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Abstract

State Space Models (SSMs), such as
Mamba, have recently demonstrated po-
tential in language understanding tasks,
positioning them as competitors to trans-
former architectures. However, our inves-
tigations reveal that the Mamba architec-
ture still has room for further optimiza-
tion—not only in linear projections but
also in state caches, which contribute sig-
nificantly to memory consumption, partic-
ularly after quantizing the former into low
bits. After a theoretical analysis of the
causes of outliers in states, we propose De-
coupled Scale Quantization (DSQ),
which mitigates outliers in both the state
and channel dimensions by applying sep-
arate quantization scales. To preserve
the selective ability of quantized Mamba,
we introduce Efficient Selectivity Re-
construction (ESR), a novel quantiza-
tion simulation scheme in block-wise recon-
struction that enables fast parallel scan al-
gorithms with the non-linear quantization
function. We demonstrate the effective-
ness of Q-Mamba across various quantiza-
tion settings, model sizes, and both gen-
eration and zero-shot tasks. In particu-
lar, for Mamba2-2.7B with W8A8H4 (8-bit
weights and activations, 4-bit state caches)
quantization, Q-Mamba achieves a 50% re-
duction in memory consumption with only
a 2.13% average accuracy degradation on
zero-shot tasks.

1 Introduction

Large language models (LLMs), such as LLaMa
(Touvron et al., 2023) and GPT-4 (OpenAI, 2023),
have shown exceptional capabilities in general-
purpose language understanding (Kaplan et al.,
2020; Hoffmann et al., 2022; Tu et al., 2024).
However, LLMs based on Transformer architec-
tures still face a significant limitation: the compu-

∗ The first two authors contributed equally to this
work.

† Corresponding author.

tational cost of their attention mechanism scales
quadratically with the sequence length (Vaswani
et al., 2017). Therefore, prior works have focused
on more efficient attention variants, such as struc-
tured state space models (SSMs) (Gu and Dao,
2023; Dao and Gu, 2024; Smith et al., 2023) and
linear attention (Peng et al., 2023; Han et al., 2023;
Child et al., 2019). Among these, the Mamba ar-
chitecture (Gu and Dao, 2023; Dao and Gu, 2024)
has been shown to match or exceed the down-
stream accuracy of Transformers on standard lan-
guage modeling tasks (Waleffe et al., 2024). Fol-
lowing its success in natural language understand-
ing, it has also garnered significant attention in
other research areas, such as vision and multimodal
tasks (Qiao et al., 2024; Zhu et al., 2024; Peng
et al., 2024).
Like Transformers, Mamba language models also

operate in two computation phases (Patel et al.,
2024). The first is the prefill phase, where all input
prompt tokens are processed in parallel through
the model’s forward pass to generate the first out-
put token. During this phase, Mamba models
(Gu and Dao, 2023; Dao and Gu, 2024) employ
a hardware-efficient parallel algorithm to compute
SSMs (Section 3). The second is the token gener-
ation phase, where subsequent output tokens are
generated sequentially, relying on the cached state
from previous tokens in the sequence. Due to the
lack of computational parallelism, this phase tends
to be more memory-bound and contributes signif-
icantly to the total generation latency.
Although Mamba has successfully replaced the

O(T 2) attention module with O(T ) selective state
space models, our profiling results in Section 4 indi-
cate that it still suffers from two inefficiencies dur-
ing the generation stage. Firstly, similar to Trans-
formers, the Mamba architecture consists of large
linear layers, which require substantial GPU mem-
ory and slow down token generation (Figure 2b).
Secondly, as larger states allow more information
to be stored, states in Mamba are expanded to
be N times larger than vanilla activations, where
N is the state dimension (128 in Mamba-2 mod-
els). Consequently, these state caches account for
a significant portion of memory consumption, espe-
cially after quantizing weights to low bits (79.6% in
Mamba2-2.7B with a batch size of 128, as shown
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Figure 1: Schematic of the PTQ framework for Mamba. Left: The selective parameters B, ∆, and C,
along with the SSM inputs x, are generated by the input projections in the Mamba block. Middle: After
quantizing states using DSQ, ESR updates a small number of selective parameters (approximately 2% of
the total) in a block-wise reconstruction manner. Right: Finally, we quantize the linear projection into
W8A8.

in Figure 2a). In this paper, we address a key
question: Can Mamba models be further optimized
through model compression techniques?

In this paper, we propose Q-Mamba, which
quantizes both linear projections and state
caches into low-bit integers for Mamba models.
Although previous research has successfully quan-
tized Key and Value (KV) caches into low-bit
representations in transformers (Liu et al., 2023,
2024b; Hooper et al., 2024), this work is the first
to explore the quantization of state cache in Mamba
architectures. We observe that states exhibit both
outlier channels and outlier states (i.e., the state
dimension contains large values across all channel
dimensions), as shown in Figure 3. Further the-
oretical analysis reveals this phenomenon results
from the computation of the outer products of two
activations, each contains outliers in distinct di-
mensions. This observation motivates us to pro-
pose Decoupled Scale Quantization (DSQ),
which utilizes separate quantization scales for both
dimensions. Additionally, the non-linear nature
of the quantization function disrupts the original
equivalence between recurrence and quadratic dual
form, the latter being essential for efficient train-
ing. To address this, we propose Efficient Selectiv-
ity Reconstruction (ESR), which simulates quanti-
zation errors by quantizing only the final timestep
during training. Specifically, ESR updates a small
number of selective parameters (approximately 2%
of the total) using just 128 training samples in a
block-wise reconstruction manner.

