figure 1: Self-play environments can be used for probing and learning how to use tools/models. During training
stage, few-shot examples are iteratively replaced with better ones, whereas during inference the most suitable ones
for an example are selected.

sets as self-play environments for vision-language
models (VLMs) to improve their chart reasoning
abilities. Instead of merely using the training data
as a static source of examples for supervised learn-
ing or few-shot prompting, the training set becomes
an active arena where the model can iteratively
learn and refine its problem-solving strategies.

It iteratively expands the few-shot examples,
thus constructing several few-shot pools (for each
initial zero-shot prompt) or mixed-shot pools (com-
bining across types of zero-shot prompts). These
pools are then used at inference time. Unlike prior
work (Gupta and Kembhavi, 2023; Surís et al.,
2023), this process does not require any human
supervision. For powerful VLMs, such as Gemini
(Anil et al., 2023), which both generate code and
perform visual reasoning, the training loop resem-
bles self-play (Silver et al., 2017), where the model
learns how to best use itself to solve a VQA task.
Furthermore, it taps into improved reasoning capa-
bilities of models which were also trained on code
generation datasets (Ma et al., 2023).

The process of replacing the zero-shot prompt
with few-shots that matched the training label is
similar to that of DSPy (Khattab et al., 2023). How-
ever, we show that, without our method, DSPy fails
to improve over zero-shot regime, even degrading

when program-of-thought is used. In our initializa-
tion, we seed the process with multiple initial zero-
shot prompts which differ through the type of code
generated (e.g., program of thought (Chen et al.,
2023a), API-based (Patil et al., 2023)). Uniquely
introduced by our approach, we extend the iterative
process for up to 10 iterations and we introduce a
novel few-shot selection technique that builds upon
the learning signals from the multiple iterations.

The computational environment constructed
through code generation couples values inferred
directly from the image (e.g., values of bars or text
labels in a chart) with tool (model)’s inference out-
puts, through basic arithmetic computations (Patil
et al., 2023; Schick et al., 2023; Cai et al., 2024). A
main challenge to address in this setup is how to au-
tomatically choose APIs to be used in prompts for
invoking individual models (as tools). Prior work
has shown how LLMs are capable to perform self-
debugging and self-correction (Stanić et al., 2024).
We study two types of computational environments.
The first one extends program-of-thought (Bi et al.,
2023) conditioning on multimodal input, while the
second type makes use of an indirection API, en-
abling the model to focus on orchestration and de-
composition aspects.

The self-play environment surfaces and main-
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Figure 2: Example of a compositional reasoning question from ChartQA (Masry et al., 2022). Gemini predicts
code conditioned on the image, re-using itself through an API for visual information lookup (image_obj.answer)
and leveraging the computational environment for the arithmetic comparison (i.e., comparing bar values).

tains as few-shots those training examples where
the model successfully performed such orchestra-
tion. Furthermore, it enables a model such as Gem-
ini, to be both an orchestrator, by predicting the
code which decomposes the problem and leverages
tools, and a tool, by being called by the underly-
ing API. By keeping the training step outputs for
which results match training labels, we form few-
shot pools for each type of zero-shot prompt pro-
vided. We provide an example question and model
generated solution using our work in Figure 2.

Our contributions can be summarized as fol-
lows: (i) we introduce a simple, yet powerful API,
for constructing self-play environments for VLMs
to reuse existing training sets, (ii) we show the
effectiveness of our approach by outperforming
zero-shot performance on ChartQA, PlotQA and
ChartFC for Gemini and GPT without additional
data, and (iii) we show that our approach can over-
come scaling limitations encountered in prior work,
when applied within DSPy (Khattab et al., 2023).

2 Related Work

Strong capabilities of recent multimodal models
in zero-shot regimes indicate continued improve-
ments on difficult reasoning tasks, particularly in
the image understanding domain. Yet, it is expected
that capabilities may differ by modality, due to spe-
cific technical challenges stemming from modality-
specific tokenization (Borsos et al., 2023; Fu et al.,
2022; Dosovitskiy et al., 2021) and availability of
mixed-modality pre-training datasets (McKinzie
et al., 2024; Fu et al., 2022) to learn inter-modal de-

pendencies. While impressive results are reported
for text modality in many-shot regime (Agarwal
et al., 2024), earlier few-shot results on images
flattened more quickly (Alayrac et al., 2022) and
recent work on classification tasks (Jiang et al.,
2024) highlighted scaling challenges. Our ap-
proach would directly be accelerated by further
breakthroughs in multimodal many-shot regime.

