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Abstract

The rapid adoption of large language models
(LLMs) in diverse applications has intensified
concerns over their security and integrity, par-
ticularly in cloud environments where users
cannot access internal model parameters. One
critical threat is model tampering, which can
compromise LLM behavior and reliability.
However, traditional tamper detection methods,
designed for deterministic classification mod-
els, are inadequate for LLMs due to their out-
put randomness and massive parameter spaces.
In this paper, we introduce Efficient Sensitive
Fingerprinting (ESF), the first fingerprinting
method tailored for black-box tamper detection
of LLMs. ESF generates fingerprint samples by
optimizing output sensitivity at selected detec-
tion token positions and leverages Randomness-
Set Consistency Checking (RSCC) to accom-
modate inherent output randomness. Addi-
tionally, we propose a novel Max Coverage
Strategy (MCS) to select an optimal set of fin-
gerprint samples that maximizes joint sensi-
tivity to tampering. Grounded in a rigorous
theoretical framework, ESF is computation-
ally efficient and scalable to large models. Ex-
tensive experiments on state-of-the-art LLMs
demonstrate that ESF reliably detects tamper-
ing—including fine-tuning, model compres-
sion, and backdoor injection—with detection
rates of at least 99.2% using only 5 fingerprint
samples, offering a robust solution for securing
cloud-based AI systems.

1 Introduction

Large Language Models (LLMs) are increasingly
utilized in diverse fields, including code genera-
tion (Jiang et al., 2024), legal document analy-
sis (Lai et al., 2024), medical diagnosis (Nazi and
Peng, 2024), and decision-making (Li et al., 2022;
Yang et al., 2024). These models are commonly de-
ployed on third-party cloud platforms such as Ama-
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Figure 1: Illustration of tampering attacks on cloud-
deployed LLMs and fingerprinting for tamper detection.

zon Web Services, Microsoft Azure, and Google
Cloud, which raises significant concerns regard-
ing their integrity and security. Adversaries may
stealthily insert backdoors (Zhang et al., 2021),
enabling the model to produce manipulated out-
puts in response to specific triggers. Furthermore,
unscrupulous service providers may covertly em-
ploy model compression techniques (Xiao et al.,
2023) to reduce operational costs (He et al., 2019),
potentially compromising model reliability. To ad-
dress these risks, it is essential to develop black-
box methods for verifying the integrity of deployed
LLMs through inconspicuous user queries.

Fingerprinting techniques (He et al., 2019; Xi-
aofan et al., 2024) offer a promising approach for
tamper detection by querying a model as a normal
user, as shown in Fig. 1. These methods gener-
ate fingerprint samples highly sensitive to model
modifications and determine tampering based on
the model’s responses. However, existing finger-
printing techniques are designed for determinis-
tic classification models, where the same input al-

10477



ways produces the same output, making tamper
detection straightforward—if the top-1 label differs
from the expected output, the model is deemed tam-
pered with. In contrast, LLMs introduce random-
ness through temperature-based sampling, render-
ing prior approaches ineffective since an unaltered
model can produce different outputs for the same
input. Moreover, LLMs have significantly larger
parameter spaces than traditional models, making
it more challenging to design fingerprint samples
that effectively cover potential modifications across
a vast number of parameters.

In this paper, we propose Efficient Sensitive Fin-
gerprinting (ESF), the first fingerprinting method
tailored for black-box tamper detection of LLMs.
ESF generates sensitive samples by optimizing out-
put sensitivity at selected detection token positions,
which can vary across samples, and selects the
most sensitive samples as fingerprints for tamper
detection. To address LLM output randomness,
ESF employs Randomness-Set Consistency Check-
ing (RSCC): for each detection token position, it
records all possible tokens that an unaltered model
could generate in typical practical settings. The
fingerprinting process is designed to maximize the
likelihood that a tampered model will produce an
out-of-set token at detection positions. During de-
tection, if any generated token falls outside the
expected set, the model is flagged as tampered;
otherwise, it is considered unaltered. To enhance
detection robustness, multiple fingerprint samples
can be used for each decision, and in this setting,
ESF introduces a novel Max Coverage Strategy
(MCS) to select an optimal set of fingerprint sam-
ples, maximizing their joint sensitivity to improve
tamper detection.

ESF is computationally efficient for large mod-
els, with its fingerprint generation and selection
processes grounded in theoretical analysis. Our ex-
tensive experiments demonstrate that ESF is both
effective and efficient for LLM tamper detection,
achieving high detection rates and making it highly
practical for real-world deployment.

Our contributions are summarized as follows:
• We present Efficient Sensitive Fingerprinting

(ESF), the first black-box tamper detection
method for LLMs that is robust to inherent
output randomness. ESF generates finger-
print samples by optimizing the sensitivity
of selected detection token positions and max-
imizing their combined response to parameter
modifications in the protected model.

• We provide a theoretical framework for op-
timizing fingerprint sensitivity while ensur-
ing computational efficiency, enabling ESF to
scale to large models.

• We introduce the Max Coverage Strategy
(MCS), a theoretically grounded method for
selecting fingerprint samples to maximize de-
tection coverage of altered parameters, en-
hancing tamper detection performance.

• Our comprehensive experiments demonstrate
ESF’s effectiveness across diverse tamper sce-
narios, achieving detection rates of at least
99.2% using only 5 fingerprint samples.

2 Related Work

Both watermarking and fingerprinting have been
explored for black-box tamper detection of deep
neural network (DNN) models. Watermarking
methods (Yin et al., 2023) require modifying the
model, whereas fingerprinting does not. Since our
focus is on fingerprinting, we consider only ap-
proaches that do not modify the model.

Several fingerprinting techniques (He et al.,
2019; Docena et al., 2021; Kuttichira et al., 2022;
Wang et al., 2023; Xiaofan et al., 2024; Aramoon
et al., 2021; He et al., 2024) have been proposed
for black-box tamper detection in traditional clas-
sification models. These methods rely on the de-
terministic relationship between input and output
at inference time: a model is considered altered
if its predictions for specific fingerprint samples
deviate from expected labels. However, LLMs in-
troduce inherent randomness in their outputs due
to decoding strategies such as top-K and top-P
sampling, breaking this deterministic input-output
relationship and rendering existing fingerprinting
techniques ineffective. Moreover, the significantly
larger parameter space of LLMs provides adver-
saries with more opportunities for undetectable
modifications, necessitating a more effective and
scalable fingerprinting approach.

Beyond tamper detection, fingerprinting has also
been widely used for intellectual property (IP) pro-
tection (Jin et al., 2024; Cao et al., 2021; Wang
and Chang, 2021; Lukas et al., 2021; Wang et al.,
2021; Chen et al., 2021; Li et al., 2021; Zhao et al.,
2020; Le Merrer et al., 2020; Yang et al., 2022;
Pan et al., 2022; Cong et al., 2023; Li et al., 2024,
2023; Zhang and Koushanfar, 2024; Wang et al.,
2024; Zhang et al., 2024; Pang et al., 2024), which
aims to verify whether a given model is the pro-
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tected model or derived from it, supporting claims
of model ownership. In contrast, tamper detec-
tion determines whether a model has been altered.
While extensive research has been conducted on
fingerprinting for IP protection in LLMs, tamper
detection for LLMs remains an unexplored area.

