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Abstract

Generative models have become widely used
in biomedical entity linking (BioEL) due to
their excellent performance and efficient mem-
ory usage. However, these models are usually
trained only with positive samples, i.e., entities
that match the input mention’s identifier, and
do not explicitly learn from hard negative sam-
ples, which are entities that look similar but
have different meanings. To address this limi-
tation, we introduce ANGEL (Learning from
Negative Samples in Biomedical Generative
Entity Linking), the first framework that trains
generative BioEL models using negative sam-
ples. Specifically, a generative model is initially
trained to generate positive entity names from
the knowledge base for given input entities.
Subsequently, both correct and incorrect out-
puts are gathered from the model’s top-k predic-
tions. Finally, the model is updated to prioritize
the correct predictions through preference opti-
mization. Our models outperform the previous
best baseline models by up to an average top-1
accuracy of 1.4% on five benchmarks. When
incorporating our framework into pre-training,
the performance improvement increases fur-
ther to 1.7%, demonstrating its effectiveness
in both the pre-training and fine-tuning stages.
The code and model weights are available
athttps://github.com/dmis-1lab/ANGEL.

1 Introduction

Biomedical entity linking (BioEL) involves align-
ing entity mentions in text with standardized con-
cepts from biomedical knowledge bases (KB) such
as UMLS (Bodenreider, 2004) or MeSH (Lip-
scomb, 2000).! BioEL encounters significant chal-
lenges due to the diverse and ambiguous nature
of biomedical terminology, including synonyms,
abbreviations, and terms that look similar but
have different meanings. For instance, ‘ADHD’
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Figure 1: Comparison of training approaches between
existing generative BioEL models and our ANGEL
method. The main limitation of current generative
BioEL methods is that they are trained only on posi-
tive samples. This restricts their ability to distinguish
between entity names that are similar in surface form but
different in meaning depending on the context. Our AN-
GEL framework addresses this issue by training the
model to prefer positive samples over negative ones.

(CUIL:C1263846, where CUI stands for Concept
Unique ID) has synonyms such as hyperkinetic dis-
order and attention deficit hyperactivity disorder.
Additionally, ‘ADA’ can be mapped to either adeno-
sine deaminase (CUI:C1412179) or American Dia-
betes Association (CUIL:C1705019) depending on
the context in which the entity appears.

Recent studies have focused on addressing
these challenges, broadly categorized into two ap-
proaches: similarity-based and generative BioEL.
Similarity-based models (Sung et al., 2020; Liu
et al., 2021; Lai et al., 2021; Bhowmik et al., 2021)
encode input mentions and entities from KBs into
the same vector space using embedding models.

"UMLS and MeSH are short for the Unified Medical Lan-
guage System and Medical Subject Headings, respectively.
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They then calculate similarity scores to identify
the most similar entities for each input entity. Al-
though these approaches have achieved remarkable
improvements, they require significant space to in-
dex and load embedding vectors for all candidate
entities (De Cao et al., 2020). Furthermore, rep-
resenting both the input and candidate entities as
single vectors using a bi-encoder can limit the qual-
ity of their representations, making it difficult to
handle challenging cases.

On the other hand, generative models (De Cao
et al., 2020; Yuan et al., 2022a,b), built upon an
encoder-decoder structure (Lewis et al., 2020; Raf-
fel et al., 2020), directly generate the most likely
entity name from the KB for the input entity. The
output space is dynamically controlled through a
constrained decoding strategy, ensuring that only
entities from the target KB are generated. Genera-
tive models offer several advantages over similarity-
based models, including greater memory efficiency
and higher performance. They eliminate the need
to index large external embedding vectors, and
their auto-regressive formulation effectively cross-
encodes the input document and candidate entities.

However, existing generative models are trained
solely on positive samples and do not explicitly
learn from negative samples. Despite their high
performance, they encounter limitations when dis-
tinguishing between biomedical entities with sim-
ilar surface forms but different meanings. Al-
though similarity-based models address this issue
by incorporating negative samples through syn-
onym marginalization (Sung et al., 2020) or con-
trastive learning (Liu et al., 2021), applying these
approaches to generative models is not straightfor-
ward. Consequently, generative models may overfit
to surface-level features, reducing the models’ abil-
ity to generalize effectively across varied contexts,
as illustrated in Figure 1.

To harness the benefits of generative approaches
while overcoming their limitation of not using neg-
ative samples, we introduce a novel training frame-
work, ANGEL. Our framework operates in two
stages: positive-only training and negative-aware
training (see Figure 2). In the first stage, a gen-
erative model is trained to generate biomedical
terms from the KB that share the same identifier
as the given input entity. In the second stage, we
gather both correct and incorrect outputs from the
model’s top-k predictions. The model is then up-
dated to prioritize the correct predictions using a
preference optimization algorithm (Burges, 2010;

Rafailov et al., 2024). Models trained on our AN-
GEL framework significantly outperform the pre-
vious best similarity-based and generative BioEL
models, achieving an average accuracy improve-
ment of 1.7% across five datasets. Our contribu-
tions are as follows:

¢ We introduce ANGEL, the first-of-its-kind
training framework that utilizes negative sam-
ples in generative entity linking. ANGEL
overcomes the limitations of existing genera-
tive approaches by effectively employing neg-
ative samples during training.

* ANGEL is a versatile framework, demonstrat-
ing its applicability in both the pre-training
and fine-tuning phases, leading to perfor-
mance improvements at each stage. Addition-
ally, our method is model-agnostic, consis-
tently improving results across various back-
bone language models, with gains ranging
from 0.9% to 1.7%.

* Our best model, pre-trained and fine-tuned
with our framework, outperforms the previ-
ous best baseline model by 1.7% across five
benchmark datasets.