Auto-prompting methods We ground our con-
tributions in auto-prompting approaches, such as
AutoCoT (Zhang et al., 2022), AutoDirected CoT
(Schulhoff et al., 2024) and DSPy (Khattab et al.,
2023). AutoCoT generates reasoning traces and
augments an existing pool of few-shot examples,
while AutoDiCoT further expands by using a de-
velopment set and constructing different reasoning
traces based on whether it was correctly labeled
or not. Other methods, such as MEAL (Köksal
et al., 2023), provide ensemble strategies, while
Skill-Based Few-Shot Selection (An et al., 2023)
relies on selecting task-specific examples through
embedding-based retrieval.

DSPy We identify DSPy (Khattab et al., 2023) as
most closely related. DSPy particularly addresses
variability in prompt-based fine-tuning, a critical
aspect highlighted by methods such as MEAL. Sim-
ilar to MEAL, DSPy utilizes ensemble strategies
and active prompt selection to mitigate prompt vari-
ability. DSPy introduces a programming model
that defines a computation graph through which
language model pipelines are invoked. In DSPy,
the user can make use of a compilation stage, where
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a metric function can be used for identifying the
best examples to use in a few-shot prompt. In
particular, the introduction of generic ‘bootstrap’
method which dynamically selects in-context ex-
amples: given a set of examples with ground truth
annotations, it attempts to solve them (e.g. us-
ing chain-of-thought). Given the set of solved
examples, it then bootstraps N examples which
together provide the best in-context examples to
solve most questions of the dataset. In contrast
to DSPy, we focus on multimodal tasks which are
solved through code generation and tool calls. This
leads to an increasing pool of possible in-context
examples to choose from. Our work aims to over-
come limitations observed with DSPy and other
auto-prompting strategies where they plateau or
degrade performance on training sets. Instead, our
work aims to continue extracting useful learning
signals.

Learning to use tools Toolformer (Schick et al.,
2023) introduced a pre-training and fine-tuning
recipe for augmenting LLMs with capabilities to
use tools. ReAct (Yao et al., 2023) leverages few-
shot capabilities, and has recently been extended
(Yang et al., 2023; Castrejon et al., 2024; Hu et al.,
2023; Gao et al., 2023) to the multimodal domain.
Multi-agent frameworks such as AutoGen (Wu
et al., 2023) are examples of mainly natural lan-
guage based environments for learning how to col-
laborative solve tasks. There, code generation is
mainly a tool, however as an environment, it can
also be effective at scaling tool use to thousand
of APIs (Patil et al., 2023), with selecting among
prompt libraries for using specific tools depending
on the task being a key element (Paranjape et al.,
2023). Our proposed technique treats predicted
code as environments where agents learn to use
themselves, a less explored angle (Stanić et al.,
2024; Surís et al., 2023; Subramanian et al., 2023).

Visual QA Solving visual question-answering
tasks poses numerous challenges for VLMs, that
are typically solved with general image repre-
sentation techniques (Alayrac et al., 2022; Chen
et al., 2023b; Baechler et al., 2024) or question-
conditioned ones (Ganz et al., 2024; Yang et al.,
2024). VLMs highly specialized on types of tasks
are another possibility (Carbune et al., 2024; Chen
et al., 2024; Levy et al., 2022). Such methods re-
quire numerous pre-training and fine-tuning exper-
iments and are less flexible compared to those that
leverage in-context learning (Brown et al., 2020)

for improving task performance either through few
exemplars (Alayrac et al., 2022; Song et al., 2022),
or zero-shot techniques such as chain-of-thought
(Wei et al., 2023). Our work leverages both zero-
shot capabilities, as well as few-shot learning in a
way that enables an iterative refinement loop not
previously explored for these tasks.

Self-play Environments such as AlphaGo (Silver
et al., 2017) and Atari (Mnih et al., 2013) have
been widely used for training models using rein-
forcement learning (Tesauro, 1995). We take inspi-
ration from such work and translate VQA tasks into
self-play environments. The VLM first constructs
a python runtime, which decomposes the task into
multiple sub-tasks and then uses itself for solving
those. As improvement signal, correctness of an-
swer is used. We hypothesize that transforming
training datasets this way, paired with richness of
programs generated, enables VLMs to construct a
rich state-space from which compositional reason-
ing can be improved.

3 Method

Figure 1 presents our approach of constructing a
synthetic environment through code generation, it-
eratively constructing better and better few-shot
exemplars. Similar to auto-prompting techniques
(Khattab et al., 2023; Wu et al., 2023; Zhang et al.,
2022), our method starts by bootstrapping exam-
ples using zero-shot capabilities of VLMs. The
instructions describe at a high-level how the pro-
gram solving the visual question should roughly
look like, leveraging instruction-following capabil-
ities (Wei et al., 2022), as well as minimal self-
refinement capabilities (Madaan et al., 2023). Our
method can be described through a seed stage, fol-
lowed by an offline training stage. Finally, at test
time, the inference stage solves a given test ex-
emplar by making use of the best matching train
exemplars constructed during the training stage.

