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Abstract

Process Reward Models (PRMs) aim to iden-
tify and mitigate intermediate errors in the rea-
soning processes in mathematical reasoning of
Large Language Models (LLMs). However,
the development of effective PRMs faces sig-
nificant challenges, particularly in data annota-
tion and evaluation methodologies. In this pa-
per, through extensive experiments, we demon-
strate that commonly used Monte Carlo (MC)
estimation-based data synthesis for PRMs typi-
cally yields inferior performance and general-
ization compared to LLM-as-a-judge and hu-
man annotation methods. Furthermore, we
identify potential biases in conventional Best-
of-N (BoN) evaluation strategies for PRMs. To
address these challenges, we develop a con-
sensus filtering mechanism that effectively in-
tegrates MC estimation with LLM-as-a-judge
and advocates a more comprehensive evalua-
tion framework that combines response-level
and step-level metrics. Based on the mecha-
nisms, we significantly improve both model
performance and data efficiency in the BoN
evaluation and the step-wise error identification
task. Finally, we release a new state-of-the-art
PRM that outperforms existing open-source al-
ternatives and provides practical guidelines for
future research.

1 Introduction

In recent years, Large Language Models (LLMs)
have made remarkable advances in mathematical
reasoning (OpenAl, 2023; Dubey et al., 2024; Shao
etal., 2024; Zhu et al., 2024; Yang et al., 2024a,c,b),
yet they can make mistakes, leading to wrong con-
clusions. Moreover, even when achieving correct
final answers, these powerful models can still regu-
larly use flawed reasoning steps, which undermine
the reliability and trustworthiness of LLMs’ rea-
soning processes. To address these challenges, Pro-
cess Reward Models (PRMs; Lightman et al. 2023;

*Corresponding authors.

Wang et al. 2024b) are proposed to identify and mit-
igate process errors, thereby enabling finer-grained
supervision on the reasoning process.

One critical challenge of developing PRMs lies
in the data annotation for the correctness of rea-
soning processes, which is typically expensive and
time-consuming. While Lightman et al. (2023) re-
cruited human annotators with detailed instructions
and elaborate procedures to achieve satisfactory
annotation quality, the prohibitive cost pushes re-
searchers to explore automated annotation meth-
ods. Among them, one commonly used approach
is to assess process correctness by estimating the
empirical probability of leading to the correct fi-
nal answers through Monte Carlo (MC) methods,
which has attracted great research interests and has
also been commonly employed in practice (Xiong
et al., 2024; Wang et al., 2024b; Luo et al., 2024).
Another challenge lies in evaluating PRM perfor-
mance, as previous studies (Lightman et al., 2023;
Wang et al., 2024b; Luo et al., 2024) have predom-
inantly relied on the Best-of-N (BoN) evaluation,
which selects the highest-scored response from N
candidates according to a PRM. Recently, PRO-
CESSBENCH (Zheng et al., 2024) have emerged
to evaluate the capability of PRMs in identifying
step-wise correctness.

Nevertheless, during the training of our own
PRM following conventional principles to con-
struct data using MC estimation and evaluate on
BoN, we gain several crucial lessons. In terms
of MC estimation, (1) we observe that the PRM
trained via MC estimation demonstrated signifi-
cantly inferior performance and generalization ca-
pabilities compared to LLM-as-a-judge (Zheng
et al., 2023) and human annotation. (2) We attribute
the suboptimal performance of MC estimation to
its fundamental limitation, which attempts to eval-
uate deterministic current-step correctness based
on potential future outcomes. It significantly re-
lies on the performance of the completion model,
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Figure 1: Overview of evaluation results on the Best-of-8 strategy of the policy model Qwen2.5-Math-7B-Instruct
and the benchmark PROCESSBENCH (Zheng et al., 2024) across multiple PRMs (see Table 3 and Table 4 for details).

which may generate correct answers based on in-
correct steps, or incorrect answers based on correct
steps, introducing substantial noise and inaccuracy
verification into step-wise correctness estimation.
Regarding the BoN evaluation, (1) the unreli-
able policy models generate responses with cor-
rect answers but flawed processes, leading to a
misalignment between the outcome evaluation cri-
teria of BoN and the PRM objectives of process
verification. (2) The PRMs with limited process
verification capability demonstrate tolerance for
these cases, resulting in inflated BoN performance.
(3) We find that in the step scores distribution of
existing PRMs, a significant proportion of mini-
mum scores are concentrated on the final answer
steps, indicating PRMs have shifted from process
to outcome-based assessment in BoN.

To address these challenges, we propose a con-
sensus filtering mechanism that combines MC es-
timation with LLM-as-a-judge, retaining only in-
stances where both agree on error locations in the
solution. Our approach improves both data effi-
ciency and performance over existing PRMs in the
conventional BoN evaluation. Furthermore, we
advocate for complementing response-level BoN
with step-wise evaluation methods. We employ
the step-wise benchmark PROCESSBENCH (Zheng
et al., 2024) to measure the ability to identify pro-
cess errors. Our trained PRMs exhibit impressively
stronger error identification performance than other
open-source models, from PRMs to general lan-
guage models, confirming that our training ap-

proach genuinely teaches PRMs to assess the cor-
rectness of intermediate reasoning steps.

2 Preliminary Trials

In this section, we describe our preliminary at-
tempts to train PRMs via MC estimation-based
reasoning step annotation. Despite our efforts in
scaling up training data and careful tuning of train-
ing objectives, we found that the MC estimation-
based PRMs do not possess noticeable advantages
over the one trained on human-annotated data, and
even lag significantly behind the latter in identify-
ing specific erroneous reasoning steps.

2.1 Training Setup

Training Data Synthesis We followed the com-
monly used MC estimation approach, Math-
Shepherd (Wang et al., 2024b), to construct the
PRM training data. Specifically, we collected
a large-scale dataset of approximately 500,000
queries with golden answers. For each query, we
generate 6-8 diverse responses by mixing outputs
from the Qwen2-Math-Instruct and Qwen2.5-Math-
Instruct series models (Yang et al., 2024c), span-
ning the model sizes of 7B and 72B parameters.
These responses are systematically split into indi-
vidual steps using the delimiter “\n\n”. To assess
the correctness of each step, we conduct 8 inde-
pendent completions starting from this step using
Qwen2.5-Math-Instruct series with the correspond-
ing model size, estimating the step labels based on
the empirical probabilities of each step yielding the
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correct final answer. We trained PRMs with either
hard labels or soft labels. For hard labels, we treat
a step as correct if any one of the 8 completions
yields the correct final answer, and negative oth-
erwise. For soft labels, we determined the value
(between 0 and 1) as the proportion of completions
leading to the correct final answers. Note that we
eliminated all steps subsequent to those labeled
as incorrect (label 0), as their validity becomes ir-
relevant after an error occurs. This removal was
implemented to prevent potential model confusion
during training.

Training Details Our trained PRMs were initial-
ized from the supervised fine-tuned Qwen2.5-Math-
7B/72B-Instruct models (Yang et al., 2024c), where
we replace the original language modeling head
(used for next token prediction) with a scalar-value
head, consisting of two linear layers. We calculated
the cross-entropy (CE) loss and mean squared error
(MSE) loss on the last tokens of each step for the
binary classification task using hard labels and for
the regression task using soft labels, respectively.

2.2 Evaluation Setup

Best-of-N  Consistent with previous work (Light-
man et al., 2023; Wang et al., 2024b; Luo et al.,
2024; Cobbe et al., 2021; Yang et al., 2024c), we
employed the BoN evaluation, which selects the
highest-scored response from N candidates ac-
cording to a PRM, denoting as “prm@N”. Fol-
lowing Yang et al. (2024c), we sampled 8 re-
sponses (i.e., N = 8) from Qwen2.5-Math-
7B-Instruct across multiple mathematical bench-
marks, including GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021b), Minerva Math
(Lewkowycz et al., 2022), GaoKao 2023 En (Liao
etal., 2024), OlympiadBench (He et al., 2024), Col-
lege Math (Tang et al., 2024), and MMLU STEM
(Hendrycks et al., 2021a). Each candidate response
is scored using the product of all the individual
scores of each step within the response, as com-
puted in Lightman et al. (2023). We also report
the result of majority voting among 8 responses
(maj@8) as baseline, and pass@8 (i.e., the propor-
tion of test samples where any of the 8 samplings
lead to the correct final answers) as upper bound.

