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Abstract

Current metaphor recognition mainly rely on
Metaphor Detection Theory (MDT), such as
the Metaphor Identification Procedure, which
recognizes metaphors by comparing the basic
meaning of target word with context meaning.
Existing studies have gradually adopted literal
annotations to model basic meanings, reject-
ing the aggregated meanings of target words.
However, these methods ignore the problem
of interference caused by literal annotations,
and do not make full use of semantic expres-
sion relations of MDT, making the models dif-
ficult to detect and generalize. To address
these challenges, we propose a dependency-
based Dual-Attention and Global Semantic Im-
provement (DAGS) framework. DAGS first
extracts literal annotations of target words as
basic meaning from several mainstream cor-
pora. Then, we apply dependency tree and
dual-attention while filtering on input sentences
and basic meanings. Finally, we improve the
MDT to further consider the global semantic
relationship on contexts. The DAGS can not
only extract features from multiple informa-
tion sources but also effectively removes re-
dundancy, while focusing on mission-critical
information. We achieve state-of-the-art on sev-
eral mainstream metaphor datasets (e.g., VUA
ALL, VUAverb, TroFi and PSUCMC), which
suggests that filtering and global semantic im-
provement of contexts is crucial for enhanc-
ing metaphor recognition performance. Our
code is available at https://github.com/VILAN-
Lab/Metaphor-DAGS.

1 Introduction

As a universal linguistic phenomenon, metaphor
is widely found in daily communication, literary
works and media reports. According to the Concep-
tual Metaphor Theory (CMT), metaphor is defined
as a mapping between the source domain and target
domain, i.e., the expression of a deeper meaning
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beyond its literal meaning through one or more
words (Lakoff and Johnson, 2008; Lagerwerf and
Meijers, 2008). For example, in “He hit the nail on
the head in the meeting.” The “hit” means pinpoint-
ing the core point of issue rather than actual body
part that was struck. Metaphor recognition plays
an important role in cognition and communication,
and is widely used in NLP tasks, such as machine
translation (Babieno et al., 2022; Mao et al., 2018),
paraphrase generation (Chakrabarty et al., 2020;
Li et al., 2022b) and sentiment analysis (Li et al.,
2022a; Cambria et al., 2017).

Several strategies have been proposed to detect
metaphors. For example, Mao et al. (2018); Gao
et al. (2018) models the complete sentence con-
text, whereas Choi et al. (2021) introduces the
Metaphor Identification Procedure (MIP) (Group,
2007; Steen et al., 2010) and Selectional Preference
Violation (SPV) (Wilks, 1975). For MIP, a word
can be identified as metaphor when its literal mean-
ing contrasts with its context meaning of a given
sentence. To SPV, the target word is metaphorical
when it occurs less frequently in its context or is
semantically mismatched (Choi et al., 2021). For
example, in “he ignites inspiration”, the contex-
tual meaning of “ignites” is “stimulates creativity”,
which is different from the literal meaning of “‘ig-
nites a flame”. Moreover, the “ignite” is metaphor-
ical, which is rare in the context of “inspiration”.
However, the challenge of accurately handling con-
textual noise and extracting the basic meanings of
target words remains an open research question.
Recently, Wang et al. (2023) considers only part
of the contextual noise problem and still has re-
dundant information and aggregated meanings (i.e.,
proximate meaning). Zhang and Liu (2022); Li
et al. (2023a) propose an improved method for MIP
by abandoning the traditional aggregated meaning
of the target word and taking the literal annotation
as the basic meaning (e.g., replacing “attack” with
“February the Germans attacked Verdun.”). They
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argue that the use of aggregated meanings weakens
the validity of MIP and SPV. Although transform-
ing basic meanings in MIP by adding context may
help in metaphor recognition (Cheng et al., 2021),
it may also introduce redundant interference that
prevents the model from focusing on key seman-
tic information. Furthermore, these methods fail
to fully utilize the semantic relationships of con-
texts when using MDT. Current SPVs only consider
the difference between the target word and a sin-
gle context, while ignoring its relationship with
other contexts (e.g., literal annotations). For MIP,
these methods also lack the understanding of the
global context. Therefore, filtering redundancy in
context, focusing on task-relevant information and
improving semantic relationships remain serious
challenges for metaphor recognition.

To solve the above problems, we propose a
new metaphor recognition framework, which com-
bines dependency-based dual-attention and seman-
tic improvement, namely DAGS. First, we utilizes
GPT-40 (Version GPT-40-2024-08-06) to obtain lit-
eral annotations of target words from mainstream
metaphor corpora, serving as basic meanings. Sub-
sequently, we construct a dependency tree struc-
ture and perform dependency analysis, pruning in-
put sentences and basic meanings simultaneously.
Meanwhile, DAGS introduce a dual-attention mod-
ule to further extract contextual task-relevant infor-
mation. Finally, DAGS improves SPV and MIP,
named global-SPV (G-SPV) and global-MIP (G-
MIP), respectively, to further detect metaphors by
considering the semantic relations of contexts. Ad-
ditionally, DAGS also integrates multiple linguistic
features, such as part-of-speech (POS), position
and local context.

In summary, our contributions are as follows:

1. We propose DAGS, a structure based on
RoBERTa-base that is capable of filtering both
the input sentence and basic meaning.

2. We construct a unique dual-attention module
on metaphor, which is able to focus on im-
portant features and information in different
streams and make connections.

3. Compared with traditional SPV and MIP, our
G-SPV and G-MIP can capture the semantic
information of context more effectively.

4. Experiments demonstrate that DAGS achieves
the best performance on several mainstream

metaphor datasets, including English and
cross-linguistic, and shows significant advan-
tages in other experiments such as zero-shot.

2 Related Work

Earlier studies used aggregated meanings as a sub-
stitute for basic meanings. However, Zhang and
Liu (2022); Li et al. (2023a) argued that aggregated
meanings violated the MIP principle and instead
began using literal annotations as the basic mean-
ing. Building on this, Tian et al. (2024b) continued
to use literal annotations to construct sets of exam-
ple sentences to recognize metaphors. But these
approaches fail to adequately consider redundancy
and key information in multiple contexts. Previ-
ously, Wang et al. (2023) mitigated the noise in the
context by optimizing dependency parsing despite
the use of aggregated meanings, which provides im-
portant inspiration for dual-dependencies in DAGS.
Recently, Jia and Li (2024) introduced internal and
external semantics and multiple metaphor recog-
nition mechanisms to learn differences between
sentences. Similarly, Qiao et al. (2024) modeled
literal meaning uncertainty in MIP through a den-
sity matrix. And Uduehi and Bunescu (2024) used
SPV and MIP to construct expectation and realiza-
tion components to evaluate the meaning of target
words. While Wang et al. (2025) refined the con-
ceptual knowledge of inter-word relationships and
explored the similarity of cross-domain concepts.
These studies further demonstrate the importance
of semantics in metaphor detection, but most of
the approaches ignore the role of global semantic
information.