Seed stage We provide a zero-shot prompt which
contains instructions for generating programs to
solve the given tasks, controlling the type of com-
putational environments constructed, which need
to be able to perform visual information look-up,
arithmetic operations and compositional reasoning
on the given task. We enable using two types of
programs. One type is a zero-shot visual program-
of-thought (Bi et al., 2023), whereas the second
one introduces an API through which the model
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Q: What's the average value of all dark blue bars?

def execute():

"""

Calculates the average value of the dark blue bars in the image.

Returns:

float: The average value of the dark blue bars.

"""

# Define the data from the image

dark_blue_bars = {

"Healthy eating habits": 72,

"Getting enough physical exercise": 71,

"Safe and healthy housing conditions": 61,

"Genetics and hereditary factors": 47,

}

# Calculate the average value of the dark blue bars

average_value = sum(dark_blue_bars.values()) / len(dark_blue_bars)

return average_value

ans = execute()

Figure 3: Visual program-of-thought (Chen et al., 2023a) creates intermediate data structures using extracted values
from the image in order to provide an answer that requires arithmetic computations.

can orchestrate the task decomposition and dele-
gate sub-tasks to itself within the program. Given
that generated programs may not follow precisely
expected output constraints (e.g., numeric values,
percentages, etc.) or may perform superficial type
conversations that lead to execution failure, we
allow the model to refine it three times (Madaan
et al., 2023) using the execution error as feedback.
The output of this stage are then programs which
correctly solve a given training example.

Visual Program-of-Thought: Our first type of
environment is a natural extension to program-of-
thought (Chen et al., 2023a) (PoT), where the im-
age alongside the question is used when generating
programs, with code interleaved with rationales as
comments. Values on the images are extracted di-
rectly in code, but there is no API that enables a
tool call. An illustration of the generated code is
in Figure 3 and the corresponding zero-prompt is
in the Appendix D.1. PoT naturally facilitates task
decomposition, allowing VLMs to effectively man-
age intermediate computations and maintain struc-
tured reasoning paths—crucial for complex visual
reasoning tasks such as those found in ChartQA,
PlotQA, and ChartFC.

Self-play API: We extend visual program-of-
thought with a simple, yet powerful indirection
API, depicted in Listing 1. It consists of an
ImageObject that wraps a provided image and
has an answer method for answering a question
related to the image. The API interface can be
implemented in multiple ways, either through call-

ing a large model using a prompt well suited for
question-answering or by through calling a special-
ist fine-tuned model. This API enables the model to
focus on the problem decomposition into sub-tasks
separately from the individual sub-task solution.
The single method class abstracts away details such
as which model is called, how it is called and even
what hyper-parameters are used.

1 c l a s s ImageObjec t :
2 " " " Holds t h e image . " " "
3 d e f _ _ i n i t _ _ ( s e l f , image : Image ) :
4 p a s s
5 d e f answer ( s e l f , q u e s t i o n : s t r )−> s t r :
6 " " " Answers q u e s t i o n s on h e l d image . " " "
7 p a s s

Listing 1: Our simple, yet powerful, API proposal

Training stage This stage adds few-shot exem-
plars from the seed stage’s outputs to the zero-shot
instructions. The stage then runs few-shot infer-
ence with the goal of improving the few-shot exem-
plar pool. The selection of the few-shot exemplars
to label is mainly done through random sampling
on the training set. The output of the training stage
ultimately consists of the best possible few-shot ex-
emplar pool within the budget specified. We treat
the number of exemplars N ≤ 1000 and training
steps T ≤ 10 as hyper-parameters.

Inference stage Lastly, once the training set con-
structed a few-shot exemplar pool, at inference we
can select, at random or using a similarity measure,
which K = 8 few-shot examples to use to solve a
task. When the same N exemplars are used across
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all T training steps, we obtain information about
how difficult to solve a particular example is across
all stages of the training. These exemplars may
be useful to include due to the model’s inability to
solve them.

We refer the reader to Appendix D.1 and Ap-
pendix D.2 where we provide examples not only of
prompts, but also how the code changes after the
training stage.

4 Experimental Setup

We first introduce tasks of interest and models we
make use of our in our setup in Section 4.1. Then
we report the baseline performance using zero-shot,
as well as program-of-thought, followed by our
proposed method’s performance on validation sets.
Finally, we report main results in Section 4.