PROCESSBENCH We also evaluated on PRO-
CESSBENCH (Zheng et al., 2024) as a complement
which measures the capability of models to identify
erroneous steps in mathematical reasoning. Models
are required to identify the first step that contains

Settin Best-of-8 PROCESSBENCH
g Mean Acc Mean F1

pass@8 (Upper Bound) 74.7 -

maj@8 66.2 -

PRMS800K 64.9 56.5

MC estimated hard labels 65.5 40.2

MC estimated soft labels 64.4 40.2

Table 1: Preliminary trials results on Best-of-8 and PRO-
CESSBENCH using PRMs trained with MC estimated
hard labels and soft labels, human-annotated PRM800K.

an error or conclude that all steps are correct. Fol-
lowing the evaluation methods for PRMs in PRO-
CESSBENCH, we locate the first erroneous step
from predict scores yielded by PRMs.

2.3 Evaluation Results

As shown in Table 1, we separately demonstrate the
average results on Best-of-8 and PROCESSBENCH
diverse mathematical tasks. To serve as a baseline,
we also collect human-annotated data PRM800OK
(Lightman et al., 2023) and train with its hard labels.
The comprehensive results are shown in Appendix
C.1. It reveal two critical limitations: (1) In Best-of-
8 evaluations, our trained models could not surpass
the performance of simple majority voting, i.e.,
maj@8. (2) When evaluate on PROCESSBENCH for
identifying erroneous reasoning steps, the models
trained on MC estimated data perform significantly
worse than the one trained on PRM800K, though
the former had larger scale of data.

These undesirable evaluation performances push
us to reflect on the currently prevalent data synthe-
sis approach and evaluation strategy. Through the
subsequent optimization process, we have indeed
gained several observations and lessons learned.

3 The Lessons

In this section, we present the critical lessons
gained during the PRM training comprising two
main aspects: (1) the limitations of commonly
adopted MC estimation approaches in PRMs train-
ing, and (2) the bias in using BoN as the sole eval-
uation metric for optimizing PRMs.

3.1 Limitations of MC Estimation
3.1.1 PRMs vs. Value Models

PRMs provide fine-grained supervision by evaluat-
ing the correctness of intermediate reasoning steps.
In contrast, value models estimate the potential of
reaching the correct final answer from the current
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Best-of-8 PROCESSBENCH

Setting # samples Mean Ace Mean F1
MC Estimation (Math-Shepherd) 440k 64.3 28.9
MC Estimation (our data) 860k 65.9 40.1
LLM-as-a-judge (our data) 860k 65.3 46.5
Human Annotation (PRM800K) 264k 64.9 56.5

Table 2: PRMs performance comparison on the Best-
of-8 and PROCESSBENCH. The models are trained on
the different data construction methods including MC
estimation, LLM-as-a-judge, and human annotation.

step in the future. The key difference between PRM
and value model lies in that PRMs function as de-
terministic evaluators of current step correctness,
while value models operate as predictive estimators
of future solution potential.

MC estimation attempts to estimate the potential
of reaching the correct final answer in the future
from the current step. When we follow this ap-
proach to construct data and train the PRMs, the
value model principles are incorporated into PRMs
training essentially. This methodology potentially
introduces performance and generalization limita-
tions which we discuss in subsequent sections.

3.1.2 MC Estimation vs. LLM-as-a-judge vs.
Human Annotation

Since the observation of MC estimation’s limita-
tions of identifying erroneous steps in Section 2,
we conducted a comprehensive comparison of three
distinct data construction approaches: MC esti-
mation, LLM-as-a-judge, and human annotation.
For the MC estimation approach, we respectively
train the PRM on 445k open-source datasets Math-
shepherd (Wang et al., 2024b) and our 860k simi-
larly constructed dataset. For the LLM-as-a-judge
approach, we use the same 860k dataset and em-
ploy Qwen2.5-72B-Instruct (Yang et al., 2024b) to
verify the correctness of each step in the responses
with the prompt template shown in Appendix E.
For the human annotation approach, we use the
open-source dataset PRM800K (Lightman et al.,
2023) which consists of approximately 265k sam-
ples after deduplication against the test set.

The experimental results of Best-of-8 and PRO-
CESSBENCH are shown in Table 2 and the detailed
results are shown in Appendix C.2. In general, for
Best-of-8, the PRM trained on our MC estimated
data achieves the best accuracy and human annota-
tion shows substantially inferior performance. For
PROCESSBENCH, human annotation achieves the
best performance with the least amount of data,
followed by LLM-as-a-judge, while MC estima-

tion performs the worst despite having the largest
dataset overall. The contrasting trend in the two
evaluation catches our attention and is thoroughly
investigated in Section 3.2.

In terms of the ability of identifying the cor-
rectness of reasoning steps evaluated in PROCESS-
BENCH, it can be found that: (1) human annota-
tion, despite being only performed on the MATH
dataset, exhibited superior generalization capabil-
ities on more complex tasks, such as Olympiad-
Bench and Omni-MATH. (2) Given identical data
with different annotation approaches, LLM-as-a-
judge demonstrates better generalization perfor-
mance on challenging problems than MC estima-
tion. (3) For MC estimation, a comparison between
our 860k dataset and Math-Shepherd 440k data in-
dicates that performance improvements can still be
achieved through data scaling.

3.1.3 Stringent Data Filtering Mechanisms
Required in MC Estimation

The inferior performance of MC estimation com-
pared to LLM-as-a-judge and human annotation
can be attributed to its high noise in evaluating
reasoning step correctness and identifying error po-
sitions, due to its heavy dependence on the policy
model. The policy model may generate correct fi-
nal answers despite incorrect reasoning steps, or
incorrect answers based on correct steps, contribut-
ing to this inaccuracy.

Motivated by LLM-as-a-judge’s encouraging re-
sults in Best-of-8 and PROCESSBENCH in Table
2, we naturally propose a simple yet efficient con-
sensus filtering mechanism that integrates LLM-as-
a-judge with MC estimation. Based on the afore-
mentioned 860K samples, the instances are only
retained when both LLM-as-a-judge and MC es-
timation show consensus on the error reasoning
step locations in the solution. As demonstrated in
Figure 2, it can be found that only approximately
40% of the data are preserved after consensus fil-
tering. For evaluation on PROCESSBENCH, the re-
sults reveal that the reduced dataset after consensus
filtering significantly outperforms MC estimation,
and notably, achieves comparable performance to
LLM-as-a-judge while using only 40% of the data.
Regarding the BoN evaluation, the performance
variations among these three models are marginal.

3.1.4 Hard vs. Soft Labels in MC Estimation

Although we have previously demonstrated that
MC estimation is not as effective as LLM-as-a-
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Figure 2: Performance comparison
on Best-of-8 and PROCESSBENCH
using PRMs trained with different
data synthesis.

judge and human annotation, there remains a note-
worthy point of MC estimation to be discussed, i.e.,
whether to train with soft label or hard label. We
construct 3 million training data using MC esti-
mation and apply the consensus filtering strategy
subsequently, which reduces the dataset to 1.5 mil-
lion samples. We respectively train PRMs using
both soft labels and hard labels on 3 million and
1.5 million data.

The performance of trained PRMs on Best-of-
8 and PROCESSBENCH are illustrated in Figure
3 and 4 separately. Before data filtering, the per-
formance difference between soft and hard labels
is not significant, which we attribute to the high
noise level masking their distinctions. However,
this difference becomes much more pronounced
after data filtering, with hard labels substantially
outperforming soft labels on both Best-of-8 and
PROCESSBENCH. We consider the limitations of
soft labels are: (1) As discussed in Section 3.1.1,
the correctness of steps (i.e., rewards) should be
deterministic. Training PRMs with soft labels that
represent future possibilities introduces additional
noise. For instance, when numerous completely
correct steps are assigned with soft labels lower
than 1, it actually reduces the model’s ability to dis-
criminate between positive and negative labels. (2)
Only 8 completions for step correctness estimation
exhibit high variance and are relatively crude. Al-
though we can reduce the variance of estimation by
increasing the number of completions, the compute
costs may outweigh the incremental benefits and
it cannot eliminate the generation of false-positive
answers in completions of the policy model. More-
over, the experimental results indicate that the con-
sensus filtering strategy yields performance bene-
fits across both soft and hard label schemes.