2 Related Work

2.1 Biomedical Entity Linking

Biomedical entity linking (BioEL), also known
as biomedical entity normalization, is a crucial
task because of its application in several down-
stream tasks in the biomedical domain, such as
literature search (Lee et al., 2016), knowledge ex-
traction (Li et al., 2016a; Xiang et al., 2021; Zhang
et al., 2023), knowledge graph alignment (Cohen
and Hersh, 2005; Lin et al., 2022), and automatic di-
agnosis (Shi et al., 2021; Yuan and Yu, 2024). Typi-
cally, it is assumed that the target mention is already
provided, and the task is solely to link this mention
to the appropriate entity name from the KB. End-
to-end BioEL (Zhou et al., 2021; Ujiie et al., 2021),
which also involves identifying mentions within a
sentence, is being actively researched, but this is
not our focus and will not be discussed in detail.
Traditional classification-based approaches
(Limsopatham and Collier, 2016a; Miftahutdinov
et al., 2019) employed a softmax layer for classifi-
cation, treating concepts as categorical variables
and thereby losing the detailed information of
concept names. Similarity-based (Sung et al.,
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Figure 2: Overview of our method ANGEL. The core idea is to enhance both pre-training and fine-tuning by
incorporating negative samples, which are obtained either through TF-IDF similarity or the model’s top-k predictions.
This approach helps the model distinguish subtle differences between correct and incorrect entities.

2020; Liu et al., 2021; Lai et al., 2021; Zhang
et al., 2022) models have significantly improved
BioEL performance, which encodes mentions
and candidate entity names in the same vector
space. They are characterized by high memory
consumption due to the need to encode entities
into pre-computed embeddings, posing scalability
challenges with large datasets (De Cao et al.,
2020). Several studies have integrated the concept
of clustering into BioEL (Angell et al., 2021;
Agarwal et al., 2022).

2.2 Generative Entity Linking

Generative models have become a powerful method
for entity linking by overcoming the limitations
of similarity-based models. The GENRE frame-
work (De Cao et al., 2020) was the first to demon-
strate this approach. To enhance precision and
reduce memory usage, GENRE introduced a con-
strained decoding method (Hokamp and Liu, 2017)
using a prefix tree (trie), which restricts the output
space to valid entity names. This technique also fa-

cilitates easy updates to the set of entities, making
the system highly adaptable to changes in the KB.
In the biomedical field, notable examples of genera-
tive models include GenBioEL (Yuan et al., 2022b)
and BioBART (Yuan et al., 2022a). GenBioEL, in
particular, is the first model to apply a generative
model BART (Lewis et al., 2020) to BioEL, after
pre-training it using UMLS. Additionally, several
hybrid approaches, known as retrieve-and-generate
methods, have been proposed (Xu et al., 2023; Lin
et al., 2024). In these methods, a similarity-based
model first retrieves the top-k candidates, which
are then reranked using a generative model. Al-
though generative approaches have shown high per-
formance, their training has typically been limited
to positive samples, as discussed in the introduc-
tion section. This absence of explicit negative sam-
ple learning often leads to confusion when entities
share very similar surface forms but represent dif-
ferent concepts. In this study, we introduce the
use of negative samples during training and demon-
strate that this approach can significantly enhance

10716



the performance of generative models.

3 Method

3.1 Task Formulation

Let D = {(%Xn,yn)})_; be a human-labeled
dataset, where x,, represents an input text and y,
is the gold identifier defined in a KB denoted by
. Bach x,, = (c;,;, my, c;}) contains a target en-
tity mention m,, along with its surrounding con-
textual information c,, and c;’, which represents
the tokens before and after the entity mention m,,,
respectively. For simplicity, we will omit the sub-
script n. Our goal is to map each mention m to
its corresponding gold identifier y from the set of
entity names £. To achieve this, we define the
model’s prediction y* as follows:

y* = f(argmaxeeg p9(9|m)), (1)

where e is an entity name defined in the KB, F is a
function that aligns entities to their identifiers, and
0 represents the model parameters.

A single gold identifier may have multiple asso-
ciated entity names that refer to the same concept;
we refer to these as synonyms. Previous generative
BioEL approaches train the model to generate a
textual synonym s € S, where S, C £ denotes
the set of entity names associated with the identifier
Y, in an autoregressive manner as follows:

T
p@(s | X7V) = Hpe(st | S<t7X>V)a (2)
t=1

where T is the number of tokens of the synonym s,
s¢ indicates the ¢-th token of the synonym, and v
is the prompt. In an encoder-decoder model struc-
ture (Lewis et al., 2020), the input to the encoder is
formatted as follows:

[BOS] ¢~ [ST1m [ET] ¢ [EOS],

where the special tokens [ST] and [ET] surround
the target mention, and the special tokens [BOS]
and [EOS] represent the ‘Begin Of Sentence’ and
‘End Of Sentence,” respectively. The prefix prompt
v to the decoder, represented as ‘m 1is’, is con-
catenated with [BOS] and input to the decoder. The
prompt is designed to make the decoder’s output
resemble a natural language sentence, which helps
to minimize discrepancies between language mod-
eling and fine-tuning on the BioEL task.

As shown in Equation 2, existing models are
trained solely to predict synonyms for the input

mention (i.e., positive samples), without leveraging
negative samples. In contrast, we propose a novel
approach using negative samples, which we will
describe in detail in the following sections.

3.2 ANGEL Framework

Our framework comprises two main stages:
positive-only training, which warms up the model
using positive samples to learn morphological simi-
larities among synonyms, and negative-aware train-
ing, which progressively refines the model by in-
corporating negative samples (see Figure 2).

Positive-only training We initialize the model
to generate synonyms, similar to previous methods
(see Equation 2). For the input mention, we select
the most similar synonyms based on their vector
similarity, which is calculated as follows:

Sy = argsortyes, (TFIDF (m,s)), 3)

where TFIDF(+) returns the TF-IDF similarity be-
tween tri-grams of the mention and its synonyms.
We use the top-k subset S, [: k] = {81, ... 80}
as training instances for each mention.