4.1 Datasets and Models

We evaluate our method on several challenging mul-
timodal benchmarks that require reasoning about
scientific diagrams, such as charts. In order to
solve a visual question-answering task or fact-
check whether a particular statement is supported
by the provided chart, models oftentimes have to
perform visual information look-up paired with
compositional reasoning through mathematical op-
erations (e.g. comparisons, multiplications).

Models Our methods builds on the strength of
models that can generate code conditioned on im-
ages. We therefore perform ablations and evaluate
our approach primarily on Gemini 1.5 Flash (Anil
et al., 2023), although smaller scale fine-tuned mod-
els on code generation tasks may equally work.
Through the generated code, the model can use
itself as tool or another model.

Tasks Key to our method is to continue leverag-
ing existing training sets, even if they have been
used during large model training phases. To do so,
we focus on using as few exemplars as possible.
Therefore, we use a pool of up to 1000 exemplars
during the seed and training stages and 8 exem-
plars at inference stage. The larger the pool at
initial stages, the more diverse exemplars are avail-
able. We make use of ChartQA (Masry et al., 2022)
and PlotQA (Methani et al., 2020) for question-
answering, while for visual fact-checking we eval-
uate ChartFC (Akhtar et al., 2023). More details in
Appendix E.

DSPy (CoT) ChartQA PlotQA ChartFC

0-shot 80.0 42.2 78.9
8-shot (bootstrap-1) 80.9 32.3 79.6
8-shot (bootstrap-2) 80.4 32.2 78.9
8-shot (bootstrap-3) 81.2 31.5 78.5

Table 1: Naively bootstrapping few-shot exemplars us-
ing the DSPy programming model on task training sets
arbitrarily affects performance.

Metrics For all the tasks we report relaxed accu-
racy metric (RA). This metric requires string pre-
dictions to match ground truths, while for numeric
answers a 5% relative difference to ground truth
is considered correct. Since our method generates
code, we kept track of code pass rate (CPR), which
quantifies number of time code executed succes-
fully over total code execution attempts. However,
we noticed that at all times this is usually more than
95%. Therefore, we do not report it separately.

The DSPy programming model (Khattab et al.,
2023) described in Section 2 is a strong baseline
for our work. We show, however, that naively using
DSPy on training sets leads to performance drops,
which our proposed method overcomes. We apply
the DSPy programming model for the first time,
to our knowledge, on multimodal tasks. We find
that the programming model proposed can easily
accommodate images, besides text, as input.

4.2 Zero-shot Bootstrapping

We start by defining the corresponding DSPy pro-
gram signature, namely (image, question) →
(answer) and implement a predictor that lever-
ages this signature in a zero-shot manner. The
DSPy approach makes use of a student and teacher
predictor in a loop, where initially the teacher is a
zero-shot prompt. Once demonstrations have been
performed, we bootstrap the student by append-
ing the teacher-labeled examples to the zero-shot
prompt. The student then becomes the teacher.

To ground the performance of the approach in
Gemini 1.5 Flash (Anil et al., 2023) performance,
we use from the beginning the task-specific zero-
shot prompt with chain-of-thought (CoT) predictor,
instead of a naive prompt based on just the signa-
ture. We report the results in Table 1.

Bootstrapping through the DSPy programming
model on training sets does not necessarily lead to
performance improvements. Indeed, as can be ob-
served, PlotQA performance degrades significantly
from the zero-shot performance. The drop may be
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explained through the fact that the bootstrapping
process selects 8-shot exemplars from those that
the teacher can label, thus biasing the exemplars se-
lection space compared to random sampling from
the training sets. This is an important aspect to
optimize, considering that most real-world tasks do
not have labels to start with.

4.3 Visual Program-of-Thought

DSPy programming model enables chaining multi-
ple predictors. The chain facilitates using outputs
from one predictor as inputs for the next predic-
tor, naturally forming solutions traces. The boot-
strapping process can keep the end-to-end traces
that reach the correct answer according to the RA
metric, constructing few-shot exemplars for each
predictor out of a single trace.

We implement a visual program-of-thought
(VPoT) predictor, from which we take the outputs
and pass them through chain-of-thought (CoT) pre-
dictor that takes into account the code and the code
output. We report the results in Table 2.

We observe that the ChartQA numbers degrade
less compared to the PlotQA and ChartFC bench-
marks. This may likely be attributed to the model
capability to ignore the generated code and code
outputs and simply focus on the task at hand. It may
also explain better why in the previous baseline,
without the use of generated code, performance on
ChartQA slightly increased. This also suggest that
the results on the other two benchmarks may be
better indicators of generalizability.