Last but not least, we investigate the threshold se-

Figure 3: Performance comparison
on Best-of-8 for the PRMs trained on
soft and hard labels before and after
consensus filtering.

After Filtering

After Filtering
(1.5M) (1.5M)

Before Filtering
(3M)

Figure 4: Performance comparison
on PROCESSBENCH for the PRMs
trained on soft and hard labels before
and after consensus filtering.

lection for distinguishing between positive and neg-
ative labels based on the MC estimation result of 8
completions. Following our previous experimental
setup, we conduct a series of experiments on the
3 million with threshold values from 1/8 to 7/8 at
1/8 intervals, with results shown in Figure 5. It can
be easily observed that as the threshold increases,
the performance deteriorates on both Best-of-8 and
PROCESSBENCH, indicating that using an MC esti-
mated value of O as the negative label and all others
as positive labels yields the best results. In other
words, we suggest a step is considered correct if
any completion reaches the correct final answer
in MC estimation. This threshold has also been
employed throughout our all experimental studies.

3.2 Bias in BoN Evaluation

Although BoN evaluations are commonly used in
previous PRM optimization, their effectiveness as
a sole optimization criterion is worth careful re-
consideration due to the potential limitations in
performance assessment.

3.2.1 Unreliable Policy Models Cause
BoN-PRMs Misalignment

In an ideal scenario, the responses generated by
the policy model would exhibit both correct an-
swers and accurate solution steps or conversely,
flawed processes would correspond to incorrect an-
swers. However, existing policy models are prone
to generating responses with correct answers but
flawed processes, while BoN inherently only fo-
cuses on answers, leading to a misalignment be-
tween the evaluation criteria of BoN and the PRM
objectives of process verification. To provide em-
pirical evidence for this phenomenon, we sam-
ple 8 responses per query from GSM8K, MATH,
OlympiadBench, and Omni-MATH using the pol-
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icy model Qwen2.5-Math-7B-Instruct. Then we
randomly choose correct-answer responses from
them and conduct thorough manual annotations.
As detailed in Figure 6, a substantial percentage
of responses contain process errors while main-
taining correct answers. Notably, comparing easy
task GSMS8K and hard task Omni-MATH, this phe-
nomenon becomes more pronounced as the prob-
lem’s complexity increases. This implies that an
effective PRM might assign low scores to responses
with correct answers but flawed processes, result-
ing in overall lower performance in the BoN.

3.2.2 Limited Process Verification Capability
in PRMs Lead to BoN Scores Inflation

When PRMs cannot distinguish responses that have
correct answers but flawed processes and assign
them high scores, this leads to overestimated per-
formance in the BoN, thereby creating an overly
optimistic and potentially misleading assessment
of PRM capabilities. To investigate the discrimina-
tive capability of PRMs for such cases, we extract
instances from PROCESSBENCH where answers
are correct but processes are erroneous and analy-
sis the detection accuracy of PRMs for these cases.
As shown in Figure 7, the PRMs trained on MC
estimation, LL.M-as-a-judge and human annotation
exhibit completely opposite performance trends in
BoN and extracted PROCESSBENCH evaluation.
The PRM trained on our MC estimated data shows
limited process verification capability but inflated
results on the BoN. This limited discriminative
capability indicates that PRMs struggle to differ-
entiate between genuinely correct responses and
those with merely superficial answer correctness
in BoN evaluations. Consequently, this implies
that beyond BoN evaluation, supplementary bench-
marks are necessary to assess the actual capability
of PRMs, especially in detecting process errors.

Figure 6: Proportion of cases where
the policy model generates correct an-
swers but incorrect reasoning steps.
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Figure 7: Performance trends on
BoN and extracted PROCESSBENCH
for different PRMs.
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Figure 8: Percentage of responses where the minimum
step score predict by PRMs appears in the final step
(among all best of § responses).

3.2.3 Process-to-Outcome Shift in BoN
Optimized PRMs

The majority of current PRMs are optimized to-
wards BoN. However, the bias of BoN leads PRMs
process-to-outcome shift. During the BoN selec-
tion process based on PRM-predicted scores fol-
lowing the scoring method for responses in (Light-
man et al., 2023), it can be found that regardless
of whether we employ the minimum score or the
product of scores to evaluate the full solution, the
lowest step score acts as the key limiting factor that
affects the selection criteria of PRMs.

As shown in Figure 8, we analyze the distribu-
tion of minimum step scores assigned by multi-
ple open-sourced PRMs, specifically focusing on
cases where the lowest score occurred at the fi-
nal step, which typically contains the final answer.
The results show that models EurusPRM-Stagel,
EurusPRM-Stage2, Math-Shepherd-PRM-7B and
Skywork-PRM-7B exhibit notably high propor-
tions in this category, which exceed 40%.

This analysis reveals that some PRMs’ perfor-
mance in BoN evaluation is predominantly deter-
mined by final answer scores rather than interme-
diate reasoning steps. In other words, optimizing
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solely for the BoN evaluation has made current
PRMs perform more like Outcome Reward Mod-
els (ORMs) in practice. Hence, it is essential to
supplement response-level evaluation BoN with
step-level assessment methods to avoid the process-
to-outcome shift. In this paper, we employ process
error localization tasks PROCESSBENCH.

3.2.4 Different PRMs, Different Optimal
Scoring Strategies

In BoN, the overall solution score is derived by
combining individual step scores. When each
step’s score represents the probability of that spe-
cific step being correct, it is generally acceptable to
combine these step-level scores (through methods
like product or minimum) to calculate the overall
solution score. However, in MC estimation, each
step’s score actually estimates the probability of
reaching the correct final answer in the future from
the current position. Given this forward-looking
nature of MC estimation, we should neither mul-
tiply the estimated probabilities across steps (as
these estimates are dependent on each other), nor
simply take the minimum estimated value from a
particular step as the overall score. Instead, the
estimated value from the final step naturally inte-
grates information from the entire solution process,
making it more suitable as the final score for the
complete solution.

To validate that, we evaluate BoN in different
scoring strategies for the PRMs trained on MC es-
timation, LLM-as-a-judge, and human annotation
data, as shown in Figure 9. We found that in MC
estimation, using the last score shows significantly
better performance than product and minimum ap-
proaches across multiple PRMs. And the product
and minimum scores are better than the last for
human annotation and LL.M-as-a-judge.

This suggests that if the PRM has to be trained

via MC estimation and evaluated in BoN, the last
score strategy may be more reasonable and effec-
tive. However, it’s worth noting that this use of
PRM in BoN has deviated from PRM’s original
intended purpose.

4 Our PRMs

This section presents our methodology for over-
coming the previously discussed limitations and
the details of our trained PRM achieving state-of-
the-art performance.

4.1 Training Details

Based on the lessons learned, we implement a sim-
ple yet efficient consensus filtering mechanism by
filtering out instances where there is a discrepancy
between the LLM-annotated and MC-estimated
process labels. This ensures the retained data main-
tains high quality and consistency in the reasoning
process annotation. Specically, we use MC estima-
tion to construct hard label, where a response is
classified as negative only if none of the 8 comple-
tions achieves the correct final answer. Then, the
LLM instantiated by Qwen?2.5-Instruct-72B (Yang
et al., 2024b) serves as a critic to verify the rea-
soning process for all responses step by step, i.e.,
LLM-as-a-judge. We employ cross-entropy loss on
the tokens at the end of each step to train the binary
classification task. We train the PRMs with 7B and
72B parameter, initialized with Qwen2.5-Math-7B-
Instruct and Qwen2.5-Math-72B-Instruct.

4.2 Experimental Setup

To validate the effectiveness of our trained PRMs,
we respectively conduct the response-level BoN
evaluation and the step-level process errors identi-
fication task PROCESSBENCH (Zheng et al., 2024).
We follow the experimental setting in Section 2.2.

Best-of-N In rm@8, we evaluate Outcome Re-
ward Models (ORMs) and Process Reward Models
(PRMs). For ORMs, we introduce Qwen2.5-Math-
RM-72B (Yang et al., 2024c), which assigns a sin-
gle score to each complete response. For PRMs,
we compute the product of each step score as the
final response score.

