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Osman Alperen Koraş1 Rabi Bahnan1 Jens Kleesiek1,2,3,4 Amin Dada1

1Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Essen, Germany
2Cancer Research Center Cologne Essen (CCCE), West German Cancer Center Essen

University Hospital Essen (AöR), Essen, Germany
3German Cancer Consortium (DKTK, Partner site Essen), Heidelberg, Germany

4Department of Physics, TU Dortmund, Dortmund, Germany

Abstract

Deploying natural language generation sys-
tems in clinical settings remains challenging
despite advances in Large Language Models
(LLMs), which continue to exhibit hallucina-
tions and factual inconsistencies, necessitating
human oversight. This paper explores auto-
mated dataset augmentation using LLMs as hu-
man proxies to condition LLMs for clinician
control without increasing cognitive workload.
On the BioNLP ACL’24 Discharge Me! Shared
Task, we achieve new state-of-the-art results
with simpler methods than prior submissions
through more efficient training, yielding a 9%
relative improvement without augmented train-
ing and up to 34% with dataset augmentation.
Preliminary human evaluation further supports
the effectiveness of our approach, highlighting
the potential of augmenting clinical text genera-
tion for control to enhance relevance, accuracy,
and factual consistency.

1 Introduction

Large language models (LLMs) like OpenAI’s
GPTs (OpenAI et al., 2024; Brown et al., 2020),
Google’s PaLM (Anil et al., 2023) and Gem-
ini (Team et al., 2024), and lately Meta’s
Llama (Touvron et al., 2023a,b; Dubey et al., 2024)
have shown remarkable versatility across a wide
range of applications, including healthcare (Sing-
hal et al., 2023; Huang et al., 2024). In clinical
environments, LLMs offer potential for automating
tasks such as summarizing clinical notes, support-
ing diagnostic decisions, and streamlining patient
communication (Hirosawa et al., 2023; Soleimani
et al., 2024; Ruinelli et al., 2024; Liu et al., 2023;
Patel and Lam, 2023; Van Veen et al., 2024; Zaret-
sky et al., 2024; Were et al., 2010). However, de-
ploying AI in clinical settings remains a critical
challenge due to the high cost of hallucinations,
factual inconsistencies, and misinterpretations (Ji
et al., 2023; Lin et al., 2024; Tang et al., 2023;

Next Segment
User Interaction

Medication

continue

Topic

?
?

Question

Text Block

Greetings
Admission
Treatment
Diagnosis
...

LLM

LLM

LLM

Figure 1: An interactive workflow showcasing topic-
level generation control. The LLM is prompted once
with the respective context to begin structured genera-
tion. After each element, generation is paused, enabling
users to sequentially refine content by editing LLM-
suggested topic headings, questions, and text blocks.
The generation resumes with user-verified content.

Dada et al., 2024). Even minor inaccuracies in AI-
generated clinical content can lead to severe con-
sequences, such as misdiagnoses, incorrect treat-
ments, or harmful patient outcomes. Ethical con-
siderations further complicate this process, calling
for clinicians to hold accountability for medical
decisions through rigorous oversight (Meskó and
Topol, 2023; Omiye et al., 2024). At the same time,
verifying AI-generated content introduces new cog-
nitive burdens, potentially negating the intended ef-
ficiency gains of automation. As clinicians already
face high cognitive workloads, addressing this para-
dox is essential to harness AI’s potential in clinical
settings without increasing risks or workloads. To
strike this balance, AI systems must provide clini-
cians with control and transparency, ensuring out-
puts align with clinical contexts, communication
styles, and guidelines. This paper explores whether
augmenting traditional datasets to condition LLMs
for controlled clinical text generation is a viable
solution. Specifically, we introduce a system that
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separates stylistic and content-related requirements,
breaking down generation into distinct, manage-
able writing subtasks. This reduces the complexity
of content creation and human verification through
a separation of concerns, empowering users to im-
pose authoring guidelines and dynamically guide
the process while moving away from black-box
models that limit clinician involvement.

Since traditional datasets do not inherently sup-
port such user control, we augment them with au-
thoring guidelines and topic segmentation to con-
dition models for style and content control. Auto-
mated evaluation suggests that our approach sig-
nificantly enhances relevance, accuracy, and fac-
tual consistency, highlighting the potential of such
augmentations for clinical text generation. Further-
more, we find that traditional instruction-tuning
for clinical text generation can be significantly im-
proved through optimized hyperparameter settings,
without increasing the compute budget. Our key
contributions are:

New state-of-the-art. We set a new state-of-the-
art on the BioNLP ACL’24 Shared Task ’Discharge
Me!’ challenge through efficient training, while
being simpler and requiring less training compute.

Dataset Augmentation. We propose methods1

using LLMs as human proxies to augment tradi-
tional datasets, enabling granular control over con-
tent and style in clinical text generation. This yields
a 34% relative improvement over prior state-of-the-
art, representing a lower bound on potential gains.

Human Evaluation. We conduct preliminary
human evaluation, validating the effectiveness of
our approach. Our findings suggest that LLMs
show great potential as proxies for human annota-
tors in complex clinical tasks.

2 Related Work

In recent years, research on LLM-based clinical
text generation has grown, demonstrating promise
in generating discharge summaries (Ando et al.,
2022; Ellershaw et al., 2024; Clough et al., 2024;
Dubinski et al., 2024), brief hospital courses (Hart-
man and Campion, 2022; Hartman et al., 2023;
Searle et al., 2023), and radiology reports (Al-
farghaly et al., 2021; Wang et al., 2023; Yang et al.,
2023). Notably, some studies report that physi-
cians often prefer AI-generated clinical texts over
manually written ones (Van Veen et al., 2024). De-

1https://github.com/TIO-IKIM/controlled-clinical-
generation

spite this progress, most approaches treat clinical
text generation as an end-to-end task, limiting user
control and intervention. A recent example is the
BioNLP ACL’24 Shared Task ‘Discharge Me!’ (Xu
et al., 2024), targeting discharge summary gener-
ation. However, the complexity of clinical texts,
which often require external sources of information
and are subject to individual guidelines and writing
styles, makes end-to-end generation less feasible
in practice, and points to the need for more flex-
ible generation allowing users to control specific
aspects of the output, such as content and style.

Controlled text generation (CTG) addresses this
by allowing users to steer outputs through spe-
cific conditions—such as tone, structure, or ter-
minology—while maintaining fluency and rele-
vance (Zhang et al., 2023). Prior work in this area
has explored different control mechanisms, such as
structure control (Yang and Klein, 2021; Zou et al.,
2021), general style control (Keskar et al., 2019),
and personal style control (Tao et al., 2024).

Moreover, recent studies have explored using
Question-Answer (QA) pairs as a blueprint to guide
the text generation process. This approach has been
shown to reduce hallucinations and improve the
factual consistency of generated content (Narayan
et al., 2023; Huot et al., 2023). It is based on the
Question Under Discussion (QUD) theory (Roberts,
2012), which states that all utterances in a dis-
course (Van Kuppevelt, 1995) serve to answer ei-
ther implicit or explicit questions. Building on
these insights, we adapt the QUD framework for
clinical document generation by framing clinical
documents as responses to implicit questions aris-
ing from their intended purpose. These questions
are typically addressed in a structured manner, even
when the document appears unstructured. Using
fine-grained topic segmentation, we aim to uncover
this underlying structure by generating headings
and QUDs, with corresponding text segments act-
ing as their answers. This approach aligns top-
ics with specific writing subtasks, simplifying the
generation process while preserving the inherent
structure of clinical documentation.

3 Conditioning Clinical Text Generation
for User Control

We explore two strategies to condition Large Lan-
guage Models (LLMs) for controlled clinical text
generation: (a) topic-level structured generation
and (b) authoring guidelines. However, implement-
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ing these strategies reveal limitations in traditional
datasets, particularly in clinical text generation.

3.1 Limitations in Traditional Datasets
Traditionally, training datasets are built on the as-
sumption that more data leads to better generaliza-
tion. However, in conditional text generation (e.g.,
summarization) the same task can be completed
in multiple stylistically distinct but equally valid
ways. Despite this, evaluation benchmarks typi-
cally provide only a single reference text, failing
to account for the diversity of valid solutions or
specifying which variant of task completion is ex-
pected. This issue is made by design and cannot
be resolved simply by increasing dataset size. Con-
sequently, models are evaluated against a single
stylistic realization of a task, potentially skewing
evaluation results.