3 Threat Model

Following prior works, we adopt a white-box gener-
ation and black-box detection model, as illustrated
in Fig. 1. In the fingerprint generation phase, we
assume white-box access to the protected LLM,
including its intermediate features. This is rea-
sonable, as fingerprint samples are created by the
model owner for public tamper detection. In the
detection phase, we assume black-box access to
the suspect model, where only API queries and text
outputs are available.

We also assume public access to either a tok-
enizer or a securely encapsulated tokenizer API,
enabling consistent tokenization across different
users, such as researchers and developers. Many
models, including GPT (Brown et al., 2020) and
BERT (Devlin et al., 2019), have open-sourced
their tokenizers. Also, the model owners can pro-
vide a securely encapsulated tokenizer API that
maintains functional alignment with the original
training tokenization during tamper detection while
protecting implementation details.

Following prior work (Wang et al., 2023), we
assume a trusted third party securely stores and
distributes fingerprint samples for public tamper
detection, while the cloud service provider may be
untrustworthy and could tamper with the uploaded
LLM. Additionally, adversaries may attempt to ac-
quire or generate fingerprint samples to evade de-
tection.

4 Theoretical Framework for Sensitive
and Efficient Fingerprinting

In this section, we define fingerprint sensitivity
and provide a theoretical framework for generating
sensitive and efficient fingerprint samples.

4.1 Sensitivity of Fingerprint Samples

To reliably detect tampering in LLMs, it is crucial
to identify effective fingerprint samples whose out-
puts are highly responsive to changes in the model’s
parameters. In this way, even minor modifications
to the model can lead to noticeable differences in
the model’s responses to these fingerprint samples.

Therefore, quantifying sensitivity of input samples
is a foundational step in crafting effective finger-
print samples for tamper detection.

We formally define the sensitivity of a sample
x with respect to a model f(·) parameterized by
W = {W1, . . . ,WL} as follows:

Definition 4.1 (Sample Sensitivity). Consider a
sample x and a model f(·) with parameters W =
{W1, . . . ,WL}.
Layer-wise Sensitivity. The sensitivity of the
model output f(W,x) to perturbations in the pa-
rameters Wi of layer i is measured by the Frobenius
norm of the gradient:

Si(x,Wi) =
∥∥∥∂f(W,x)

∂Wi

∥∥∥
F
. (1)

Network-wise Sensitivity. Aggregating across all
layers, the overall sensitivity of the model to per-
turbations in all parameters W for the input x is
defined as:

S(x,W ) =

∥∥∥∥∥
∂f(W,x)

∂W

∥∥∥∥∥
F

=

(
L∑

i=1

∥∥∥∂f(W,x)

∂Wi

∥∥∥
2

F

)1/2

=

(
L∑

i=1

Si(x,Wi)
2

)1/2

.

(2)

Eq. 1 quantifies the sensitivity of the model out-
put to perturbations in a single layer, while Eq. 2
captures the aggregate sensitivity to perturbations
across the entire parameter set W .

4.2 From Overall to Single-Layer Sensitivity
Directly optimizing the overall network-wise sen-
sitivity defined in Eq. 2 can be computationally
prohibitive for LLMs due to their immense param-
eter space. To address this challenge, we provide a
theoretical analysis that enables efficient sensitiv-
ity optimization by focusing on individual layers,
thereby reducing computational overhead while
preserving effectiveness.

For tractability, our analysis is based on the fol-
lowing assumptions:

1. The derivative of the activation function σ(·)
is bounded, i.e., 0 < mσ ≤ σ′(z) ≤ Mσ

almost everywhere, where mσ and Mσ are
positive constants.

2. The weight matrix Wk of each layer satisfies
a non-degeneracy condition: for any vector
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v, 0 < mW,k∥v∥2 ≤ ∥Wkv∥2 ≤ MW,k∥v∥2,
with mW,k > 0. This prevents local collapse
(e.g., vanishing gradients) in the network.

3. The output of every block is fed into a
(learned) affine LayerNorm with gain gk and
bias bk. For all allowed inputs, the Layer-
Norm (LN ) is LN -Lipschitz and lN -inverse-
Lipschitz: for all vectors u, lN∥u∥2 ≤
∥LNk(u)∥2 ≤ LN∥u∥2, where 0 < lN ≤
LN < ∞ are constants independent of the
input x.

Proposition 4.2 (Positive Correlation of Layer Sen-
sitivities). Assume f : Rd → Rm is an L-layer
network satisfying Assumptions 1-3. For any pair
of indices 1 ≤ i < j ≤ L, there exist strictly
positive constants Cmin

ij and Cmax
ij , depending only

on (mσ,Mσ,mW ,MW , lN , LN ) and the gap j−i,
such that for every input x,

Cmin
ij Sj(x) ≤ Si(x) ≤ Cmax

ij Sj(x). (3)

Thus, increasing the sensitivity of one layer propor-
tionally increases the sensitivity of any other layer,
up to uniform constants.

The proof is provided in Appendix A.1.

Corollary 4.3 (Positive Correlation of Layer-wise
and Network-wise Sensitivity). Under the same
assumptions as Prop. 4.2, for a fingerprint sample
x and an LLM f(·) with L layers, optimizing the
sensitivity of a single layer will simultaneously en-
hance the overall network-wise sensitivity across
all layers.

The proof is provided in Appendix A.2.

Practical Considerations Regarding Assump-
tions. Assumption 1 may not strictly hold for
all activation functions. For example, in SwiGLU,
the SiLU component can have a negative derivative
for very negative pre-activations. However, this
“bad” region is rarely encountered in practice, as
standard data distributions and weight initializa-
tions keep most neuron inputs within well-behaved
ranges. As a result, the vast majority of neurons
maintain positive, bounded gradients, and the few
neurons that do enter the negative-derivative regime
contribute negligibly to the layer-wise Jacobian
products. Therefore, while Assumption 1 is not
satisfied everywhere, it holds almost everywhere
for SwiGLU networks.

Similarly, for Assumption 3, it is possible to
construct pathological cases where the LayerNorm

0 200 400 600 800 1000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
2-

no
rm

Last One Layers Gradient L2-norm
Last Two Layers Gradient L2-norm
Last Three Layers Gradient L2-norm
All Gradient L2-norm

Figure 2: Experimental analysis of the correlation be-
tween sensitivities of different single layers and between
single-layer and overall model sensitivities.

scale vector γ is driven to zero, violating the
inverse-Lipschitz condition. However, such cases
are measure-zero under realistic feature distribu-
tions and would catastrophically degrade model
performance, making them easily detectable. In
practice, with the standard choice ε = 10−5

and γ initialized near 1, production LLMs (GPT,
LLAMA, GEMMA, etc.) empirically satisfy lN ≈
1/
√
dmodel > 0 across billions of tokens. Thus,

the bidirectional Lipschitz bounds in Assumption 3
also hold almost everywhere.

These considerations ensure that our theoreti-
cal assumptions are well met in practice, as fur-
ther confirmed by our following experiments on
SwiGLU-based models.