In addition, Zhang and Liu (2022); Li et al.
(2023a) used aggregated meanings on some of the
data despite considering literal annotations. In re-
cent years, LLM has shown significant potential
in metaphor research. For example, Wachowiak
and Gromann (2023) employed GPT-3 to detect
metaphor expressions in a given sentence and pre-
dict their source domains. Yang et al. (2024) de-
tected verb metaphors using GPT-3.5, aided by lit-
eral collocations and entailment relationship analy-
sis. Similarly, Chen et al. (2024); Tian et al. (2024a)
explored the metaphor identification and reasoning
capabilities of multiple LLMs. We believe that
this problem can be solved by combining multiple
sources and GPT-40 to extract literal annotations.
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Figure 1: The overall architecture of DAGS, which we use two RoBERTa encoders with shared weights.

3 Method

We propose a new metaphor recognition method,
DAGS, that combines dependency-based dual-
attention and semantic improvement. The Figure 1
shows an overview of our framework.

3.1 Basic Meaning Acquisition

The VUAMC! contains a number of English texts
covering a wide range of domains and genres, such
as news reports and novels. We use VUAMC as the
main source of basic meanings. For Chinese data,
the literal annotations are filtered from the Baidu
Dictionaryz. Similarly to (Li et al., 2023a; Tian
et al., 2024b), we construct a literal annotations
set S = {Ay,...,A,}. Then, we use GPT-4o to
sample literal annotations of target words from S
and manually evaluate them (see Appendix G for
details), representing basic meanings.

3.2 Dependency Parsing and Encoding

Inspired by (Wang et al., 2023), our goal is to fo-
cus on the context words relevant to target word.

"http://www.vismet.org/metcor/documentation/home.html
Zhttps://dict.baidu.com

First, we set the target word as the root and utilize
the spaCy parser (Honnibal and Montani, 2017) to
obtain the dependencies of the target word in the
context. Next, based on the depth of the tree (the
distance between the root and leaves), we prune
the parsed sentences. Specifically, we mask the
input sentences (retaining words with depth “1”)
and feed them into the encoder.

The input sentence to be detected is denoted as
Se_i ={i1,...,i¢,...,in}, and the basic meaning
is denoted as Se_b = {fi1,..., ft,..., fm}. Here,
1¢ and f; both represent the same target word. Fur-
thermore, we use the RoOBERTa encoder to encode
(Enc) the input features to obtain hidden layer out-
puts Hidden_I and Hidden_B:

Hidden_I = Enc([CLS], Se_i, [SEP],POS) (1)
Hidden_B = Enc([CLS], Se_b, [SEP], POS) (2)

where CLS represents a special classification token,
and SEP is a segment separator token. Hidden_I
is a matrix € R"**, and Hidden_B is a matrix
€ R™** where k is the hidden size of the encoder.
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3.3 Dual-Attention Module

Dual-attention mechanism is able to process two
different types of information streams in parallel
and automatically learn the correlations between
different parts (Vaswani, 2017; Zhao and Gu, 2024;
Khan et al., 2023). Inspired by this, we design
a novel dual-attention module that processes in-
put information streams in parallel and later in-
tegrates them. Specifically, we first compute the
intra-stream attention for each flow. Next, we use
the cross-attention mechanism to enable interac-
tion between the streams. The prior filtering of de-
pendency trees allows the attention mechanism to
focus better on cross-sentence and cross-semantic-
level associations. Finally, the module returns to
the single-stream processing step and outputs high-
quality semantic representations. The calculation
formulas are as follows:

RUFYD = Atten (h(l)> ® Cross <h(l), h((,l)) , 3)
where h() and h(t1) represent the hidden states
of the Ith and I+1th layers, respectively, while
h(()l) refers to the hidden state of other layer. Fur-
thermore, © signifies the macroscopic integration
of self-attention and cross-attention mechanisms.
Moreover, we analyze the effect of input order in
Cross Attention in detail on Appendix L.

3.4 Metaphor Recognition

According to the ouput of dual-attention module,
we can obtain the output vectors I; and Fj for the
target word in input sentence and basic meaning,
respectively. We then compute the output represen-
tations /g and Fj of the sentence, respectively:

Z hms (@)

mEQn

[l

where P, represents the “n” words within the range
of neighbors, and /; is the hidden state of the cor-
responding word, similarly @Q,, and h,.

3.4.1 Global-SPV

Traditional SPV focus only on semantic differ-
ence between current target word and a single con-
text, while ignoring the influence of other contexts,
which can lead to under-learning of features and
metaphorical misclassification. Therefore, we con-
sider semantic features of global contexts. A target
word can be recognized as a metaphor when its
difference in its context (/5 and I;) is large and its

difference in a specific context (F and I) is small.
We compute the difference representation of target
word with different contexts separately:

hi=Wi' [Is; Iy |Is — L L © I] + b, (5)
he =Wy [Fo; Iy |Fs — L); Fs © L] + b, (6)

here, w and b represent the weight and bias, respec-
tively. The notation [-] is used to denote the reading
method, | - | indicates the absolute value, signi-
fies concatenation, and © represents the Hadamard
product. Subsequently, we compute the hidden
vector Hg.spy by connecting h; and hy:

Hg.spv = g1([hi; hy)), (7

where Hg.spy € RP*! and g;(.) is a function of
the learning vector gap in the MLP layer.

3.4.2 Global-MIP

According to (Steen et al., 2010), MIP also requires
an understanding of the overall content and context,
whereas the current approach focuses only on the
relevant meaning of the target word. Therefore, we
consider both the semantic differences h; of the
target word and the semantic differences hg of the
overall context to recognize metaphors:

he =W, [EF; 1 |F, -
hs = WST [Fs§ls§ |Fs

It|§Ft®It}+bta 3
_Is|;Fs®Is] +0bs, 9)

where w and b represent the weight and bias, re-
spectively. Similarly, we use h; and h, to compute
the hidden vector Hg.mip :

Hgmip = 92([hs; hi)), (10)

where go(.) also is a learning vector gap function.

3.4.3 Post Computation

We use Hg.spy and Hgvip to determine whether
the target word is used metaphorically:

§ = o(W ' [Ho-spv; Ho-mre] + b), (1)

where W and b are weights and biases, respectively,
and ¢ is softmax function. ) € R? represents the
predicted label. Finally, we compute the loss L:

N

L == [yilog i+ (1 —y;)log(1—
i=1

)], (12)

where N is the number of samples in the training
set, while y; and ¢; are the true and predicted labels
of the i-th sample in the training set.
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Portion Sentence  Target Metaphor  Average
Dataset number  number (%) length
VUA Alliuin 6,323 116,622 11.19 18.4
VUA Al 2,694 50,175 12.44 18.6
VUA Allur 1,550 38,628 11.62 24.9
VUAverb:i 7,479 15,516 27.90 20.2
VUAverb... 2,694 5,873 29.98 18.6
VUAverb... 1,541 1,724 26.91 25.0
PSUCMC in 1,381 28,572 8.3 30.1
PSUCMC... 173 3,520 8.0 29.6
PSUCMC..r 173 3,727 7.4 29.1
MOH-X 647 647 48.69 8.0
TroFi 3,737 3,737 43.54 28.3

Figure 2: Sample statistics for dataset.