This is particularly evident in clinical datasets,
where medical documents exhibit significant differ-
ences in quality, format, and style — even within
the same task (Pollard et al., 2013; Edwards et al.,
2014; Hultman et al., 2019). Discharge summaries,
for instance, are often compiled from pre-existing
records authored by multiple individuals. Con-
tents are often copied across teams, departments, or
wards, each adhering to distinct conventions shaped
by institutional workflows, time constraints, and
resource limitations, leading to inherent stylistic
inconsistencies, which is further amplified by situ-
ational pressures. Moreover, medical professionals
exhibit highly distinctive writing styles, often to the
extent that colleagues can recognize one another
solely by their writings. Consequently, even within
a single discharge summary, different sections may
reflect different writing styles, making it impossi-
ble to reliably infer the appropriate writing style
for one section from the remaining document.

This issue has been largely overlooked in prior
research, and to our knowledge, no systematic
study has investigated its implications. In partic-
ular, the extent to which evaluation metrics are
sensitive to stylistic variations, and the degree to
which stylistic features emerge due to spurious cor-
relations in input data, remains unclear. To ensure
models can be held accountable for stylistic devia-
tions, we extend the task definition by integrating
authoring guidelines into the input context, con-
ditioning the model to adhere to explicit stylistic
requirements. This introduces a clear separation of
concerns: synthesizing clinically relevant informa-
tion to complete the task (content) and ensuring

conformity to specified conventions (style). More-
over, explicitly conditioning models on authoring
guidelines facilitates the emergence of stylistic fea-
tures through user control, rather than spurious
correlations, enabling clinicians to specify institu-
tional or personalized guidelines during inference
and promising better generalization.

Another limitation with traditional datasets is
their end-to-end design, where the entire output
is generated in a single step from the input. This
inherently restricts user intervention and control
during generation. To train models for (a) control-
lable and (b) intervenable generation (cf. Fig. 1),
we need models to sequentially generate output
block by block in a structured format with (a) guid-
ance signals to steer the generation of individual
blocks and (b) control sequences to start and termi-
nate individual blocks. To address this, we explore
fine-grained topic segmentation to structure target
texts ti into XML-formatted sequences.

3.2 Topic-Level Generation Control
To train models for controllable and intervenable
generation, we tasked Llama 3.1 70B Instruct
with fine-grained topic segmentation of target texts
ti. The LLM is prompted to segment texts ti =
(t1i , ..., t

n
i ) into smaller text blocks tki , while gener-

ating topic-specific headings h̊ki and questions q̊ki
for each segment. The output is requested as an
XML-structured sequence

s̊eg(ti) =
[
h̊1i , q̊

1
i , t̊

1
i , ..., h̊

n
i , q̊

n
i , t̊

n
i

]
,

in the following format:

<topic>̊h1i </topic>
<question>q̊1i </question>
<span>̊t1i </span>
. . .
<topic>̊hni </topic>
<question>q̊ni </question>
<span>̊tni </span>

While the headings and questions serve as guid-
ance signals during generation, the XML tags
serve as control sequences to stop, adjust and con-
tinue generation in each distinct phase (Fig. 1).
The prompt (Tab. 10) is designed to enforce fine-
grained topic segmentation, without imposing a
particular concept of topics or questions. It’s sum-
marized as follows: (1) a new segment should begin
when the clinical focus changes, which we asso-
ciate with a new writing subtask, (2) headings h̊ki
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should summarize their respective segment, which
we equate with the topic, and which (3) should be
rephrased as a question q̊ki answered by the respec-
tive segment tki , which we consider to be the Ques-
tion Under Discussion (QUD) of said segment. The
remaining guidelines are provided to ensure stan-
dardization. It is important to note that the number
of topics and questions generated is not a prede-
fined hyperparameter but rather emerges implicitly
from the LLM-driven segmentation process, reflect-
ing the inherent structure and information density
of the input content.

A post-processing step then restores the original
character sequences t1i , ..., t

n
i from ti for each gen-

erated text block t̊1i , . . . , t̊
n
i (see Appendix D), as

the LLM generated text blocks t̊ki may not replicate
the input ti. The final output is denoted as:

seg(ti) =
[
h̊1i , q̊

1
i , t

1
i , ..., h̊

n
i , q̊

n
i , t

n
i

]
.

However, to avoid introducing inconsistencies
between headings, questions, and text blocks, this
step is applied selectively only to those segmen-
tations s̊eg(ti), which introduce only minor alter-
ations to the input (see Appendix D).

3.3 Authoring Guidelines
From a user perspective, authoring guidelines gov-
ern the requirements a document must comply with.
These may range from stylistic features to struc-
tural constraints. Conditioning text generation on
such guidelines may therefore not only improve
alignment of model outputs with user intent, but
also provide greater control over generation. How-
ever, traditional datasets often lack such guidelines.
In this work, we explore the feasibility of using
LLMs to close this gap in clinical datasets.

Specifically, we explore the use of two types of
automatically generated authoring guidelines for
clinical documents ti, which differ in their formula-
tion: (a) style guidelines, which describe the stylis-
tic features a clinical document should express and
(b) writing instructions, guiding a non-specialist in
writing a clinical document that serves the intended
purpose while expressing the desired stylistic fea-
tures. To achieve this, Llama 3.1 70B Instruct is
prompted independently for each target text ti as
follows:

Style Guidelines. The LLM is prompted to de-
scribe the stylistic features of the target text ti,
including tone, document format, layout, compo-
sition, text structure, use of language (including

Extract
Authoring Guidelines

DS RRn

TT
Tone

Language

Formatting...

RR1 ...

Clinical Context

Extended Context

Authoring Guidelines

Structured Text

Topic
Segmentation

BHC

LLM

Figure 2: Instruction-tuning pipeline. Dashed lines
indicate paths that depend on the training configura-
tion. Models with topic-level control are trained to
generate XML-structured text. The extended context is
provided only for TT = DI. Abbreviations: Discharge
Summary (DS), Radiology Report (RR), Discharge In-
structions (DI), Brief Hospital Course (BHC), Target
Text (TT).

abbreviations and medical jargon), and intended
audience (cf. Tab. 11).

Writing Instructions. The LLM is prompted to
generate markdown-formatted instructions for guid-
ing a non-specialist in replicating the target text ti,
including directives on the same stylistic features
as above while specifying the purpose, document
type and outline (cf. Tab. 12).

The LLM prompts are carefully engineered to
avoid answer leakage by instructing the LLM to
not use terms or phrases from the source text, to not
quote or give examples from the patient records,
and not to reveal patient-specific details.

3.4 Instruction Tuning for Controlled Clinical
Text Generation

We utilize the Discharge Me! challenge2, part of
the BioNLP ACL’24 Shared Tasks, for training and
evaluating our models due to its clinical relevance
and challenging nature. We selected this challenge
as a principled and practical benchmark: it is built
on the MIMIC-IV dataset (?), which, to our knowl-
edge, remains the only large-scale, publicly avail-
able clinical dataset suitable for structured sum-
marization and conditioned text generation in real
clinical contexts. The challenge is grounded in two
distinct and clinically meaningful generation tasks
and provides a validated suite of evaluation met-
rics (Xu et al., 2024). Furthermore, working with
this benchmark enables us to open-source our code,
data, and methods, fostering reproducibility and al-
lowing practitioners to adapt our approach to their
own institutional data, which we consider essential

2https://stanford-aimi.github.io/discharge-me
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User Message
{{ discharge summary }}
{{ radiology report 1}}

...
{{ radiology report n}}
{{ brief hospital course }}
{{ authoring guidelines }}
{{ instructions }}

Assistant Message
{{ output }}

Figure 3: The generic template for prompti(c, g) used
for instruction-tuning.

for responsible research in sensitive domains like
healthcare. Additionally, its leaderboard provides
a strong baseline. The task focuses on automating
the generation of hospital course summaries and
discharge instructions, traditionally time-intensive
tasks for clinicians.

Dataset. The dataset consists of 109,168 dis-
charge summaries from the MIMIC-IV dataset,
each containing a Brief Hospital Course (BHC)
and a Discharge Instructions (DI) section. It is di-
vided into training (68,785), validation (14,719),
phase I test (14,702), and phase II test (10,962) sets.
The BHC section is typically found in the middle
of the discharge summary, following details on pa-
tient history and treatments during the current visit.
The DI section is generally located at the end of
the note. Additionally, each discharge summary is
linked to at least one radiology report and typically
one ICD chief complaint, along with multiple ICD
codes. The DI and BHC sections are removed from
the discharge summary, and serve as target texts ti.
The clinical input constitutes of the remaining dis-
charge summary (DS) and radiology reports (RR).