To validate Prop. 4.2 and Corollary 4.3, we con-
duct an experiment by maximizing

∥∥∥∂f(x)∂WL

∥∥∥
2

and
recording the sensitivity of other layers on Qwen-
2.5-0.5B (Team, 2024). As shown in Fig. 2, the re-
sults reveal a consistent trend between sensitivities
of different single layers and between single-layer
and overall model sensitivities, supporting both the
proposition and the corollary.

4.3 From Gradient to Latent Output

Building on Prop. 4.2 and Corollary 4.3, it is suf-
ficient to maximize the sample sensitivity with re-
spect to a single layer, rather than across all layers.
Nevertheless, directly optimizing Eq. 1 necessitates
the computation of second-order derivatives dur-
ing backpropagation when generating fingerprint
samples, which is computationally inefficient. To
address this limitation, we next present a theoreti-
cal analysis that enables further improvements in
the efficiency of fingerprint sample generation.

Proposition 4.4 (Positive Correlation between Gra-
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dient Sensitivity and Latent Output). Let fi(x) de-
note the output of the i-th layer (0 ≤ i ≤ L). The
ℓ2 norm of the gradient-defined sensitivity of the
last (L-th) layer, S =

∥∥∥∂fL(x)∂WL

∥∥∥
F

, is positively cor-
related with the ℓ2 norm of the penultimate layer’s
output, denoted by ∥fL−1(x)∥2.

The proof of Prop. 4.4 is provided in Appendix A.3.
Prop. 4.4 implies that, instead of directly max-

imizing the gradient-defined sensitivity—which
requires computationally expensive second-order
derivatives—one can efficiently maximize the ℓ2
norm of the penultimate layer’s output to achieve
a similar effect. This approach substantially im-
proves the efficiency of fingerprint sample genera-
tion, as it only involves first-order computations.

To empirically validate Prop. 4.4, we conduct an
experiment in which we maximize ∥fL−1(x)∥2 and

record
∥∥∥∂fL(x)∂WL

∥∥∥
2

on Qwen-2.5-0.5B. As shown in
Fig. 3, the results demonstrate a consistent trend
between ∥fL−1(x)∥2 and

∥∥∥∂fL(x)∂WL

∥∥∥
2
, thereby sup-

porting Prop. 4.4.

4.4 Sample Sensitivity and Tamper Detection

By Prop. 4.4, it is sufficient to evaluate the ℓ2-norm
of the penultimate hidden state to obtain the sam-
ple sensitivity S(x,W ). We now establish a con-
nection between this sensitivity and the expected
observable shift in the model’s output distribution
under small, random parameter tampering.

Perturbation Model. Consider a parameter vec-
tor W ∈ RdW , and suppose an adversary adds an
isotropic random perturbation ∆W ∼ D such that

E[∆W ] = 0, E
[
∆W∆W⊤] = ρ2

dW
IdW , (4)

where ρ > 0. Both a Gaussian distribution
N
(
0, (ρ2/dW )I

)
and a vector chosen uniformly

on the sphere of radius ρ satisfy Eq. 4.
Proposition 4.5 (Expected Top-K Shift and Sensi-
tivity). Define z = f(x;W ), z′ = f

(
x;W+∆W

)

and let p = softmax(z), p′ = softmax(z′). Let
TK(·) be the normalized top–K truncation of a
probability vector and let dTK : ∆K−1×∆K−1→
R≥0 be any distance metric which is inverse-
Lipschitz (e.g., the total-variation distance). Under
the isotropic perturbation model in Eq. 4,

E∆W

[
dTK

(
TK(p), TK(p′)

)]
≥ CtotS(x,W ),

(5)
where Ctot = ρ√

dW
CsmCTK > 0 is the inverse-

Lipschitz constant of the softmax on the zero-sum
subspace, and CTK > 0 is an average inverse-
Lipschitz constant of the top-K mapping operator.
The proof of Prop. 4.5 is provided in Appendix A.4.

This result demonstrates that the expected shift
in the LLM’s output distribution is lower-bounded
by the sample sensitivity S(x,W ). Therefore, max-
imizing sample sensitivity directly increases the
expected detectability of model tampering in the
output distribution. This establishes sample sensi-
tivity as an effective and efficient signal for tamper
detection in practice.

5 ESF: Efficient Sensitive Fingerprinting

We present the design of Efficient Sensitive Finger-
printing (ESF), which enables robust and efficient
tamper detection for LLMs. ESF consists of three
key components: fingerprint sample generation,
Randomness-Set Consistency Checking (RSCC),
and the Max Coverage Strategy (MCS).

5.1 Fingerprint Sample Generation
Based on the theoretical framework described in
Section 4, we efficiently maximize the sensitiv-
ity of an input x for an LLM f(·) by maximizing
||fL−1(x)||2 at each detection token position. Our
optimization objective is:

max
∆x

S(x) = ||fL−1(x+∆x)||2 (6)

We solve Eq. 6 using iterative gradient ascent:

xi+1 = xi + η · ∇xiS(xi) (7)

where η denotes the learning rate. This optimiza-
tion generates a set of sensitive samples, from
which we select the most sensitive ones to form
a set of fingerprint samples, highly responsive to
weight changes caused by model tampering.
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5.2 Randomness-Set Consistency Checking
To address the inherent randomness in LLM out-
puts, we introduce Randomness-Set Consistency
Checking (RSCC). During fingerprint generation
for a sample x, we collect the top-K and top-P
token candidates at each detection token position,
forming the fingerprint label set Y for that position.
This set represents the range of tokens the protected
model is likely to generate at the detection token
position under typical inference settings.

During detection, when x is used to query the
suspect model, the returned text is tokenized. If
the predicted token ypred at any detection position
does not belong to the corresponding label set Y
(ypred /∈ Y), the model is considered tampered.
When multiple fingerprint samples are used in a
single query, the model is flagged as tampered if
any sample detects tampering; otherwise, it is con-
sidered unaltered.

5.3 Max Coverage Strategy
When probing a model with N fingerprint samples
X = {x(1), . . . , x(N)}, our objective is to maxi-
mize their joint sensitivity:

Smax(X ,W ) = max
x∈X

S(x,W ), (8)

where S(x,W ) is the sensitivity for a single input
x. A large Smax ensures that at least one fingerprint
in X is highly responsive to small perturbations.

Empirical Premise. LayerNorm (or RMS-
Norm) makes penultimate-layer embeddings in
modern LLMs approximately zero-mean, isotropic,
and sub-Gaussian (Cai et al., 2021). Thus, for
e = fL−1(x) ∈ RdL−1 , we assume

E[e] = 0, Cov(e) = σ2I, ∥e∥ψ2 ≤ κσ, (9)

where ∥ · ∥ψ2 is the sub-Gaussian (Orlicz) norm,
defined for a random vector v as

∥v∥ψ2 = sup
∥u∥2=1

sup
p≥1

p−1/2
(
E|⟨u, v⟩|p

)1/p
,

with σ = Θ(1) and dL−1 = O(103−4) for modern
LLMs such as those in Section 6.