4 Experiment Design

4.1 Datasets

We use several current mainstream metaphorical
datasets with statistics, seeing Figure 2.

* VUA ALL and VUAverb (Leong et al., 2020):
VUA ALL has been applied to the shared task
of metaphor recognition. And the VUAverb is
a verb part extracted from VUA ALL.

e TroFi (Birke and Sarkar, 2006): TroFi con-
tains literal and metaphorical usage of 50 En-
glish verbs from Wall Street Journal corpus.

¢ MOH-X (Mohammad et al., 2016): MOH
also focuses on verb metaphors, comprising
1,639 sentences. MOH-X is a subset of MOH.

* PSUCMC (Nacey et al., 2019): PSUCMC is
composed of text samples from the Lancaster
Corpus of Mandarin Chinese.

4.2 Baseline

RoBERTa_SEQ (Leong et al., 2020) is used in
the VUA2020 shared task. And DeepMet (Su
et al., 2020) incorporates multiple linguistic fea-
tures into ROBERTa. MelBERT (Choi et al., 2021)
detect metaphor by interactively computing the out-
puts of MIP and SPV. For MrBERT (Song et al.,
2021), metaphors are recognized by extracting de-
pendency relationships in sentences and embed-
ding. CATE (Lin et al., 2021) is to increase the
distance between literal and metaphorical meanings
of target word. While MDGI (Wan et al., 2021)
explains metaphors by annotating them. MisNet
(Zhang and Liu, 2022) model transforms MIP and
SPV into a semantic matching task, and calculates

the similarity. MRW (Babieno et al., 2022) collects
dictionary definitions to extract non-metaphorical
word meanings. Then, AAAS (Feng and Ma, 2022)
model transforms a categorization task into a key-
word extraction to capture metaphor features. In-
stead, RoPPT (Wang et al., 2023) focuses on se-
mantically relevant information. AdMul (Zhang
and Liu, 2023) migrates basic sense discrimina-
tion (BSD) knowledge to metaphor recognition.
And BasicBERT (Li et al., 2023a) models the
basic meanings and compares them with contex-
tual meanings to identify metaphors. Addition-
ally, FrameBERT (Li et al., 2023b) incorporates
FrameNet. In ContrastWSD (Elzohbi and Zhao,
2024), the contextual and basic meanings are ex-
tracted by using WSD and analyzed in comparison.
Also to the ER (Uduehi and Bunescu, 2024), the
target word representation is obtained by construct-
ing different components. While MiceCL (Jia and
Li, 2024) utilizes sentence external differences to
better handle semantic relations. QMM (Qiao et al.,
2024) does a fine-grained match recognition by
modeling uncertainty in literal meanings through
density matrices. What’s more, CKEMI (Wang
et al., 2025) further designs graph networks with
concept mapping functions to detect metaphors.

4.3 Implementation Details

We set the learning rate uniformly to 3e-5 and the
dropout to 0.2. The learning rate gradually in-
creases from O to 3e-5 during two training epochs
and decreases linearly until the last epoch. All ex-
periments use the cross-entropy loss function with
weights set to 3. The training process uses the
AdamW optimizer, and the number of epoch for
each set of experiments is 20. Furthermore, we
set different batch sizes for each dataset: 100 for
VUA ALL dataset, 50 for VUAverb and PSUCMC,
20 for TroFi, and 8 for MOH-X. Three sets of
random seeds are set for each set of experiments,
and the final result is the average of the three ex-
periments. For TroFi’s supervised assessment, we
provide details in Appendix H. All experiments use
eight NVIDIA RTX A6000 GPUs for computation.

S Experiment Overall Results

Table 1 presents the performance of DAGS and
other models on mainstream datasets. We primar-
ily focus on the core metric F1. Clearly, DAGS is
superior to other strong baselines. Compared to ear-
lier ROBERT_SEQ that did not incorporate MDT,

10463



VUA ALL VUAverb TroFi PSUCMC
Model (Source Year)
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
RoBERTa_SEQ (Fig-Lang 2020) 80.4 74.9 77.5 79.2 69.8 74.2 - - - 71.6 73.6 72.6
DeepMet (Fig-Lang 2020) 82.0 71.3 76.3 79.5 70.8 74.9 - - - 73.8 73.2 73.5
MrBERT (ACL 2021) 82.7 72.5 77.2 80.8 71.5 75.9 - - - - - -
MelBERT (NAACL 2021) 80.1 76.9 78.5 78.7 72.9 75.7 - - - 79.6 76.4 77.9
MRW (Applied Sciences 2022) 79.3 78.5 78.9 60.9 77.7 68.3 532 72.8 614 - - -
CATE (EMNLP 2021) 79.3 78.8 79.0 78.1 73.2 75.6 74.4 74.8 74.5 - - -
MDGI (ACL 2021) 82.5 725 772 78.9 70.9 74.7 - - - 89.0 70.6 78.7
MisNet (COLING 2022) 79.8 77.0 78.7 789 71.1 73.4 - - - 79.2 70.6 73.8
AAAS (EMNLP 2022) 81.6 77.4 79.4 81.6 71.1 76.0 72.5 715 74.8 - - -
FrameBERT (EACL 2023) 82.7 75.3 78.8 - - - 70.7 78.2 74.2 - - -
AdMul (ACL 2023) 78.4 79.5 79.0 78.5 78.1 78.3 70.5 79.8 74.7 - - -
RoPPT (EACL 2023) 80.0 78.2 79.1 - - - - - - 79.3 79.0 79.1
BasicBERT (ACL 2023) 79.1 77.7 78.3 76.7 717.5 76.8 - - - 75.0 74.9 75.0
ER (Fig-Lang 2024) 80.2 77.5 78.8 - - - 722 73.5 72.8 - - -
MiceCL (NAACL 2024) 80.4 75.2 78.5 75.1 78.0 75.9 - - - - - -
ContrastWSD (COLING 2024) 75.5 729 74.2 79.1 66.9 72.5 - - - - - -
QMM (COLING 2024) 80.9 77.8 79.3 73.9 79.0 76.4 - - - - - -
CKEMI (IPM 2025) 80.9 78.7 79.8 - - - - - - - - -
DAGS (our) 81.7 80.6 80.9 80.6 80.0 80.4 76.9 76.1 76.1 80.4 80.0 80.1

Table 1: The overall results of DAGS and other baseline models on VUA ALL, VUAverb, and TroFi datasets (Best
is in Bold, followed by italic underlined). The “-” indicates that the original paper did not conduct this experiment.