We compare with the following PRMs: (1) Math-
Shepherd-PRM-7B (Wang et al., 2024b): deter-
mining process labels for each step by estimating
the empirical probability of reaching the correct
final answer. (2) RLHFlow-PRM-Mistral-8B &
RLHFlow-PRM-Deepseek-8B (Xiong et al., 2024):
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. Minerva GaoKao Olympiad College MMLU
Setting GSMSK  MATH \ph  2023Em  Bench  Math STEM &
pass@8 (Upper Bound) 98.1 92 49.3 80.5 59.6 52.6 90.5 74.7
maj@8 96.7 87.1 41.2 72.5 444 47.8 73.8 66.2
1.5B
Skywork-PRM-1.5B 96.9 86.7 37.9 70.1 42.1 47.9 67.9 64.2
7B+
Math-Shepherd-PRM-7B 97.3 85.4 37.9 70.6 40.4 47.2 70.5 64.2
RLHFlow-PRM-Mistral-8B 97.0 86.1 37.1 70.6 41.2 47.6 69.5 64.2
RLHFlow-PRM-Deepseek-8B 97.3 86.3 40.8 70.9 422 47.2 69.3 64.9
Skywork-PRM-7B 97.3 87.3 382 71.9 43.7 47.8 67.7 64.8
EurusPRM-Stagel 95.6 83.0 35.7 66.2 38.2 46.2 66.6 61.6
EurusPRM-Stage?2 95.4 83.4 34.9 67.3 39.1 46.3 67.3 62.0
Qwen?2.5-Math-7B-Math-Shepherd 96.9 86.5 36.8 71.4 41.6 47.7 69.3 64.3
Qwen2.5-Math-7B-PRMS800K 96.9 86.9 37.1 71.2 44.0 47.6 70.9 64.9
% Qwen2.5-Math-PRM-7B 97.1 88.0 42.6 74.5 47.6 48.7 74.5 67.6
72B
Qwen2.5-Math-RM-72B 97.9 88.5 42.6 75.1 49.9 49.6 78.7 68.9
% Qwen2.5-Math-PRM-72B 97.6 88.7 46.0 74.3 48.1 49.3 81.1 69.3

Table 3: Performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-Math-7B-Instruct. %

represents the models we trained.

two LLaMA-3.1-based PRMs that adopt Math-
Shepherd’s training methodology while implement-
ing different solution generation models and op-
timization objectives. (3) Skywork-PRM-1.5B &
Skywork-PRM-7B (Skywork, 2024): two recently
released Qwen2.5-Math-based PRMs by Skywork.
(4) EurusPRM-Stagel & EurusPRM-Stage?2 (Cui
et al., 2025): two PRMs trained using Implicit
PRM approach (Yuan et al., 2024) with 7B param-
eters, which obtains process rewards replying on
the ORM trained on the response-level labels. (5)
Qwen2.5-Math-7B-Math-Shepherd & Qwen?2.5-
Math-7B-PRMS800K: two additional PRMs our de-
veloped by fine-tuning Qwen2.5-Math-7B-Instruct
separately on the PRM80OK (Lightman et al., 2023)
and Math-Shepherd (Wang et al., 2024b) open-
source datasets.

PROCESSBENCH The compared PRMs are con-
sistent with the previously mentioned PRMs. For
LLM-as-a-judge, we compare with proprietary lan-
guage models GPT-40-0806 (Hurst et al., 2024) and
ol-mini (OpenAl, 2024), open-source language
models Llama-3.3-70B-Instruct (Dubey et al.,
2024), Qwen2.5-Math-72B-Instruct (Yang et al.,
2024c¢), Qwen2.5-72B-Instruct (Yang et al., 2024b)
and QwQ-32B-Preview (Qwen, 2024). We also
decompose the N-step response trajectory into N
separate instances to enable individual scoring by
the ORM Qwen2.5-Math-RM-72B.

4.3 Experimental Results

Best-of-N  The evaluation on policy model
Qwen2.5-Math-7b-Instruct is shown in Table 3.
Qwen2.5-Math-PRM-7B demonstrates superior
performance compared to other PRMs of equiv-
alent model scale. Notably, it outperforms maj@8
across all 7 tasks, achieving an average improve-
ment of 1.4%. Furthermore, Qwen2.5-Math-PRM-
72B exhibits slightly better overall performance
than Qwen2.5-Math-RM-72B, with particularly
significant improvements observed in the Min-
erva Math and MMLU STEM tasks. Supplemen-
tary BoN results, including performance on Pol-
icy model Qwen2.5-Math-72b-Instruct, alternative
scoring strategies, evaluations on Chinese bench-
marks, BoN with larger N values and BoN with
LLM-as-a-judge are comprehensively documented
in the Appendix D.

PROCESSBENCH The evaluation results on PRO-
CESSBENCH are presented in Table 4. When com-
pared with LLM-as-a-judge, Qwen2.5-Math-PRM-
7B in smaller model size demonstrates superior
performance over all open-source models. For pro-
prietary language models, Qwen2.5-Math-PRM-
7B outperforms GPT-40-0806, while there remains
a performance gap compared to ol-mini. Further-
more, in comparison with existing PRMs, both
Qwen2.5-Math-PRM-7B and 72B exhibit substan-
tial advantages over their counterparts. An inter-
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Model GSMSK

MATH

OlympiadBench Omni-MATH

Avg. F1

error correct F1  error

correct  F1  error

correct  F1  error correct F1

LLM-as-a-judge, Proprietary language models
GPT-4-0806 70.0 912 792 544
ol-mini 889 979 932 835

766 636 458 584 514 452 656 535 61.9
95.1 889 802 956 872 748 91.7 824 87.9

LLM-as-a-judge, Open-source language models

Llama-3.3-70B-Instruct 725 969 829 433 832 594 31.0 941 467 282 90.5 43.0 58.0
Qwen2.5-Math-72B-Instruct 498 969 658 360 943 5211 195 973 325 19.0 963 31.7 455
Qwen2.5-72B-Instruct 628 969 762 463 93.1 61.8 387 926 546 366 909 522 61.2
QwQ-32B-Preview 81.6 953 880 781 793 787 614 546 578 557 680 613 71.5
PRMs

1.5B

Skywork-PRM-1.5B 502 715 59.0 379 652 480 154 260 193 13.6 328 192 36.4
7B+

Math-Shepherd-PRM-7B 324 917 479 180 820 295 150 711 248 142 730 2338 31.5
RLHFlow-PRM-Mistral-8B 338 99.0 504 217 722 334 82 43.1  13.8 9.6 452 158 284
RLHFlow-PRM-Deepseck-8B 242 984 388 214 80.0 338 10.1 51.0 169 109 519 169 26.6
Skywork-PRM-7B 61.8 829 708 438 622 536 179 319 229 140 419 210 42.1
EurusPRM-Stagel 469 420 443 333 382 356 239 198 21.7 219 245 231 31.2
EurusPRM-Stage?2 512 440 473 364 350 357 257 180 21.2 23.1 19.1 209 31.3
Qwen2.5-Math-7B-Math-Shepherd 46.4 959 625 189 966 316 74 938 137 40 95.0 7.7 28.9
Qwen2.5-Math-7B-PRM800K 531 953 682 480 90.1 626 357 873 50.7 29.8 86.1 443 56.5
% Qwen2.5-Math-PRM-7B 720 964 824 680 904 77.6 557 855 675 552 83.0 66.3 73.5
72B

Qwen2.5-Math-RM-72B 41.1  46.1 435 397 581 472 28.1 56.6 376 188 502 274 38.9
* Qwen2.5-Math-PRM-72B 787 979 873 742 882 80.6 679 820 743 648 788 711 78.3

Table 4: Performance comparison on PROCESSBENCH. % represents the models we trained. We report the results

in the same calculation method with PROCESSBENCH.

esting observation worth noting is that the ORM
Qwen2.5-Math-RM-72B exhibits considerable ca-
pability in identifying step errors, even surpassing
some open-source PRMs.

5 Related Work

Reward Model in Mathematical Reasoning
Mathematical reasoning reward models primarily
fall into two categories: Outcome Reward Models
(ORMs) that evaluate final answers, and Process
Reward Models (PRMs) (Uesato et al., 2022; Light-
man et al., 2023) that assess individual reasoning
steps. Though PRMs show greater potential than
ORMs (Lightman et al., 2023; Wang et al., 2024b),
they rely on high-quality training data.