DSPy (VPoT + CoT) ChartQA PlotQA ChartFC

0-shot (CoT) 80.0 42.2 78.9

0-shot 79.3 45.4 81.9
8-shot (bootstrap) 78.1 29.5 78.2
8-shot (bootstrap-2) 78.0 32.1 77.7
8-shot (bootstrap-3) 78.2 32.2 79.5

Table 2: Extending the DSPy bootstrapping process by
involving code generation suffers from the same perfor-
mance degradation.

4.4 Self-play API

Further, we replace the visual program-of-thought
predictor with our Self-play API (SP) predictor,
while also making use of a chain-of-thought pre-
dictor. The core elements of the baseline setup
described remain the same.

DSPy (SP + CoT) ChartQA PlotQA ChartFC

0-shot (CoT) 80.0 42.2 78.9

0-shot 78.2 46.5 80.4
8-shot (bootstrap-1) 80.0 49.5 80.3
8-shot (bootstrap-2) 81.3 51.2 82.2
8-shot (bootstrap-3) 81.1 52.4 81.9

Table 3: The Self-play API (SP) predictor significantly
boost performance on scientific diagram reasoning.

The improvements shown in Table 3 demonstrate
the predictor using the Self-play API comes with
several benefits: (1) the model can always choose
to call itself within the generated program, thus
delegating the entire task or a sub-task to itself, (2)
execution of the generated code represents a feed-
back signal on how well the delegation was tied
together. Thus, our approach not only better sepa-
rates orchestration from delegation, but constructs
a feedback loop through which enables the model
to balance what to delegate and what to orchestrate.

5 On Similarity Measures

We have briefly investigated as to whether the
choice of similarity measure substantially improves
over random selection, as shown in (An et al.,
2023). We have made use of CLIP image simi-
larity, CLIP text similarity (Radford et al., 2021),
TF-IDF text similarity, TF-IDF text similarity. We
observed that CLIP similarity sometimes reduced
the number of images necessary, but inconsistently
across datasets. Therefore, we have based on our
main results on random selection. We investigate
more complex selection measures as an in-depth
study in the next section.

6 Scaling Self-play on PlotQA

To further strengthen our contribution, we scale up
our analysis beyond the DSPy configuration. We
chose to focus this study on PlotQA to limit costs.
We ablate the choice of large model, adding GPT-
4o, scale the number of bootstrapping iterations
up to 10 and we report the effects of labeling up
to 1000 exemplars per iteration during the training
stage using our method. Due to the large number
of examples available, we chose to select the 8-
shot at test time using a similarity measure based
on the question asked. Lastly, we also report how
the performance changes when Image.answer is
implemented using a tool, specifically a fine-tuned
version of PaliGemma-3B (Beyer et al., 2024). For
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strengthening our contribution, we do not make
use of an additional predictor based on chain-of-
thought, rather directly use the self-play predictor
output after code execution.

When scaling up to T = 10 steps, we use
up to N = 1000 examples from the training set
during the training stage. During every step, the
teacher typically labels up to 60% of the training
set, roughly 600 examples. Out of these, during in-
ference stage, we select 8 examples that best match
the question at test time.

Self-play API
PlotQA

Gemini 1.5 Flash GPT-4o

0-shot (CoT) 42.2 21.6

0-shot 43.7 20.8
8-shot (bootstrap-5) 50.6 21.7
8-shot (bootstrap-10) 52.3 22.9

Table 4: Behavior of Self-play API when used for boot-
strapping up to 10 iterations, teacher-labeling up to
1000 examples, while selecting best 8 matching exam-
ples at inference. Performance on PlotQA validation
set.

Our findings in Table 4 confirm that our ap-
proach works well across model families. Although
the performance of GPT-4o on PlotQA starts lower,
our method nonetheless improves the model’s abil-
ity to better use itself.

PaliGemma An alternative implementation of
the Self-play API is for the Image.answer
method to call an external tool. We fine-tune
PaliGemma (Beyer et al., 2024) on PlotQA. Then
we replace the original implementation that calls
the model with the zero-shot prompt with a call to
the fine-tuned model. First, we contrast the tool per-
formance with the zero-shot performance in Table 5
and note that the specialist model indeed performs
better than Gemini 1.5 Flash in zero-shot regime.

Tool PlotQA (RA %)

Gemini 1.5 (zero-shot) 42.2

PaliGemma (fine-tuned) 52.1

Table 5: Standalone performance of models on PlotQA
validation set.

Then, we replace the implementation of the Self-
play API. The implementation details are not visi-
ble at code generation time, for which the prompt
is the same and consists of a simple high-level API

description. In spite of this, we observe significant
differences in performance on the validation set af-
ter multiple refinement iterations of the training set.
Our method improves significantly over the base-
line in both cases, as depicted in Figure 4. Gemini
1.5 Flash is able to improve regardless of the im-
plementation, but benefits from more predictable
and higher quality outputs from specialized tools.