DAGS significantly improves performance (e.g., on
F1, 3.4%, 6.2%, and 7.5% on VUA ALL, VUAverb,
PSUCMC respectively). MelBERT, which inte-
grates both MIP and SPV, achieves the 78.5% (-
2.4% vs. DAGS). This indicates that metaphor
detection theories have some efficacy. When com-
pared with CKEMI, our model demonstrates better
filtering capabilities ( increasing 1.1% on VUA
ALL). Moreover, on VUA ALL, DAGS shows im-
provements of 2.2% and 1.5% over the current
strong baselines MisNet and AAAS, respectively.
In VUAverb, which contains more complex verbs
including auxiliary verbs and linking verbs, the
prediction task is more challenging. While DAGS
captures the most relevant information about the
verb through a dependency-based dual-attention
module , and improves the semantics. In compar-
ison, DAGS outperforms the AdMul baseline by
2.1%. This result underscores the importance of
acquiring key information from basic meanings to
enhance metaphor recognition performance. Fur-
thermore, DAGS is not only applicable to English
dataset, but also shows strong competition on Chi-
nese dataset (e.g., 80.1% on F1). We calculate the
p-value differences between DAGS and other base-
lines (e.g., for F1, DAGS vs. MisNet with a p-value
of 0.0001 on VUA ALL, DAGS vs. AdMul with a
p-value of < 0.0001 on VUAverb). This suggests

that DAGS is more effective than other methods.

6 POS Experiments

For VUA ALL, we conduct fine-grained experi-
ments based on POS (Adjective, Verb, Noun, and
Adverb). Table 2 shows the results, where DAGS
consistently achieves the best performance on F1.
Compared to the current strong baseline Contrast-
WSD, DAGS realizes improvements of 3.7% (Ad-
jective), 1.4% (Noun), 3.2% (Verb), and 2.5% (Ad-
verb). These results indicate that, regardless of the
complexity of POS, simultaneously filtering and
semantic improvement of both input sentences and
basic meanings can further improve the model’s
recognition performance. Except for the POS, we
achieve promising results in another breakdown
experiment (see Appendix A and Table 7).

7 Zero-Shot Transfer

We design zero-shot transfer experiments across
English datasets. Specifically, we train on VUA
ALL and test on entire TroFi and MOH-X.

The results are shown in Table 3. It can be found
that DAGS not only performs well in supervised
experiments, but also achieves the best in zero-shot.
In TroFi, the precision (Prec) of DAGS is higher
than other models, reflecting its strong prediction
ability for positive classes. The same trend is also
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Figure 3: Semantic improvement visualization.

Model Adjective Noun Verb Adverb
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
DeepMet 79.0 52.9 63.3 76.5 57.1 654 78.8 68.5 73.3 79.4 66.4 72.3
MelBERT 69.4 60.1 64.4 75.4 66.5 70.7 78.7 72.9 75.7 80.2 69.7 74.6
MisNet 67.9 65.5 66.4 73.8 68.4 69.5 76.7 78.0 77.1 759 71.2 64.1
MiceCL 68.5 68.9 68.8 70.6 70.7 70.7 75.1 78.0 75.9 73.3 71.3 72.2
ContrastWSD 65.7 70.8 68.1 66.2 76.3 70.9 78.8 75.7 77.2 68.5 77.4 72.6
DAGS (our) 72.2 71.6 71.8 722 72.5 72.3 80.6 80.0 S0.4 74.6 75.8 75.1

Table 2: The POS results for Adjective, Noun, Verb and Adverb (Best is in Bold, followed by italic underlined).

VUA to TroFi VUA to MOH-X VUAverb TroFi
Model Model
Prec Rec Fl1 Prec Rec Fl1 Prec Rec F1 Prec Rec Fl1
DeepMet 537 739 60.7 | 79.9 765 719 w/o DAM 76.0 763 76.1 | 732 720 723

MrBERT 53.8 750 62.7 | 759 84.1 79.8
MelBERT 534 741 62.0 | 793 79.7 79.2

MisNet 529 751 62.1 - - -
RoPPT 542 762 633 | 770 835 80.1
MiceCL 54.2 750 629 - - -

DAGS (our) | 553 735 64.1 | 81.5 804 80.6

Table 3: Transfer performance on TroFi and MOH-X
(Best is in Bold, followed by italic underlined).

observed in MOH-X (e.g., DAGS vs. RoPPT with
a p-value of < 0.001 on Prec). In addition, DAGS
also reaches the optimum on F1, demonstrating its
strong robustness, especially in its migration abil-
ity on small-scale datasets. Noting that although
models perform relatively close to each other on
two datasets, none of them outperforms DAGS
(e.g., RoPPT and MiceCL). This further proves
DAGS’s excellent generalization ability on differ-
ent datasets. Addition to same-language transfer,
DAGS has shown strong competitiveness in cross-
language (see Appendix F and Table 11).

w/o CP 793 716 789 | 739 735 73.6
w/o G-SPV 774 781 779 | 727 728 727
w/o G-MIP 78.0 785 78.1 | 723 722 722

DAGS (our) | 80.6 80.0 804 | 769 76.1 76.1

Table 4: Ablation experiment performance of Context
Pruning (CP), Dual-Attention Module (DAM), Global-
SPV (G-SPV) and Global-MIP (G-MIP). The “w/o”
indicates that the part is removed (Best is in Bold, fol-
lowed by italic underlined).

8 Semantic Improvement

To evaluate the effectiveness of semantic improve-
ment, we conduct comparative experiments on
VUAverb. For each set of comparative results,
we provide a data visualization, which is shown
in Figure 3. G-SPV and G-MIP show significant
enhancement in both models. For example, for
DAGS, G-SPV enhances F1 from 76.5% to 78.1%,
while G-MIP improves it from 77.0% to 77.9%. In
addition, G-SPV and G-MIP not only have indepen-
dent effects in terms of their respective semantic im-
provement, but also show synergistic effects. These

10465



DAGS RoPPT CKEMI BasicBERT
Length Range
Prec Rec F1 | Prec Rec F1 | Prec Rec F1 | Prec Rec F1
< 20 Tokens 759 781 778 | 764 748 756 | 772 768 769 | 773 763 76.7
20 -40 Tokens | 81.5 81.0 81.2 | 81.8 79.9 80.8 | 804 799 80.1 | 75.7 75.1 75.6
> 40 Tokens 82.8 84.0 829 | 82.3 80.0 81.1 | 81.5 81.3 814 | 754 747 752

Table 5: The results of models on different length range sentences (Best is in Bold, followed by italic underlined).

results suggest that incorporating global semantics
can further utilize the semantic information, espe-
cially in complex language environments.