Extensive experiments demonstrate that our
methods achieve significant performance improve-
ments for Mamba families on various evaluation
metrics. To the best of our knowledge, we are the

first to achieve W8A8H4 (8-bit linear projection
and 4-bit states) for the Mamba architectures. For
generation tasks, Q-Mamba achieved perplexities
of 12.99 and 16.90 with 4-bit states on WikiText2
(Merity et al., 2017) and C4 (Pal et al., 2023),
respectively, while baseline methods degraded to
21.18 and 29.86 even with 6-bit quantization. Ad-
ditionally, Q-Mamba achieves W8A8H4 quanti-
zation for zero-shot tasks with only 2.13% and
2.11% average accuracy degradation on Mamba2-
2.7B and Mamba2-1.3B, respectively.

2 Related Works

2.1 Model Quantization

In the current era of burgeoning LLM development,
model quantization has also become widely em-
ployed (Xiao et al., 2023a; Lin et al., 2023; Fran-
tar et al., 2022; Huang et al., 2024; Xiao et al.,
2023b; Chen et al., 2024a). Considering the sub-
stantial computational costs of retraining the en-
tire model, much research has focused on Post-
Training Quantization (PTQ), which requires only
a small amount of calibration data to adjust a lim-
ited portion of the parameters. Typically, PTQ
methods operate by quantizing and finetuning in-
dividual layers or small blocks of consecutive lay-
ers (Nagel et al., 2020; Li et al., 2021; Chen et al.,
2023). For example, AdaRound (Nagel et al., 2020)
uses gradient optimization to determine optimal
rounding in a single convolution layer. For LLMs,
previous quantization methods have identified sig-
nificantly larger outliers in activations compared to
smaller convolutional neural networks (CNNs). To
quantize both weights and activations into INT8,
SmoothQuant (Xiao et al., 2023a) mitigates activa-
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tion outliers by shifting the quantization difficulty
from activations to weights through a mathemati-
cally equivalent transformation. These outliers in
activations also pose challenges even in scenarios
where activations are not quantized (i.e., weight-
only quantization) because they amplify the quan-
tization errors of weights when multiplied with ac-
tivations.

For Mamba models, states have an additional
state dimension compared to standard activations,
resulting in not only more significant memory con-
sumption but also a distinctive distribution of out-
liers. To address this issue, we propose two novel
methods that enable the quantization of states into
4-bit integers for the first time.

3 Foundations

State Space Model. State space models (SSMs)
are a recent class of sequence models for deep learn-
ing inspired by a particular continuous system in
Equation (2). It maps a 1-dimensional input
sequence xt ∈ R to an output sequence yt ∈ R
through a latent state ht ∈ R(N,1):

ht = Āht−1 + B̄xt (1a)

yt = Cht (1b)

h′(t) = Ah(t) +Bx(t) (2a)

y(t) = Ch(t) (2b)

where Ā ∈ R(N,N), B, B̄, ht−1, ht, h(t) ∈ R(N,1),
and C ∈ R(1,N). Equation (1) can be viewed as
discrete versions of a classical continuous system
described by Equation (2). Specifically, a timescale
parameter ∆ is introduced to discretize the param-
eters A and B into their discrete counterparts, Ā
and B̄, as explained in the following sections.

Mamba-1. To operate on an input sequence
xt with D channels, rather than the scalar se-
quence described earlier, Mamba-1 (Gu and Dao,
2023) assumes that Ā has a diagonal structure and
applies the SSM independently to each channel:

ht = Ā⊙ ht−1 + B̄ ⊙ xt, (3a)

yt = Cht, (3b)

where Ā,B̄, ht, ht−1 ∈ R(N,D), xt ∈ R(1,D)

C ∈ R(1,N), yt ∈ R(1,D)

where ⊙ denotes the element-wise product, with
automatic broadcasting applied to dimensions of
size one.. The discretized parameters are defined as
Ā = exp(A⊙∆) and B̄ = B⊙∆, whereA ∈ R(N,D),
B ∈ R(N,1), and ∆ ∈ R(1,D). Unlike previous non-
selective SSMs, Mamba set ∆, B, and C as func-
tions of the inputs rather than fixed parameters.
As a result, the variables Ā, B̄, and C can vary

across time steps to dynamically select relevant in-
formation from the context.

Mamba-2. To integrate the multi-head design
of modern attention mechanisms into Mamba ar-
chitectures, Mamba-2 (Dao and Gu, 2024) further
assumes that Ā and B̄ are identical across all di-
mensions within the same head where the head
dimension P ∈ {64, 128}:

ht = Ā · ht−1 + B̄ ⊗ xt, (4a)

yt = Cht, (4b)

where ht,ht−1 ∈ R(N,P ), Ā ∈ R, B̄ ∈ R(N,1)

C ∈ R(1,N), xt, yt ∈ R(1,P )

The discretized parameters are still defined as Ā =
exp(A ⊙ ∆) and B̄ = B ⊙ ∆. However, unlike
Mamba-1, A and ∆ are simplified into two scalars
within a single head, transforming the operation
between B̄ and x into an outer product. This sim-
plification improves training efficiency and allows
for a larger state size. Consequently, Mamba-2 in-
creases the state sizeN from 16 in Mamba-1 to 128.
Figure 1 left shows the architecture of the Mamba-
2 block. The selective parameters B, ∆, and C,
along with the SSM inputs xt, are produced by the
input projections in the Mamba block. Specifically,
Mamba-2 employs B = (uWB)

⊤, C = uWC ,∆ =
uW∆, xt = uWx, where WB ,WC ∈ R(D,N),Wx ∈
R(D,P ),W∆ ∈ R(D,1) and u ∈ R(1,D) represents the
inputs of Mamba block.

