Multi-Agent Collaboration via Cross-Team Orchestration

Zhuoyun Dui**  Chen Qian’®
Yufan Dang* Weize Chen*

Wei Liut

Cheng Yang**

Zihao Xie*
Ye Tian’

Yifei Wang*
Xuantang Xiong’

Rennai Qiu*
Lei Han’

*State Key Lab of CAD & CG, Zhejiang University
“Zhejiang Polytechnic Institute, Polytechnic Institute, Zhejiang University

¢Shanghai Jiao Tong University

duzy@zju.edu.cn

Abstract

Large Language Models (LLMs) have signifi-
cantly impacted various domains, especially
through organized LLM-driven autonomous
agents. A representative scenario is in software
development, where agents can collaborate in a
team like humans, following predefined phases
to complete sub-tasks sequentially. However,
for an agent team, each phase yields only one
possible outcome. This results in the comple-
tion of only one development chain, thereby
losing the opportunity to explore multiple
potential decision paths within the solution
space. Consequently leading to suboptimal
results or extensive trial and error. To address
this, we introduce Cross-Team Orchestration
(Croto), a scalable multi-team framework that
enables orchestrated teams to jointly propose
various task-oriented solutions and interact
with their insights in a self-independence
while cross-team collaboration environment
for superior solutions generation. Experiments
reveal a notable increase in software quality
compared to state-of-the-art baselines. We
further tested our framework on story gener-
ation tasks, which demonstrated a promising
generalization ability of our framework in
other domains. The code and data is available at
https://github.com/OpenBMB/ChatDev/tr
ee/macnet

1 Introduction

The rapid advancement of Large Language Mod-
els (LLMs) has yielded remarkable achievements
across various domains like natural language pro-
cessing (Vaswani et al., 2017; Brown et al., 2020),
and software development (Richards, 2023; Dong
et al., 2024; Zhang et al., 2024a). However, limita-
tions like hallucinations inherent in their standalone
capabilities (Richards, 2023), impede LLM’s abil-
ity to generate usable content for task solving when

"Equal Contribution.
®Corresponding Author.

“King’s College London
*Beijing University of Posts and Telecommunications
gianc@sjtu.edu.cn

*Tsinghua University
*Tencent Robotics X
yangcheng@bupt.edu.cn

confronted with complexities surpassing mere chat-
ting. A noteworthy breakthrough lies in the LLM-
based collaborative autonomous agents (Park et al.,
2023; Li et al., 2023; Wu et al., 2024; Shinn et al.,
2024). Typical methods (Qian et al., 2024c; Hong
et al., 2023) decompose tasks into several distinct
sub-tasks. An instructor gives instructions and an
assistant responds with a solution to solve each
sub-task. Through a chained multi-turn dialog,
they collaboratively generate content (e.g., soft-
ware, outline, scientific conclusion) for the task.
The content produced can vary across multiple
iterations given the same task, reflecting the dy-
namic nature of the problem-solving process by
agents (Qian et al., 2024c). A series of autonomous
agents interacting through multiple configurable
task-oriented phases is the state-of-the-art single-
team approach. The team completes the gener-
ation process through multiple sequential phases
and generates task-oriented data (such as require-
ment documents and codes), which can be regarded
as a decision path.

However, a single team can only execute all
phases sequentially according to its predefined con-
figuration (e.g., the number of agents, agent pro-
files, and LLM hyperparameters), and its decision
path is fixed (Qian et al., 2024c; Hong et al., 2023).
This design may lead to repetitive errors with a spe-
cific configuration when encountering a particular
type of problem, hindering self-correction. Fur-
thermore, it limits the agents’ ability to explore
more diverse and effective decision paths. While
graph-like paradigms self-organize agents through
dynamic optimization of nodes and edges (Zhuge
et al., 2024), they require extensive task-specific
customization for all nodes and edges. This com-
plexity complicates their usage and hinders seam-
less generalization to heterogeneous downstream
tasks, making them impractical in many scenarios.
Additionally, organizing agents into a graph struc-
ture may reduce the task-solving independence of

10386

Findings of the Association for Computational Linguistics: ACL 2025, pages 10386-10406
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics


duzy.zju@outlook.com
qianc62@gmail.com
yangcheng@bupt.edu.cn
https://github.com/OpenBMB/ChatDev/tree/macnet
https://github.com/OpenBMB/ChatDev/tree/macnet

agents, which is crucial for fostering diverse in-
sights into solutions.