Proposition 5.1 (High-probability Max Coverage).
Let x(1), . . . , x(N) be i.i.d. samples from a distri-
bution satisfying Eq. 9, and let en = fL−1(x

(n)).
Define the pair-wise distance

D =
∑

1≤m<n≤N
∥em − en∥22. (10)

For any 0 < δ < 1, set sN,δ =

σ

(√
dL−1 +

√
2 log 2N

δ

)
. There exist universal

constants c > 0 such that

Pr
[
Smax ≥

√
dL sN,δ ∧ D ≥ c σ2N2dL−1

]
≥ 1− δ.

(11)

On this event, the joint detection radius rmin =
τ/(ηSmax) satisfies

rmin ≤ τ

η
√
dL sN,δ

= O

(
τ

ησ
√
dLdL−1

)
.

(12)

The proof is given in Appendix A.5. Prop. 5.1
guarantees that, with probability at least 1 − δ,
a batch of N i.i.d. fingerprint samples will con-
tain at least one fingerprint sample with sensitivity
Θ(
√
dLdL−1), resulting in a detection radius of

rmin = O
(
τ/(ησ

√
dLdL−1)

)
. Moreover, maxi-

mizing the pairwise-distance statistic D increases
the likelihood that D ≥ c σ2N2dL−1, and thus
improves the probability that the high-sensitivity
event in Eq. 11 holds.

Based on this, we introduce the Max Coverage
Strategy (MCS), which selects fingerprint samples
to maximize joint sensitivity by maximizing their
pairwise distances in the embedding space.

To select N fingerprint samples, we first com-
pute the penultimate-layer embeddings for all can-
didates in the fingerprint pool S using the pre-
trained LLM. For each sample si ∈ S, let ei =
M(si) denote its embedding. The first sample is
chosen at random. Then, at each step, we select the
sample s∗ that maximizes the minimum distance
to all previously selected samples:

s∗ = arg max
s∈S\S∗

min
s′∈S∗

d(es, es′), (13)

where d(es, es′) is the Euclidean distance in the
embedding space. This process is repeated until
N samples are chosen, ensuring maximal coverage
and detection capability.

In practice, if the number of fingerprint samples
per probe is fixed, the model owner can pre-group
samples using MCS, assigning each group to a sin-
gle probe. If the number is not predetermined, the
model owner can precompute a pairwise distance
table and store it with a trusted third party. When a
user requests a specific number of fingerprint sam-
ples, the trusted third party applies MCS using the
distance table to select the optimal set, thus maxi-
mizing joint sensitivity, and provides the selected
samples to the user.
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6 Experimental Results

6.1 Experimental Setup

To comprehensively evaluate ESF, we assess its
detection performance on five widely used state-of-
the-art (SOTA) models: Meta LLaMA-3-8B and
LLaMA-3.2-1B from the LLaMA 3 (AI@Meta,
2024) family, Qwen-2.5-0.5B and Qwen-2.5-7B
from the Qwen 2.5 (Team, 2024) family, and Mis-
tral 7B (Jiang et al., 2023). We evaluate ESF un-
der three model tampering scenarios: fine-tuning,
backdoor injection (Xu et al., 2024), and model
compression (Dettmers et al., 2022).

6.1.1 Settings for Fingerprint Generation and
Tamper Detection

For each original model f(x), we generate 2,500
sensitive samples with randomly selected source
inputs and select the 500 most sensitive to form
a fingerprint pool. For each fingerprint sample x,
we record the top-K = 50 token candidates of
the detection output token as its randomness set,
representing the maximal randomness level com-
monly used in practice. Let Ns denote the number
of fingerprint samples used per probe. For tamper
detection, when Ns = 1, we randomly select a fin-
gerprint sample from the pool to query the suspect
model and report the average over 500 samples.
When Ns > 1, we randomly select one fingerprint
sample and use MCS to select the remaining Ns−1
samples; this process is repeated 500 times and the
results are averaged.

By default, our experiments focus on the first
output token position for tamper detection. As
shown in Appendix B.1, considering only the first
predicted token is sufficient for effective detection.
Nevertheless, in practical scenarios, incorporating
multiple output token positions per fingerprint sam-
ple can further improve detection performance.

6.1.2 Model Tampering Types
In our experiments, we assess the performance of
ESF under three popular model tampering types:
model fine-tuning, backdoor injection, and model
compression.

Specifically, for model fine-tuning and backdoor
injection, we examine the impact of three parameter
update strategies: Full Parameter Fine-Tuning:
All model parameters are updated. Last 3 Layers
Fine-Tuning: Only the final three transformer lay-
ers are trainable. LoRA Fine-Tuning (Hu et al.,
2021): A parameter-efficient approach that intro-
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Figure 4: Model replacement-based tamper detection
rate (%) of ESF. The vertical axis represents the model
utilized for generating fingerprints, while the horizontal
axis denotes the substitute model.

duces low-rank matrices to approximate weight up-
dates, leaving the base model weights unchanged.

For model fine-tuning, we use 5,000 clean sam-
ples from the Alpaca (Taori et al., 2023) instruction-
tuning dataset. For the backdoor injection, we use
5,000 Alpaca-derived samples, 10% of which (500
samples) are embedded with a predefined trigger
that forces the model to produce a specific incorrect
output during inference (Xu et al., 2024). All fine-
tuning is performed using LLaMA-Factory (Zheng
et al., 2024) for 1 epoch with batch size 1 and a
learning rate of 10−5.

For model compression, we apply int4 and int8
quantization using bitsandbytes (Dettmers et al.,
2022). For each type of tampering, we indepen-
dently train 10 tampered models from the original.

6.2 Tamper Detection Performance

Table 1 shows ESF’s effectiveness across models
and tampering types. With Ns = 1, ESF achieves a
minimum detection rate of 43.4%. As Ns increases
to 5, detection rates reach at least 99.2% across all
tampering types, highlighting the high sensitivity
of ESF-generated fingerprint samples.

6.3 Replacement-Based Model Tampering

A dishonest cloud provider might replace the up-
loaded LLM with another existing model to re-
duce deployment costs. We evaluate ESF’s perfor-
mance in detecting such replacements, as shown in
Fig. 4. ESF demonstrates high sensitivity to cross-
architecture substitutions, achieving over 99.8%
detection with a single fingerprint. For intra-
architecture substitutions within the same family,
detection rates exceed 66.6% for Ns = 1 and
99.8% for Ns = 5.
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Table 1: Tamper detection rate (%) with NS fingerprint samples

Models Qwen-2.5-0.5B Qwen-2.5-7B LLaMA-3.2-1B LLaMA-3-8B Mistral-7B
Tempering type \ NS 1 5 1 5 1 5 1 5 1 5

Clean
data

fine-tuning

Full parameter 95.2 100 97.8 100 98.2 100 100 100 72.0 100
Lora 69.4 100 56.2 100 65.6 99.8 80.0 100 64.2 100

Last 3 layers 45.6 100 71.0 100 81.4 100 95.2 100 55.4 100
Backdoor
Injection

fine-tuning

Full parameter 92.2 100 98.6 100 98.6 100 100 100 76.4 100
Lora 75.0 100 80.2 100 66.0 99.8 86.6 100 62.8 100

Last 3 layers 47.6 99.6 65.6 100 82.4 100 95.8 100 65.0 100
Model

compression
int4 81.2 100 73.0 100 70.8 100 71.2 100 55.6 99.6
int8 63.2 100 43.4 99.4 66.2 100 53.6 100 49.6 99.2

Table 2: Tamper detection rate (%) under varying ran-
domness levels. The tampering method is backdoor
injection via fine-tuning Qwen-2.5-0.5B.