Negative-aware training After obtaining the
top-k predictions from the model for each men-
tion in the training set, we construct a dataset of
triplets (x, ey, €;), where x denotes the mention
along with its context (if available), e,, is the cor-
rect (preferred) entity, and e; is an incorrect (dis-
preferred) entity. From all possible (e, €;) pairs,
we retain only those for which the model ranks
the incorrect entity e; above the correct one e,
thereby reflecting an incorrect model preference.
If the top-ranked prediction is already correct, we
pair this correct entity e,, with the highest-ranked
incorrect entity e; to preserve the model’s original
preference structure.

We denote the resulting training set by D’ and
fine-tune the model using a pairwise preference
loss, formulated as follows:

‘C(a) = - E(x,ew,el)ND’[

“)
loga(B(ro(ew | x) = roler | x)))];

where rg(e | x) is a differentiable scoring func-
tion (e.g., log pp(e | x)), o is the sigmoid function,
and 3 is a temperature (scaling) hyperparameter. A
recent instantiation of this general preference learn-
ing framework is Direct Preference Optimization
(DPO) (Rafailov et al., 2024), where the scoring
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function is defined as a log-ratio with respect to a
reference model p,.r as follows:

pole | x)

, 5
Pret(@ | %) ©)

ro(e | x) = log

where py is the generative model being trained, pyef
is a reference generative model trained in a prior
stage using positive-only data. We adopt DPO as
a practical instantiation within our framework be-
cause it offers a principled and empirically effective
way to incorporate prior model behavior through a
reference distribution.

Applying ANGEL in pre-training Our frame-
work supports not only fine-tuning with labeled
datasets but also pre-training with the KB. Specifi-
cally, we automatically generate surrounding con-
textual information for each entity in the KB, using
clause templates or definitions, as outlined in Gen-
BioEL (Yuan et al., 2022b). When the entity defi-
nition d,, corresponding to the identifier y is avail-
able, a synonym and its definition are integrated
into a pre-defined clause template as follows:

[BOS] [ST1s [ET] is defined as d, [EOS].

When no definitions are available in the KB, we
replace d,, with alternative synonyms as follows:

[BOS] [ST] sy [ET] has synonyms
such as sy [EOS],

where s; and so are different synonyms. The in-
put for the decoder is “[BOS] s (or s;) is” and
the expected output is another synonym (e.g., S2)
selected from the remaining synonyms.

The pre-training process, like fine-tuning, is di-
vided into two stages: positive-only training and
negative-aware training. However, due to the typ-
ically large scale of the KB, efficiency considera-
tions are particularly important. In positive-only
training, rather than utilizing all possible synonym
combinations within the KB, we identify, for each
entity, the most similar synonym based on TF-IDF
similarity and designate it as the target synonym.
For negative-aware training, instead of selecting
negatives from the model’s predictions, negative
samples are selected from entities exhibiting the
highest TF-IDF similarity to the input mentions but
possessing distinct identifiers.

'Refer to Yuan et al. (2022b) for the full set of templates.

4 Experiments

4.1 Datasets

We utilized five popular BioEL benchmark datasets:
NCBI-disease (Dogan et al., 2014), BC5CDR (Li
et al., 2016b), COMETA (Basaldella et al., 2020),
AskAPatient (Limsopatham and Collier, 2016b),
and Medmentions (Mohan and Li, 2019), with the
ST21pv subset used for Medmentions. Due to the
lack of a test set in the AskAPatient dataset, we ad-
hered to the 10-fold evaluation protocol outlined by
Limsopatham and Collier (2016b). Also, AskAPa-
tient dataset does not include context for the men-
tions. In the following tables, NCBI-disease, AskA-
Patient, and Medmentions are denoted as NCBI,
AAP, and MM-ST21pv, respectively. Refer to Ap-
pendix A for detailed descriptions and statistics.

4.2 Baseline Models

We used top-performing similarity-based mod-
els (Sung et al., 2020; Liu et al., 2021; Lai et al.,
2021; Zhang et al., 2022) as our baselines. No-
tably, Prompt-BioEL (Xu et al., 2023) employs
a re-ranking-based approach. In the first stage,
a similarity-based model, such as SapBERT, re-
trieves the top-k candidate entities from the knowl-
edge base. In the second stage, these candidates are
reranked using a cross-encoder. Although Prompt-
BioEL may not be directly comparable, as it in-
corporates additional modules on top of existing
models, we report its performance alongside for
reference. Additionally, we include the previously
best-performing generative models for comparison.
(1) BART-large (Lewis et al., 2020) is an encoder-
decoder language model pre-trained on a general-
domain corpus. (2) BioBART-large (Yuan et al.,
2022a) is the BART-large model continuously pre-
trained on a biomedical-domain corpus. (3) Gen-
BioEL (Yuan et al., 2022b) is initialized with the
weights of the BART-large model and then pre-
trained specifically for BioEL using UMLS. We
excluded several models (Agarwal et al., 2022; Lin
et al., 2024) due to the lack of publicly available
code or the difficulty in reproducing their reported
performance.

4.3 Implementation Details

Our framework was applied to each of these mod-
els during fine-tuning, referred to as ANGELFEr,
and during both pre-training and fine-tuning, re-
ferred to as ANGELpr,pr. For pre-training, we uti-
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Model NCBI BC5CDR COMETA AAP MM-ST21pv \ Average
Similarity-based BioEL & Re-ranking
BioSYN (Sung et al., 2020) 91.1 93.31 71.3 86.5" OOM -
SapBERT (Liu et al., 2021) 92.3 88.6" 75.1 89.0 5031 79.1
ResCNN (Lai et al., 2021) 92.4 94.01 80.1 77.4% 55.0 79.3
KRISSBERT (Zhang et al., 2022)  91.3 72.0t 80.1 83.17 722 79.7
Prompt-BioEL (Xu et al., 2023)  91.97 94.31 82.7" 89.71 72.6! 86.2
Generative BioEL (reported)
BART (Lewis et al., 2020) 90.2 92.5 80.7 88.8 71.5 84.7
BioBART (Yuan et al., 2022a) 89.9 93.3 81.8 894 71.8 85.2
GenBioEL (Yuan et al., 2022b) 91.9 93.3 81.4 89.3 - -
Generative BioEL (reproduced)
BART' (Lewis et al., 2020) 90.3 93.0 80.4 88.7 70.1 84.5