Parallel Training. The recurrent mode de-
scribed in Equation (1) is used only during the
token generation phase, where output tokens are
generated sequentially, relying on the cached state
from the previous timestep. For parallel train-
ing, Mamba (Dao and Gu, 2024) establishes the
equivalence between selective SSMs and semisep-
arable matrices, enabling the use of efficient
algorithms for structured matrix multiplication
(e.g, prefix sum algorithm (Goldberg and Zwick,
1995) ). Specifically, Equation (5) represents the
quadratic form of Equation (1) to compute all
timesteps simultaneously:

yt =

t∑

s=0

CtĀ
×
t:sBsxs, (5a)

y = Mx,Mji := CjAj · · ·Ai+1Bi, (5b)

where B̄, C̄⊤ ∈ R(N,1), Ā ∈ R(N,N),

xt, yt ∈ R, M ∈ R(T,T )

where M is N-semiseparable matrix. This pa-
per primarily focuses on quantizing the Mamba-
2 architecture, which has demonstrated superior
performance compared to Mamba-1 across various
tasks (Waleffe et al., 2024; Dao and Gu, 2024).
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Figure 2: Left: Memory consumption of weights and state caches in Mamba2-2.7B with different batch
sizes. Right: The Runtime of the Mamba2-2.7B model using NVIDIA profiling tools, with both prompt
and generation lengths set to 100 and a batch size of 32.

4 Analysis

In this section, we first analyze the memory con-
sumption and runtime of primary components on
the Mamba2-2.7B model, i.e., linear projection, 1D
convolution, SSM, and LayerNorm. Based on the
results presented in Figures 2a and Figures 2b, we
can draw the following conclusions:

Linear projections. Similar to Transformers,
large linear layers in Mamba not only require sub-
stantial GPU memory but also slow down token
generation. When applying quantization to these
linear layers, experiments in Section A.1 reveal
that outliers exist in specific activation channels of
Mamba, particularly in output projections. This
phenomenon has also been observed in previous
studies on Transformer-based LLMs (Xiao et al.,
2023a; Wei et al., 2022).

States in SSMs. As larger states allow more
information to be stored, states in Mamba are
expanded to be N times larger than vanilla ac-
tivations, where N is the state dimension (128
in Mamba-2 models). Consequently, these state
caches account for a significant portion of memory
consumption, especially after quantizing weights
to low bits (e.g., 79.6% in Mamba2-2.7B with a
batch size of 128, as shown in Figure 2a). This
phenomenon not only poses challenges for increas-
ing the batch size to enhance throughput but also
prevents further enlargement of state dimensions
in Mamba models, which would improve their stor-
age capacity for long contexts (Dao and Gu, 2024;
Arora et al., 2024).

To address the above problems, in this paper, we
aim to quantize both linear projections and state
caches into low-bit integers for Mamba models.

5 Method

5.1 Decoupled Scale Quantization

5.1.1 Outliers in States

For Transformers, particularly LLMs, extensive re-
search (Wei et al., 2022; Xiao et al., 2023a; Liu

et al., 2024a) has shown that the presence of out-
liers extends the range of activation values, which
in turn increases quantization errors for normal
values. In Mamba models, we observe a similar
or even more pronounced issue with outliers in the
states. As illustrated in the state distribution visu-
alization in Figure 3(a), outliers are present in both
state dimensions (red row) and channel dimen-
sions (green column). Consequently, either per-
channel quantization (i.e., using a different quan-
tization step for each channel) or per-state quanti-
zation (i.e., using a different quantization step for
each state) tends to ignore outliers in the other
dimension. As shown in Table 3, the model’s per-
formance declines significantly when adopting the
above quantization granularity, which calls for a
more effective quantization method to address the
problem.

5.1.2 Decoupled Scale Quantization

Motivated by the distribution characteristics
shown in Figure 3, we present the following the-
orem, which reveals the underlying causes of this
distribution and provides insights for a solution.

Theorem 1. Assuming ut ∼ N (0, σIn) and At is
a constant, Bt = (uWB)

⊤, xt = uWx, the variance
of states ht = At · ht−1 +Bt ⊗ xt can be factorized
into two vectors:

V ar[ht] ∝ α · βT , αi = ||W x
i,:||22, βi = ||WB

i,:||22,
where α ∈ RP , β ∈ RN .

The above theorem demonstrates that outliers
in the channel dimension P and state dimension
N can be attributed to variables xt and Bt, re-
spectively. A visualization of this phenomenon is
provided in Figure 3(b). This motivates us to pro-
pose a novel quantization scheme called Decou-
pled Scale Quantization (DSQ), which utilizes
separate quantization scales for the state dimen-
sion and the channel dimension:

Q(h) = ⌊ h

Schannel · S⊤
state

⌉ ⊙ (Schannel · S⊤
state) (6)
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Figure 3: State distribution in Mamba2-370M. Left: Outliers exist in both specific state dimensions (red)
and channel dimensions (green). Right: Further analysis reveals outliers in channel dimension and state
dimension can be attributed to variables xt and Bt, respectively.
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Figure 4: An illustration of DSQ.

where Schannel ∈ RP , Sstate ∈ RN and ⌈·⌋ de-
notes rounding floating-point values to the nearest
integers, while ⊙ signifies element-wise multiplica-
tion.

In this paragraph, we discuss how to compute
scales given a specific state. To increase the ef-
fective quantization bits, both state and channel
scales should accurately represent the magnitude
of their respective dimensions. Therefore, an in-
tuitive metric to determine these scales is the vec-
tor norm, such as maximum norm (∥ · ∥∞) and L1

norm (∥ · ∥1). However, in practice, we find that
both norms result in even worse performance (see
Table 7). Further visualization in Figure 8 shows
that these norms are highly sensitive to outliers,
resulting in even greater bit wastage. Therefore,
for the channel scale, we use the square root of
the mean values, which offers a more robust metric
that mitigates the influence of outliers. After mit-
igating most outliers by smoothing the states with
channel scale, we employ the MinMax method to
compute state scale, which effectively compresses
the data range and reduces information loss during
quantization:

Schannel,i = sqrt(mean(abs(hi,:))) =
√
∥|hi,:|∥1 (7)

Sstate,j = max(abs(
h:,j

Schannel
)) =

∥∥∥∥
|h:,j |

Schannel

∥∥∥∥
∞

(8)

where i and j denote subscripts indexing into the
channel and state dimensions, respectively. Table 3
demonstrates that DSQ achieves negligible over-
head while significantly improving performance.