9 Ablation

The ablation results for each module are shown in
Table 4. DAGS consistently performs best. When
the DAM and CP modules are removed, the per-
formance metrics of the model on the VUAverb
dataset drop to 76.1% and 78.9%, respectively.
This phenomenon may stem from the fact that
model learns a number of redundant features with-
out filtering context. A similar trend is observed on
TroFi, indicating that DAGS is able to effectively
improve the overall performance of the model by
filtering the interference and ambiguity in the in-
put data. In addition, further removal of G-SPV
and G-MIP modules also significantly degraded the
model performance, which verifies the necessity
of incorporating more global contextual semantics,
consistent with the results in Figure 3 of semantic
improvement experiments.

10 Sentence Length Experiments

Sentence length variations affect the focus of
model’s attention and interference degree. To ex-
plore this phenomenon in depth, we design experi-
ments to analyze the effect of sentence length on
model performance. As shown in Table 5, the per-
formance of DAGS progressively improves with
increasing sentence length and is consistently bet-
ter than RoPPT and CKEMI. Longer sentences
tend to contain more redundant information and
noise, which constitutes a significant interference
in the metaphor recognition task, verifying the im-
portance of focusing on task-relevant semantics.
The results show that DAGS can effectively filter
out irrelevant contexts in sentences and basic mean-
ings, and its performance improvement shows a
significant positive correlation with sentence length
(e.g., F1 with 82.9% > 81.2% > 77.8%).

Target Word | Sentence

back

He leaned back on the more
beautiful and more comfort-
able cushion, which was
placed conveniently near the
window.

bogged A major initiative aimed at en-
hancing the city’s public trans-
portation network to include
more eco-friendly options be-

came bogged down.

Table 6: Case Study. The red indicates the target word,
while the blue shows the most relevant word.

11 Case Study

See Table 6, previous methods may be influenced
by redundant context that not filtered. For instance,
the aggregated meaning of the word “back” is “the
posterior surface of the human body”, which is not
its basic meaning; terms like “back up” and “back
on” occur more frequently in the corpora (Li et al.,
2023a). However, relying solely on literal annota-
tions may cause the model to fail in recognizing the
key information of target word. For example, in the
sentence “He leans back on the more beautiful and
more comfortable cushion, which is placed conve-
niently near the window.”, the target word “back”
is followed by a comparative phrase, which might
lead the model to learn an incorrect representation.
Similarly, in “A major initiative aimed at enhanc-
ing the city’s public transportation network to in-
clude more eco-friendly options becomes bogged
down.”, the target word “bogged” is separated from
the subject by a long phrase, which might prevent
the model from identifying the metaphor. DAGS
filters both the input sentence and basic meanings,
and extracts key information about the target word,
resulting in high-precision processing.

10466



12 Conclusion

In this paper, we propose a novel metaphor recogni-
tion model, DAGS, which introduces dependency-
based dual-attention module to filter context and
focus on key content. And then, DAGS further
enhances metaphor recognition through global se-
mantic. Experiments show that DAGS achieves
state-of-the-art performance on metaphor recogni-
tion compared to existing models.

Limitations

Experimental results show that our method exhibits
superior results in the metaphor recognition task,
a result that is in line with our expectations. To
contrast with previous work, our generalization ex-
periments are based on the VUA ALL and TroFi
datasets. However, the TroFi dataset is older and
some of the metaphors may have been transformed
into literal meanings. Although DAGS achieves the
best results in comparison to other baseline mod-
els, there is still significant room for improvement.
We believe that utilizing external knowledge (e.g.,
dictionaries) may be helpful for generalization ex-
periments. This is something we plan to explore
further in future research.
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A VUA All Breakdown

The VUA ALL dataset not only supports fine-
grained analysis based on parts-of-speech (POS)
but also encompasses various domain types, includ-
ing Academic, Conversation, Fiction, and News.

In Table 7, although DeepMet achieves an im-
pressive precision of 88.4% in the Academic do-
main, its recall rate is somewhat lacking, leading
to a lower overall F1 score. Instead, DAGS, with
its higher recall rate, secures an F1 score of 85.2%,
demonstrating a more balanced performance. For
Conversation, DAGS excels, particularly in han-
dling colloquial and fragmented sentences, achiev-
ing an F1 score of 75.1%, significantly surpassing
other models. This highlights its remarkable ca-
pability in dealing with more informal or irregular
language structures. To the Fiction, where unique
linguistic structures and proper names often pose
challenges, DAGS outperforms other models with
an F1 score of 76.9%, showcasing its superiority in
processing complex texts. Furthermore, in News
domain, although DAGS’s performance is close to
that of BasicBERT, it still achieves the highest F1
score of 82.0%, demonstrating its ability to handle
formal written language while maintaining compet-
itive performance in news-related texts. Overall,
the experimental results indicate that DAGS strikes
a good balance between precision and recall, par-
ticularly excelling in more complex text types such
as conversations and fictional works.

B Domain Transfer

According to the four domains classified by VUA
ALL, there is a large gap in supervised testing per-
formance of the models across different domains.
We further explore the model’s adaptability to each
domain. Specifically, we let the model be trained
on VUA ALL, and then separately on Academic,
Conversation, Fiction, and News domains for test-
ing.

The experimental results are shown in Table 8.
Compared with Table 7, most models perform best
in the Academic domain, achieving higher F1 val-
ues for both single-domain tests and cross-domain
transfer, which may be due to the relatively explicit
use of metaphors in academic language. Despite
the relatively more complex data in the Conversa-
tion and Fiction categories, most of the models are
trained with VUA ALL instead, which may be the
VUA ALL training set is able to cover different
types of metaphorical structures in conversations,

both in terms of data type and quantity, than the
Conversation subset alone. In addition, as a whole,
the DAGS model excels in all domains, especially
in Academic and News, with stable performance
and strong domain transfer capability. In contrast,
MelBERT and RoPPT perform better on single do-
mains, but are not as robust as DAGS in the more
challenging domains of Conversation and Fiction.

C Target Word Depth Range Experiment

We assume that other words with different ranges
of the target word in the sentence will interfere
with the model to varying degrees. The “depth”
is defined as the distance between the target word
and the root node in the dependency tree. Based
on the dependency tree parsing results, we cate-
gorize it into four levels, which are “depth = 1”
to “depth = 47, with larger values representing
the more range word we introduce. We conduct
experiments on the VUA ALL and TroFi datasets.
The experimental results are shown in Figure 4.
We observe an increase in the F1 score as “depth”
moves from O to 1. At “depth = 07, where only
aggregated meanings are used, the model fails to
capture relevant conceptual information. However,
starting from “depth = 27, the model’s perfor-
mance begins to decline, which may be due to the
redundancy introduced by longer texts. In other
words, deeper syntactic structures add more noise
and complexity, making it difficult for the model to
focus on relevant features. Key contextual informa-
tion and features are more beneficial for the model
in detecting metaphors, as they help the model ef-
fectively identify and distinguish metaphors.