+ ANGELgr (Ours) 91.4 (+1.1) 93.6 (+0.6) 81.3 (+0.9) 89.5 +0.8) 71.2 (+1.1) 85.4 (+0.9)
BioBART' (Yuan et al., 2022a) 89.4 93.5 81.3 89.3 71.3 85.0

+ ANGELgr (Ours) 91.9 (+25) 94.7 +12)  82.2 (+0.9) 89.9 +0.6) 73.4 (+2.1) 86.4 (+1.4)
GenBioEL' (Yuan et al., 2022b) 91.0 93.1 80.9 89.3 70.7 85.0

+ ANGELgr (Ours) 92.5(+1.5) 944 (+13) 82.4 (+1.5) 89.9 +0.6) 719 (+1.2) 86.2 (+1.2)

+ ANGELpr+ r (Ours) 92.8 (+18) 94.5+14) 82.8 (+1.9) 90.2 +0.9) 73.3 (+2.6) 86.7 (+1.7)

Table 1: The top-1 accuracy of the models across the five BioEL datasets. Our ANGEL framework is applied to
generative BioEL models during fine-tuning (ANGELFEgr) and both pre-training and fine-tuning (ANGELpr,pr).
‘47 the results have been reproduced. ‘OOM’: an out-of-memory error occured when using a single 80G A00 GPU.

lized the 2020AA version of the UMLS database,>
which comprises 3.09M entities, of which 199K
concepts contain definitions. During pre-training,
we saved checkpoints every 500 steps over 5 epochs
and selected the best one based on the validation
sets. We used top-3 synonyms as positive samples
in positive-only training. The other hyperparame-
ter configurations are detailed in Appendix B. In
pre-processing, following Yuan et al. (2022b), we
expanded abbreviations using AB3P (Sohn et al.,
2008), lowercase texts, mark mention boundaries
with special tokens [ST] and [ETJ], and discard
mentions that overlap or are missing from the target
KB. During pre-training, our models were trained
using eight 80G A100 GPUs for 12 hours. During
fine-tuning, a single A100 GPU was used.

4.4 Results

Consistent with previous studies (Sung et al.,
2020; Liu et al., 2021), we used accuracy at top-1
(Acc@1) as our evaluation metric, which quanti-
fies the percentage of mentions where the model
correctly ranks the gold standard identifier as the
top choice. To assess statistical significance, we
employed bootstrapping with the same sample size
as the original datasets, repeating the process 100

2https ://www.nlm.nih.gov/research/umls/
licensedcontent/umlsarchives@4.html

times, followed by a paired t-test. Table 1 shows
that our framework consistently outperformed the
performance of generative models (p < 8.2¢22
for all comparisons). Specifically, our fine-tuning
method (i.e., ANGELpt) improved the Acc@1
scores of BART, BioBART, and GenBioEL by
0.9%, 1.4%, and 1.2%, respectively. When pre-
training is also applied (i.e., ANGELpr,pt) to Gen-
BioEL, the improvement increases to 1.7%, further
highlighting the effectiveness of both pre-training
and fine-tuning in ANGEL.

Similarity-based models often exhibit limited ro-
bustness, with performance varying significantly
across datasets. In contrast, generative models
tend to deliver more consistent results, highlight-
ing a key strength. Among the baseline meth-
ods, the re-ranking-based model Prompt-BioEL
achieves strong performance, substantially outper-
forming its underlying retriever, SapBERT, though
at the cost of increased inference time. Notably,
our ANGELpr,pr model surpasses Prompt-BioEL
across all datasets without relying on any re-
ranking component, achieving an average improve-
ment of 0.5%. Given this strong baseline, incorpo-
rating a re-ranking component into our model in
future work may further enhance performance.
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Model NCBI BC5CDR COMETA AAP MM-ST21pv | Average

Models with Negative-aware Training

ANGEL (Ours) 92.8 94.5 82.8 90.2 73.3 86.7
Prediction-based e; = TF-IDF-based e; 91.8 94.4 81.6 90.0 71.5 85.9
po(er) > po(ew) Pairs = All Possible Pairs ~ 92.9 94.0 81.9 90.0 72.0 86.2
e; within Top-5 = Top-10 Predictions 92.5 94.0 82.1 89.6 72.6 86.2

Models without Negative-aware Training

GenBioEL (Yuan et al., 2022b) 91.0 93.1 80.9 89.3 70.7 ‘ 85.0

Table 2: The ablation study on positive (e,,) and negative (e;) pair selection during negative-aware fine-tuning. ‘=’

indicates a modification in our method.

Model NCBI BCSCDR
TF-IDF (trigram-based) 91.0 92.6
BioBERT-NLI 90.1 71.9
SapBERT 90.2 84.1

Table 3: Comparison of similarity models for retrieving
positive and negative samples from KBs.

5 Analysis

5.1 Ablation Study

We conducted in-depth analyses on the selection
of positive and negative pairs, the effect of sim-
ilarity models on synonym retrieval, and the ef-
fect of pre-training. Additional analyses and
results—including the number of synonyms used in
positive-only training and the effect of optimization
functions—can be found in Appendix C.