Tempering type
/ NS

Setting 1 Setting 2 Setting 3 Setting 4
1 5 1 5 1 5 1 5

Full Parameter 99.4 100 95.2 100 91.4 100 80.2 100
LoRA 98.8 100 92.4 100 70.4 99.8 62.2 99.0

Last 3 Layers 98.2 100 90.0 100 59.8 98.4 47.8 96.8

False Positive Rate 0.0 0.0 0.0 0.0 0.0 0.0 11.2 2.8

6.4 Tamper Detection under Mismatched
Randomness Levels

We evaluate ESF’s robustness under four different
inference-time randomness configurations, while
RSCC recording is fixed at top-K = 50. The
inference settings are as follows: Setting 1: top-
P = 70%, top-K = 10; Setting 2: top-P = 80%,
top-K = 20; Setting 3: top-P = 92%, top-K = 50;
Setting 4: top-P = 95%, top-K = 100.

As shown in Table 2, ESF maintains robust
detection performance across all configurations.
Notably, even in Setting 4, where inference ran-
domness exceeds that of the recording phase, ESF
achieves a 96.8% detection rate for Ns = 5, demon-
strating strong resilience to randomness-level mis-
match. Additional details are provided in Ap-
pendix B.2. The first three settings yield no false
positives since RSCC records the top-50 tokens,
while Setting 4 results in a small false positive rate
of about 2.8% for Ns = 5.

6.5 Ablation Study

To evaluate whether MCS improves detection rates
when using multiple fingerprint samples, we com-
pare it to a random sampling strategy (ESF without
MCS) and to natural, non-sensitive inputs (Non-
sensitive samples). Figure 5 presents the results of
fine-tuning the last three layers of Qwen2.5-0.5B
with both clean and poisoned data. Additional abla-

tion results using other models and tampering types
are provided in Appendix B.3.

The results demonstrate that MCS significantly
enhances multi-sample detection performance. For
instance, with Ns = 2 in detecting poison data
fine-tuning on the last 3 layers, the detection rate
increases from 61.6% (without MCS) to 88.2%
(with MCS), enabling ESF to reach near-perfect
detection more rapidly.
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(a) Clean data fine-tuning the
last 3 layers.
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(b) Backdoor injection by
fine-tuning the last 3 layers.

Figure 5: Tamper detection rate (%) under different
fingerprint selection strategies for different tampering
types on Qwen2.5-0.5B.

6.6 Robustness to Adaptive Attacks

6.6.1 Fingerprint Leakage
Adversaries may attempt to bypass ESF by lever-
aging previously collected fingerprint samples or
generating new ones for adaptive attacks, aiming
to manipulate the model while keeping the top-
K token candidates of the fingerprint samples un-
changed. To evaluate ESF’s robustness against
such attacks, we randomly split the fingerprint pool
into two equal subsets: one for launching adaptive
attacks (leaked fingerprints) and the other for tam-
per detection (unleaked fingerprints). We conduct
adaptive attacks using clean-data fine-tuning on the
last 3 layers of CIFAR10, as shown in Fig. 6. As
training progresses, the detection rate for Ns = 1
with leaked fingerprints drops to 0%, while the
detection rate for unleaked fingerprints remains
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Figure 6: Tamper detection rates using leaked finger-
print samples in adaptive backdoor injection via fine-
tuning the last 3 layers of Qwen-2.5-0.5B against ESF.

relatively high, with only a slight decrease. This
robustness is attributed to the diversity of ESF’s
source samples and the use of MCS.

6.6.2 Anomaly Detection
Adversaries may attempt to bypass tamper detec-
tion by using anomaly detection to identify fin-
gerprint samples and return unaltered outputs for
them. Since our fingerprint generation process does
not initially constrain distortions, optimized finger-
prints can be easily distinguished from normal in-
puts. For example, 20-token segments randomly
sampled from Alpaca have an average perplexity
of 20.29 (Qwen-2.5-0.5B), whereas optimized fin-
gerprints reach a perplexity of 5,578,468.04.

To address this, we constrain fingerprint gen-
eration with a semantic consistency loss (Xu and
Wang, 2024), ensuring fingerprints remain natural
while retaining high detection rates. Specifically,
we initialize each fingerprint with a 20-token seg-
ment randomly selected from the Alpaca dataset
and optimize it as follows:

max
∆x

S(x) = ∥fL−1(x+∆x)∥2+α sim(x, x+∆x) (14)

where sim(·) is cosine similarity and α = 0.05.
This constraint yields detection rates of 27.6% for
NS = 1 and 93.4% for NS = 5, with average
perplexity reduced to 65.79.

This issue can be further mitigated by embed-
ding the perturbed tokens within longer samples.
For example, optimizing 20 tokens within a 100-
token context (arranged in four evenly spaced
groups) reduces average perplexity to 42.67 while
maintaining comparably high detection rates.

6.7 Computational Cost
We compare the efficiency of ESF with all-layer
gradient sensitivity optimization for fingerprint gen-

Table 3: Computational cost across different models for
generating a single fingerprint sample.

Models
Fingerprint Opimized with

Full Layer’s Gradient
Fingerprint Opimized with
Penultimate Layer’s output

Time (s) Memory (GB) Time (s) Memory (GB)
Qwen-2.5-0.5B 84.27 10.53 23.77 6.22
Qwen-2.5-7B 508.67 100.85 147.22 63.49

LLaMA-3.2-1B 206.68 22.27 50.34 13.90
LLaMA-3-8B 1016.78 104.98 299.49 66.44

Mistral-7B 322.08 84.64 103.04 55.60

eration, using dual NVIDIA H20 GPUs. Table 3
summarizes the results. ESF demonstrates sub-
stantial resource efficiency, reducing GPU memory
consumption by 37.32% and generation time by
71.50% on average compared to all-layer gradi-
ent sensitivity optimization. These findings high-
light ESF’s superior efficiency in fingerprint gener-
ation, enabling scalable deployment across models
of varying computational scales and making ESF a
practical solution for real-world applications that
require rapid, resource-constrained tamper detec-
tion.

Moreover, we also conduct an experiment to
demonstrate the effectiveness of ESF compared to
full layers’ gradient sensitivity defined in Eq. 2.
The results in Appendix B.4 demonstrate that ESF
achieves a comparable performance to full layers’
gradient sensitivity when Ns = 5. However, as pre-
vious results showed, ESF is much more efficient
than full layers’ gradient sensitivity.