Mathematical Reasoning Step Verification
Step verification methods usually include human
annotation (Lightman et al., 2023) and automated
approaches. Automated methods comprise: (1)
backward-propagation based methods that infer
step correctness from solution outcomes, includ-
ing MC estimation (Wang et al., 2024b; Luo et al.,
2024; Chen et al., 2024), progressive ORM label-
ing (Xi et al., 2024), credit assignment (Wang et al.,
2024a; Cui et al., 2025; Yuan et al., 2024) tech-
niques and so on; (2) prompting-based methods

that leverage LLMs serve as critic, i.e., LLM-as-
a-judge (Zhang et al., 2024; Gao et al., 2024; Xia
et al., 2024) to assess step correctness directly. In
this work, we integrate both MC estimation and
LLM-as-a-judge methods.

6 Conclusion

In this paper, we present the critical lessons gained
during developing PRMs and release a new state-
of-the-art PRM. Firstly, we identify critical limita-
tions in current data construction approaches for
PRMs, demonstrating that MC estimation-based
data construction yields inferior performance and
generalization compared to LLM-as-a-judge and
human annotation. Then we reveal the poten-
tial bias in using response-level BoN evaluation
alone for PRMs and advocate for combining both
response-level and step-level metrics. To address
these issues, we propose an effective consensus
filtering strategy combining MC estimation with
LLM-as-a-judge. Our evaluation, incorporating
both response-level BoN and identifying step-wise
correctness task PROCESSBENCH, demonstrates
significant improvements in data efficiency and
model performance.
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Limitation There are several limitations re-
mained in our current work. Firstly, there exists a
considerable performance gap between our PRMs
and the BoN upper bound (pass@8), suggesting
substantial optimization potential. Then the best
practices for utilizing PRMs in reinforcement learn-
ing remain unexplored. Finally, although our ap-
proach combines LLM-as-a-judge with MC estima-
tion for consensus filtering, the efficient utilization
of existing high-quality human annotation data is
still largely under-explored. For instance, gradually
expanding high-quality datasets through weakly su-
pervised methods can be investigated as a promis-
ing direction for future exploration.
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A Process Verification Capability of
Existing PRMs

The policy model may generate the responses that
have correct answers but flawed processes. To in-
vestigate the discriminative capability of PRMs for
such cases, we extract instances from PROCESS-
BENCH where answers are correct but processes
are erroneous and analysis the detection accuracy
rates of PRMs for these cases. As shown in Ta-
ble 5, except Qwen2.5-Math-PRM-7B and 72B, all
other open-sourced PRMs demonstrate detection
accuracy rates below 50%.

B PRM Guided Search

We further integrate PRM with greedy search by
generating N candidate steps at each step, eval-
uating these candidates using PRM scoring, and
selecting the highest-scoring step for subsequent
expansion. For the policy model, we employed
Qwen?2.5-7B-Instruct which has greater diversity in
generation to sample 8 candidates at each step, with
sampling parameters set to temperature = 1.0
and top_p = 1.0. We conduct comparative exper-
iments with ORM in BoN approach. As shown
in Table 6, Qwen2.5-Math-PRM-72B with greedy
search@8 is slightly superior performance com-
pared to Qwen2.5-Math-RM-72B with orm@8. We
argue the potentially smaller performance differen-
tial between PRM and ORM lies in the consistency
of generated token counts between greedy search
and BoN outputs. Furthermore, although greedy
search always selects the highest-scoring candidate
at each step, the highest-scoring step may not be
the correct one. Therefore, implementing either
Depth-First Search (DFS) with backtracking capa-
bilities or search approaches incorporating score
constraints could prove more suitable for this cases.

We choose the highest-scoring candidate at each
step which the score predicted by PRM represents
the correctness of this step. But such locally op-
timal choices may not lead to the correct final an-
swer. In contrast, value models can predict the
future probability of reaching the correct answer,
rather than reflecting the correctness of the cur-
rent step like rewards do, making them particularly
well-suited for integration with search strategies.
Based on these considerations, we believe there
is still significant potential for exploration in the
future regarding more appropriate search strategies
or combining rewards and values to simultaneously
consider both the correctness of the current step

and the possibility of reaching the correct future
outcomes.

C Detailed Experimental Results

C.1 Preliminary Trials

Table 7 and Table 8 demonstrate detailed experi-
mental results on Best-of-8 evaluation and PRO-
CESSBENCH.

C.2 MC Estimation vs. LLM-as-a-judge vs.
Human Annotation

The PRMs trained on the different data construc-
tion methods including MC estimation, LL.M-as-
a-judge, and human annotation are evaluated on
Best-of-8 and PROCESSBENCH. The detailed ex-
perimental results are shown in Table 9 and 10.

D Supplementary BoN Results
D.1 Best-of-8 on Qwen2.5-Math-72b-Instruct

The BoN evaluation on policy model Qwen2.5-
Math-72b-Instruct is shown in Table 11. Qwen2.5-
Math-PRM-7B outperforms other PRMs of equiv-
alent model scale. However, its performance is
inferior to maj@8§, suggesting challenges in em-
ploying a 7B PRM for the supervision of 72B pol-
icy model-generated responses. Besides, Qwen2.5-
Math-PRM-72B surpasses maj@8 in prm @8 and
is comparable with Qwen2.5-Math-RM-72B in
orm@8.

D.2 Best-of-8 with Various Scoring Strategies

We demonstrate experimental results using the last
step score, the minimum step score or the pro-
duction of step scores as the solution-level score.
The BoN results with policy model Qwen2.5-Math-
7B-Instruct and Qwen2.5-Math-72B-Instruct are
shown in Table 13 and Table 14 respectively.

D.3 Best-of-8 on Chinese Benchmarks

We evaluate across three Chinese benchmarks in-
cluding Chinese math benchmarks CMATH (Wei
et al., 2023), GaoKao Math Cloze (Zhong et al.,
2024), and GaoKao Math QA (Zhong et al., 2024)
following (Yang et al., 2024c), as shown in Table
15 and Table 16.

D.4 BoN with Larger N Values

To validate the effectiveness of our PRMs on
the BoN with larger N values, we conduct addi-
tional Best-of-8 experiments on the policy model
Qwen2.5-Math-7b-Instruct across diverse tasks
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Olympiad  Omni-

GSMSK  MATH Bench MATH Avg.
# samples 7 94 161 259
1.5B
Skywork-PRM-1.5B 429 36.2 124 13.9 26.4
7B+
Math-Shepherd-PRM-7B 143 12.8 13.7 14.7 13.9
RLHFlow-PRM-Mistral-8B 14.3 13.8 7.5 10.0 114
RLHFlow-PRM-Deepseek-8B 0.0 18.1 9.9 10.8 9.7
Skywork-PRM-7B 57.1 26.6 14.3 13.1 27.8
EurusPRM-Stagel 28.6 25.5 19.9 20.1 235
EurusPRM-Stage?2 429 27.7 18.0 20.8 27.4
Qwen2.5-Math-7B-Math-Shepherd 0.0 9.6 43 1.2 3.8
Qwen2.5-Math-7B-PRM800K 429 50.0 31.7 28.2 38.2
% Qwen2.5-Math-PRM-7B 429 68.1 48.4 56.0 53.9
72B
% Qwen2.5-Math-PRM-72B 28.6 76.6 62.7 64.5 58.1

Table 5: The accuracy in identifying erroneous steps on the test cases of PROCESSBENCH containing correct
answers but erroneous reasoning steps. “# samples” represents the number of test cases.

Minerva GaoKao Olympiad College MMLU

Setting GSMSK MATH "yith  2023En  Bench  Math STEM V%
pass@8 (Upper Bound) 96.9 89.6 48.2 79.7 58.4 55.0 81.6 72.8
pass@1 91.2 74.0 32.0 64.7 36.9 46.2 57.1 57.4
maj@8 93.7 80.3 37.1 69.9 45.8 48.5 61.9 62.5
orm@8

Qwen2.5-Math-RM-72B 954 84.2 38.6 73.0 48.6 50.1 75.6 66.5
Greedy Search@8

Skywork-PRM-7B 95.3 83.2 33.8 70.4 441 48.2 60.1 62.2
% Qwen2.5-Math-PRM-7B 95.5 82.6 32.0 71.4 44.9 48.8 69.6  63.5
% Qwen2.5-Math-PRM-72B 95.9 84.7 379 73.2 48.9 50.0 75.3 66.6

Table 6: The performance of PRM guided greedy search and ORM of Best-of-8 with policy model Qwen2.5-7B-
Instruct. For greedy search, 8 candidates is proposed at each step.