5.2 Efficient Selectivity Reconstruction

To mitigate the performance loss caused by quan-
tization, PTQ methods often apply block-wise re-
construction (Nagel et al., 2020; Li et al., 2021)
with a few data. However, these methods cannot
be directly applied to Mamba models due to the
challenges introduced in Section 5.2.1.

5.2.1 Challenge in Parallel Training

To minimize memory bandwidth utilization, we
store state caches as low-bit elements, then load
and dequantize them before computation at the
next timestep. This process defines a new se-
quence transformation through the quantized la-
tent state hq

t in Equation (9). It is important to
distinguish hq

t = ĀQ(hq
t−1) + B̄xt from the di-

rectly quantized value of the original ht, denoted
as Q(ht) = Q(Āht−1 + B̄xt).

hq
t = ĀQ(hq

t−1) + B̄xt, (9a)

yqt = Chq
t (9b)

However, the quantization function leads to non-
linear hidden-to-hidden transformation, i.e., hq

t has
a non-linear dependency on hq

t−1. A significant
challenge arises because the original parallel train-
ing algorithms for linear recurrence are incompat-
ible with the quantization scenario. Specifically,
Equation (9) can no longer be reformulated into
its quadratic form. A naive approach would involve
directly applying Equation (9) for token-by-token
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generation. Specially, However, given the large in-
put lengths (e.g., 2048), this method is extremely
slow and impractical. Therefore, to apply block-
wise reconstruction for Mamba models, it is essen-
tial to first investigate how to effectively simulate
quantization errors during training

hq
t = ĀtQ(hq

t−1) + B̄txt

= ĀtQ(Āt−1h
q
t−2 + B̄t−1xt−1) + B̄txt

̸= ĀtĀt−1Q(hq
t−2) + ĀtB̄t−1xt−1 + B̄txt

̸=
t∑

s=1

ĀsĀs+1 · · · ĀtB̄sxs

(10)

5.2.2 Quantization-Aware State Space
Model

Motivated by the linear surrogates proposed in
(Martin and Cundy, 2018), we aim to elimi-
nate the non-linear function from the hidden-to-
hidden transformation while effectively simulat-
ing the quantization errors. To gain insight into
this problem, we focus on the difference between
the quantized and original states, defined as δt =
hq
t − ht. By substituting δt into Equation (9),

we observe that δt is composed of two parts: the
quantization error propagated from the previous
timestep, δt−1, and the quantization error intro-
duced in the current timestep:

δt = hq
t − ht = ĀtQ(hq

t−1) + B̄txt − (Ātht−1 + B̄txt)

= Āt · (Q(hq
t−1)− ht−1)

= Āt · (Q(ht−1 + δt−1)− ht−1)
(11)

Assuming that quantization errors δt−1 are suffi-
ciently small compared to the hidden state ht−1,
we discard δt−1 and focus only on the quantization

errors at the current timestep:

Q(ht−1 + δt−1) ≈ Q(ht−1) +Q′(ht−1) · δt−1

≈ Q(ht−1)

=⇒ hq
t ≈ ĀtQ(ht−1) + B̄txt

(12)

Equation (12) enables us to utilize the parallel al-
gorithm to compute ht at all timesteps, then simu-
late the quantization errors by quantizing only one
step during training, as shown in Figure 5. In the
appendix, we present the pseudocode for the par-
allel training of quantization-aware SSMs for illus-
trative purposes. Table 4 demonstrates the effec-
tiveness of this quantization simulation, especially
in low-bit settings.

5.2.3 Selectivity Guided Adaptation

In the Mamba block, the selective parameters B,
∆, and C, along with the SSM inputs xt, are gen-
erated through input projections, as shown in Fig-
ure 1. During block-wise reconstruction, we freeze
the linear projections corresponding to the SSM in-
puts x and z, while keeping the linear projections
for selective parameters B, C, and ∆ learnable,
which is referred to as Selectivity Guided Adapta-
tion (SGA) (Figure 1, middle). Specifically,

min
{W q

v |v∈B,C,∆}

∥∥Bl(W
FP
v , hFP

t ;ul)− Bl(W
q
v , h

q
t ;ul)

∥∥
2
,

(13)
where Bl denotes the mapping function for the l-th
Mamba block and ul represents the block’s inputs.
WFP and W q represent the weights of the original
model and the quantized model, respectively.

SGA offers two primary advantages: First, the
success of Mamba is largely attributed to the se-
lectivity of parameters Ā, B̄, and C̄, which dis-
tinguishes it from earlier non-selective SSMs (Gu
et al., 2020; Smith et al., 2023). Thus, we hypothe-
size that this selectivity also plays a critical role in
maintaining performance after quantization. Sec-
ond, SGA reduces the number of learnable param-
eters, mitigating the risk of overfitting with lim-
ited calibration data. For example, in Mamba2-
2.7B, learnable parameters account for only about
2% of the total. Note that during this fine-tuning
process, the linear layers remain in floating-point
values and can be quantized afterward (Figure 1,
right).

6 Experiments

6.1 Experiment Setup

Settings. We conduct experiments on the
Mamba-2 (Dao and Gu, 2024) models across
various model sizes (130M, 370M, 780M, 1.3B,
2.7B). We initialize quantized models using a full-
precision model. We utilize the AdamW optimizer
with zero weight decay to optimize the learnable
parameters in ESR. The learning rate for learn-
able parameters is set to 1e-3. RedPajama is an
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Table 1: Evaluation results of the Mamba-2 models on generation tasks. #W, #A, and #H indicate
weight bits, activation bits, and state bits, respectively.