To address the aforementioned limitations (3.1),
we generate topic segmentations (3.2), style guide-
lines and writing instructions (3.3) for each DI
and BHC section ti separately. We employ Llama
3.1 70B Instruct for these tasks, as LLMs have
shown to be an effective substitute for human an-
notators (Gilardi et al., 2023; Perez et al., 2022).

Instruction-Tuning Prompts. We fine-tune
our models with instruction-tuning on completions
only using a generic template (cf. Fig. 3)

prompti(c, g) = (useri(c, g), assistanti(c)),

where c ∈ {none, topics} denotes the possible
configurations for structuring the generation out-
put for control and g ∈ {none, style, instr}

denotes the possible configurations for using au-
thoring guidelines.

User Messages. useri(c, g) include the clini-
cal context, consisting of the discharge summary
dsi and radiology reports r1i , . . . , r

j
i . For gener-

ating discharge instructions (dii), we additionally
include the brief hospital course report (bhci). If
g ∈ {style, instr}, we also include the respec-
tive authoring guidelines (cf. Fig. 2) and instruct
the model to comply. If c = topics, the model is
instructed to generate XML-structured output for
topic-level structured generation. Separate instruc-
tions are provided for the DI and BHC generation
tasks.

Assistant Messages. assistanti(c) contains the
desired output, which is the plain target text ti ∈
{dii, bhci} for c = none, or the XML-structured
output segi(ti) for c = topics (Sec. 3.2).

4 Experiments and Evaluation

4.1 Experimental Setup and Baselines

We fine-tune Llama 3 8B Instruct on the train-
ing split of the Discharge Me! challenge dataset
with instruction tuning using prompti(c, g) for all
possible configurations (see Section 3.4). See Ap-
pendix A for training details. This model is chosen
to maintain a fair comparison with Damm et al.
(2024), who placed first on the leaderboard by em-
ploying a Dynamic Expert Selection (DES) system
that included Llama 3 8B Instruct as one of its
smaller models. We evaluate on the test-phase-
2 split used to determine the final leaderboard
rankings. The Top 3 leaderboard entries serve as
the state-of-the-art baseline for the Brief Hospi-
tal Course (BHC) and Discharge Instructions (DI)
generation tasks.

BASE denotes our model which is trained with-
out any data augmentations (c = none, g =
none). It serves as a baseline for our other mod-
els. Models trained with authoring guidelines (g ∈
{style, instr}) are indicated with W/STYLE or
W/INSTR respectively. Similarly, models trained
on structured output (c = topics) are indicated
with W/TOPICS.

In addition, we prompt the stronger base
model Llama 3.3 70B Instruct with user messages
useri(c, g) zero-shot and three-shot to assess the
gains provided by dataset augmentations without
any fine-tuning.
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4.2 Automated Evaluation

All our models are evaluated using the code pro-
vided by the Discharge Me! challenge3, which
employs a comprehensive set of metrics (see Ap-
pendix B) to assess lexical similarity (BLEU-4,
ROUGE-1, ROUGE-2, ROUGE-L, METEOR),
semantic similarity (BERTScore), factual consis-
tency (AlignScore), and the clinical relevance and
correctness (MEDCON) of the generated texts t̂i
in comparison to the gold-standard target texts ti.
AlignScore, in particular, is designed to measure
factual consistency and has been shown to achieve
high accuracy on benchmarks that include halluci-
nation as a distinct error category (Zha et al., 2023),
making it a reliable indicator of hallucination re-
duction. It was reported, that this ensemble resulted
in rankings that aligned well with clinician eval-
uation (Xu et al., 2024). For evaluation, we first
complete the BHC task and then use the output
to generate the DI section. Greedy decoding is
used for inference. For models w/TOPICS, which
generate XML-structured outputs seg(t̂i), the out-
put is parsed into plain text by joining the spans
t̂1i , . . . , t̂

n
i with white spaces to retrieve the final

model output.
To simulate user-control, we adopt a methodol-

ogy (see Appendix B) inspired by prior work (Mu
et al., 2024; Fakhoury et al., 2024), leveraging
LLMs as proxies for human evaluators to automate
evaluation on existing benchmarks. Specifically,
an LLM acts as a proxy for the original authors of
the DI and BHC sections by generating authoring
guidelines and providing topic guidance. For sim-
plicity, topic guidance is provided indirectly and
non-interactively, without refining outputs to match
the target text, establishing a lower-bound baseline
for performance. This simplified prompting strat-
egy, further detailed in Appendix B, is designed to
minimize user contribution and isolate the model’s
raw capabilities, thus providing a conservative esti-
mate of performance in real-world interactive sce-
narios where iterative refinement would occur.

4.3 Human Evaluation

The evaluation of interactive, user-controlled mod-
els would ideally involve a user study, where users
engage with the models to generate DI and BHC
sections. However, conducting such a study at scale
is beyond the scope of this exploratory study, as it is
too resource-intensive and time-consuming. While

3https://github.com/Stanford-AIMI/discharge-me/scoring

comprehensive interactive studies involving clini-
cians actively guiding text generation are a critical
next step and deferred to future work, our current
preliminary human evaluations aim to demonstrate
the potential of our approach and validate the LLM-
as-proxy concept. We therefore complement our
automatic evaluation with two preliminary human
evaluations to assess the effectiveness of our ap-
proach and the quality of the dataset augmenta-
tions.

The first evaluation assessed whether our models
generate clinically appropriate outputs when pro-
vided with human-written guidelines and whether
automatic evaluation metrics align with human
judgment. An advanced medical student in his final
clinical year, serving as a domain expert, dedicated
95 hours and 13 minutes to manually authoring
600 guidelines for the DI and BHC sections of 300
randomly sampled discharge summaries from the
test-phase-2 split of the ’DischargeMe!’ dataset.
While no fixed template was imposed, the expert
was encouraged to consider elements such as docu-
ment type, content coverage, structure, formatting,
tone, use of language, complexity, and technical-
ity. To ensure the guidelines captured clinically
relevant stylistic and structural directives, while au-
thentically reflecting human-written guidelines, the
expert was instructed to: (1) Write naturally, fol-
lowing personal preferences, rather than adhering
to rigid templates. (2) Provide guidance enabling a
non-medical layman to write the target text solely
based on the discharge summary. (3) Avoid med-
ical jargon and patient-specific details, while cap-
turing key clinical writing conventions.

The second evaluation assessed the quality of
LLM-generated topic segmentations, specifically
the topic accuracy, question validity, and text block
appropriateness. 500 discharge summaries were
sampled from the post-processed subset of the train-
ing split of the ’DischargeMe!’ dataset for this
purpose, yielding a total of 1000 segmentations
seg(ti). For each ti, one segment [hji , q

j
i , t

j
i ] was

randomly selected for assessment. The same medi-
cal expert then dedicated 26 hours and 27 minutes
to evaluating each segment through a two-step pro-
cess (see Appendix E).

4.3.1 Results
We evaluate BASE w/INSTR on a sample of 300
discharge summaries using human-written author-
ing guidelines (cf. Tab. 5). For cross-validation,
we also assess BASE and BASE w/INSTR using au-
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tomated evaluation (Sec. 4.2). Results (cf. Tab. 5)
indicate that the sampled dataset is not significantly
easier than the original test set (BASE: 0.369,
BASE w/INSTR: 0.423) . When prompted with
human-written guidelines, BASE w/INSTR (0.391)
retained 92.4% of its performance, while maintain-
ing factual consistency (AlignScore: +0.2%). This
high retention rate suggests that LLM-generated
guidelines align well with human-authored ones
and that LLMs can serve as effective and reliable
proxies for complex clinical annotation tasks like
generating authoring guidelines, underscoring the
promise of adopting LLMs for expert annotations
in clinical practice. This outcome strongly supports
the viability of using LLMs as reliable proxies for
human experts in generating such guidelines.