Selection of positive and negative pairs Ana-
lyzing the impact of how positive-negative pairs
are constructed during negative-aware training is
crucial for determining the optimal strategy for se-
lecting hard negatives and the appropriate number
of pairs. We investigated the effects of three factors:
(1) negative sampling techniques (i.e., whether to
use the model’s incorrect predictions as negatives
or rely on TF-IDF-based sampling), (2) the rela-
tive ranking of positive and negative samples, and
(3) top-k selection (i.e., the number of negatives
to include). Detailed results can be found in Ta-
ble 2. Ultimately, selecting negatives from the
model’s incorrect predictions proved to be the most
important factor, with an average score difference
of 0.8%, while the other factors showed smaller
differences of 0.5%. More importantly, regardless
of the specific negative-aware training approach,
its application leads to significant performance im-
provements compared to models like GenBioEL,
which do not incorporate such training. All mod-

Model FT BC5CDR AAP
BART X 0.8 15.6
GenBioEL X 33.1 50.6

+ ANGEL (Ours) X 49.7 61.5
BART v 93.0 88.7
GenBioEL v 93.1 89.3

+ ANGEL (Ours) v 94.5 90.2

Table 4: The top-1 accuracy of models with different
pre-training strategies, along with the fine-tuned scores.
‘FT” denotes fine-tuning, with X representing pre-trained
models without fine-tuning, and v indicating models
fine-tuned on human-annotated training sets.

els applying negative-aware training, including our
ANGEL model, outperformed GenBioEL by 0.9%
to 1.7% (p < 1.7e75 for all comparisons).

Effect of similarity models Similarity models
play a critical role in retrieving synonymous terms
from the KB, and their choice can have a substan-
tial impact on overall system performance. To as-
sess their effectiveness, we evaluated three mod-
els: (1) TF-IDF, (2) BioBERT-NLI,? a sentence
embedding model fine-tuned on natural language
inference datasets, and (3) SapBERT. These mod-
els were incorporated into the positive-aware train-
ing framework of GenBioEL on the NCBI-Disease
and BC5CDR datasets. As presented in Table 3,
the TF-IDF-based approach outperforms the two
embedding-based models. Although the strong per-
formance of trigram-based similarity highlights the
utility of surface-level matching in BioEL, this
does not imply that the task is inherently sim-
ple. While many synonyms exhibit similar sur-
face forms, a substantial portion do not—posing
challenging edge cases that demand more nuanced
semantic understanding.

Shttps://huggingface.co/gsarti/biobert-nli
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Figure 3: Analysis of the effect of negative-aware train-
ing. The x-axis represents the TF-IDF similarity be-
tween the input mentions and negative entities, while
the y-axis depicts the difference in log probabilities be-
tween the top-1 positive prediction and negative entities
for a given input mention. The NCBI-disease dataset
was used.

Effect of pre-training Table 4 highlights the ef-
fectiveness of ANGEL’s pre-training by compar-
ing other pre-training methods. BART, pre-trained
using a standard language modeling objective but
not specifically tailored for BioEL tasks, shows
the lowest performance. In contrast, GenBioEL,
pre-trained using synonyms from UMLS in a sim-
ilar manner to our positive-only training, initially
demonstrates a substantial performance advantage
over BART. However, this gap narrows consider-
ably after fine-tuning, to the point where it is no
longer statistically significant. When ANGEL’s
negative-aware training is applied to GenBioEL,
its performance improves significantly, achieving
gains of 16.6% on BC5CDR and 10.9% on AAP.
Even after fine-tuning, the performance gap re-
mains noticeable, with a difference of 1.4% on
BC5CDR and 0.9% on AAP.

5.2 Understanding the Effectiveness of
Negative-aware Training

Figure 3 provide an interpretation of how negative-
aware training leads to performance improvements.
While positive-only training increases the proba-
bility of identifying synonyms, it also raises the
risk of incorrectly boosting the probability of nega-
tive samples that are morphologically similar to the
input mention. In contrast, negative-aware train-
ing improves the identification of synonyms while
simultaneously reducing the probability of incor-
rect negatives, making it particularly effective when
these negatives share morphological similarity with

600 1
[JGenBioEL Correct

EJGenBioEL Incorrect
[JANGEL Correct
EJANGEL Incorrect
400 o GenBioEL Accuracy
o-ANGEL Accuracy

0.8

0.6

Accuracy

200
0.4

Number of Samples

0.2

0.6-0.8 0.8-1.0

0.2-0.4

TF-IDF Similarity

0.4-0.6

Figure 4: In-depth evalution of GenBioEL and our
ANGEL models based on the TF-IDF similarity be-
tween the input mentions and gold-standard entities.
The NCBI-disease dataset was used.

the input mention. To verify this, we divided in-
put mention-negative pairs from the NCBI-disease
dataset into 10 bins based on their tri-gram TF-
IDF similarity. We then computed the log proba-
bilities of negatives within each bin for the corre-
sponding input mentions, comparing them to the
log probabilities of the top-1 positive predictions
(i.e., the synonym assigned the highest probabil-
ity by the model). As the similarity between the
input mention and the negative entities increased,
the probabilities assigned by GenBioEL to posi-
tive and negative samples became more similar,
eventually leading to higher probabilities for the
negative samples. In contrast, our model demon-
strated a clear distinction in behavior, consistently
prioritizing positive samples over negatives.

5.3 Error Analysis

We conducted an in-depth evaluation of the models
based on the similarity between the input mentions
and the gold-standard entities. Similarity was calcu-
lated using tri-gram TF-IDF, with the gold-standard
entity determined as the candidate synonym with
the highest similarity score to the input mention.
The similarity scores, ranging from O to 1.0, were
divided into five bins, and accuracy was measured
for each bin. As shown in Figure 4, errors predom-
inantly occurred in the 0-0.2 and 0.2-0.4 bins, as
indicated by the height of the hatched bars, which
represent the number of errors. This suggests that
models tend to struggle when the surface forms
of the input mentions are not closely aligned with
those of the gold-standard entities. Our method
improves the generalizability of the model, leading
to an overall reduction in GenBioEL’s errors across
all bins, with particularly notable improvements in
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Rank SapBERT GenBioEL ANGEL (Ours)
... aggressive the same way someone with [ST] ASPD [ET] would be, except teenagers ...
1 ASP Anankastic personality disorder Antisocial personality disorder (disorder)*
2 Acquired immune deficiency syndrome (disorder) Borderline personality disorder Antisocial personality disorder*
3 Acquired immune deficiency syndrome Oppositional defiant disorder Borderline personality disorder (disorder)
4 Mesalazine Antisocial personality disorder* Obsessive compulsive disorder (disorder)
5 Cryopyrin associated periodic syndrome (disorder) Oppositional defiant disorder (disorder) Dissocial personality disorder*
... | switched from lantus to [ST] basaglar [ET] in january and ...
1 Beagle Linagliptin substance Insulin glargine substance*
2 Basiliximab sodium Benzodiazepine substance Insulin glargine*
3 Basiliximab substance Carisoprodol substance Insulin glulisine substance
4 Albiglutide Cariprazine Ulipristal substance
5 Albiglutide substance Benzocaine containing product Lansoprazole
... effects on amino acid (r-aminobutyric acid (GABA), [ST] glutamine [ET], aspartate and glutathione) levels ...
1 Glutamine Glutamine L-glutamine
2 Glutamic acid* Glutamic acid* Glutamine
3 L-glutamine Glutamylmethionine D-glutamine
4 L-glutamic acid* Glutamylalanine Glutamic acids
5 Glutamic acids Glutaminic acids Glutamic acid*