Bits Method
WikiText2 ↓ C4 ↓

130M 370M 780M 1.3B 2.7B 130M 350M 780M 1.3B 2.7B

FP16 - 20.04 14.16 11.81 10.42 9.06 22.25 16.95 14.66 13.27 11.95

W16A16H4 Baseline 976.56 913.34 865.78 1556.15 116.23 542.048 599.49 911.31 529.55 96.93
Q-Mamba 45.73 22.24 19.07 15.20 11.55 39.46 26.36 22.45 19.14 14.90

W16A16H6 Baseline 249.09 134.91 38.04 23.62 13.60 322.97 101.75 38.24 23.73 19.61
Q-Mamba 23.79 15.33 12.69 11.37 9.59 25.11 18.27 15.66 14.52 12.57

W16A16H8 Baseline 20.97 14.83 12.04 10.52 9.11 22.97 17.45 14.85 13.40 12.01
Q-Mamba 20.49 14.26 11.86 10.51 9.11 22.64 17.05 14.73 13.39 12.04

W8A8H4 Baseline 2024.49 1013.15 7225.39 6375.57 364.84 635.86 795.28 10716.17 2788.23 298.57
Q-Mamba 53.12 27.53 23.53 17.60 12.99 46.90 32.91 26.79 21.56 16.90

W8A8H6 Baseline 357.69 220.09 96.51 47.28 21.18 526.59 171.90 79.70 40.46 29.86
Q-Mamba 26.75 17.27 14.51 13.05 10.84 28.18 20.53 17.79 16.45 14.46

W8A8H8 Baseline 23.60 16.69 14.32 11.85 10.42 25.51 19.50 17.44 14.86 13.73
Q-Mamba 22.88 15.83 13.57 11.93 10.36 25.01 18.84 16.80 15.03 13.69

Table 2: Evaluation results of the Mamba-2 models with W8A8H4 (8-bit weights, activations, and 4-bit
states) on zero-shot tasks.

Model Method OBQA PIQA ARC-E ARC-C HellaSwag WINO AVG ↑
Mamba2-130M FP 30.6 64.9 47.4 24.2 35.3 52.1 42.41

Baseline 30.8 63.4 45.6 24.6 34.1 51.93 41.73
Q-Mamba 30.0 63.0 45.7 23.4 33.9 53.3 41.55

Mamba2-370M FP 32.4 70.5 54.9 26.9 46.9 55.7 47.83
Baseline 28.6 58.6 46.5 24.9 30.4 53.0 40.34
Q-Mamba 32.8 68.4 53.8 26.7 43.8 54.8 46.71

Mamba2-780M FP 36.2 72.0 61.0 28.5 54.9 60.2 52.13
Baseline 32.0 61.8 50.5 25.9 29.5 57.5 42.85
Q-Mamba 34.2 69.6 57.3 27.6 52.1 55.6 49.4

Mamba2-1.3B FP 37.8 73.2 64.3 33.3 59.9 60.9 54.9
Baseline 35.6 67.1 57.6 29.2 36.8 58.5 47.46
Q-Mamba 34.8 72.6 62.5 31.4 55.7 59.5 52.77

Mamba2-2.7B FP 38.8 76.4 69.6 36.4 66.6 64.0 58.63
Baseline 39.8 73.2 66.8 36.0 56.4 59.6 55.30
Q-Mamba 40.0 73.9 66.8 35.4 62.0 61.0 56.52

open-source reproduction of the pre-training data
for LLaMA(Touvron et al., 2023). We employ a
calibration dataset consisting of 128 randomly se-
lected 2048-token segments from the RedPajama
(Computer, 2023) dataset, except for Mamba2-
2.7B, which utilizes 256 samples. The entire train-
ing process is facilitated on a single NVIDIA A800
GPU, using a batch size of 1 over 3 epochs. For
linear projections, we apply SmoothQuant (Xiao
et al., 2023a) with per-token quantization. For
state quantization, we use INT8, INT6, and INT4
schemes (e.g., W8A8H4 refers to 8-bit linear pro-
jection and 4-bit quantization of the states). We
utilize MinMax per-channel quantization (intro-
duced in Section 5.1.2) as state quantization base-
line.

Evaluation Tasks. We evaluate our methods
on both language generation and zero-shot tasks.
We report the perplexity on WikiText2 (Merity
et al., 2017) and C4 (Pal et al., 2023). For zero-

shot tasks, we provide accuracy on datasets includ-
ing PIQA (Bisk et al., 2020), ARC (Clark et al.,
2018), BoolQ (Clark et al., 2019), OpenBookQA
(Mihaylov et al., 2018), HellaSwag (Zellers et al.,
2019) and Winogrande (Sakaguchi et al., 2020).

6.2 Main Results

Generation Tasks.

We evaluate generation tasks in recurrent mode
with a sequence length of 2048. The results in Ta-
ble 1 demonstrate the effectiveness of Q-Mamba
across various quantization configurations. For
INT8 state quantization, we exclusively utilize
DSQ without ESR, as DSQ alone achieves nearly
lossless quantization compared to full-precision
models. Without our methods, states are limited
to 8-bit quantization, with lower-bit quantization,
such as 6-bit, leading to significant performance
degradation, e.g., 23.62 perplexity for Mamba2-
1.3B on the WikiText2 dataset. In contrast, Q-
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Figure 6: Inference latency and memory usage of the Mamba2 models with different batch sizes on
NVIDIA GeForce RTX 3090.

Table 3: The performance and overheads of dif-
ferent quantization methods on Mamba2-370M. P
and N denote channel and state dimensions, re-
spectively.