Figure 4: Performance when using different
Image.answer specializations, using PaliGemma and
Gemini 1.5 Flash.

We attribute the large improvement over the
setup in Table 4 to the predictability of the
PaliGemma model behind the API call. Specif-
ically, the fine-tuned model outputs directly an-
swers to questions, removing spurious errors such
as incorrect conversations, longer answers, thus
enabling the refinement over multiple iterations to
focus on how to decompose a complex question.

Novelty Score Training stage has 1000 exam-
ples which includes questions of varying difficulty.
Some questions are simple and are always an-
swered correctly, while others are challenging and
only solved occasionally. We argue that examples
that are hard to solve contain more novel informa-
tion. For this, we introduce a novelty score that we
assign to an example which has been evaluated re-
peatedly through the T ≥ 10 iterations described in
previous section. This would be defined as follows:

NoveltyEi
=

(
1− Kcorrect

T

)
,

where i ∈ 1, 2, ..., N and Kcorrect is the number of
times an example was correctly solved during the
training stage. Then, at inference time, we com-
bine the similarity measure score with the novelty
measure score introduced here in order to choose
whether an example should be used as part of the
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8-shots selected at test time. The final similarity
distance is defined as

ScoreEi,Etest =
α ∗NoveltyEi

+ (1− α) ∗ SimilarityEi,Etest

we use α = 0.15 for our experiments.
We report the result in Figure 5.

Compute Estimates For the tasks used, a typi-
cal input example consists of a (image, text) pairs,
typically resulting in about 300 tokens per input
(e.g. 258 tokens for the image, rest for the text).
The output token counts differs when generating
code ( 50100 tokens) or directly answering as tool
( 10-20 tokens), from within the code. The key
additional cost comes from the number of tool
calls, which depends heavily on initial prompting
approach. Lastly, the costs for fine-tuning a tool
such as PaliGemma (Beyer et al., 2024) need to be
accounted for as well.

Figure 5: PlotQA performance improves when, at test
time, harder examples, besides similar ones, are used
as part of the 8-shot examples.

Lastly, we report the results on the sub-sampled
test set for PlotQA in Table 6.

Self-play API
PlotQA

Gemini GPT

0-shot [Chain-of-Thought] 41.6 19.3

0-shot [Self-play API] 42.8 19.0
8-shot [Self-play API], Best Step 49.8 19.9

Table 6: Gemini 1.5 Flash / GPT 4o performance with
our method on PlotQA test

7 Conclusion

Our work introduces a new recipe through which
highly capable models, such as Gemini multimodal,
can leverage their joint image understanding and

code generation capabilities for bootstrapping im-
proved performance. We validate our approach on a
set of difficult chart reasoning benchmarks, but note
it’s wide applicability. We do this by seeding envi-
ronments with zero-shot prompts that solve a given
task in two ways, through program-of-thought or
through a self-play API that enables Gemini to
focus on the high-level reasoning challenge, del-
egating the low-level problem to itself as a tool.
Our method iteratively improves performance on
visual-question answering training sets, generaliz-
ing strongly on validation and test sets after just a
few training iterations. Improvements over zero-
shot baselines are strong across each environment
and task combination.
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A Limitations

We report several limitations of our work: we note
that the evaluation focused on a limited number
of environment types (two) and tools, used with
a strong emphasis on a powerful indirection API,
but potentially overlooking scalability challenges.
Our results on test sets are limited to the open ones,
while work on the closed test sets of DocVQA and
InfographicVQA will be done at a later stage. Al-
though the effects of few-shot learning were effec-
tively leveraged, a deeper investigation into many-
shot learning was not undertaken before iterating
on training steps to refine the few-shots. Lastly, we
think our work extends to natural images; however,
our focus has been on UI interfaces, charts, and
infographics.

B Societal impact

Our work proposes a technique through which a
training set can be exploited in creating an environ-
ment through which alternative solutions can semi-
autonomously, through self-play, be constructed by
large models to solve the task. Training sets are
already heavily used in the pre-training and fine-
tuning stages of large model training. Our work
reuses these datasets. Due to inherent limitations
of the training sets, it is likely that broader societal
impact is rather limited compared to what models
already achieve today. The particular skill acquired
does play a role, in our case for refining generated
code as an alternative problem solving path, should
have a positive impact where models can bootstrap
alternative approaches the downstream user has
access to. However, refining and improving gen-
erated code does require safety handles, such as
sandboxed environments. Our technique may also
have an impact on the type of datasets collected, as
our method enables constructing datasets syntheti-
cally by introducing external learning signals from
the computational environment. It may be able to
reduce the collection of unnecessary datasets, being
able to extract more from the currently available
ones already collected.