Figure 5: Top-5 predictions from different BioEL models are presented. Entity names with correct identifiers are
highlighted in boldface with an asterisk. The first and second examples highlight the strengths of our model, while
the final example illustrates its limitations. For a detailed explanation, please refer to the main text.

cases of low similarity. However, significant chal-
lenges remain, as the accuracy of our model is only
34.2% in the 0-0.2 bin, highlighting the need for
further improvement.

5.4 Case Study

Figure 5 illustrates the predictions of SapBERT,
GenBioEL, and ANGEL. In the first example, the
mention ‘ASPD’ is an abbreviation for ‘antisocial
personality disorder’ (also known as ‘dissocial per-
sonality disorder’). SapBERT incorrectly predicts
‘ASP’ due to the similarity in surface form. Gen-
BioEL struggles to distinguish between correct en-
tity names and those containing the words ‘per-
sonality disorder’. In contrast, our model success-
fully identifies the correct entities, without being
misled by false entity names that contain overlap-
ping terms. The second example involves the men-
tion ‘basaglar,” a medication that contains insulin
glargine, a long-acting insulin. The challenge here
arises from the fact that product names can dif-
fer significantly from the biomedical terms used
to describe their active ingredients. This discrep-
ancy leads to failures in both SapBERT and Gen-
BioEL, as they struggle to connect the brand name
to its corresponding biomedical entity. Neverthe-
less, our model successfully identifies the correct
entity, showcasing its ability to handle such com-

plex cases effectively. In the final example, our
method was less effective. For the mention of ‘glu-
tamine,” neither SapBERT nor GenBioEL identi-
fied the correct answer, but they did rank ‘Glutamic
acid,” the correct entity, within the top 5 candidates.
Our model, however, ranked the correct answer
slightly lower. Consequently, while our model
shows a notable improvement in top-1 accuracy,
the increase in top-5 accuracy is relatively modest
in some datasets. The effectiveness of our method
also varies across different datasets. We discuss
this limitation in more detail in Appendix E, noting
that such cases are an area for further exploration.

6 Conclusions

In this study, we discussed the importance of nega-
tive samples in training generative BioEL models
and introduced ANGEL, the first framework in this
field to effectively incorporate negative-aware train-
ing into a generative model. Our models demon-
strated the ability to learn subtle distinctions be-
tween entities with similar surface forms and con-
texts. Experimental results showed that ANGEL
outperformed existing similarity-based and gener-
ative models, with notable performance improve-
ments of 0.9%, 1.4%, and 1.7% for BART, Bio-
BART, and GenBioEL, respectively, achieving the
best performance across five public BioEL datasets.
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Limitations

Our method is versatile and applicable to any
generative model, but it has only been tested on
encoder-decoder models and not on decoder-only
models such as BioGPT (Luo et al., 2022). We
plan to further investigate the effect of our method
on these models. Additionally, it has not been
tested on recent open-source large language models
(LLMs) (Touvron et al., 2023; Chen et al., 2023).
While we acknowledge that incorporating compar-
isons with LLMs and further assessing the effec-
tiveness of our approach would be an interesting
direction, using LLLMs for entity linking presents
new challenges. The primary concern with larger
models is their inefficiency, particularly regarding
slower inference speeds and higher memory re-
quirements, which may render them unsuitable for
most real-world applications. This issue becomes
particularly problematic in biomedical information
extraction, where processing millions of publica-
tions to extract meaningful insights is essential.
Our negative-aware training method may not
be limited to a specific domain, yet we have only
evaluated it on biomedical-domain datasets, which
restricts the demonstration of its broad applicabil-
ity. Nevertheless, we would like to emphasize the
reasons for focusing on the biomedical domain.
Biomedical entity linking has unique characteris-
tics that differentiate it from other domains, mak-
ing this problem both challenging and interesting.
In general domains, ambiguity typically arises be-
tween different types of entities (e.g., whether “Liv-
erpool” refers to a city or a sports club). Simi-
larly, in the biomedical domain, ambiguity exists
between different types, such as whether “Ebola”
in Figure 1 refers to a disease or a virus. Addi-
tionally, biomedical entities often exhibit signifi-
cant variations in their surface forms, even when
they share the same identifier, i.e., they refer to the
same entity. As shown in Figure 5, “Basaglar” can
be expressed as other variations such as “insulin
glargine substance” or “insulin glargine.” Further-
more, terms like “substance” in the entity “insulin
glargine substance” overlap with many other en-
tities (e.g., “Basiliximab substance,” “Linagliptin
substance,” “Benzodiazepine substance”), making
the task even more complex. Therefore, distin-
guishing between numerous candidates with simi-
lar surface forms is especially crucial in biomedical
entity linking. We believe that our method, which
trains the model using negative samples with simi-

lar structures, is particularly well-suited to tackle
this challenge. However, exploring the applica-
tion of our approach in other domains would be a
valuable direction for future research.