7 Conclusion

We present Efficient Sensitive Fingerprinting (ESF),
the first tamper detection method specifically tai-
lored for large language models (LLMs) deployed
in cloud environments. By optimizing fingerprint
sensitivity and leveraging both the Max Coverage
Strategy (MCS) and Randomness-Set Consistency
Checking (RSCC), ESF effectively addresses the
challenges of LLM output randomness while sig-
nificantly reducing computational overhead. Our
theoretical analysis establishes the soundness and
efficiency of ESF, while extensive empirical evalua-
tions show that ESF consistently achieves detection
rates of at least 99.2% across diverse tampering sce-
narios using only five fingerprint samples, demon-
strating its robustness and practical applicability.
Overall, ESF not only advances black-box integrity
verification for LLMs but also establishes a strong
foundation for future research on secure and effi-
cient tamper detection in cloud-based AI systems.
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Limitation

While ESF demonstrates strong effectiveness and
efficiency in detecting model tampering, the finger-
print samples it generates are not yet fully natural.
Although we discuss potential strategies to address
this issue in Sec. 6.6.2, there remains significant
room for improvement in balancing the naturalness
and sensitivity of fingerprint samples. We leave
this as future work.

It is worth noting, however, that most existing
cloud service platforms focus on detecting harmful
or privacy-compromising outputs rather than en-
forcing constraints on the naturalness of user inputs.
Given this practical context, we argue that ESF re-
mains a valuable and viable solution for detecting
LLM tampering in black-box settings, providing an
essential layer of integrity verification that supports
the broader goals of security and trustworthiness in
AI deployment.
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A Proofs of Propositions and Corollary

A.1 Proof of Prop. 4.2
Proof. We start by recalling that each layer per-
forms a linear map followed by an element-wise
non-linearity and a normalization. Writing zk =
Wkak−1 and ak = LNk

(
σ(zk)

)
with a0 = x, the

Jacobian of the composite map Lk = LNk ◦σ◦Wk

at the point ak−1 factors exactly as

Jk =
[
Jac(LNk)

]
σ(zk)

diag
(
σ′(zk)

)
Wk. (15)

Because assumption 1 bounds the activation
slope, the singular values of Wk, and the Lips-
chitz constants of the normalization, every Jk is
simultaneously lower- and upper-bounded:

m = mσmW lN ≤ σmin(Jk) ≤ ∥Jk∥op
≤ MσMWLN = M,

(16)

where || · ||op denotes the spectral norm and σmin(·)
is the smallest singular value. Crucially, the same
m,M work for all layers and every input.

To relate two different layers, we consider the
product of Jacobians sandwiched between them.
Denoting Pi→j−1 =

∏j−1
k=i+1 Jk, classical sub-

multiplicativity of singular values gives

m j−i−1 ≤ σmin(Pi→j−1)

≤ ∥Pi→j−1∥op ≤ M j−i−1.
(17)

The next ingredient is the local gradient ∂ak
∂Wk

. It
can be written

∂ak
∂Wk

=
[
Jac(LNk)

]
σ(zk)

(
σ′(zk)⊗ a⊤k−1

)
, (18)

that is, a normalization Jacobian multiplying the
outer product of the element-wise derivative and
the previous activation. Bounding each factor sep-
arately and using ∥u ⊗ v⊤∥F = ∥u∥2∥v∥2 shows
that every such outer product has a Frobenius norm
lying between the lower bound

mJ = mσlN (19)

and the upper bound

MJ = MσLN , (20)

independently of x.
With these uniform constants established, we

express the layer-i gradient of the whole network

through the gradient of a later layer. Using the
chain rule once more,

∂f

∂Wi
= Pi→j−1

(
∂ai
∂Wi

)
Pj→L−1,

∂f

∂Wj
= Pj→L−1

(
∂aj
∂Wj

)
.

(21)

The Frobenius norm of a product admits the two-
sided estimate

σmin(A) ∥B∥F ≤ ∥AB∥F ≤ ∥A∥op ∥B∥F ,
(22)

valid for any conforming matrices A,B. Applying
Eq. 22 to the leftmost factor Pi→j−1 inside Eq. 21
and then inserting Eq. 17 yields

mj−i−1
∥∥∥ ∂ai

∂Wi
Pj→L−1

∥∥∥
F

≤ Si(x)

≤ M j−i−1
∥∥∥ ∂ai

∂Wi
Pj→L−1

∥∥∥
F
.

(23)

For the rightmost factor Pj→L−1, a second use
of Eq. 22 converts the mixed norm in Eq. 23 into a
quantity directly comparable with Sj(x). Indeed,

mJ mL−j Sj(x) ≤
∥∥∥ ∂ai

∂Wi
Pj→L−1

∥∥∥
F

≤ MJ ML−j Sj(x),
(24)

where the constants mJ ,MJ come from Eq. 19
and Eq. 20. Substituting Eq. 24 into Eq. 23 and
grouping the factors of m and M finally produces

mL−i−1 mJ

MJ
Sj(x) ≤ Si(x) ≤ ML−i−1 MJ

mJ
Sj(x).

(25)

Thus Prop. 4.2 holds with

Cmin
ij = mL−i−1 mJ

MJ
, Cmax

ij = ML−i−1 MJ

mJ
.

(26)
Both constants are strictly positive, depend only

on the universal hyperparameters and the distance
j − i, and do not depend on the specific input x.
Interchanging i and j gives the symmetric bound
when i > j, so the proof is complete.

A.2 Proof of Corollary 4.3
Proof. By Prop. 4.2, for every pair of layers (i, k)
there exist strictly positive constants cmin

ik and cmax
ik

such that

cmin
ik Sk(x) ≤ Si(x) ≤ cmax

ik Sk(x). (27)

Fix a layer index i and apply the left-hand side
of Eq. 27:
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S(x,W ) ≥
( L∑

k=1

(
cmin
ik Sk(x)

)2) 1
2

=
( L∑

k=1

(
cmin
ik

)2) 1
2
Si(x).

(28)

Denote Cmin
i =

(∑L
k=1(c

min
ik )2

) 1
2 > 0. Then

Cmin
i Si(x) ≤ S(x,W ). (29)

Using the right-hand side of Eq. 27 yields

S(x,W ) ≤
( L∑

k=1

(
cmax
ik Si(x)

)2) 1
2
=

( L∑

k=1

(
cmax
ik

)2) 1
2
Si(x),

(30)

so with Cmax
i =

(∑L
k=1(c

max
ik )2

) 1
2 we have

S(x,W ) ≤ Cmax
i Si(x). (31)

Combining Eq. 29 and Eq. 31 gives the two-sided
inequality

Cmin
i Si(x) ≤ S(x,W ) ≤ Cmax

i Si(x). (32)

All constants are strictly positive and layer-
dependent only. Therefore, increasing the sensi-
tivity of any single layer i necessarily induces a
proportional increase in the aggregate sensitivity.
More concretely, if an optimization step multiplies
Si(x) by a factor ρ > 1, then by Eq. 32

Snew(x,W ) ≥ ρ
Cmin
i

Cmax
i

Sold(x,W ), (33)

which is strictly larger whenever ρ > 1. Hence,
optimizing a single-layer sensitivity simultaneously
enhances the overall sensitivity of the entire model,
completing the proof.