Minerva GaoKao Olympiad College MMLU

Setting GSMSK  MATH ~\pth  2023Em  Bench  Math STEM &
pass@8 (Upper Bound) 98.1 92.0 49.3 80.5 59.6 52.6 90.5 74.7
maj@8 96.7 87.1 412 72.5 444 478 738 662
PRMS00K 96.9 86.9 37.1 71.2 44.0 476 709 649
MC estimated hard labels  96.8 87.3 40.1 70.6 43.7 481 716 655
MC estimated soft labels  96.8 86.3 37.9 70.6 41.0 477 704 644

Table 7: Preliminary trials results on Best-of-8 using PRMs trained with MC estimated hard labels and soft labels,
human-annotated PRM80OK respectively.

Model GSMSK MATH OlympiadBench Omni-MATH

Avg. F1
error correct F1  error correct F1 error correct F1  error correct F1

PRMS800K 531 953 682 480 90.1 62,6 357 873 50.7 298 86.1 443 56.5
MC estimated hard labels 67.1 902 77.0 352 658 458 132 28.0 179 133 419 202 40.2
MC estimated soft labels 657 933 77.1 357 645 460 132 292 181 129 402 19.6 40.2

Table 8: Preliminary trials results on PROCESSBENCH using PRMs trained with MC estimated hard labels and soft
labels, human-annotated PRM80OK respectively.
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. Minerva GaoKao Olympiad College MMLU
Setting # samples GSMS8K MATH Math 2023 En Bench Math  STEM Avg.
MC Estimation (Math-Shepherd) 440k 96.9 86.5 36.8 71.4 41.6 477 69.3 64.3
MC Estimation (our data) 860k 97.0 87.6 41.9 71.4 43.6 48.2 71.9 65.9
LLM-as-a-judge (our data) 860k 96.9 86.8 39.0 71.2 437 477 71.9 65.3
Human Annotation (PRM800K) 264k 96.9 86.9 37.1 71.2 44.0 47.6 70.9 64.9

Table 9: PRMs performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-Math-7B-Instruct.
The models are trained on the different data construction methods including MC estimation, LLLM-as-a-judge, and
human annotation.

GSMSK MATH OlympiadBench Omni-MATH

Method # samples Avg.F1
error correct F1  error correct F1  error correct F1  error correct F1

MC Estimation (Math-Shepherd) 440k 464 959 625 189 966 316 74 938 137 4.0 95.0 7.7 28.9

MC Estimation (our data) 860k 623 912 740 352 719 473 127 413 194 121 544 198  40.1

LLM-as-a-judge (our data) 860k 440 990 609 335 948 495 247 971 394 223 954 36.1 465

Human Annotation (PRM800K) 264k 53.1 953 682 480 90.1 626 357 873 50.7 298 8.3 443 565

Table 10: PRMs performance comparison on PROCESSBENCH. The models are trained on the different data
construction methods including MC estimation, LLM-as-a-judge, and human annotation.

including MATHS500 (Lightman et al., 2023),
AIME24 ', AMC23 2, Minerva Math (Lewkowycz
et al., 2022), GaoKao 2023 En (Liao et al., 2024)
and OlympiadBench (He et al., 2024). The results
are presented in the Table 12 and it can be found
that our PRMs maintain superior performance com-
pared to other PRMs, especially on MATHS500.

D.5 Best-of-8 with LLM-as-a-judge

Regarding BoN evaluation with LLMs, there are
two ways to implement: pairwise and pointwise.
For pairwise comparison, we employ a single-
elimination tournament method. For N responses,
we conduct N-1 comparisons to determine the op-
timal response. In terms of pointwise comparison,
we score each step 1 for correct and O for incorrect.
We then calculate the proportion of correct steps
across all steps and select the response with the
highest percentage of correct steps as the best re-
sponse. The experiment are conduct on the policy
model Qwen2.5-Math-7B-Instruct and Qwen?2.5-
Math-72B-Instruct and the results are shown in
Table 17 and Table 18 respectively.

E Prompt Template for LL.M-as-a-judge

To construct PRM training data via LLM-as-a-
judge, we use the following prompt.

"https://huggingface.co/datasets/AI-MO/
aimo-validation-aime

2https://huggingface.co/datasets/AI—MO/
aimo-validation-amc
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. Minerva GaoKao Olympiad College MMLU
Setting GSM8K MATH “\ih  2023En Bench  Math STEM &
pass@8 97.3 93.2 56.6 83.6 62.4 54.1 95.3 71.5
maj@8 96.0 88.6 47.8 73.8 50.1 50.2 84.9 70.2
1.5B
Skywork-PRM-1.5B 96.5 88.1 45.2 74.3 48.4 49.7 79.7 68.8
7B+
Math-Shepherd-PRM-7B 96.5 86.8 45.6 71.9 49.2 49.5 717.5 68.1
RLHFlow-PRM-Mistral-8B 96.6 87.5 46.3 73.5 48.9 494 83.4 69.4
RLHFlow-PRM-Deepseek-8B 96.5 87.7 44.5 73.5 48.7 49.4 84.6 69.3
Skywork-PRM-7B 97.0 89.0 47.1 75.3 49.8 49.9 76.3 69.2
EurusPRM-Stagel 95.4 85.6 44.1 72.5 46.5 49.2 80.3 67.7
EurusPRM-Stage?2 95.3 85.1 44.9 72.5 47.1 49.0 80.2 67.7
Qwen2.5-Math-7B-Math-Shepherd 96.9 88.5 46.0 75.8 499 49.5 79.7 69.5
Qwen2.5-Math-7B-PRM800K 96.5 88.9 47.4 75.3 50.7 50.1 76.6 69.4
% Qwen2.5-Math-PRM-7B 96.8 89.6 46.7 77.7 51.4 50.4 76.4 69.9
72B
Qwen2.5-Math-RM-72B 96.4 89.8 47.4 76.9 54.5 50.6 80.1 70.8
% Qwen2.5-Math-PRM-72B 96.4 89.9 46.0 77.4 52.9 50.1 82.3 70.7

Table 11: Performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-Math-72B-Instruct. %
represents the models we trained.

Minerva GaoKao Olympiad

Setting MATH500 AIME24 AMC23 Math 2023 En Bench
pass@64 96.0 50.0 95.0 56.6 86.8 73.5 76.3
maj@64 84.2 16.7 77.5 34.6 73.8 51.1 56.3
1.5B

Skywork-PRM-1.5B 81.2 20.0 62.5 31.6 70.9 46.5 52.1
7B+

Math-Shepherd-PRM-7B 79.6 20.0 62.5 324 70.1 439 514
RLHFlow-PRM-Mistral-8B 82.4 20.0 62.5 30.9 69.1 459 51.8
RLHFlow-PRM-Deepseek-8B 80.2 20.0 67.5 353 69.1 46.2 53.1
Skywork-PRM-7B 84.6 20.0 67.5 32.0 71.2 47.1 53.7
EurusPRM-Stagel 76.0 10.0 55.0 27.6 66.5 40.0 459
EurusPRM-Stage?2 76.2 10.0 52.5 27.9 67.0 40.3 45.7
Qwen2.5-Math-7B-Math-Shepherd 84.2 23.3 67.5 34.6 72.5 47.4 54.9
Qwen2.5-Math-7B-PRM800K 83.6 23.3 67.5 33.8 74.8 48.3 55.2
% Qwen2.5-Math-PRM-7B 87.8 20.0 67.5 33.8 75.8 51.4 56.1
72B

Qwen2.5-Math-RM-72B 82.0 36.7 75.0 37.5 77.7 54.1 60.5
% Qwen2.5-Math-PRM-72B 87.8 23.3 72.5 38.6 77.4 55.3 59.2