Evaluating the topic segmentations (cf. Ap-
pendix E) reveals that 91.9% of LLM-generated
headings (̊hji ) correctly match their corresponding
text blocks (tji ). Similarly, 88.4% of the gener-
ated questions (q̊ji ) are appropriately answered by
the text block and effectively inquire it’s content.
These figures demonstrate that the LLM-generated
segmentations are clinically meaningful and reli-
able. The selected text range (tji ) is deemed accu-
rate in 75.2% of cases, meaning it accurately aligns
with the optimal segment boundaries for the sug-
gested heading h̊ji and question q̊ji . These results
suggest that expert-level accuracy may already be
within reach with stronger models or a secondary
validation pass to refine the segmentation, in partic-
ular segment boundaries. These findings further in-
dicate that LLMs can reliably perform fine-grained
clinical text annotation tasks typically requiring
human expertise.

Conclusion: Our findings reinforce the idea that
LLMs can effectively act as human proxies for
complex clinical annotation tasks such as author-
ing guideline generation and topic segmentation,
bringing automation closer to expert-level perfor-
mance and enabling scalable dataset augmentation.

5 Results and Discussion

In this section, we analyze the impact of our
data augmentation strategies on general instruction-
tuned LLMs, evaluate the efficiency of our state-
of-the-art training approach, and assess how con-
ditioning text generation for user control enhances
clinical text generation. We further present human
evaluation results, validating the effectiveness of
our approach.

0-shot 3-shot RI
Llama 3.3 70B Instruct 0.175 0.210 +20%

w/STYLE 0.184 0.215 +17%
w/INSTR 0.210 0.223 +6%
w/TOPICS 0.226 0.227 +0%
w/STYLE w/TOPICS 0.225 0.225 +0%
w/INSTR w/TOPICS 0.230 0.230 +0%

Table 1: Overall evaluation results of Llama 3.3 70B In-
struct with zero-shot and three-shot prompting. Relative
Improvements (RI) are rounded to integers. See Tab. 7
for detailed results.

5.1 Impact of Data Augmentations on General
Instruction-Tuned LLMs

Llama 3.3 70B Instruct performs significantly
worse than previous submissions on the Dis-
chargeMe! leaderboard (cf. Tab. 1 vs. Tab. 2).
Nonetheless, augmenting the input with author-
ing guidelines and topic guidance yields a 31%
relative improvement in the best configuration
(c = topics, g = instr) over using no data aug-
mentations. Notably, zero-shot Llama 3.3 70B In-
struct w/INSTR performs on par with the three-shot
setting without any dataset augmentations. This
suggest that in-context learning effects can be repli-
cated using explicit authoring guidelines with a lot
less context tokens (cf. Tab. 8). Further supporting
this, three-shot prompting provides no additional
gains over zero-shot prompting when topic guid-
ance is provided (w/TOPICS).

Conclusion: Overall, zero-shot Llama 3.3 70B
Instruct achieves only about half of the perfor-
mance of our models based on Llama 3 8B Instruct
(cf. Tab.2), underscoring the importance of aug-
menting datasets for user control during training.

5.2 State-of-the-Art Performance with
Efficient Training

Our instruction-tuned baseline model (BASE),
trained without dataset augmentations, achieves
a new state-of-the-art on the BioNLP ACL’24
DischargeMe! leaderboard, outperforming prior
submissions across all metrics except METEOR
(Tab. 2). BASE achieves a score of 0.363, sur-
passing WisPerMed (0.332), HarmonAiLab@Yale
(0.300), and aehrc (0.297) — a relative improve-
ment of 9% over the previous best model. Com-
pared to them, BASE is more efficient:

Smaller Trainable Parameter Size. BASE has
only 169M trainable parameters, which is 5-6×
fewer than WisPerMed (1046M), Yale (812M), and
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Overall BLEU R-1 R-2 R-L BS METEOR AS MEDCON
WisPerMed 0.332 0.124 0.453 0.201 0.308 0.438 0.403 0.315 0.411
HarmonAiLab@Yale 0.300 0.106 0.423 0.180 0.284 0.412 0.381 0.265 0.353
aehrc 0.297 0.097 0.414 0.192 0.284 0.383 0.398 0.274 0.332
BASE 0.363 0.168 0.483 0.255 0.345 0.472 0.362 0.359 0.460

w/STYLE 0.399 0.202 0.526 0.289 0.382 0.508 0.404 0.383 0.495
w/INSTR 0.420 0.224 0.547 0.310 0.404 0.527 0.428 0.403 0.515
w/TOPICS 0.403 0.195 0.524 0.287 0.384 0.503 0.414 0.402 0.517
w/STYLE w/TOPICS 0.436 0.226 0.562 0.319 0.421 0.539 0.444 0.429 0.548
w/INSTR w/TOPICS 0.445 0.238 0.571 0.327 0.429 0.548 0.463 0.426 0.556

Table 2: Evaluation results of the Discharge Me! leaderboard leaders WisPerMed (Damm et al., 2024), Harmon-
AiLab@Yale (Socrates et al., 2024) and aehrc (Liu et al., 2024), and our instruction-tuned models on the test set
(phase 2). Bold indicates best scores in each block. In addition, underscoring indicates the overall best score.
Figure 4 shows relative improvements. Table 4 breaks down performance by task. Abbreviations: BERTScore (BS),
AlignScore (AS).

aehrc (894M).
Simpler Methodology. We instruction-tune

Llama 3 8B Instruct, while WisPerMed employs an
ensemble of instruction-tuned Llama 3 8B & 70B
Instruct, OpenBioLLM 70B, Mistral 7B Instruct
(v0.2), and Phi 3 Mini 128K Instruct. Yale uses
an extended training dataset, while aehrc optimizes
the clinical input context for downstream tasks. In
addition, other submissions use nucleus sampling
or 4-beam search, while we decode greedly.

Lower Computational Cost. Considering all in-
dividual training setups, our training requires only
56% of Yale’s compute budget, 23% of aehrc’s,
and 32% of WisPerMed’s.

Notably, WisPerMed and aehrc also instruction-
tuned Llama 3 8B Instruct using similar ap-
proaches, yet reported significantly lower scores
(0.253 and 0.235, respectively). Our model
achieves relative improvements of 43% over Wis-
PerMed’s and 54% over aehrc’s fine-tuning at-
tempts. A detailed comparative analysis (Ap-
pendix C) suggests that our superior performance
stems from more efficient training, which includes
higher learning rates, rank-stabilized LoRA and
SVD-based PISSA.

Conclusion: Our findings demonstrate that more
efficient training strategies can yield substantial
improvements, even with fewer parameters and
lower computational costs, achieving a new state-
of-the-art for clinical text generation.

5.3 Conditioning Text Generation for User
Control

Authoring Guidelines. Augmenting datasets
with authoring guidelines significantly improves
model performance (cf. Table 2, Fig. 4). BASE

w/STYLE (0.399, +10%) and BASE w/INSTR

(0.420, +16%) outperform BASE (0.363), demon-
strating the potential of augmenting datasets with
explicit guidelines.

Style guidelines enhance lexical similarity
(BLEU, ROUGE, METEOR) with 9–21% rela-
tive improvements, compensating for BASE’s ME-
TEOR deficit. Surprisingly, even semantic and
fact-based metrics (BERTScore, AlignScore, MED-
CON) improve by 7–8%, suggesting either (i) these
metrics are sensitive to stylistic variances or (ii)
automatically generated style guidelines contain
spurious features that reinforce factual and clini-
cal alignment — an area requiring further research.
The improvements in AlignScore are particularly
noteworthy as they indicate enhanced factual con-
sistency and a reduction in hallucinations.

Writing instructions consistently outperform
style guidelines and match BASE w/TOPICS

on fact-based metrics (AlignScore, MEDCON:
+12%), despite the latter being conditioned for and
provided with topic-level guidance.