A.3 Proof of Prop. 4.4
Proof. Let dL be the output dimension of the final
linear layer, so that WL ∈ RdL×dL−1 and fL(x) =
aL = WL aL−1 + bL, aL−1 = fL−1(x). Since
most LLMs do not use any nonlinear activation
functions like ReLu(·) in the last layer, the last
layer of LLMs performs the above linear operations
on the output of the previous layer, the Jacobian of
aL with respect to WL is the Kronecker product

∂aL
∂WL

= IdL ⊗ a⊤L−1, (34)

where IdL is the dL×dL identity matrix. Flattening
this tensor in the canonical way (stacking the dL

row-wise gradients) yields a matrix of size dL ×
(dL dL−1) whose Frobenius norm equals

S =
∥∥∥ ∂aL∂WL

∥∥∥
F
=
∥∥IdL ⊗ a⊤L−1

∥∥
F

=
√

dL ∥aL−1∥2.
(35)

Since dL is a fixed positive constant for the
model, there exist layer-dependent constants C1 =
C2 =

√
dL > 0 such that

C1 ∥fL−1(x)∥2 = S = C2 ∥fL−1(x)∥2. (36)

Hence, the gradient-defined sensitivity S of the
last layer is positively correlated to the ℓ2 norm of
the penultimate layer’s output, which establishes
Prop. 4.4.

A.4 Proof of Prop. 4.5
Proof. Let f(x;W ) be the logits output of an LLM
for input x, and define p = softmax

(
f(x;W )

)
,

with TK(p) the top-K token distribution derived
from p. During model tampering, since attackers
often strive to make their tampering behavior ∆W
as covert as possible, we can consider ∆W as a per-
turbation of W and a first-order Taylor expansion
of f(x;W ) is valid. Then there exists a remainder
R(∆W ) with

f(x;W +∆W ) = f(x;W ) +
∂f(x;W )

∂W
∆W +R(∆W ),

(37)

where ∥R(∆W )∥F = o
(
∥∆W∥F

)
. Let ∆z =

f(x;W +∆W )− f(x;W ). Then from Eq. 37 we
have, for ∆W ,

∥∆z∥F ≥
∥∥∥∥
∂f(x;W )

∂W
∆W

∥∥∥∥
F

− ∥R(∆W )∥F

≥ S(x,W ) ∥∆W∥F .
(38)

Since the softmax function is locally Lipschitz con-
tinuous, there exists a constant Lsm > 0 such that

∥softmax(z+∆z)−softmax(z)∥2 ≥ Csm ∥∆z∥F .
(39)

Let p = softmax(z) and p′ = softmax(z +
∆z). Then from Eq. 38 and Eq. 39, it follows that

∥p′ − p∥2 ≥ Csm S(W ) ∥∆W∥F . (40)

Furthermore, we can assume the top-K mapping
TK is locally Lipschitz with constant CTK > 0.
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This assumption is reasonable because when the
top-K probabilities are well-separated, small per-
turbations in the full distribution only lead to small
changes in the top-K selection, ensuring local sta-
bility. By this assumption, we have

dTK
(
TK(p), TK(p′)

)
≥ CTK ∥p′ − p∥2, (41)

where dTK(·, ·) is a metric measuring the differ-
ence between two top-K distributions. Substituting
Eq. 40 into Eq. 41, we have

dTK

(
TK(p), TK(p′)

)
≥ CTK Csm S(W ) ∥∆W∥F . (42)

Let C = CTK Csm > 0 and W
′
= W +∆W ,

we can obtain the following desired result:

dTK

(
TK(p), TK

(
p
′
))
))

≥ C S(W ) ∥∆W∥F .
(43)

Taking expectations for both sides of Eq. 43, we
have

E∆W

[
dTK

(
TK(p), TK(p′)

)]
≥ ρ√

dW
C

︸ ︷︷ ︸
=Ctot

S(x,W ),

(44)

where Ctot = ρ√
dW

C = ρ√
dW

CsmCTK . Thus,

for a fixed ∥∆W∥F , a larger sensitivity S(x,W )
implies a larger expected shift in the top-K token
distribution, which can be used as the signal of
detecting model tampering.

A.5 Proof of Prop. 5.1
Proof. Prop. 4.4 establishes that for any fingerprint
x with penultimate embedding e = fL−1(x) ∈
RdL−1 , the single-sample sensitivity satisfies

S(x,W ) =
√
dL ∥e∥2. (45)

Hence, it suffices to show that with high proba-
bility there is at least one embedding whose norm is
of order

√
dL−1 and that the total pairwise distance

is of order N2dL−1.
Under the isotropic sub-Gaussian assumption

Eq. 9, each embedding en = fL−1

(
x(n)

)
has mean

zero, Cov(en) = σ2I , and sub-Gaussian norm
∥en∥ψ2 ≤ κσ. In particular, a standard upper-tail
bound for Euclidean norms of such vectors (see
(Wainwright, 2019)) implies that for any t > 0,

Pr
[
∥en∥2 ≥ σ

(√
dL−1 + t

)]
≤ e−c2t

2
, (46)

where c2 > 0 is a universal constant. Setting

t =

√
2 ln

(
2N
δ

)
=⇒ sN,δ = σ

(√
dL−1 +

√
2 ln 2N

δ

)
,

(47)

and applying a union bound over the N indepen-
dent embeddings gives

Pr
[
max

1≤n≤N
∥en∥2 < sN,δ

]
≤ δ

2
, (48)

so that with probability at least 1 − δ
2 ,

max1≤n≤N ∥en∥2 ≥ sN,δ and such that

Smax = max
n

S
(
x(n),W

)
≥
√
dL sN,δ. (49)

Next, define the total pairwise squared distance
D =

∑
1≤m<n≤N ∥em − en∥22. An unbiased-

variance identity rewrites D in terms of the sample
second-moment and the sum of embeddings:

D = N

N∑

n=1

∥en∥22 −
∥∥∥
N∑

n=1

en

∥∥∥
2

2
. (50)

Since ∥en∥22 is sub-exponential with mean
E[∥en∥22] = σ2dL−1, Bernstein’s inequality yields
that for a suitable universal constant,

Pr
[∣∣∣ 1

N

N∑

n=1

∥en∥22 − σ2dL−1

∣∣∣ ≤ σ2
√

dL−1

N

]
≥ 1− δ

4
.

(51)

Meanwhile, with vector Bernstein bound, we have

Pr
[∥∥∥

N∑

n=1

en

∥∥∥
2

2
≤ 4σ2 dL−1N

]
≥ 1− δ

4
. (52)

By a union bound, both Eq. 51 and Eq. 52 hold
simultaneously with probability at least 1− δ

2 . In
that case, since dL−1 and N are large enough that√
dL−1/N ≤ 1

2 dL−1, we can obtain

1

N

N∑

n=1

∥en∥22 ≥ σ2dL−1 − σ2
√

dL−1

N
≥ 1

2
σ2dL−1

∥∥∥
N∑

n=1

en

∥∥∥
2

2
≤ 4σ2 dL−1 N.

(53)

Substituting into Eq. 50 shows that for some con-
stant c > 0,

D = N

N∑

n=1

∥en∥22−
∥∥∥
N∑

n=1

en

∥∥∥
2

2
≥ c σ2N2 dL−1.