D Stand-alone Modular Ablation

In addition to ablation experiments on DAGS for
module removal, we also evaluate the performance
of each module when used independently and com-
pare it to the full model. The results of the exper-
iments are shown in Table 9. DAGS continues to
exhibit the best performance. It is worth noting
that the performance of the DAM module on both
datasets is quite competitive with existing strong
baselines. Furthermore, the optimal performance
of DAGS shows that relying solely on metaphor
detection theory is not sufficient to achieve optimal
results, and the introduction of the dual-attention
module significantly improves the model’s perfor-
mance. The dual-attention module reduces redun-
dancy by dynamically assigning weights to make
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Figure 4: Effect of different sentence depth on DAGS.
Academic Conversation Fiction News

Model

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
DeepMet 88.4 74.7 81.0 71.6 71.1 714 76.1 70.1 73.0 84.1 67.6 75.0
MelBERT 85.3 82.5 83.9 70.1 71.7 70.9 740 76.8 75.4 81.0 73.7 77.2
MisNet 83.4 81.2 82.1 70.6 72.8 71.1 74.1 78.0 75.7 83.1 754 78.7
BasicBERT 85.4 85.5 854 709 68.9 69.8 73.5 733 734 81.8 82.1 81.9
RoPPT 85.1 85.0 85.0 74.7 73.1 73.7 734 73.8 73.5 80.5 80.2 80.4
MiceCL 84.5 83.9 84.2 73.8 72.1 72.8 729 73.6 73.1 784 78.6 78.5
DAGS (our) 852 85.3 85.2 75.0 75.3 75.1 76.8 77.3 76.9 81.3 82.3 82.0

Table 7: VUA All Breakdown Experiment results. Breakdown genres include Academic, Conversation, Fiction,

and News. The metrics in each interval include Precision (Prec), Recall (Rec), and F1-score (F1) (Best is in Bold,
followed by italic underlined).

Model VUA to Acad VUA to Conv VUA to Fict VUA to News

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
MelBERT 83.7 83.3 83.5 75.7 752 754 74.6 742 744 73.0 73.2 73.1
MisNet 81.8 82.0 819 74.0 72.8 73.3 74.0 73.77 73.8 79.9 80.1 80.0
BasicBERT 83.1 83.3 83.1 74.5 749 74.7 74.1 743 74.2 81.1 81.5 814
RoPPT 84.4 84.6 84.5 76.1 75.9 76.0 75.1 75.1 75.1 83.1 81.3 81.1
MiceCL 82.6 82.8 82.7 743 725 74.2 743 73.8 73.8 81.8 809 81.5
DAGS (our) 84.2 85.5 849 76.0 76.7 76.4 75.7 754 754 83.5 83.7 83.5

Table 8: The model’s performance on domain transfer. The genres include Academic (Acad), Conversation (Conv),
Fiction (Fict), and News, where “VUA” stands for VUA ALL. And the metrics in each interval include Precision
(Prec), Recall (Rec), and F1-score (F1) (Best is in Bold, followed by italic underlined).
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the model more focused on task-relevant informa-
tion, while reducing the computational burden. Fur-
ther analysis reveals that the G-MIP and G-SPV
modules also perform relatively well (e.g., 1.5%
and 1.7% improvement over CP on the VUAverb
dataset, respectively), which suggests that it is ben-
eficial to consider global semantic information in
context. The experimental results further validate
the findings of the module removal ablation experi-
ments. We design DAGS to achieve more efficient
module synergy by integrating modules such as
DAM, G-SPV and G-MIP.

VUAverb TroFi
Model
Prec Rec Fl1 Prec Rec F1

DAM 79.5 777 782 | 73.7 73.2 733
CP 754 762 757 | 70.6 712 71.0
G-SPV 717 772 772 | 71.6 T71.7 71.6
G-MIP 774 774 774 | 722 71.0 714
DAGS (our) | 80.6 80.0 804 | 76.9 76.1 76.1

Table 9: Model performance on Stand-alone Modu-
lar Ablation Experiment (Best is in Bold, followed
by italic underlined), including Context Pruning (CP),
Dual-Attention Module (DAM), Global-SPV (G-SPV)
and Global-MIP (G-MIP).

E Word Frequency Distribution

To explore the impact of different target word fre-
quencies on model performance, we partition the
VUAverb dataset based on target word frequency
(<100, 100 - 200, 200 - 300, > 300) and conduct
experiments with several models. The experimen-
tal results are shown in Table 10. Compared to
the overall results of VUAverb (see Table 1), the
performance of each model varies across differ-
ent frequency ranges. Among them, the DAGS
model consistently performs well across all fre-
quency ranges, especially in the low-frequency
range (< 100) and the high-frequency range (200
- 300), achieving F1-scores of 82.3% and 88.3%,
respectively, demonstrating strong generalization
ability. In the high-frequency range (> 300), Ba-
sicBERT has a slight advantage with an F1-score
of 84.5%, but DAGS maintains stable performance
on other metrics. The RoPPT model excels in the
high-frequency range but shows some shortcom-
ings in the low-frequency range, while MelBERT
and BasicBERT perform relatively average in the
medium to low-frequency ranges. The overall per-
formance of ROBERTa_SEQ is weaker, particularly
struggling with low-frequency word handling.

In addition, we further analyze DAGS for its
different performance on low-frequency words
and high-frequency words. Low-frequency target
words are often diverse, and DAGS shows strong
generalization ability in cross-word frequency sce-
narios and can effectively adapt to the detection
task in different word frequency intervals. In con-
trast, high-frequency target words occur frequently
in the training data, and the feature boundaries be-
tween their metaphorical and literal usages may be
more ambiguous, and some models may tend to
rely on memory and thus have a slight advantage
in high-frequency intervals. Although DAGS is
slightly inferior to the best performing model in the
detection of high-frequency target words, it is still
firmly in the second place, demonstrating strong
robustness.

F Cross-Language Transfer

In previous studies, all our experiments are based
on the same language. To explore the perfor-
mance of the DAGS model in cross-language
metaphor recognition tasks, we design and im-
plement zero-shot migration experiments across
language datasets. Specifically, we train on the
VUA ALL and VUAverb datasets and test on the
PSUCMC dataset, respectively; in addition, train-
ing on the PSUCMC dataset and testing on the
VUAverb and TroFi datasets. We select a variety of
cross-language pre-trained models (e.g., mBERT,
mDeBERTa, mRoBERTa, and XLM-RoBERTa),
as well as a strong baseline model of metaphor
recognition. The experimental parameter settings
are kept consistent with the previous experiments.