Granularity WikiText2 ↓ Overheads

Per-tensor 4815.83 1
P×N

Per-channel 3364.58 1
P

Per-state 947.88 1
N

DSQ 25.73 1
P + 1

N

Mamba facilitates nearly lossless 6-bit quantiza-
tion, achieving a minimal degradation of only 0.53
perplexity for Mamba2-2.7B and 0.88 perplexity
for Mamba2-1.3B. Moreover, Q-Mamba enables ef-
fective 4-bit quantization and is compatible with
the linear projection quantization approach. For
example, Q-Mamba achieves 12.99 perplexity in
W8A8H4 quantization settings for the Mamba2-
2.7B model.

Zero-shot Tasks. We evaluate the perfor-
mance of Q-Mamba on zero-shot tasks using the
lm-eval-harness (Gao et al., 2024) framework in Ta-
ble 2. Q-Mamba significantly improves the average
accuracy across various models. For example, it in-
creases the average accuracy by 6.37%, 6.55%, and
5.31% on the 370M, 780M, and 1.3B models. Addi-
tionally, for Mamba2-2.7B and Mamba2-1.3B, Q-
Mamba achieves W8A8H4 quantization with only
2.13% and 2.11% accuracy degradation.

6.3 Ablations

In this section, we conduct experiments to validate
the efficacy of each component, as well as the de-
sign choices for DSQ. Due to page limitations, we
include additional ablations in Section A.4 of the
Appendix.

Effectiveness of each component. Table 3
demonstrates that DSQ is essential in state quan-
tization. The model’s performance declines sig-
nificantly when per-channel or per-state quantiza-
tion methods are adopted. By decoupling scales
in the state and channel dimensions, DSQ miti-
gates outliers in both dimensions with negligible
overhead. Table 4 shows that we can further en-

Table 4: Efficacy of each component in ESR. ESR
enables adjusting parameters of Mamba blocks af-
ter quantizing states in block-wise reconstruc-
tion. When combined with SGA, these two tech-
niques further enhance performance.

Method WikiText2 ↓ C4 ↓
DSQ w/o ESR 25.73 29.94
DSQ+ESR (w/o SGA) 23.73 28.19
DSQ+ESR (w/ SGA) 21.92 25.99

hance model performance in block-wise reconstruc-
tion with ESR. Furthermore, finetuning selective
parameters instead of all parameters can help avoid
overfitting and yield better results.

6.4 Efficiency

Figure 6 presents the memory and time require-
ments for inference using Mamba2 models. For
W8A8 linear projections, we employ CUDA INT8
GEMM, following the approach of SmoothQuant
(Xiao et al., 2023a). For INT4 state quantiza-
tion, we implement SSM kernels with quantized
and packed states with Triton (Tillet et al., 2019),
a language and compiler for CUDA computation.
Both the input context and generation length are
set to 100. The results show that the quantized
models can reduce memory usage by half while
maintaining or even improving inference latency.

7 Conclusion

In this paper, we propose Q-Mamba, a novel quan-
tization framework designed for state caches in
Mamba models. We conduct a theoretical anal-
ysis of outliers in states and propose Decoupled
Scale Quantization (DSQ) which decouple scales
in the state and channel dimensions, DSQ miti-
gates outliers in both dimensions while introducing
negligible overhead. To further boost performance
through block-wise reconstruction, we propose Ef-
ficient Selectivity Reconstruction (ESR), which in-
cludes a novel quantization simulation method that
enables efficient fine-tuning of selective parameters
with parallel scan mode. In conclusion, Q-Mamba
demonstrates that Mamba architectures have the
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potential for further optimization when combined
with other model compression techniques.

Limitations

In this paper, we propose Q-Mamba, a novel
quantization framework designed for state caches
in Mamba models. Although Q-Mamba reduces
memory usage by half and achieves a 1.18x speedup
on GPUs with only a 2.13% average accuracy
degradation on zero-shot tasks, maximizing accel-
eration in large language models LLMs based on
Mamba via quantization requires greater hardware
support. Previous research on hardware accelera-
tors has primarily focused on LLMs (Wang et al.,
2021; Sridharan et al., 2023) based on transformer
architectures. We hope this paper will inspire
more researchers to focus on developing customized
hardware for low-bit SSM models.
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A Appendix

A.1 Previous PTQ methods on Mamba

In Section 4, we analyze the quantization of linear
projections in Mamba models. Here, we provide
more detailed results about previous PTQ meth-
ods on Mamba-1 and Mamba-2 models. We will
analyze the difference between Mamba-1 models
and Mamba-2 models from a view of model quan-
tization. The results presented in Table 5 indicate
that Mamba2 models exhibit greater robustness to
quantization compared to Mamba1 models. Fur-
ther analysis in Figure 7 reveals that this improve-
ment is largely due to the additional LayerNorm
applied before the output projection in Mamba2,
which helps to reduce outliers to a certain ex-
tent. Moreover, this LayerNorm simplifies the im-
plementation of previous PTQ methods based on
smoothing between weights and activations, such
as SmoothQuant (Xiao et al., 2023a) and AWQ
(Lin et al., 2023). As a result, this paper primarily
focuses on Mamba2 models, which not only feature
larger state dimensions but are also more amenable
to quantization.

A.2 Proof

Theorem 2. Assuming ut ∼ N (0, σIn) and At is
a constant, Bt = (uWB)

⊤, xt = uWx, the variance
of states ht = At · ht−1 +Bt ⊗ xt can be factorized
into two vectors:

V ar[ht] ∝ α · βT , αi = ||W x
i,:||22, βi = ||WB

i,:||22,
where α ∈ RP , β ∈ RN .