(54)
Finally, combining Eq. 49 and Eq. 54, we see

that with probability at least 1 − δ both Smax ≥√
dL sN,δ and D ≥ c σ2N2 dL−1 hold. On this
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Table 4: Tamper detection rate(%) with detection token
numbers from 1 to 3, while tampering type is backdoor
injection fine-tuning with the last 3 layers.

Models Qwen-2.5-0.5B Qwen-2.5-7B LLaMA-3.2-1B LLaMA-3-8B Mistral-7B

token numbers / NS 1 5 1 5 1 5 1 5 1 5

1 47.6 99.6 65.6 100 82.4 100 95.8 100 65.0 100

2 58.2 100 73.4 100 95.2 100 100 100 75.2 100

3 62.4 100 79.6 100 98.8 100 100 100 80.6 100

event the joint detection radius rmin = τ/
(
η Smax

)

satisfies

rmin ≤ τ

η
√
dL sN,δ

= O
(

τ

η σ
√
dL dL−1

)
,

(55)
as claimed. Moreover, increasing D only improves
the probability that Eq. 54 holds with an even larger
margin, so maximizing the pairwise-distance statis-
tic D enhances the empirical probability of the
favorable event. Concretely, when this event oc-
curs, we know both that Smax = maxn S(x

(n),W )
is large enough for tamper detection (because one
∥en∥ is large enough) and that the embeddings are
well spread out such that leave no “hiding” direc-
tion for an adversary, meaning the worst-case per-
turbation size you can hide under (i.e. remain below
threshold τ on all N prompts) shrinks dramatically.
By our concentration bounds, this happens with
probability at least 1− δ. This completes the proof
of Prop. 5.1.

B Additional Experimental Results

B.1 Tamper Detection with Multiple
Detection Token Positions

As mentioned in Section 6.1.1, ESF can utilize
more than one output token at different positions
within each fingerprint sample to validate whether
a model has been tampered with. For each finger-
print sample, we record all randomness sets corre-
sponding to all detection token positions. During
detection, we generate outputs from the model in
real time and compare the tokens produced at each
detection position with the corresponding prede-
fined randomness sets. If we find that any token at
any detection position falls outside its associated
randomness set, we flag the model as tampered.

We conduct experiments on backdoor injection
via fine-tuning the last three layers, evaluating dif-
ferent token positions. Table 4 demonstrates that
increasing the number of verification tokens con-
sistently enhances the detection rate. This result
further confirms that even a single token achieves
satisfactory detection performance when used for
validation.

To further investigate the effect of token position,
we conduct an experiment comparing the perfor-
mance of selecting the first token versus the third
token as the validation token. We use backdoor
injection via fine-tuning on the Qwen-2.5-0.5B
model. The experimental results, shown in Table 5,
indicate that although both tokens are sensitive to
model tampering, the third token performs slightly
worse than the first.

Table 5: Tamper detection rate(%) with detection token
positions from 1 to 3, while tampering type is backdoor
injection fine-tuning with last 3 layers on Qwen-2.5-
0.5B.

token position 1st token 2nd token 3rd token
Ns 1 5 1 5 1 5

Full Parameter 92.2 100 91.4 100 89.6 100
Freeze 75.0 100 74.4 100 71.4 100
LoRA 47.6 100 47.2 100 45.4 100

This performance discrepancy occurs because
the third token records more possible candidate
tokens than the first, due to variations in the to-
kens generated before it (i.e., the first and second
tokens). Since the detection does not consider pre-
ceding tokens, it cannot detect tampering if the first
two tokens mismatch while the third token matches.
This suggests that the first token is marginally more
reliable than the third when used as a single veri-
fication token. However, we note that both tokens
are less effective for tamper detection compared to
using all three token positions together.

Since fingerprint samples are generated by max-
imizing sensitivity to model tampering—without
considering specific tampering types—and the op-
timization process is identical for detection tokens
at different positions, we do not expect one token
position to become systematically more sensitive to
a particular tampering type than another. In other
words, the fingerprint generation process is both
tampering type–agnostic and position–agnostic.

B.2 Further Explanation of Mismatched
Randomness Levels

In our experiments, we consider two scenarios in-
volving mismatches in randomness levels. The
first scenario arises when the tampered model’s
randomness level is lower than that used in our
Randomness-Set Consistency Checking. The sec-
ond scenario occurs when the tampered model’s
randomness level is higher. In the first case, since
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(a) Qwen2.5-7B
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(b) LLaMA-3-8B
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(c) Mistral-7B

Figure 7: Tamper detection rate (%) with different NS

and different fingerprint picking strategies on different
models, while the tampering type is poison data finetun-
ing with the last 3 layers.

ESF can completely mitigate the impact of out-
put randomness on detection, it enables effective
and reliable identification of model tampering. In
the second case, the attacker alters the model’s
inference randomness configuration, resulting in
a randomness level that slightly exceeds the one

recorded by Randomness-Set Consistency Check-
ing. Consequently, the model’s output range may
surpass the bounds of the Randomness-Set, poten-
tially leading to false positives. As reported in
Section 6.4, the false positive rate in this scenario
remains low—approximately 2.8% for Ns = 5.
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(a) Clean data with full layers
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(b) Clean data with LoRA
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(c) Poison data with full layers
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(d) Poison data with LoRA

Figure 8: Tamper detection rate (%) under different
fingerprint selection strategies for different tampering
types on Qwen2.5-0.5B.
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Table 6: Tamper detection rate(%) with full parameter
optimization (FPO) with Eq.2, while tampering type is
poisoned data fine-tuning with last 3 layers.

Models Qwen-2.5-0.5B Qwen-2.5-7B LLaMA-3.2-1B LLaMA-3-8B Mistral-7B

Optimization Method / NS 1 5 1 5 1 5 1 5 1 5

FPO 62.2 100 73.2 100 86.2 100 98.0 100 74.4 100

ESF 47.6 99.6 65.6 100 82.4 100 95.8 100 65.0 100

B.3 Ablation Study on Other Settings
We have presented ablation study results in Sec-
tion 6.5. Here, we provide additional results in-
corporating more models and tampering types.
Fig. 7 displays the outcomes of full-layer and
LoRA fine-tuning with both clean and poisoned
data on Qwen2.5-0.5B. Fig. 8 presents the results
of last-three-layer fine-tuning with poisoned data
on Qwen2.5-7B, LLaMA-3-8B, and Mistral-7B.

These extended results further demonstrate that
our MCS consistently improves multi-sample de-

tection performance across various tampering types
and model architectures.

B.4 Fingerprint Generation with ESF and
Gradient-based Sensitivity

Within the ESF framework, we employ the opti-
mization objective delineated in Eq. 6. Similarly,
the optimization objective presented in Eq. 2 can
also be utilized, which involves leveraging the com-
plete gradient of the model as sensitivity for finger-
print optimization. Table 6 shows the model tamper
detection rate for 500 fingerprints optimized using
the optimization function outlined in Eq. 2. The
results in Table 6 reveal that the fingerprints opti-
mized in this manner exhibit a marginally higher
detection efficiency when NS = 1 compared to
those generated by ESF. However, the disparity in
detection accuracy becomes negligible under the
condition of NS = 5.
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