Table 12: Performance comparison on the Best-of-64 strategy of the policy model Qwen2.5-Math-7B-Instruct. %
represents the models we trained.
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Minerva GaoKao Olympiad College MMLU

Setting Scoring GSMSK MATH Math 2023 En Bench Math  STEM Avg.
pass@8 (Upper Bound) - 98.1 92 49.3 80.5 59.6 52.6 90.5 74.7
maj@8 - 96.7 87.1 41.2 72.5 444 47.8 73.8 66.2
last 96.8 85.2 39.0 70.1 42.8 47.2 67.7 64.1
Math-Shepherd-PRM-7B product 97.3 85.4 37.9 70.6 40.4 47.2 70.5 64.2
min 96.9 85.3 39.0 69.9 422 474 70.6 64.5
last 97.0 85.3 39.0 71.2 44.0 47.1 64.0 63.9
RLHFlow-PRM-Mistral-8B product 97.0 86.1 37.1 70.6 41.2 47.6 69.5 64.2
min 97.0 84.3 37.1 69.4 404 46.9 68.7 63.4
last 97.0 84.7 35.7 70.4 43.0 46.8 63.8 63.1
RLHFlow-PRM-Deepseek-8B product 97.3 86.3 40.8 70.9 42.2 47.2 69.3 64.9
min 97.3 84.5 38.2 69.6 40.7 46.5 67.6 63.5
last 96.8 86.4 39.0 71.7 45.0 479 68.2 65.0
Skywork-PRM-1.5B product 96.9 86.7 37.9 70.1 42.1 479 67.9 64.2
min 96.6 86.6 37.9 71.9 43.1 482 66.9 64.5
last 97.2 87.3 41.2 73.8 45.8 483 65.3 65.6
Skywork-PRM-7B product 97.3 87.3 38.2 71.9 43.7 47.8 67.7 64.8
min 96.7 87.0 39.7 71.2 425 48.2 66.6 64.6
last 94.7 79.7 32.7 61.6 33.8 45.7 63.4 58.8
EurusPRM-Stagel product 95.6 83.0 35.7 66.2 38.2 46.2 66.6 61.6
min 95.8 83.3 39.0 67.8 37.9 46.6 67.4 62.5
last 94.7 79.7 33.1 61.3 34.2 45.7 63.5 58.9
EurusPRM-Stage2 product 95.4 83.4 34.9 67.3 39.1 46.3 67.3 62.0
min 96.1 83.6 39.3 68.8 38.8 46.7 67.5 63.0
last 97.1 87.7 38.6 73.8 44.6 48.1 68.0 65.4
Qwen2.5-Math-7B-Math-Shepherd ~ product 96.9 86.5 36.8 71.4 41.6 47.7 69.3 64.3
min 97.0 86.7 36.8 72.5 43.1 47.6 70.7 64.9
last 96.7 86.3 37.9 71.9 443 47.6 68.1 64.7
Qwen2.5-Math-7B-PRM800K product 96.9 86.9 37.1 71.2 44.0 47.6 70.9 64.9
min 96.9 86.6 39.7 71.7 45.6 47.8 71.1 65.6
last 96.9 87.2 39.0 73.5 455 48.5 72.0 66.1
* Qwen2.5-Math-PRM-7B product 97.1 88.0 42.6 74.5 47.6 48.7 74.5 67.6
min 97.0 87.8 423 74.3 46.2 483 74.1 67.1
last 97.6 88.9 434 73.8 49.2 49.6 76.8 68.5
% Qwen2.5-Math-PRM-72B product 97.6 88.7 46.0 74.3 48.1 49.3 81.1 69.3
min 97.6 88.8 45.2 74.5 48.1 49.2 80.9 69.2

Table 13: Performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-Math-7B-Instruct with 3
scoring strategies: last, product and minimum. s represents the models we trained.
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Minerva GaoKao Olympiad College MMLU

Setting Scoring GSM8K MATH Math 2023 En Bench Math  STEM Avg.
pass@8 (Upper Bound) - 97.3 93.2 56.6 83.6 62.4 54.1 95.3 71.5
maj@8 - 96.0 88.6 47.8 73.8 50.1 50.2 84.9 70.2
last 96.2 87.0 46.7 73.0 473 49.8 76.3 68.0
Math-Shepherd-PRM-7B product 96.5 86.8 45.6 71.9 49.2 49.5 71.5 68.1
min 96.1 86.8 45.6 73.2 48.6 49.9 76.0 68.0
last 96.3 86.6 44.9 74.3 47.6 49.3 67.1 66.6
RLHFlow-PRM-Mistral-8B product 96.6 87.5 46.3 73.5 48.9 494 83.4 69.4
min 96.4 86.3 44.5 71.9 47.9 49.3 76.0 67.5
last 96.1 86.6 46.3 73.2 49.2 49.2 71.7 67.5
RLHFlow-PRM-Deepseek-8B product 96.5 87.7 44.5 73.5 48.7 49.4 84.6 69.3
min 96.6 87.4 44.1 74.0 48.6 49.3 74.8 67.8
last 96.1 88.6 44.9 72.2 47.9 50.1 74.2 67.7
Skywork-PRM-1.5B product 96.5 88.1 452 74.3 48.4 49.7 79.7 68.8
min 96.0 88.3 45.6 73.8 48.6 50.1 75.9 68.3
last 97.0 89.0 46.0 74.8 51.0 49.7 66.7 67.7
Skywork-PRM-7B product 97.0 89.0 47.1 75.3 49.8 49.9 76.3 69.2
min 96.9 89.2 46.7 73.5 49.8 49.8 73.2 68.4
last 95.9 87.3 44.9 72.7 47.0 494 78.4 67.9
EurusPRM-Stagel product 95.4 85.6 44.1 72.5 46.5 49.2 80.3 67.7
min 96.4 88.2 449 75.1 49.0 49.5 83.7 69.5
last 96.0 87.7 44.5 73.5 47.0 494 78.1 68.0
EurusPRM-Stage2 product 95.3 85.1 44.9 72.5 47.1 49.0 80.2 67.7
min 96.5 88.6 452 75.3 48.9 49.6 83.3 69.6
last 97.0 89.6 44.9 77.4 50.8 50.5 74.9 69.3
Qwen?2.5-Math-7B-Math-Shepherd  product 96.9 88.5 46.0 75.8 49.9 49.5 79.7 69.5
min 97.0 88.6 46.0 74.8 50.2 49.6 79.6 69.4
last 96.7 88.8 47.1 76.1 50.1 49.5 71.8 68.6
Qwen?2.5-Math-7B-PRM800K product 96.5 88.9 474 75.3 50.7 50.1 76.6 69.4
min 96.5 89.1 47.1 76.1 50.7 49.9 753 69.2
last 96.8 89.0 46.7 753 49.8 50.3 78.4 69.5
% Qwen2.5-Math-PRM-7B product 96.8 89.6 46.7 77.7 51.4 50.4 76.4 69.9
min 96.7 89.6 46.3 77.9 50.8 50.3 76.0 69.7
last 96.3 89.8 47.8 76.6 53.3 50.9 80.5 70.7
* Qwen2.5-Math-PRM-72B product 96.4 89.9 46.0 77.4 529 50.1 82.3 70.7
min 96.4 89.7 46.3 71.7 524 50.4 81.2 70.6

Table 14: Performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-Math-72B-Instruct with
3 scoring strategies: last, product and minimum. v represents the models we trained.
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CN Middle