The results of the experiments are presented in
Table 11. It can be seen that DAGS outperforms all
other models on several cross-linguistic metaphor
recognition tasks, e.g., in terms of recall (70.2%)
and F1 value (61.4%). BasicBERT, although
slightly higher in terms of precision (53.3%), has a
lower F1 value than DAGS. In comparison to the
supervised experiments (see Table 1) the model’s
performance decrease more (e.g., on VUA ALL,
from 80.9% to 61.4% on DAGS and from 78.3% to
57.9% on BasicBERT). This performance degrada-
tion may be attributed to the differences in cultural
context and metaphorical structure between En-
glish and Chinese, resulting in the features learned
by the model in the English corpus not being able
to be directly and efficiently migrated to the Chi-
nese corpus. In addition, most purely pre-trained
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Model <100 100 - 200 200 - 300 > 300
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
RoBERTa_SEQ 70.7 73.7 71.9 712 72.1 714 75.3 75.2 75.2 80.7 75.3 77.7
MelBERT 76.3 74.4 75.3 63.6 76.7 69.5 80.0 73.3 76.8 79.3 72.7 75.8
BasicBERT 80.7 80.9 80.8 74.8 73.7 74.0 87.6 89.5 88.2 84.1 85.2 84.5
RoPPT 81.4 79.7 80.2 73.7 73.8 73.7 89.0 90.1 88.6 79.5 82.8 79.8
ER 80.5 81.8 81.1 72.5 72.1 72.3 86.7 89.5 87.1 78.5 79.4 78.9
MiceCL 79.7 80.3 79.9 70.7 70.0 70.2 83.4 82.6 83.0 80.1 79.9 80.0
DAGS (our) 82.2 82.7 82.3 74.6 74.7 74.6 87.9 90.7 88.3 83.4 85.9 83.2

Table 10: The performance of the model on different intervals of target word frequency, including < 100, 100 - 200,
200 - 300, and > 300. The metrics in each interval include Precision (Prec), Recall (Rec), and F1-score (F1) (Best is
in Bold, followed by italic underlined).

Model ALL to PSU Verb to PSU PSU to Verb PSU to TroFi
Prec Rec F1 | Prec Rec F1 | Prec Rec F1 | Prec Rec F1

mBERT 342 38.1 365 | 41.2 53.1 499 | 49.0 60.0 51.6 | 31.8 564 40.7
mDeBERTa 38.7 537 48.1 | 58.2 38.0 46.0 | 53.7 56.8 54.8 | 53.9 53.8 53.8
mRoBERTa 346 526 44.6 | 47.5 53.0 50.7 | 55.2 564 552 | 512 572 54.1
XLM-RoBERTa | 38.1 51.5 47.1 | 552 56.0 55.6 | 564 574 56.4 | 533 534 533
MelBERT 504 68.3 57.0 | 557 61.6 559 | 547 69.5 57.7 | 50.3 51.3 50.5
MisNet 50.1 679 58.8 | 525 68.9 57.6 | 551 664 565 | 522 543 52.7
BasicBERT 53.3 694 579 | 51.2 70.1 57.1 | 57.3 68.7 58.3 | 54.2 553 54.2
RoPPT 477 69.0 564 | 61.8 569 584 | 59.1 582 58.8 | 50.5 49.2 494
ER 47.0 68.7 557 | 654 522 532 | 594 6777 59.1 | 514 554 53.1
MiceCL 573 63.6 575 | 573 527 54.0| 582 69.7 58.6 | 51.7 552 529
DAGS (our) 5277 70.2 614 | 500 70.8 60.6 | 59.8 66.7 60.3 | 57.2 594 57.5

Table 11: Model performance on cross-language transfer. Here, “ALL” indicates the VUA ALL dataset, “Verb”
represents the VUAverb dataset, and “PSU” stands for the PSUCMC dataset (Best is in Bold, followed by

italic underlined).

language models (PLMs) perform poorly in cross-
lingual metaphor recognition tasks, which may be
due to their failure to adequately capture the more
complex semantic features behind the metaphors.
In contrast, DAGS is able to effectively consider
and capture key metaphor features by employing
a dual-attention module and semantic improve-
ment strategies (e.g., G-SPV and G-MIP). The ex-
perimental results show that the cross-language
metaphor recognition task is highly challenging.
Although the model performs well in the recog-
nition task in a single language, it still suffers
from insufficient generalization ability in the cross-
language migration task.

In addition, we further consider cross-language
experimental designs for low-resource languages,
such as Slovene (KOMET dataset). For this, we
conduct transfer experiments between English-

Slovene and Chinese-Slovene respectively, and the
results are shown in Table 14. It can be seen that
DAGS (our) significantly outperforms the other
models on both tasks, suggesting that the approach
is able to integrate cross-corpus features more effi-
ciently, thus improving the migration performance.
Meanwhile, MiceCL and ER also show strong gen-
eralization ability, while mBERT, mRoBERTa and
XLM-RoBERTa:, as the base models, perform rela-
tively weakly in the cross-dataset task.

G Manual Evaluation

We invite five volunteers to participate in evaluating
the basic meanings in Section 3.1. To ensure con-
sistency and scientific rigor, we provide systematic
training for the volunteers. The training covers the
theoretical foundations of literal meaning, includ-
ing basic knowledge of linguistics and semantics,
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Sample Range Sampling Interval Total Samples Verified Approved Samples Resampling Count
1-5000 50 100 92 8
5001-10000 50 100 96 4
10001-15000 50 100 95 5

Table 12: GPT-40 generation and manual review statistics for literal meaning extraction on PSUCMC. We take
samples for manual evaluation at intervals of 50 steps and tally the results in 100 manual spot checks.

Sample Range

Sampling Interval

Total Samples Verified

Approved Samples

Resampling Count

1-3737

30

124

118

6

Table 13: GPT-40 generation and manual review statistics for literal meaning extraction on TroFi. We adopt an
equally spaced sampling method consistent with PSUCMC, but adjust the sampling interval from 50 to 30 for

PSUCMC (i.e., 3,737/30 ~ 124.6, with 124 samples actually drawn).

ALL to K PSUto K

Model

Prec Rec F1 Prec Rec F1
mBERT 37.5 39.3 38.4 | 30.0 30.8 30.4
mRoBERTa 39.2 41.0 40.1 | 31.5 34.0 32.7
XLM-RoBERTa | 43.0 46.0 44.5 | 35.0 38.7 36.8
MelBERT 48.8 50.4 49.6 | 39.0 42.0 40.5
MisNet 50.3 52.0 51.5 | 41.5 435 423
BasicBERT 51.5 54.0 52.8 | 40.5 42.5 41.0
RoPPT 49.8 50.6 50.2 | 40.0 42.5 41.3
ER 51.0 51.5 50.9 | 42.0 45.0 435
MiceCL 52.5 53.7 53.1 | 43.0 46.5 44.7
DAGS (our) 53.5 56.0 54.7 | 45.5 48.3 46.9

Table 14: Results of Slovene’s cross-language experi-
ments. Here, “ALL” indicates the VUA ALL dataset,
“K” represents the KOMET dataset, and “PSU” stands
for the PSUCMC (Best is in Bold).

as well as methods for distinguishing literal anno-
tations and understanding their manifestations in
different contexts. Volunteers also receive detailed
guidance on evaluation criteria and voting princi-
ples, with a focus on mastering the majority rule in
the voting mechanism. Additionally, we use case
studies to demonstrate the process of evaluating
various annotations, helping volunteers familiarize
themselves with practical workflows and methods.