Therefore, it is beneficial to introduce multi-
ple agent teams that are aware of each other, en-
abling them to collaborate effectively to explore
more potential paths without needing specific ad-
justments while also maintain their independence
as a team process self-sufficient. Then the chal-
lenge becomes: How can multi-agent systems ob-
tain and utilize insights from others to achieve
a superior outcome? In this paper, we propose
Cross-Team Orchestration (Croto), a framework
that carefully orchestrates different single teams
into a multi-team collaborative structure, each
team has the same task assignment to communi-
cate in a collaborative environment. Specifically,
our framework enables different teams to indepen-
dently propose various task-oriented solutions as
insights (single-team proposal) and then commu-
nicate for insights interchange in some important
phases (multi-team aggregation) that boost subse-
quent task resolution. Different solutions from var-
ious teams are divided into groups by a Hierarchy
Partitioning mechanism and then synthesized by
a Greedy Aggregation mechanism that aggregates
various solutions and insights into a superior one
collaboratively.

Through our experiments with 15 tasks from
different categories and styles selected from the
SRDD dataset (Qian et al., 2024c) for software
generation (programming-language-oriented rea-
soning), we demonstrate a significant improvement
in software quality using the proposed framework.
We highlight the importance of diversity across
teams and emphasize the importance of fostering a
cross-team collaboration environment to bolster
teams’ performance through our pruning mech-
anism. Furthermore, to further demonstrate the
generalizability of our framework, we extended
its application to the domain of story generation
(natural-language-oriented reasoning), incorporat-
ing 10 tasks from the ROCStories dataset (Chen
et al., 2019). The results revealed a notable im-
provement in story quality. Our findings under-
score the efficacy and promising generalization of
our framework in complex tasks.

In summary, our contributions are threefold:

e We propose Cross-Team Orchestration (Croto),
a scalable multi-team collaboration framework
that efficiently orchestrates agents into multi-
ple teams to perform cross-team communica-

tions, which facilitates seamless content ex-
change among teams and effectively supports the
generation of diverse content forms, including
programming language and natural language.

e Our approach involves concurrent reasoning
within each team, followed by the partitioning
and aggregation process of diverse content from
multiple teams into a superior outcome, which
effectively incorporates multidimensional solu-
tions by retaining their strengths and eliminating
their weaknesses.

e We conducted extensive experiments demonstrat-
ing the effectiveness and generalizability of our
framework, indicating that multi-team collabora-
tion outperforms individual efforts.

2 Related Work

Trained on vast datasets with extensive parame-
ters, LLMs have revolutionized the landscape of
natural language processing (Brown et al., 2020;
Bubeck et al., 2023; Vaswani et al., 2017; Liu
et al., 2024). A notable breakthrough lies in the
LLM-based autonomous agents (Wang et al., 2023;
Richards, 2023; Osika, 2023), where these agents
exhibit proficiency in planning (Chen et al., 2023;
Yao et al., 2024), memory (Park et al., 2023; Wang
et al., 2024b), and tool use (Qin et al., 2023; Yang
et al., 2024a; Qin et al., 2024), thus enabling in-
dependent operation within intricate real-world
contexts (Zhao et al., 2024; Zhou et al., 2023;
Zhang et al., 2023; Weng, 2023), thereby transform-
ing fundamental LLMs into versatile autonomous
agents (Shinn et al., 2024; Zhao et al., 2024; Lin
etal., 2024; Mei et al., 2024). Along this line, multi-
agent collaboration has proven beneficial in uniting
the expertise of diverse agents for autonomous task-
solving (Khan et al., 2024; Wang et al., 2024¢; Qian
et al., 2024d; Zhou et al., 2024), which has widely
propelled progress across various domains such as
software development (Qian et al., 2024c; Hong
et al., 2023), medical treatment (Tang et al., 2023;
Li et al., 2024a), educational teaching (Zhang et al.,
2024b) and embodied control (Chen et al., 2024).
In contrast to simple majority voting, where
agents act independently (Qian et al., 2024b), the
concept of collective emergence (Woolley et al.,
2010; Hopfield, 1982; Minsky, 1988) suggests that
effective collaboration should form an integrated
system that fosters interdependent interactions and
thoughtful decision-making (Li et al., 2024b; Pi-

10387



atti et al., 2024). Recent research has focused on
differentiating agents into distinct roles and encour-
aging interactions for diverse tasks solving or com-
plex simulation (Xi et al., 2025; Li et al., 2024a;
Gao et al., 2024; Yang et al., 2024b; Wang et al.,
2025). Studies on exploring organizing agents in
hierarchical tree structures for information propa-
gation (Chen et al., 2023; Wang et al., 2024a) or in
graph-based structures with predefined nodes and
edges (Zhuge et al., 2024) demonstrating that in-
creasing the number and diversity of agents can en-
hance performance in multi-agent systems. MAC-
NET (Qian et al., 2024d) revealed that the quality
of solutions follows a logistic growth pattern as the
number of agents scales. Unlike these approaches,
our work envisions multi-agent teams as collab-
orative units, enabling both inter- and intra-team
collaborations for optimized solutions generation.