Setting Scoring CMATH School 24 GaoKao Avg.
pass@8 (Upper Bound) - 95.3 82.2 84.3 87.3
maj@8 - 92.7 78.2 68.1 79.7
last 91.8 80.2 63.0 78.3
Math-Shepherd-PRM-7B product 92.0 80.2 69.1 80.4
min 91.5 80.2 69.8 80.5
last 92.8 79.2 57.2 76.4
RLHFlow-PRM-Mistral-8B product 92.7 77.2 65.8 78.6
min 92.8 76.2 62.1 77.0
last 93.2 75.2 56.9 75.1
RLHFlow-PRM-Deepseek-8B product 92.7 76.2 63.6 77.5
min 93.0 74.3 67.3 78.2
last 93.8 80.2 66.6 80.2
Skywork-PRM-1.5B product 92.8 79.2 66.3 79.4
min 93.3 80.2 66.6 80.0
last 94.0 81.2 66.7 80.6
Skywork-PRM-7B product 93.3 79.2 68.1 80.2
min 93.8 80.2 66.3 80.1
last 91.8 77.2 55.4 74.8
EurusPRM-Stagel product 91.7 77.2 52.6 73.8
min 91.7 78.2 64.4 78.1
last 91.8 77.2 55.7 74.9
EurusPRM-Stage?2 product 92.0 77.2 52.4 73.9
min 92.0 78.2 64.7 78.3
last 93.0 81.2 65.4 79.9
Qwen2.5-Math-7B-Math-Shepherd  product 93.0 79.2 67.7 80.0
min 92.5 80.2 69.8 80.8
last 92.8 78.2 67.1 79.4
Qwen2.5-Math-7B-PRM800K product 92.7 77.2 68.9 79.6
min 93.0 77.2 69.4 79.9
last 93.3 80.2 68.2 80.6
% Qwen2.5-Math-PRM-7B product 93.7 80.2 70.1 81.3
min 93.5 80.2 71.7 81.8
last 94.3 80.2 72.1 82.2
% Qwen2.5-Math-PRM-72B product 94.2 80.2 73.5 82.6
min 94.2 80.2 73.1 82.5

Table 15: Best-of-8 performance comparison on the Chinese benchmarks with the policy model Qwen2.5-Math-7B-
Instruct in 3 scoring strategies: last, product and minimum. ¥ represents the PRMs we trained.
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CN Middle

Setting Scoring CMATH School 24 GaoKao Avg.
pass@8 (Upper Bound) - 96.8 83.2 86.2 88.7
maj@8 - 95.3 79.2 75.0 83.2
last 93.7 78.2 73.2 81.7
Math-Shepherd-PRM-7B product 94.0 80.2 72.1 82.1
min 93.5 80.2 73.9 82.5
last 94.3 79.2 65.5 79.7
RLHFlow-PRM-Mistral-8B product 93.8 79.2 72.0 81.7
min 93.3 79.2 71.2 81.2
last 94.3 79.2 63.0 78.8
RLHFlow-PRM-Deepseek-8B product 94.3 79.2 72.5 82.0
min 94.5 79.2 73.5 824
last 94.8 80.2 74.3 83.1
Skywork-PRM-1.5B product 93.8 79.2 69.7 80.9
min 94.5 80.2 74.6 83.1
last 95.3 80.2 72.6 82.7
Skywork-PRM-7B product 94.7 80.2 71.5 82.1
min 94.8 80.2 76.0 83.7
last 94.0 79.2 64.5 79.2
EurusPRM-Stagel product 93.8 80.2 64.5 79.5
min 94.7 79.2 70.8 81.6
last 94.2 79.2 63.4 78.9
EurusPRM-Stage?2 product 93.7 80.2 65.4 79.8
min 94.3 79.2 69.7 81.1
last 95.0 81.2 74.6 83.6
Qwen2.5-Math-7B-Math-Shepherd  product 94.5 80.2 73.0 82.6
min 94.3 80.2 71.5 82.0
last 94.2 79.2 76.5 83.3
Qwen2.5-Math-7B-PRM800K product 94.2 82.2 70.8 82.4
min 93.8 80.2 72.9 82.3
last 94.7 79.2 74.5 82.8
% Qwen2.5-Math-PRM-7B product 94.3 81.2 77.6 84.4
min 94.5 81.2 77.6 84.4
last 96.0 79.2 76.1 83.8
% Qwen2.5-Math-PRM-72B product 96.0 80.2 77.2 84.5
min 95.8 80.2 71.5 84.5

Table 16: Best-of-8 performance comparison on the Chinese benchmarks with the policy model Qwen2.5-Math-
72B-Instruct in 3 scoring strategies: last, product and minimum. % represents the PRMs we trained.
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Minerva GaoKao Olympiad College MMLU

Setting GSMSK  MATH  “pioth  2023En Bench  Math STEM Y%
pass@8 (Upper Bound) 98.1 92 493 80.5 59.6 52.6 90.5 74.7
maj@8 96.7 87.1 41.2 72.5 44.4 47.8 73.8 66.2
LLM-as-a-judge, Open-source language models

POINTWISE

QwQ-32B-Preview 97.0 86.0 39.3 70.1 46.2 479 70.5 65.3
Qwen2.5-72B-Instruct 97.0 85.6 40.1 70.9 434 47.9 73.4 65.5
PAIRWISE

QwQ-32B-Preview 97.6 89.2 40.8 75.8 504 48.9 70.5 67.6
Qwen2.5-72B-Instruct 97.3 86.8 40.8 73.5 45.0 48.4 74.5 66.6
PRMs

Qwen2.5-Math-PRM-7B 97.1 88.0 42.6 74.5 47.6 48.7 74.5 67.6
Qwen2.5-Math-PRM-72B 97.6 88.7 46.0 74.3 48.1 493 81.1 69.3

Table 17: Performance comparison with LLM-as-a-judge on the Best-of-8 strategy of the policy model Qwen?2.5-
Math-7B-Instruct.

Minerva GaoKao Olympiad College MMLU

Setting GSMSK  MATH “\ith  2023En Bench  Math STEM %
pass@8 (Upper Bound) 97.3 93.2 56.6 83.6 62.4 54.1 95.3 77.5
maj@8 96.0 88.6 47.8 73.8 50.1 50.2 84.9 70.2
LLM-as-a-judge, Open-source language models

POINTWISE

QwQ-32B-Preview 96.2 88.3 46.3 75.3 51.0 50.0 74.9 68.9
Qwen2.5-72B-Instruct 96.5 87.8 474 76.4 48.9 50.0 76.0 69.0
PAIRWISE

QwQ-32B-Preview 96.4 90.9 46.0 79.5 55.1 50.5 73.6 70.3
Qwen2.5-72B-Instruct 96.1 88.2 434 75.3 50.1 49.6 71.4 67.7
PRMs

Qwen2.5-Math-PRM-7B 96.8 89.6 46.7 77.7 514 504 76.4 69.9
Qwen2.5-Math-PRM-72B 96.4 89.9 46.0 77.4 52.9 50.1 82.3 70.7

Table 18: Performance comparison with LLM-as-a-judge on the Best-of-8 strategy of the policy model Qwen?2.5-
Math-72B-Instruct.
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Prompt for constructing PRM training data via LLM-as-a-judge

I will provide a math problem along with a solution. They will be formatted as
follows:

[Math Problem]

<math_problem>
...(math problem)...
</math_problem>

[Solution]

<paragraph_1>
...(paragraph 1 of solution)...
</paragraph_1>

<paragraph_n>
...(paragraph n of solution)...
</paragraph_n>

Your task is to review each paragraph of the solution in sequence, analyzing,
verifying, and critiquing the reasoning in detail. You need to provide the analyses
and the conclusion in the following format:

<analysis_1>
...(analysis of paragraph 1)...
</analysis_1>

<analysis_n>
...(analysis of paragraph n)...
</analysis_n>

<conclusion>
Correct/Incorrect
</conclusion>

* When you analyze each paragraph, you should use proper verification,
recalculation, or reflection to indicate whether it is logically and
mathematically valid. Please elaborate on the analysis process carefully.

* If an error is detected in any paragraph, you should describe the nature and
cause of the error in detail, and suggest how to correct the error or the correct
approach. Once a paragraph is found to contain any error, stop further analysis
of subsequent paragraphs (as they may depend on the identified error) and directly
provide the conclusion of "Incorrect."”
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For instance, given a solution of five paragraphs, if an error is found in the
third paragraph, you should reply in the following format:

<analysis_1>

...(analysis of paragraph 1)...

</analysis_1>

<analysis_2>

...(analysis of paragraph 2)...

</analysis_3>

<analysis_3>

...(analysis of paragraph 3; since an error is found here, also provide detailed

critique and correction guideline)...
</analysis_3>

<conclusion>
Incorrect

</conclusion>

Note that the analyses of paragraphs 4 and 5 should be skipped as the paragraph
3 has been found to contain an error.

* Respond with your analyses and conclusion directly.

The following is the math problem and the solution for you task:
[Math Problem]

{tagged_problem}

[Solution]

{tagged_response}
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