Regarding the use of GPT-40, we follow the
methodologies outlined in (Tian et al., 2024a; Chen
et al., 2024). Specifically, we design a Prompt (i.e.,
Please provide the literal meaning of the target
word in a non-metaphorical context, and avoid
including any metaphorical explanations.) to guide
GPT-40 in obtaining sampling results for literal
annotations. Subsequently, we manually evaluate
the results and determine the final results based on
a minority-majority voting rule. For each sampled
example, we use an equally spaced sampling kernel.
We present some statistics for PSUCMC and TroFi

in Table 12 and Table 13.

The mainstream corpora we use contain relevant
examples of target words, but we remove entries or
sentences of metaphorical, abstract, or ambiguous
interpretations through sampling with GPT-40 and
manual review to ensure that the selected meanings
align with the “basic” definition. For instance, in
the sentence “The idea caught fire in the commu-
nity,” the verb “caught” does not refer to the literal
meaning of “grabbing something,” but metaphori-
cally expresses that an idea quickly gained atten-
tion or became popular. We exclude sentences with
such metaphorical meanings, and focus on dynamic
examples with contextual information (e.g., “Your
body needs time to digest the meal.”’) (Zhang and
Liu, 2022; Li et al., 2023a). In cases where tar-
get words lack corresponding annotations in the
VUAMC dataset, previous studies typically use
aggregated meanings. In contrast, our approach
incorporates lexical knowledge from Etymology
Online 3 to enhance annotation accuracy. To the
literal annotations that fail to meet requirements,
volunteers resample and reevaluate them, ensur-
ing the accuracy and reliability of the evaluation
results.

‘What’s more, to demonstrate the extent of human
annotators’ contribution, we design experiments
under fully automated conditions and test them on
the VUA ALL and PSUCMC datasets. The results
of the experiments are shown in Table 15. Compar-
ing with the results of the paper, we observe that
the F1 scores of the models decrease to varying
degrees under fully automatic conditions. For in-
stance, BasicBERT achieves an F1 score of 78.3%
on VUA ALL and 76.8% on VUAverb, whereas un-
der fully automatic conditions, its F1 scores slightly

3https://www.etymonline.com
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Model VUA ALL (Orig) VUA ALL (Auto) VUAverb (Orig) VUAverb (Auto)
Prec Rec F1 | Prec Rec Fl1 Prec Rec F1 | Prec Rec Fl1
BasicBERT 79.1 777 783 | 780 765 772 | 76.7 775 768 | 75,5 76.2 75.8
MiceCL 804 752 785 | 793 741 76.6 | 75.1 78.0 759 | 742 77.0 75.1
ContrastWSD | 75,5 729 742 | 745 71.5 73.0 | 79.1 669 725 | 77.8 658 71.2
DAGS (our) 81.7 80.6 80.9 | 80.6 789 179.1 | 80.6 80.0 80.4 | 79.0 78.5 78.7

Table 15: Comparison of results under manual and fully automatic conditions. In this case, “Orig” represents the
results under the original manual conditions, while “Auto” represents the results under fully automated conditions

(Best is in Bold).
Datasets DAGS (our) DAGS (conversely)
Prec Rec F1 Prec Rec F1
VUA ALL | 81.7 80.6 80.9 | 809 746 715
VUAverb 80.6 80.0 804 | 80.1 752 762
PSUCMC 80.4 80.0 80.1 | 75.0 763 75.0

Table 16: Comparative experimental results of the op-
posite attention in DAGS (Best is in Bold).

drop to 77.2% and 75.8%, respectively. This indi-
cates that high-quality human annotations provide
accurate basic meanings. Although automatically
generated basic meanings can support the models
in completing most tasks, cumulative errors and
semantic ambiguities are difficult to fully avoid in
fully automated settings. Furthermore, although
the performance of all models decreases, DAGS
shows the smallest decline and remains superior to
other models.

H Implementation Supplement

Table 1 in our paper presents the results of su-
pervised experiments. Following previous studies
(Choi et al., 2021; Tian et al., 2024b; Jia and Li,
2024), we also use a development dataset to de-
termine the optimal hyperparameter settings for
evaluating TroFi and. Since TroFi does not have an
official data split, we adopt 10-fold cross-validation
for evaluation. Specifically, we evenly divide the
dataset into 10 subsets, using 9 subsets for train-
ing and 1 subset for testing in each iteration. This
process is repeated 10 times, and we report the av-
erage performance across all runs. The evaluation
metrics remain consistent with those used for the
other datasets.

In addition, for the setting of the learning rate,
we also refer to the previous method of increas-
ing and then decreasing. This strategy, commonly
referred to as learning rate warm-up and linear de-
cay, effectively balances the stability in the early

stages of training with convergence in the later
stages. This method shows good performance
in pre-trained language models (e.g., BERT and
RoBERT?2), and this setting also allows for better
comparison with previous baselines.

I Cross Attention Input Order
Comparison Experiment

We obtain updated representations through a com-
bination of self-attention and cross-attention. In
Figure 1, the input of the current sentence is used
as Q (Query), while the input of the other sentence
is used as K (Key) and V (Value). Q represents
the information that currently requires attention,
while K and V provide contextual support. Since
the task requires the current sentence to focus on
capturing the key information of the other sentence,
we chose this input direction in our design. In order
to investigate the effect of different input orders on
the model results, we design opposite experiments
and perform a comparative analysis.

Observing the Table 16, DAGS (our) signif-
icantly outperforms DAGS (conversely) on all
datasets. For instance, on the VUA ALL dataset,
the F1 score of DAGS (our) is 80.9%, significantly
higher than the 77.5% of DAGS (conversely). Sim-
ilarly, on the VUAverb and PSUCMC datasets, the
F1 scores improved by 4.2% and 5.1%, respectively.
This difference indicates that our method is more
efficient in capturing key information between the
current sentence and another sentence, while the
converse design may lead to poor semantic extrac-
tion performance. This may be due to the fact that
the opposite design leads to a dispersion of model
attention, which reduces the characterization.

J Details of Evaluation Metrics

In this section, we provide a detailed introduction to
the evaluation metrics used in the paper, including
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Precision (Prec), Recall (Rec), and the F1 score.
Precision measures the proportion of true positives
among all predicted positive instances, reflecting
the model’s exactness in identifying positive sam-
ples. A higher precision indicates better perfor-
mance in predicting positive cases. Recall, on the
other hand, assesses how many true positives the
model can identify, reflecting the model’s sensi-
tivity in recognizing positive samples. A higher
recall means that the model is capable of finding
more positive instances. The F1 score is the har-
monic mean of Precision and Recall, aiming to
balance these two metrics. Particularly in cases of
class imbalance, the F1 score provides a more com-
prehensive assessment of performance than using
Precision or Recall alone.
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