Ethical Considerations

This study complies with ethical standards, ensur-
ing that all datasets and models adhere to their
respective licenses and usage terms. While our
method was evaluated on five widely used datasets,
these serve primarily as benchmarks and may not
fully capture real-world complexities. Although the
model demonstrates significant improvements, its
limitations in handling low-similarity cases high-
light the need for thorough validation before de-
ployment, particularly in sensitive applications.
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A Datasets

Table A presents the statistics of the five datasets
used, along with their corresponding target knowl-
edge bases.

NCBI-disease The NCBI-disease dataset (Dogan
et al., 2014) contains 793 PubMed abstracts anno-
tated with 6,892 disease mentions that are mapped
to 790 unique disease concepts using the MEDIC
ontology (Davis et al., 2012). MEDIC is a med-
ical dictionary that integrates disease concepts,
synonyms, and definitions from both MeSH (Lip-
scomb, 2000) and OMIM (Hamosh et al., 2004),
encompassing a total of 9,700 unique disease en-
tities. This dataset is primarily used for disease
recognition and concept normalization tasks.

BCS5CDR The BC5CDR dataset (Li et al., 2016b)
includes 1,500 PubMed abstracts with 4,409 chem-
ical entities, 5,818 disease entities, and 3,116
chemical-disease interactions. All annotated enti-
ties are mapped to the MeSH ontology (Lipscomb,
2000), which is a subset of UMLS (Bodenreider,
2004). This dataset is widely used for biomedical
entity recognition and interaction studies. To fit
the purpose of our study, we use only the chemical
and disease annotations and discard the interaction
annotations.

COMETA COMETA (Basaldella et al., 2020)
focuses on layman medical terminology, compiled
from four years of content across 68 health-related
subreddits. This dataset consists of 20K biomedi-
cal entity mentions annotated with concepts from
SNOMED CT (Chang and Mostafa, 2021). It is
utilized for the normalization of consumer health
expressions into standardized terminologies.

AskAPatient (AAP) The AskAPatient
dataset (Limsopatham and Collier, 2016b)
contains 8,662 phrases from social media language,
each mapped to medical concepts from SNOMED
CT (Chang and Mostafa, 2021). This dataset
does not include contextual information, meaning
that mentions are disambiguated solely based on
the phrases themselves. Since the AskAPatient
dataset lacks a test set, we employed a 10-fold
cross-validation approach as outlined in the
original paper by Limsopatham and Collier
(2016a). The statistics reported are the averages
across these folds.

MM-ST21pv The Medmentions dataset (Mohan
and Li, 2019) is a large-scale resource for biomedi-

cal entity recognition. The ST21pv subset includes
4,392 PubMed abstracts with over 200,000 entity
mentions linked to 21 selected UMLS semantic
types. This dataset provides a comprehensive re-
source for training and evaluating biomedical entity
recognition systems. Unlike the original dataset,
we use the 2020AA version of UMLS as the KBs
because the 2017AA version of UMLS is not di-
rectly accessible. This leads to some differences
after preprocessing due to variations between ver-
sions. Specifically, our dataset deviates from the
original Medmentions dataset by 741 training sam-
ples (0.6%), 284 validation samples (0.7%), and
235 test samples (0.6%).

B Hyperparameter Configurations

Table B details the hyperparameters used for
positive-only training and negative-aware training
across the BioEL benchmark datasets. We searched
for the optimal hyperparameter settings using the
validation sets. We refer to the study of Yuan et al.
(2022b) to determine the range of the hyperparam-
eters. During pre-training, we used the same hy-
perparameters as in GenBioEL. For positive-only
training, we explored a range of training steps be-
tween 20K and 40K, a learning rate between 2e-5
and 3e-7, and batch sizes from 8 to 16, except
during pre-training. During negative-aware train-
ing, we fixed the 3 at 0.1, in accordance with the
basic configuration of DPO, and searched the hy-
perparameter space using a learning rate between
2e-5 and le-6 and batch sizes ranging from 8 to 64.
We used the source codes provided by Yuan et al.
(2022b)* and alignment handbook (Tunstall et al.,
2023)°.

C Ablation Study

Effect of pre-training In addition to Table 4
which shows the effect of pre-training on BCSCDR
and AAP, Table C demonstrates that ANGEL’s
pre-training improves top-1 accuracy on NCBI-
disease, COMETA, and MM-ST21pv, both before
fine-tuning (X) and after fine-tuning (v).

Effect of optimization functions Our negative-
aware framework is compatible with various opti-
mization methods. To demonstrate this flexibility,
we evaluated three additional loss functions dur-
ing fine-tuning: (i) a simple pairwise loss, where
4https://github.com/Yuanhy1997/GenBioEL

5https://github.com/huggingface/
alignment-handbook
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Dataset NCBI BC5CDR COMETA AAP MM-ST21pv
Entity types Disease  Disease/chemical Medical concepts Medical concepts 21 UMLS types
# Examples

Training 5,784 9,285 13,489 15,665 121,498
Validation 787 9,515 2,176 793 40,600
Test 960 9,654 4,350 866 39,922

KB statistics

Entity names 108,092 809,929 904,798 3,398 6,051,091
Identifiers 14,944 268,162 350,830 1,036 3,092,324

Table A: The statistics of the benchmark datasets and their corresponding KBs.

Fine-tuning

Hyperparameter

Pre-training

NCBI BC5CDR COMETA AAP MM-ST21pv
Positive-only Training
Training Steps 80K 20K 30K 40K 30K 40K
Learning Rate 4e-5 3e-7 Se-6 2e-5 Se-6 3e-5
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 384 16 16 16 16 16
Adam € le-8 le-8 le-8 le-8 le-8 le-8
Adam 8 (0.9,0.999)  (0.9,0.999) (0.9,0.999) (0.9,0.999) (0.9,0.999) (0.9,0.999)
Warmup Steps 1,600 0 500 1000 0 1,000
Attention Dropout 0.1 0.1 0.1 0.1 0.1 0.1
Clipping Grad 0.1 0.1 0.1 0.1 0.1 0.1
Label Smoothing 0.1 0.1 0.1 0.1 0.1 0.1
Negative-aware Training
Epochs 5 1 1 1 1 1
Learning Rate le-5 le-5 le-6 Se-6 5e-6 Se-6
5 (DPO) 0.1 0.1 0.1 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 64 16 16 32 8 16
Warmup Steps 1000 - - - - -

Table B: Hyperparameters for positive-only training and negative-aware training.