C Qualitative Improvements

Qualitatively looking at examples helps better un-
derstand the type of improvements noticeable after
two iterations of training stage. For example, con-
sider the task of identifying the third largest con-
tributor on the following image from the ChartQA
dataset in Figure 6.

Figure 6: Image from the ChartQA dataset

Our zero-shot prompt for visual program-of-
thoughts, generates the following solution.

1 Q: What is the third largest contributor?
2 ======= Zero -shot (Incorrect) ========
3 def execute ():
4 """
5 This function returns the third largest contributor in the

given pie chart.
6
7 Args:
8 None
9

10 Returns:
11 A string representing the name of the third largest

contributor.
12 """
13 # Get the data from the pie chart.
14 data = [35.7, 15.4, 7.3, 8.7, 26.9]
15
16 # Sort the data in descending order.
17 data.sort(reverse=True)
18
19 # Get the third largest value.
20 third_largest = data [2]
21
22 # Find the corresponding company name.
23 company_names = ['Facebook ', 'Google ', 'Apple ', 'Twitter ',

'Other ']
24 third_largest_company = company_names[data.index(

third_largest)]
25
26 # Return the company name.
27 return third_largest_company
28 ans = execute ()

After two training steps, zero-shot examples are
replaced with few-shot examples. The code is then
modified as follows.
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1 Q: What is the third largest contributor?
2 ======== Few -shot Pool (Correct) =======
3 def execute ():
4 """
5 This function returns the third largest contributor in the

graph.
6
7 The answer is Twitter because it has a 7.3% share of the

2013 mobile display ad revenues.
8
9 Args:

10 None
11
12 Returns:
13 The third largest contributor in the graph as a string.
14 """
15
16 # Get the data from the image.
17 data = [
18 {
19 "company": "Facebook",
20 "revenue_share": 35.7
21 },
22 {
23 "company": "Google",
24 "revenue_share": 15.4
25 },
26 {
27 "company": "Other",
28 "revenue_share": 26.9
29 },
30 {
31 "company": "Apple",
32 "revenue_share": 6.0
33 },
34 {
35 "company": "Twitter",
36 "revenue_share": 7.3
37 },
38 {
39 "company": "Pandora",
40 "revenue_share": 8.7
41 }
42 ]
43
44 # Sort the data by revenue share.
45 sorted_data = sorted(data , key=lambda x: x["revenue_share"

], reverse=True)
46
47 # Get the third largest contributor.
48 third_largest_contributor = sorted_data [2]["company"]
49
50 # Return the third largest contributor.
51 return third_largest_contributor
52 ans = execute ()

Sometimes the model solves the question even
in the doc-string function. We think this may be an
artefacts of the training data. However, our iterative
method continues to improve the code logic and
correct answer is returned. Another example can
be found below.

1 Q: What is the value of the largest pie section?
2 ========= Zero -shot(Incorrect) ===========
3 def execute ():
4 """
5 Computes the value of the largest pie section.
6
7 The largest pie section is the one that represents the

largest percentage
8 of the pie. In this case , the largest pie section is the

one that
9 represents the percentage of people who support allowing

companies
10 from other countries to invest in Pemex. This percentage

is 34%.
11
12 Args:
13 None
14
15 Returns:
16 The value of the largest pie section as a float.
17 """
18
19 # Get the value of the largest pie section.
20 largest_pie_section = 34
21
22 # Return the value of the largest pie section.
23 return largest_pie_section
24 ans = execute ()

After two steps during the training stage, the
code improves significantly.

1 Q: What is the value of the largest pie section?
2 ======== Few -shot Pool (Correct) =======
3 def execute ():
4 """ Calculates the value of the largest pie section.
5
6 The largest pie section represents the percentage of

people who oppose allowing
7 companies from other countries to invest in Pemex. The

value of the largest pie
8 section is 57, which means that 57% of people oppose

allowing companies from
9 other countries to invest in Pemex.

10
11 Args:
12 None
13
14 Returns:
15 The value of the largest pie section.
16 """
17
18 # Get the data from the image.
19 data = [
20 (2007, 41, 44),
21 (2009, 43, 44),
22 (2011, 57, 49),
23 (2013, 51, 37),
24 (2015, 23, 19),
25 (2017, 41, 29)
26 ]
27
28 # Get the U.S. favourability in Russia for each year.
29 us_favorability_in_russia = [y[1] for y in data]
30
31 # Get the highest value in U.S favourability in Russia.
32 highest_value = max(us_favorability_in_russia)
33
34 return highest_value
35 ans = execute ()

D Zero-shot and Self-refinement
Prompts

In this section we provide the zero-shot prompts
used for generating the initial examples. Once a
few examples are generated on training sets, these
zero-shot prompts are replaced by few-shot exam-
ples that have successfully matched labels on the
training set.