Proof. Firstly, we can reformulate Equation (??)
as a prefix sum:

ht =
t∑

i

Ai:txiB
⊤
i , where Ai:t = Ai×Ai+1×. . . At

(14)

Then, we can compute the mean of states ht as
follows:

E[ht] =
t∑

i

Ai:tE[xiB
⊤
i ]

=
t∑

i

Ai:tE[W xuiu
⊤
i W

b⊤]

=
t∑

i

Ai:tW
xE[uiu

⊤
i ]W

b⊤

=
t∑

i

Ai:tσW
xW b⊤

(15)

After computing the mean of the states, we can
similarly compute the variance of the states ht.
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Figure 7: Visualization of inputs for linear projections. The out projection suffers from more severe
outliers compared to the in projection.

Model Method WikiText2 C4

Mamba1-370M FP 14.31 17.23
W8A8 18.95 23.04

W8A8+SQ 16.17 19.85
W4A16+ GPTQ 16.03 19.06

Mamba2-370M FP 14.16 16.95
W8A8 17.14 20.10

W8A8+SQ 15.71 18.72
W4A16+GPTQ 15.81 18.71

Table 5: Different PTQ methods for Mamba models. Mamba-1 models suffer much more serious outliers
in output projections because of the absence of LayerNorm before it.

The equality (a) is attributed to Lemma 1.

Var[xiB
⊤
i ] = E[(W xuiu

⊤
i W

b⊤ − σW xW b⊤)]

= E[(W x(uiu
⊤
i )W

b⊤)2]

− 2σ · E[W xW b⊤ ⊙ (W xuiu
⊤
i W

b⊤)]

+ (σW xW b⊤)2

(a)
= σ2α · β⊤ + 2σ2 · (W xW⊤

b )2

− 2σ2 · (W xW⊤
b )2 + σ2 · (W xW b⊤)2

= σ2α · β⊤ + σ2 · (W xW b⊤)2

(16)

Here, we assume that the second term (W xW b⊤)2

is sufficiently small compared to α · β⊤, and then
we obtain:

Var[ht] = = (σ2
t∑

i

Ai:t) · (α · β⊤) (17)

Lemma 1. Assuming z ∼ N (0, In), w1, w2 ∈ Rn,
we have the following conclusions:

E[(w1
⊤z)2(w2

⊤z)2] = ||w1||22 · ||w2||22 + 2(w1
⊤w2)

2

(18)

Proof. Let A and B be two arbitrary symmetric
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matrices, we have:

E
[
x⊤Ax · x⊤Bx

]
= E


∑

i,j

xiaijxj

∑

k,l

xkbklxl




= E


∑

i,k

aiibkkx
2
ix

2
k + 4

∑

i<j

aijbijx
2
ix

2
j




=
∑

i,k

aiibkk + 2
∑

i

aiibii

+ 2


∑

i,j

aijbij −
∑

i

aiibii




=
∑

i

aii
∑

k

bkk + 2
∑

i,j

aijbij

= Tr(A)Tr(B) + 2Tr(AB)
(19)

A special case occurs when A = w1w1
⊤ and B =

w2w2
⊤:

E[(w1
⊤z)2(w2

⊤z)2] = ||w1||22 · ||w2||22 + 2(w1
⊤w2)

2

(20)

Although this theorem imposes strict constraints
on the SSM inputs ut (Gaussian distribution) and
At (constant), it sufficiently reveals the following
fact: outliers in the channel dimension P and state
dimension N can be attributed to the variables
xt ∈ R(T,P ) and Bt ∈ R(T,N), respectively. Fig-
ure 3 provides a visualization of this phenomenon.

A.3 Related Works about State Space
Mode

Transformer-based LLMs (Touvron et al., 2023;
OpenAI, 2023) suffer from the computational cost
of their attention mechanism scales quadratically
with sequence length. Consequently, much re-
search has focused on developing more efficient
variants of attention, such as structured state
space models (SSMs) (Gu and Dao, 2023; Dao
and Gu, 2024; Smith et al., 2023). The origi-
nal structured SSMs (S4) (Gu et al., 2022) were
linear time-invariant (LTI) systems motivated by
continuous-time online memorization. Many vari-
ants of structured SSMs have been proposed, for
example, Gated SSM architectures, such as GSS
(Mehta et al., 2023) and BiGS (Wang et al., 2023),
incorporate a gating mechanism into SSMs for lan-
guage modeling. Recently, the Mamba (Gu and
Dao, 2023; Dao and Gu, 2024) architecture demon-
strates promising performance on standard lan-
guage modeling tasks (Waleffe et al., 2024), as well
as on vision and multimodal tasks (Zhu et al., 2024;
Qiao et al., 2024). Mamba showed that state ex-
pansion and selective ability are crucial for select-
ing and memorizing useful information in the hid-
den states.
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Figure 8: An illustration of how DSQ enhances
performance.
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Figure 9: Illustration of WikiText2 perplexity of
W16A16H4 quantization with different training
samples and epochs.

A.4 More Ablation Studies

In this section, we conduct more experiments to
validate the efficacy of design choices for DSQ,
training epochs, and calibration data size. We also
provide visualizations of DSQ and a detailed anal-
ysis of the impact of trainable parameters in ESR.
Visualization of DSQ. Figure 8 illustrates

how DSQ improves performance. The presence of
outliers causes MinMax quantization to waste a
significant portion of available quantization slots,
resulting in large rounding errors. Although in-
troducing channel scales Schannel helps make the
quantization slots non-uniform, the mean norm re-
mains sensitive to outliers, even unexpectedly am-
plifying them (as shown in the middle figure).

Trainable parameters in ESR. Table 8
demonstrates the effectiveness of our choice of
trainable parameters in ESR: Fine-tuning selective
parameters (B, C, and ∆), layer normalization,
and convolution yields the best perplexity. In con-
trast, including x and z results in worse perfor-
mance. We attribute this to the fact that fine-
tuning all parameters can lead to overfitting and
necessitates end-to-end training.

Calibration Datasets. We conducted ablation
studies on Mamba-2-1.3B using three calibration
datasets (WikiText2, PTB, RedPajama). The re-
sults show minimal performance variation across
datasets (Table 6) because we used only 128 ex-
amples, and fine-tuning affected only 2% of the
parameters.