Topic Guidance. Providing LLMs conditioned
for topic-level control with topic guidance yields
overall improvements (+11%) similar to style
guidelines, but with fact-based metrics (Align-
Score, MEDCON: +12%) contributing more. Al-
though BASE w/STYLE w/TOPICS (+20%) per-
forms slightly worse, integrating both authoring
guidelines and topic guidance yields further per-
formance gains across all metrics, showing that
these strategies are complementary, and evidencing
the need for both style- and content-aware condi-
tioning. Notably, our best model BASE w/INSTR

w/TOPICS (+22%) excels in DI generation, achiev-
ing high ROUGE-1 (0.612), BERTScore (0.587),
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Overall BLEU R-1 R-2 R-L BS METEOR AS MEDCON
BASE 0.119 0.008 0.201 0.040 0.126 0.174 0.132 0.107 0.161

w/STYLE 0.186 0.026 0.275 0.087 0.169 0.256 0.215 0.253 0.208
w/INSTR 0.240 0.035 0.330 0.112 0.200 0.340 0.263 0.353 0.291
w/TOPICS 0.194 0.024 0.263 0.096 0.172 0.182 0.178 0.378 0.260
w/STYLE w/TOPICS 0.265 0.046 0.347 0.142 0.215 0.378 0.300 0.344 0.347
w/INSTR w/TOPICS 0.279 0.049 0.365 0.146 0.227 0.398 0.324 0.359 0.362

Table 3: Evaluation of our instruction-tuned models on PubMed. Bold indicates best scores.

and MEDCON (0.594) scores. (cf. Table 4).
Conclusion: Overall, we observe that stylis-

tic and content-related guidance is complementary,
and that all metrics, even fact-based ones, appear
sensitive to stylistic deviations to different degrees.
Furthermore, clear instructions, expressing the pur-
pose of stylistic features and the document clearly
outperform simple stylistic descriptions.

5.4 Cross-Domain Generalization on Unseen
Tasks

To assess the broader applicability of our dataset
augmentation strategies, we evaluated our models,
originally trained on the DischargeMe! dataset,
on an unseen out-of-distribution biomedical task:
PubMed abstract writing (Cohan et al., 2018). For
this evaluation, we generated authoring guidelines
and topic headings for 5000 articles sampled from
the PubMed dataset’s validation and test split us-
ing the same automated procedure employed for
the DischargeMe! dataset. The PubMed dataset
was used exclusively for evaluation, and both the
generated guidelines and topic headings are out-
of-distribution with respect to the original training
data of our models.

The results (Table 3) demonstrate that our aug-
mentation strategies substantially improve model
generalization to unseen tasks. The best performing
model (BASE w/INSTR w/TOPICS) achieved an av-
erage score of 0.279 on the PubMed dataset. This
represents a relative improvement of approximately
+134% over the BASE model (0.119) trained with-
out any augmentations.

Conclusion: These findings indicate that con-
ditioning models on such dataset augmentations
can help models generalize more effectively across
different tasks and data distributions, even those
not encountered during training.

6 Conclusion and Future Work

In this work, we explored strategies for condition-
ing LLMs to give clinicians control over both con-

tent and style in clinical text generation. Using
the BioNLP ACL’24 Shared Task Discharge Me!
as a case study, we demonstrated that augment-
ing datasets with authoring guidelines and topic
segmentation significantly improves accuracy, rele-
vance, and factual consistency. Notably, our find-
ings raise concerns about metrics exhibiting signif-
icant sensitivity to stylistic deviations, even when
fact-based, warranting further research.

Our preliminary human evaluation suggests that
LLMs can serve as proxies for expert annotations,
enabling dataset augmentation at scale. By in-
troducing a separation of content and style, we
extended the traditional clinical text generation
paradigm to facilitate the integration of clinical
communication and authoring guidelines. Since
such guidelines are crafted once per task, they offer
a low-cost enhancement to clinical text generation
without adding cognitive burden.

We also establish a new state-of-the-art for con-
ventional clinical text generation on Discharge Me!,
surpassing prior submissions while using fewer
parameters and significantly lower computational
costs. To support further research and real-world
adoption, we disclose our methods, allowing hospi-
tals and clinical institutions to adapt these augmen-
tations to their own data and workflows.

While preliminary human evaluation validates
the effectiveness of our approach, a systematic
study is needed to identify which specific com-
ponents of authoring guidelines contribute most
to downstream performance. Future work should
also focus on scaling human evaluation, assess-
ing generalization across diverse clinical datasets,
and refining LLM conditioning techniques to im-
prove adaptability to real-world medical documen-
tation workflows. Additionally, user studies should
evaluate interactivity and its impact on clinician
oversight, including detailed interactive evaluations
where clinicians actively guide the generation pro-
cess.
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7 Limitations

While our approach demonstrates strong perfor-
mance in clinical text generation, several limita-
tions remain. Our findings rely primarily on auto-
mated metrics, with only preliminary human evalu-
ation, making a larger-scale, clinician-in-the-loop
assessment essential to validate practical usabil-
ity and real-world adoption. Additionally, this
study does not yet evaluate how interactive clin-
ician involvement impacts cognitive workload and
oversight burden. Future work should investigate
whether LLM-conditioned generation can reduce
verification effort and how user feedback can fur-
ther refine dataset augmentation to better align with
clinical workflows. Lastly, as with all large-scale
pre-trained models, our approach inherits biases
from its training data, potentially affecting fair-
ness and reliability in clinical decision-making. No
work was done to mitigate such bias and assess
the clinical implications of these biases to ensure
responsible AI deployment in healthcare, and the
effects remain unknown.
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AdamW 8-bit optimizer (Dettmers et al., 2022)
(β = (0.9, 0.999), ϵ = 1e−8) and a batch size of
128 on completions only. We use gradient clipping
with a maximum gradient norm of 1 and weight
decay is set to 1e−4. Furthermore, our models are
fine-tuned with instruction-tuning on completions
only with rank-stabilized LoRA (Kalajdzievski,
2023) targeting all linear layers with αLoRA = 64,
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Figure 4: Relative improvement of augmented models against the traditionally instruction-tuned BASE model (cf.
Tab. 2).

Overall BLEU R-1 R-2 R-L BS Meteor AS MEDCON

B
H

C

BASE 0.333 0.142 0.465 0.228 0.313 0.460 0.335 0.290 0.435
w/STYLE 0.350 0.158 0.488 0.242 0.330 0.477 0.356 0.297 0.452
w/INSTR 0.364 0.171 0.505 0.255 0.343 0.489 0.376 0.304 0.470
w/TOPICS 0.356 0.149 0.487 0.239 0.333 0.471 0.369 0.317 0.482
w/STYLE w/TOPICS 0.385 0.178 0.524 0.268 0.367 0.504 0.396 0.332 0.513
w/INSTR w/TOPICS 0.390 0.183 0.530 0.271 0.370 0.509 0.410 0.327 0.517

D
I

BASE 0.393 0.193 0.502 0.283 0.377 0.484 0.390 0.428 0.484
w/STYLE 0.448 0.247 0.565 0.337 0.434 0.539 0.452 0.469 0.538
w/INSTR 0.476 0.277 0.589 0.366 0.464 0.565 0.480 0.503 0.560
w/TOPICS 0.451 0.240 0.561 0.336 0.436 0.535 0.459 0.487 0.552
w/STYLE w/TOPICS 0.487 0.273 0.600 0.370 0.474 0.574 0.491 0.526 0.584
w/INSTR w/TOPICS 0.500 0.292 0.612 0.383 0.488 0.587 0.517 0.525 0.594

Table 4: The average scores per metric of our evaluation (Sec. 5.3), broken down by the two tasks: discharge
instructions (DI) generation and brief hospital course (BHC) generation.

Overall BLEU R-1 R-2 R-L BS METEOR AS MEDCON
BASE 0.369 0.175 0.488 0.261 0.355 0.480 0.369 0.362 0.460

w/INSTR (A) 0.423 0.228 0.551 0.314 0.411 0.531 0.435 0.403 0.514
w/INSTR (H) 0.391 0.183 0.511 0.278 0.379 0.499 0.385 0.404 0.491

Table 5: The results of BASE and BASE w/INSTR evaluated on 300 discharge summaries randomly sampled from
the Discharge Me! test phase 2 split, once with augmented authoring guidelines (A) and once with human-written
authoring guidelines (H).

dropoutLoRA = 0.1, rLoRA = 64, and fast SVD-
based PISSA (Meng et al., 2024) with 32 iterations
to initialize adapter weights.

Inspired by Hu et al. (2024), who proposed to
replace linear decay with a cosine cyclic decay to
increase the duration of higher learning rates, we
adopt a learning rate scheduler with a stable phase
of 1,000 steps with learning rate α1 = 1e−4, a
decay phase of 1,800 steps corresponding to 0.25
cosine cycles to reduce the learning rate to α2 =
5e−6, and another smoothing decay phase of 200
steps corresponding to the remaining 0.25 cosine
cycles to reduce the learning rate to α3 = 1e−6.

This increases the duration of high learning rates
even further.