Model FT NCBI COMETA MM Model Acc@1
BART X 107 8.4 0.9 GenBioEL 85.0
GenBioEL X 582 424 10.4 —
+ANGEL (Ours) X  64.6 49.8 18.2 ANGELgr (Pairwise) 85.9
ANGELyr (CPO) (Xu et al., 2024) 85.9
BART v 903 80.4 70.1 ANGELyy (SimPO) (Meng et al., 2024)  86.1
GenBioEL v 910 80.9 70.7 ANGELgr (DPO) (Rafailov et al., 2024)  86.2
+ANGEL (Ours) v 92.8 82.8 733

Table C: The top-1 accuracy of models with different
pre-training strategies, along with the fine-tuned scores.
‘FT” denotes fine-tuning, with X representing pre-trained
models without fine-tuning, and v indicating models
fine-tuned on human-annotated training sets. ‘MM’ rep-
resents the MM-ST21pv dataset.

ro(e | x) is defined as log py(e; and two prefer-
ence optimization methods that build upon and
improve DPO: (ii) Contrastive Preference Opti-
mization (CPO) (Xu et al., 2024), and (iii) Sim-
ilarity Preference Optimization (SimPO) (Meng
et al., 2024). Note that Equation 4 in the Method

Table D: Performance with different optimization func-
tions. Average top-1 accuracy across the five bench-
marks is reported.

section presents a simplified version for clarity of
explanation. In practice, CPO and SimPO intro-
duce additional terms and require slight extensions
to this formulation. For a detailed comparison of
the exact equations, we refer readers to Table 7
in Meng et al. (2024), which provides a clear sum-
mary of the differences.

As shown in Table D, while DPO achieves
the highest accuracy, the performance differences
among the optimizers are relatively small. Regard-
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Figure A: The ablation study to determine the optimal
number of synonyms. GenBioEL with ANGELpt was
fine-tuned in this experiment. The scores are generally
the highest when k = 3.
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Figure B: In-depth evaluation of GenBioEL and AN-
GEL using TF-IDF similarity between input mentions
and gold entities on the COMETA dataset.

less of the specific method used, all optimizers
consistently enhance performance and outperform
the GenBioEL baseline.

The number of synonyms To evaluate the im-
pact of incorporating multiple synonyms during
fine-tuning (Equation 3), we conducted experi-
ments by varying the number of synonyms asso-
ciated with each mention, testing with 1, 3, and 5
synonyms. As aresult, using 3 synonyms proved to
be optimal, outperforming the approach that used
only a single top-1 synonym in the study of Yuan
et al. (2022b).

D Error Analysis

Consistent with the analysis on the NCBI-disease
dataset (Figure 4), Figure B reveals that models on
the COMETA dataset most frequently made errors
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O GenBioEL Accuracy @ ANGEL Accuracy
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§§\\\®
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Figure C: In-depth evaluation of GenBioEL and AN-
GEL using TF-IDF similarity between input mentions
and gold entities on the Medmentions dataset.

Model BC5CDR AAP
Acc@1 Acc@5 Acc@1 Acc@5
GenBioEL 93.1 95.7 89.3 95.4
+ ANGELgr 94.4 96.5 89.5 94.7

+ ANGELpr.rr 945 96.8 90.2 95.2

Table E: Comparison of top-1 and top-5 accuracy be-
tween the baseline model and models trained with AN-
GEL method after fine-tuning and pre-training on the
BC5CDR and AAP datasets.

in the 0.0-0.2 bin, where input mentions have low
similarity to gold-standard entities. Across all sim-
ilarity bins, our ANGEL framework consistently
improved upon GenBioEL’s performance, leading
to overall gains. A similar trend is observed in
Figure C for the MedMentions dataset, where AN-
GEL again outperforms GenBioEL across all bins.
These results highlight the need for future research
focused on reducing errors in low-similarity sce-
narios.

E Top-5 Accuracy

Table E presents our model’s top-1 and top-5 ac-
curacy on the BC5CDR and AAP datasets. It
compares the performance of our model in its
baseline form (GenBioEL) and after fine-tuning
(ANGELFr) and combined pre-training and fine-
tuning (ANGELpr.pr). Our approach consis-
tently boosts top-1 accuracy across all datasets,
though the trends in top-5 accuracy are less uni-
form. In BC5CDR, both top-1 and top-5 accu-
racy show significant improvements: top-1 accu-
racy rises by 1.4 percentage points (from 93.1% to
94.5%), and top-5 accuracy increases by 1.1 per-
centage points (from 95.7% to 96.8%). However,
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the AAP dataset exhibits a different pattern. While
top-1 accuracy improves by 0.9 percentage points
(from 89.3% to 90.2%), top-5 accuracy slightly de-
clines: there is a 0.7 percentage points drop (from
95.4% to 94.7%) after fine-tuning and a 0.2 per-
centage points decrease (from 95.4% to 95.2%)
after combined pre-training and fine-tuning. This
decline in top-5 accuracy may be due to the AAP
dataset’s limited contextual information, forcing
the model to rely predominantly on the mention
form, making it more challenging to maintain high
accuracy across multiple predictions. Additionally,
the negative sampling strategy could unintention-
ally bias the model toward optimizing top-1 accu-
racy, thereby impacting top-5 performance. In con-
clusion, while our method consistently improves
top-1 accuracy, the occasional slight decreases in
top-5 accuracy, as observed in the AAP dataset, un-
derscore the need for further refinement to maintain
balanced accuracy across different ranking levels.
Future work should focus on training strategies that
preserve or enhance top-5 accuracy alongside top-1
improvements.
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