10607



Table 6: Calibration dataset ablation (W16A16H4
quantization).

Calibration Dataset WikiText2 C4

WikiText2 14.03 18.35
PTB 14.24 18.12
RedPajama 14.78 18.48

Samples and epochs for block-wise recon-
struction. To ensure training efficiency, we set
3 epochs and 128 samples for all experiments, ex-
cept for Mamba2-2.7B, where we use 256 samples.
However, as shown in Figure 9, performance can
be further improved by increasing the number of
training samples and epochs.

Table 7: Impact of different design choices for
DSQ. Experiments are conducted on Mamba2-
370M with W16A16H4 quantization.

Method WikiText2 ↓ C4 ↓
abs.max inf inf
abs.max.sqrt 42.88 46.61
abs.mean inf inf
abs.mean.sqrt 25.73 29.94

Design choices of DSQ. The results in Ta-
ble 7 highlight the critical importance of selecting
appropriate quantization scales for DSQ. Firstly,
squaring the norms as quantization scales is essen-
tial for maintaining stability. Furthermore, using
mean values yields superior performance compared
to relying on maximum values.

Norm ∆,B,C,D Conv-1D X,Z WikiText2 C4

25.73 29.94
✓ 24.76 29.02

✓ 23.27 27.22
✓ 25.24 29.09

✓ 24.99 28.88
✓ ✓ 22.51 27.00
✓ ✓ 24.93 28.87
✓ ✓ 25.31 29.43

✓ ✓ 22.68 26.91
✓ ✓ 22.97 26.41

✓ ✓ 25.66 28.89
✓ ✓ ✓ 21.92 25.99
✓ ✓ ✓ 23.63 27,43
✓ ✓ ✓ 24.89 29.04

✓ ✓ ✓ 23.01 26.98
✓ ✓ ✓ ✓ 23.73 28.19

Table 8: The performance of W16A16H4 quanti-
zation for Mamba2-370M with different trainable
parameters in the ESR.

Figure 10: Illustration of perplexity with different
length on PG-19 dataset.

A.5 Long Context Experiments

In Figure 10, we conducted additional evaluations
on sequences longer than the 2048-token context
reported in our main paper. We observed that the
Mamba2-2.7B model suffers from significant per-
formance degradation at a sequence length of 4K
tokens. A similar phenomenon was previously re-
ported in Stuffed Mamba (Chen et al., 2024b).

Surprisingly, however, we found that the quan-
tized model maintains stable performance even at
8K tokens (Figure 10). We hypothesize that this
discrepancy may be related to the state explosion
problem described in Stuffed Mamba: “the explo-
sion is largely contributed by a few dominant out-
lier channels. These outliers cause vanishing values
in other channels when the output hidden represen-
tation is normalized.” We hypothesize that quan-
tization mitigates this issue by partially suppress-
ing the impact of outlier channels. As illustrated
in Figure 11, the state distribution of our quan-
tized Mamba at 4k sequence length closely resem-
bles that at 2k length.

A.6 More Detailed Latency Results

In Figure 6, we show the latency of Mamba2 mod-
els with different batch sizes. Here, we provide
more detailed results regarding the latency of pre-
fill and decoding stages.

Table 9: Latency (ms) for FP16 vs. W8A8H4
quantization.

Batch Size Stage FP16 W8A8H4

BS=32
Prefill 370 239
Decoding 3734 3208

BS=64
Prefill 738 509
Decoding 3786 3472

10608



Figure 11: Visualization of .

A.7 Pseudocode

In this section, we present the pseudocode for the
parallel training of quantization-aware SSMs. To
enhance understanding, we also include the pseu-
docode for the recurrent and quadratic modes of
Mamba-2. It is worth noting that these pseu-
docodes are provided solely for illustrative pur-
poses and do not represent actual implementations.
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1 def ParallelSSM(
2 A, # bsz * num_head * len
3 B, # bsz * num_head * len * state_dim
4 C, # bsz * num_head * len * state_dim
5 x # bsz * num_head * len * channel_dim
6 ):
7 BC = C @ B.transpose(-1, -2)
8 prefix_sum = torch.cumsum(A)
9

10 # L : bsz * num_head * len * len
11 L = torch.tril(prefix_sum.unsqueeze(-1) - prefix_sum.unsqueeze(-2))
12

13 ABC = L * BC
14 y = ABC @ x
15 return y

1 def RecurrentSSM_onestep(
2 A, # bsz * num_head
3 B, # bsz * num_head * state_dim
4 C, # bsz * num_head * state_dim
5 x, # bsz * num_head * channel_dim
6 last_state # bsz * num_head * channel_dim * state_dim
7 ):
8 current_state = A * last_state + B.unsqueeze(-2) * x.unsqueeze(-1)
9 output = current_state @ C.unsqueeze(-1)

10 return output.squeeze(-1)

1 def QuantizationAwareParallelSSM(
2 A, # bsz * num_head * len
3 B, # bsz * num_head * len * state_dim
4 C, # bsz * num_head * len * state_dim
5 x # bsz * num_head * len * channel_dim
6 ):
7 BX = B.unsqueeze(-2) * x.unsqueeze(-1)
8 prefix_sum = torch.cumsum(A)
9 L = torch.tril(prefix_sum.unsqueeze(-1) - prefix_sum.unsqueeze(-2))

10 state = torch.einsum(’bhldn,bhll->bhldn’, BX, L)
11

12 # Simulate the quantization errors at the last timestep
13 # Error case: qstate = fake_quant(state)
14 qstate = A[:, :, 1:] * fake_quant(state)[:, :, :-1] + BX[:, :, 1:]
15

16 y = torch.einsum(’bhldn,bhln->bhld’, qstate, C)
17 return y
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