B Automated Evaluation

For evaluation, we use the code provided by the
Discharge Me! challenge, which employs a com-
prehensive set of metrics to assess lexical and se-
mantic similarity, factual consistency, as well as
the clinical relevance and correctness.

The metrics include: BLEU-4 (Papineni et al.,
2002), which measures the precision of four-word
sequences (4-grams) in the generated text against
reference texts, capturing the overlap of these se-
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quences. ROUGE-1, ROUGE-2, ROUGE-L (Lin,
2004), which evaluate the recall of unigrams, bi-
grams, and the longest common subsequence be-
tween the generated and reference texts, indicating
the similarity of content. BERTScore (Zhang et al.,
2020), which uses contextual embeddings from
BERT to evaluate the semantic similarity between
the generated and reference texts. Meteor (Baner-
jee and Lavie, 2005), which considers synonyms
and stemming to compare the generated text with
reference texts, providing a more flexible measure
of similarity. AlignScore (Zha et al., 2023), which
aligns generated and reference texts to measure the
quality of the alignment, reflecting the coherence
and consistency of the generation. MEDCON (wai
Yim et al., 2023), which is specifically designed
for medical contexts, and evaluates the clinical rel-
evance and correctness of the generated text.

To simulate user control for automated evalu-
ation on the DischargeMe! dataset, we employ
Llama 3.1 70B Instruct again to automatically gen-
erate authoring guidelines (Sec. 3.3) and provide
topic-level control. The LLM serves as proxy for
the original authors based on the assumption that
their generated output approximates the input and
feedback the authors would have provided if they
had originally used our methods to write the target
texts ti.

While authoring guidelines can be seamlessly
incorporated at inference time for w/STYLE and
w/INSTR, simulating granular, interactive topic-
level control for w/TOPICS, which iteratively re-
fines model output, is more complex. Although in-
creased user interaction generally improves output
quality, it also amplifies user contribution, making
results less indicative of the model’s standalone per-
formance. To minimize this, we provide topic guid-
ance indirectly and non-interactively, effectively
establishing a lower-bound baseline. This simpli-
fied prompting strategy strengthens our findings by
isolating the model’s raw capabilities while limit-
ing user influence. As such, it offers a conservative
estimate of system performance in real-world in-
teractive settings, capturing the benefit of guided
input while remaining independent of user skill or
intervention.

Specifically, we extend the user prompt
useri(c, g) with an instruction to cover a prede-
fined list of topics (cf. Fig. 5). This list is derived
from topic segmentations (Sec. 3.2) for each target
text ti by extracting and concatenating the headings
h̊1i , ..., h̊ni into an unnumbered bullet list.

User Message
{{ discharge summary }}
{{ radiology report 1}}

...
{{ radiology report n}}
{{brief hospital course }}
{{ authoring guidelines }}
{{ instructions }}
{{ topics }}

Figure 5: The user prompt used for evaluation.

C Comparative Analysis with Existing
Approaches

We present a detailed comparison of our instruction-
tuned Llama 3 8B Instruct BASE model against the
three top-performing systems on the DischargeMe!
leaderboard. We also include a detailed compari-
son of other instruction-tuned Llama 3 8B Instruct
models evaluated during experimentation by leader-
board participants but ultimately dropped due to
suboptimal performance. Table 6 summarizes the
primary distinctions across these methods.

WisPerMed (Damm et al., 2024) achieved the
highest leaderboard score of 0.332, surpassing
other submissions by a notable margin. This suc-
cess was attributed to its Dynamic Expert Selection
(DES) strategy, which combines predictions from
five instruction-tuned models: Llama 3 8B and 70B
Instruct, OpenBioLLM 70B, Mistral 7B Instruct
(v0.2), and Phi 3 Mini 128K Instruct. Notably,
the standalone Llama 3 8B Instruct model within
this ensemble achieved the lowest score (0.253),
marginally underperforming the Phi 3 Mini model.

All models in WisPerMed’s ensemble were fine-
tuned using the entire discharge summary as input
and LoRA with a rank of rLoRA = 16, applied to
all linear layers. In addition, some models were
fine-tuned on Asclepius (Kweon et al., 2024). For
inference, they employed optimized nucleus sam-
pling to enhance output quality. This ensemble
approach enabled WisPerMed to leverage comple-
mentary model strengths, albeit at the cost of in-
creased complexity and resource demands.

aehrc (Liu et al., 2024), similarly, fine-tuned the
Llama 3 8B Instruct model using LoRA (rLoRA =
64), but introduced notable variations in prepro-
cessing and decoding strategies. Discharge sum-
maries were partitioned into: (1) the text preced-
ing the Brief Hospital Course (BHC) section for
BHC generation, and (2) the text between the BHC
and Discharge Instructions (DI) sections, joined
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BASE (ours) WisPerMed aehrc
Score 0.363 0.253 0.235
Clinical Context ds+ rr ds optimized
Models trained 1 2 2
Decoding Strategy greedy optimized nucleus sampling 4-beam search
Optimizer AdamW 8-Bit AdamW 8-Bit Adam
Epochs 2.8 3 5
Batch Size 128 16 16
Learning Rate α 1e−4 2e−4 2e−4

Weight Decay 1e−4 1e−2 N/A
Learning Rate Scheduler optimized WSD linear linear
Warmup Steps 0 5 3%
LoRA Type rank-stabilized LoRA LoRA QLoRA
Layers all linear all linear all linear
Total Trainable Parameters 168M 84M 336M
Weight Initialization fast SVD-PISSA (n = 32) N/A QLoRA
rLoRA 64 16 64
αLoRA 64 16 16
dropoutLoRA 0.1 0 N/A

Table 6: Detailed comparison of training configurations, decoding strategies, and scores for instruction-tuned
Llama 3 8B Instruct models, highlighting the key differences among our, WisPerMed’s and aehrc’s approach. ds =
Discharge Summary. rr = Radiology Reports. N/A = Not Available.

with the BHC section, for DI generation. This
design was motivated by their observation that
longer input contexts negatively impacted model
performance. They also reported that providing
the entire discharge summary, including all radi-
ology reports (as used in our setting), yielded the
lowest results. For decoding, aehrc employed a
4-beam search strategy. Their leaderboard submis-
sion leveraged PRIMERA (Xiao et al., 2022), a
specialized instruction-tuned summarization model
with 447M parameters.

HarmonAiLab@Yale (Socrates et al., 2024)
has not experimented with Llama 3 8B Instruct, but
GPT-3 and GPT-4 instead. They ultimately submit-
ted a fine-tuned clinical model (BioBART-Large,
406M parameters) trained on an extended dataset
that reportedly included samples from the valida-
tion and phase 1 test splits for a total of 83.475
(+21.4%) training samples for the BHC task. Har-
monAiLab@Yale also employed a 4-beam search
strategy for generation, but blocking repeats with
an n-gram size of 3.

All teams (WisPerMed, aehrc, and Harmon-
AiLab@Yale) trained separate models for BHC and
DI tasks, effectively doubling their total trainable
parameter size.

In contrast, we adopt a unified strategy, training
a single Llama 3 8B Instruct model to jointly han-

dle both BHC and DI tasks. The input includes the
entire discharge summary and all radiology reports.
Similar to aehrc, we applied LoRA (rLoRA = 64)
to all linear layers during fine-tuning, resulting in
a total trainable parameter count of 168M – dou-
ble that of WisPerMed but only half that of aehrc
when comparing the fine-tuned Llama 3 8B Instruct
models (rather than final submissions). For decod-
ing, we employed a greedy decoding strategy. See
Table 6 for a more detailed comparison.

Despite the less favorable input context and
decoding strategy, our model achieved a leader-
board score of 0.363 — a 43% improvement
over WisPerMed’s attempts, and a 54% im-
provement over aehrc’s attempts with instruction-
tuned Llama 3 8B Instruct models (cf. Tab. 6).
Moreover, our method (168M) has significantly
fewer total trainable parameters than the fi-
nal submissions of WisPerMed (1.046B), Har-
monAiLab@Yale’s (812M) and aehrc’s (894M),
requires less training (2.8 epochs) than Wis-
PerMed (3 epochs) and aehrc (5 epochs), and
no additional data (WisPerMed), nor an extended
dataset (HarmonAiLab@Yale). Considering all
individual training setups, our training also re-
quires only 56% of Yale’s compute budget, 23% of
aehrc’s, and 32% of WisPerMed’s

The results underscore the efficiency and ef-
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fectiveness of our approach, demonstrating that
instruction-tuning a single general-purpose model
can achieve state-of-the-art performance without
the complexity of ensembles or reliance on domain-
specific models and architectures.