D.1 Visual Program-of-Thought
The first type of prompt, described in Section 3, is
visual program-of-thought.
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Prompt: Visual Program-of-Thought
Look at the image and question pair below. The
main objective is to write a function ‘execute()‘
to answer the question from the image. In the
Python documentation of the function, provide
step by step reasoning to explain how the fol-
lowing question can be answered. Afterward
write the code that will answer the given ques-
tion. Return the final answer from the function.
All the required information is given in the im-
age. Do not load any external files or request
for additional input. Pay attention to the units
of the answer and when providing percentage
as an answer convert the number to decimal for-
mat. Write professional level code that an expe-
rienced software developer would write. Prefer
to write explicit code instead of implicit calcu-
lations (e.g. use Python standard libraries to
compute max, mean, median values, etc.). Do
not print anything with Python print function.
Generate Python function only. No english text.

D.2 Self-play API

Here we detail the type of prompts where the model
can call itself, but it wouldn’t know it does so. The
results correspond to Section 3. These do not in-
clude any implementation detail, e.g. how to call
any of the models or what prompts are used when
calling them. Instead a generic interface descrip-
tion within a prompt is provided.

Prompt: Self-play API
Look at the image and question pair below. The
main objective is to write a function ‘execute()‘
to answer the question from the image.
In the Python documentation of the function,
provide step by step reasoning to explain how
the following question can be answered.
Afterward write the code that will answer the
given question.
Return the final answer from the function. All
the required information is given in the image.
Do not load any external files or request for
additional input.
Pay attention to the units of the answer and
when providing percentage as an answer
convert the number to decimal format.
Write professional level code that an experi-
enced software developer would write.
Prefer to write explicit code instead of implicit
calculations (e.g. use Python standard libraries
to compute max, mean, median values, etc.).
Do not print anything with Python print
function. Generate Python function only. No
english text.

You are given an interface and some ex-
amples of how to use the interface to answer
the question. Your task to answer a newly
given question with the interface.

These are interface descriptions of python
classes you can use. Actual implementations
are provided at runtime.
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Prompt: Self-play API Example
Here are some examples of what the implemen-
tation of it may return:
ImageObject(image).answer(’What is the value
of ...?’) may return a number
ImageObject(image).answer(’Is ...?’) may
return a Yes / No
ImageObject(image).answer(’What are the
steps?’) may return a comma-sep string

For the execute function make use of the
ImageObject class. Only the answer() method.

All queries should have an answer, so no need
to consider corner cases.

For usual cases, follow the guidelines below:
- For simple visual queries, directly output the
answer in the code.
- For queries that require counting and spatial
relations, use python code.

Consider the following guidelines:
- Use base Python (comparison, sorting) for
basic logical operations, left/right/up/down,
math, etc.
- Do not import additional modules and do not
use types for variables.
- Use only the ImageObject when multiple
questions are needed to answer the given
question.
- When calling answer on ImageObject use as
complete and specific questions as possible.

The code you output can look similar to this
function below
# Question: ...
def execute(image):
# Explanation for why a first step like the one
below is needed
im = ImageObject(image)
value = im.answer(question)
# Explanation for why the next value is needed
other_value = im.answer(other_question)
# Explanation on how to combine the values in
a meaningful way for answering the original
question.
ans = value + other_value
return ans

D.3 Self-refinement prompt
The self-refinement strategy is rather straightfor-
ward and is captured through the prompt below.

Prompt: Self-play API Refinement
// Missing: answer variable
This code is missing the final answer variable.
The final answer should be assigned to the
answer variable ({answer_var}). Correct the
missing variable mistake and try again.
// NameError: usually import statement
missing.
This code has raised NamedError: {er-
ror_trace}. There might be missing import
statements. Correct the NameError mistake
and try again.
// Generic: for everything else.
The code above is a valid Python code, however
it raised {error_type}: {error_trace}
Correct the mistake and try again please.

E Dataset size summary

Size ChartQA ChartFC PlotQA

Training 1000 1000 1000
Validation 960 1000 1000
Test 2500 1000 1000

Table 7: To reduce costs, we sampled down datasets:
all datasets containing 1000 samples were randomly
sampled and kept consistent across all runs. We used
full sized validation and test sets for ChartQA.
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