D Topic Segmentation Post-Processing

This step is applied only when the segmentation
introduces minor alterations to the original text to
avoid introducing inconsistencies between head-
ings, questions, and text blocks through such re-
placements. To achieve this, we use diff methods
to identify word-level differences — defined as
whitespace-delimited character sequences — be-
tween the generated text t̊i = (̊t1i , . . . , t̊

n
i ) and orig-

inal text ti. Segmentations containing consecu-
tive differences are then filtered out, ensuring that
segmentations involving only minor differences,
such as the spelling or formatting, are considering
for this post-processing step. This leaves us with
93.61% of the DI, and 81.15% of the BHC segmen-
tations, whose blocks tki are then mapped back to
the original text ti to retrieve the original character
sequences corresponding to each block.

E Human Evaluation of Topic
Segmentations

We conducted a human evaluation of the topic
segmentations (Sec. 3.2) generated using Llama
3.1 70B Instruct. Specifically, 500 DI and BHC
sections were randomly sampled from the post-
processed subset of the training split of the Dis-
chargeMe! dataset, resulting in a total of 1000
target texts ti. For each ti, one segment segji =

(hji , q
j
i , t

j
i ) was randomly selection for assessment.

A human expert then evaluated the selected seg-
ment through a two-step process, details in Sec-
tion E.

Step 1. The expert was presented with the target
text ti, where the text range from the start of the se-
lected text block tji to the end of ti was highlighted.
The expert was instructed to annotate the next topic
beginning within the highlighted range by identify-
ing the heading, question, and corresponding text
block. This step ensured that the expert interacted
thoroughly with the target text and independently
assessed and annotated the next segment without
being influenced by the LLM-generated output.

Step 2. The expert was then provided with the
LLM-generated annotation s̊egji , which included
the heading h̊ji , question q̊ji , and text block tji . The

expert evaluated the appropriateness of the gener-
ated heading, the quality of the question, and the
accuracy of the text block boundaries. While the
expert could refer to their own annotations for com-
parison, they were instructed to assess the LLM-
generated segment for correctness without impos-
ing personal preferences, given the inherent sub-
jectivity of the topic segmentation task and the
existence of multiple competing solutions.

The heading h̊ji was considered appropriate only
if it effectively encapsulated the content and focus
of the corresponding text block tji . The question
q̊ji was considered high quality only if it was di-
rectly answerable by the selected text block tji and
accurately reflected and inquired the central issue
or information addressed within that range.

For evaluating the text range, the expert was
tasked with envisioning the optimal segment bound-
aries, aligning with both the heading h̊ji and the
Question Under Discussion (QUD) q̊ji , within the
entire target text ti. The text range was considered
accurate only when the start and end points coin-
cided with the hypothesized segment boundaries.

Results The evaluation revealed that the LLM-
generated headings (̊hji ) aligned with the corre-
sponding text blocks (tji ) in the majority of cases
(91.9%). Similarly, the generated questions (q̊ji )
were well-formulated in 88.4% of instances, effec-
tively inquiring about the content of the text block
and being answerable by it. In 87.5% cases, both
the heading and question was deemed appropri-
ate. The accuracy of the selected text range (tji )
was confirmed in 75.2% of all cases. Notably, in
instances where both the headings and questions
were appropriate, the accuracy of the text ranges
increased to 80.91%.

F Dataset & Annotation Statistics,
Prompts and Examples

In this section, we present examples of data aug-
mentations, showcasing annotation samples along-
side corresponding LLM prompts. Table 8 summa-
rizes token length statistics for the DischargeMe!
training split. We find that style guidelines and
writing instructions have similar average lengths
across tasks (DI vs. BHC), but writing instructions
are nearly 1.5× longer than style guidelines. Ad-
ditionally, BHC sections are, on average, twice as
long as DI sections, and BHC topic segmentations
consistently contain slightly more segments, longer
headings, and extended text blocks, as detailed in
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Overall BLEU R-1 R-2 R-L BS Meteor AS MEDCON
Llama 3.3 70B Instruct (0-shot) 0.175 0.012 0.286 0.069 0.142 0.209 0.205 0.242 0.239

w/STYLE 0.184 0.014 0.300 0.070 0.148 0.231 0.220 0.243 0.246
w/INSTR 0.210 0.021 0.333 0.087 0.170 0.276 0.246 0.269 0.279
w/TOPICS 0.226 0.027 0.352 0.095 0.183 0.292 0.283 0.260 0.320
w/STYLE w/TOPICS 0.225 0.027 0.348 0.094 0.182 0.291 0.281 0.259 0.319
w/INSTR w/TOPICS 0.230 0.027 0.352 0.097 0.185 0.296 0.287 0.270 0.322

Llama 3.3 70B Instruct (3-shot) 0.210 0.025 0.336 0.094 0.177 0.281 0.232 0.246 0.285
w/STYLE 0.215 0.027 0.342 0.097 0.183 0.296 0.235 0.254 0.289
w/INSTR 0.223 0.029 0.345 0.104 0.193 0.317 0.237 0.259 0.299
w/TOPICS 0.227 0.027 0.352 0.095 0.183 0.292 0.283 0.261 0.321
w/STYLE w/TOPICS 0.225 0.027 0.348 0.094 0.182 0.291 0.281 0.259 0.319
w/INSTR w/TOPICS 0.230 0.028 0.352 0.097 0.185 0.296 0.287 0.271 0.322

Table 7: The average scores per metrics for our evaluations, broken down by the two tasks: discharge instructions
(DI) generation and brief hospital course (BHC) generation.

DS + RRs DI BHC
#tokens 3883.76 (± 2262.69) 278.68 (± 220.91) 525.05 (± 386.98)
#tokens(SG) — 330.62 (± 34.51) 325.54 (± 29.73)
#tokens(WI) — 470.58 (± 42.21) 460.46 (± 37.19)

Table 8: Averages (and standard deviations) of token counts for various quantities of the augmented DischargeMe!
training split. Abbreviations: SG = Style Guidelines. WI = Writing Instructions. DS = Discharge Summary. RRs =
Radiology Reports. DI = Discharge Instructions. BHC = Brief Hospital Course.

DI BHC
#segments 6.25 (± 2.09) 8.25 ( ± 4.03)
#tokens(̊hki ) 3.82 (± 2.00) 4.65 (± 2.95)
#tokens(q̊ki ) 9.60 (± 2.64) 11.46 (± 2.97)
#tokens(tki ) 44.57 (± 46.16 ) 62.51 (± 61.43)

Table 9: Averages (and standard deviations) of various
quantities of topic segmentations for DI and BHC sec-
tions of the DischargeMe! training split. The statistics
for the number of segments #segments and the token
counts #tokens(·) of headings h̊k

i , questions q̊ki and
text blocks tki are consistently larger for BHC sections.

Table 9.
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Synthetic Clinical Document
The 75-year-old male patient with multi-organ sarcoidosis, diabetes mellitus, and chronic renal failure
was admitted due to fatigue, dyspnea, lower limb edema, and pain. He received corticosteroid therapy
for two years but experienced a bloodstream infection caused by Pseudomonas aeruginosa, which was
successfully treated with levofloxacin. The patient’s dosage of methylprednisolone was increased, leading
to him being transferred to ICU and intubated due to worsening functional status. He was diagnosed
with Candida albicans on Day +3 and started antifungal therapy with fluconazole (400 mg daily) and
then later found to have disseminated cryptococcal disease on Day +5, leading to antifungal therapy with
liposomal amphotericin B (80 mg daily). Unfortunately, the patient died from septic shock on Day +10.
The laboratory findings indicated lymphocytopenia of 900 cells/µL, creatinine of 1.73 mg/dL, C-reactive
protein of 83 mg/L, procalcitonin of 2.5 ng/L, increased C-reactive protein to 160 mg/L, increased
procalcitonin to 14 ng/mL, and serum positive titers for CrAg (≥ 1 : 4096). The diagnostic findings
included pulmonary infiltration with lymphadenopathy, multiple nodules within the lung parenchyma, and
disseminated cryptococcal disease. The treatment consisted of broad-spectrum antibiotic therapy with
meropenem and teicoplanin, antifungal therapy with fluconazole (Day +3), and antifungal therapy with
liposomal amphotericin B (Day +6). There is no follow-up information available.
Topic Segmentation Prompt
You are tasked with fine-grained topic segmentation. Given this formatted text, segment the paragraphs
into as many short blocks as sensible, each with a distinct topic. Give each block a meaningful, short topic
heading, summarizing the most important information from the beginning of the block for the intended
audience, and a subtitle, which reformulates the topic as a question that is answered by the block.
Guidelines:
- Segment everything from the very first to the very last word/character/symbol.
- Terminate spans and insert new headings, whenever the upcoming text does not match the current running
topic anymore, e.g. whenever the medical, clinical or healthcare focus changes.
- When formulating questions, do not use pronouns as the subjects, and do not use possessive pronouns.
- Do not alter the text. Copy typos, errors, mistakes and formatting from the original text.
- Include headings, symbols, separators, vertical/horizontal spacing, empty lines and other formattings
with their associated blocks.
Answer format: ’<split-text>\n<topic>...</topic>\n<question>...</question>\n<span>...</span>\n\n
<topic>...</topic>\n<question>...</question>\n<span>...</span>\n\n...</split-text>’
Segmented Text
<topic>Initial Patient Information</topic>
<question>What is the patient’s initial condition and medical history?</question>
<span>The 75-year-old male patient with [...] fatigue, dyspnea, lower limb edema, and pain.</span>
<topic>Initial Treatment and Complications</topic>
<question>What treatment did the patient receive initially, and what complications arose?</question>
<span>He received corticosteroid therapy for [...] intubated due to worsening functional status.</span>
<topic>Antifungal Therapy and Diagnosis</topic>
<question>What antifungal therapy was administered, and what diagnoses were made?</question>
<span>He was diagnosed with Candida albicans [...] liposomal amphotericin B (80 mg daily).</span>
<topic>Outcome and Laboratory Findings</topic>
<question>What was the patient’s outcome, and what laboratory findings were reported?</question>
<span>Unfortunately, the patient died from septic shock [...] positive titers for CrAg (≥ 1 : 4096).</span>
<topic>Diagnostic Findings</topic>
<question>What diagnostic findings were reported?</question>
<span>The diagnostic findings included [...] parenchyma, and disseminated cryptococcal disease.</span>
<topic>Treatment Summary</topic>
<question>What treatment did the patient receive?</question>
<span>The treatment consisted of broad-spectrum [...] liposomal amphotericin B (Day +6).</span>
<topic>Follow-up Information</topic>
<question>Is there any follow-up information available?</question>
<span>There is no follow-up information available.</span>

Table 10: Topic segmentation of our framework of an arbitrary clinical document retrieved from the synthetic
Asclepius dataset (Kweon et al., 2024) for demonstration purposes, as the DischargeMe! dataset cannot be used
directly due to privacy restrictions and access limitations. The control sequences to initiate and stop generation of
specific elements are indicated in bold.
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Prompt for Style Guideline Generation
<text>{{target text}}</text>
Describe the text’s tone, writing style, document format, layout, composition, textual structure, use
of language, use of abbreviations, use of medical jargon, the intendened audience and anything else
noteworthy. Write full sentences and paragraphs.

Guidelines:
- Do not use the terms from the text.
- Do not quote the text.
- Do not give examples from the text.
- Do not reveal details about the patient.
Style Guideline
The original text’s tone is formal, objective, and neutral, indicating a professional and clinical approach
to documenting a patient’s medical history and treatment. The writing style is concise, direct, and
informative, suggesting a focus on conveying complex medical information in a clear and efficient manner.
The document format appears to be a medical case report or a patient summary, likely used for educational,
research, or clinical purposes. The layout is structured and organized, with a logical flow of information
that facilitates easy comprehension. The composition is dense and detailed, indicating a high level of
technical expertise and a focus on accuracy.
The textual structure is chronological, with events and treatments presented in a linear sequence. This
structure allows the reader to follow the patient’s progression and the corresponding medical interventions.
The use of language is technical and specialized, with a high degree of medical terminology and jargon.
This suggests that the intended audience is composed of medical professionals or individuals with a strong
background in healthcare.
The use of abbreviations is frequent, indicating a familiarity with medical shorthand and a desire to convey
complex information concisely. The text assumes a high level of prior knowledge in medicine, with
minimal explanation of technical terms or concepts. This suggests that the intended audience is composed
of specialists or experts in the field.
The text’s use of medical jargon and technical terminology creates a sense of authority and expertise, but
may also limit its accessibility to non-medical readers. The language is precise and formal, with a focus
on conveying complex information in a clear and concise manner.
Overall, the text appears to be written for an audience of medical professionals, researchers, or students
in the healthcare field. The tone, writing style, and use of language all suggest a focus on conveying
complex medical information in a clear and efficient manner, with a high degree of technical expertise
and accuracy.

Table 11: The Style Guideline generated for the synthetic clinical document from Tab. 10, constituting of a list of
descriptions of stylistic features.
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Prompt for Writing Instructions Generation
<text>{{target text}}</text>
Please provide detailed and comprehensive writing instructions for a non-specialist to exactly reproduce the text
above. The instructions should include details on:
- the purpose and intent of the text, including how it is achieved
- the intended audience, including how the audience’s needs are met
- the tone of text, including how to achieve it
- the text structure and outline
- the text disposition
- the text formatting (not typographical), such as (but not only) the use of paragraphs, subheadings, introductions,
closings, bullet points, list, including any apparent rules and patterns
- the use of language, including the use of abbreviations and medical jargon (if it is used), with respect to the
audience
- and any other noteworty features.

Guidelines:
- Use an instructive tone for writing.
- Consider that the non-specialist will not see the original text.
- Do not use the terms from the text.
- Do not quote the text.
- Do not give examples from the text.
- Do not reveal details about the patient.

Answer format: ’## Writing Instructions\n\n...’
Writing Instructions
## Writing Instructions
### Purpose and Intent
The purpose of this text is to document a patient’s medical history, diagnosis, treatment, and outcome in a clear and
concise manner. The intent is to provide a comprehensive record of the patient’s case, which can be used for medical
reference, education, or research purposes. To achieve this, focus on presenting the information in a logical and
chronological order, using specific details and medical terminology.
### Intended Audience
The intended audience appears to be medical professionals, researchers, or students who require in-depth information
about the patient’s case. To meet the audience’s needs, use technical language and assume a certain level of medical
knowledge. However, avoid using overly complex terminology or jargon that might be unfamiliar to non-specialists
in the field.
### Tone
The tone of the text is formal, objective, and informative. To achieve this tone, maintain a neutral and detached
perspective, focusing on presenting the facts of the case without emotional or personal commentary. Use a
professional and respectful language throughout the text.
### Text Structure and Outline
The text follows a chronological structure, starting with the patient’s admission and progressing through their
diagnosis, treatment, and outcome. The outline appears to be:
1. Introduction: Brief overview of the patient’s condition and admission
2. Medical history: Description of the patient’s pre-existing conditions and previous treatments
3. Diagnosis: Presentation of the patient’s symptoms, laboratory findings, and diagnostic results
4. Treatment: Description of the treatments administered, including medications and therapies
5. Outcome: Report of the patient’s outcome, including any complications or results
### Text Disposition
The text is written in a straightforward and factual style, with no apparent attempt to persuade or entertain the reader.
The focus is on conveying information in a clear and concise manner.
### Text Formatting
The text appears to be written in a single block of paragraphs, with no subheadings, bullet points, or lists. The
paragraphs are relatively short, with each one focusing on a specific aspect of the patient’s case. To replicate this
format, use a single block of text, dividing it into paragraphs as needed to separate distinct sections of information.
### Language and Terminology
The text uses medical terminology and abbreviations, assuming a certain level of familiarity with medical concepts.
To replicate this, use technical language and abbreviations commonly used in medical contexts. However, avoid
using overly complex or specialized terminology that might be unfamiliar to non-specialists in the field.
### Noteworthy Features
The text includes specific details about the patient’s laboratory findings, medications, and treatments, which suggests
a focus on accuracy and precision. To replicate this, include specific details and data wherever possible, using precise
language and terminology.

Table 12: The Writing Instructions generated for the synthetic clinical document from Tab. 10 alongside the
respective prompt. Writing Instructions are structured and more comprehensive than Style Guidelines. They also
feature a slight instructional tone.
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