3 Preliminaries

Definition 1 (Chain as a Team) A  single-team
(C) is conceptualized as a chain-like struc-
ture (Qian et al., 2024c) composed of a series of
task-oriented phases (P°) that sequentially address
the resolution of tasks which can be formulated as:

c= (P, P%. .. Pl (1)

We refer to such a chain-like structure as a team
that could participate in our Croto framework.

Definition 2 (Agent Communication) In each
phase, an instructor agent initiates instructions,
instructing (—) the discourse toward the com-
pletion of the subtask, while an assistant agent
adheres to these instructions and responds with

(~) appropriate solutions (Li et al., 2023):
(ZT—A, A~T)s 2)

Agents engage in a multi-turn dialogue, working
collaboratively until they achieve consensus, ex-
tracting solutions that can range from the text (e.g.,
defining a software function point) to code (e.g.,
creating the initial version of source code), ulti-
mately leading to the completion of the subtask.

Definition 3 (Interaction) 7o facilitate intra-team
collaboration for task resolution, teams propose
their task-oriented solutions from the same phases
and jointly participate in solution improvements.
We refer to such a collaboration an interaction,
which successfully breaks the isolation between
teams while preserving their independence.

4 Methodology

4.1 Cross-Team Orchestration

Facing diverse tasks, a chain-as-a-team often tack-
les tasks in isolation. While this process is stream-
lined, it lacks the diversity of insights beneficial
to explore a broader range of decision paths for
superior task solutions.

A straightforward attempt to break this isolation
is to run n teams simultaneously on the same task
and ensemble their results. However, this straight-
forward ensembling approach fails to capitalize
on the potential for mutual awareness and collab-
oration among teams during intermediate phases.
This is analogous to exploring n paths in parallel
without leveraging the intersections of their inter-
mediate nodes, which could enable the exploration
of additional paths. Nevertheless, this approach
introduces new challenges, including a significant
increase in communication overhead and the risk of
incorporating noise from underperforming teams.
Moreover, the lack of independence among teams
can diminish the diversity of solutions, as teams
may converge on similar features.

To alleviate these issues, we propose Croto, a
novel cross-team collaborative framework that or-
chestrates the parallel executions of multiple single-
team with configurable temperature and length of
chains' Each team is assigned the same task objec-
tive, and they collectively propose various task-
oriented solutions at each phase based on their
unique perspectives. At predefined key phases such
as design or writing, where critical decisions or
significant solution modifications occur, the frame-
work identifies corresponding key phases in other
teams. If such phases exist, these teams pause their
workflows and extract solutions for cross-team in-
teractions (£). During this interaction process, solu-
tions generated by teams are first grouped and then
iteratively aggregated into more refined solutions.
This interactive dynamic can be modeled as:

€ = {(vi,vj) [ T(vi) = T(v;),v € K}
where V denotes the set of phases among all
teams, indexed by the index set Z, I(z) denotes
the name of phase x in a team, and K denotes the
set of key phases. Through Cross-Team Orches-
tration, a collaborative yet independent cross-team

"Length Diversity can be induced manually, meanwhile,
can continue to vary autonomously along the process.

10388



2 ¢

A\

IIIIIIIIIIIIIIIP@:,
&

IIIIIIIIIIIIIIIPB —

@ Agent

Content

Feature

...............D
7

Collaborate

Figure 1: The aggregation process in Cross-Team Orchestration involves multiple agents (9) from different teams
contributing a variety of content ( ;). These solutions are partitioned into groups and collaboratively ( = )
aggregated through interactions, highlighting the distinctive features (=) of each team’s solution. Ultimately, this
process results in a superior outcome that synthesizes the features of all participating teams.

interaction network is established, fostering greater
innovation and efficiency in producing superior so-
lutions.

4.1.1 Greedy Aggregation

During interactions, agents collaborate to jointly
develop a superior solution. This process is not
merely about selecting the best option but focuses
on combining the strengths and mitigating defi-
ciencies of all solutions (S = {s1, s2,...,8,}), as
illustrated in Figure 1. Essentially, it synthesizes
multiple decision paths into a single, optimal path-
way. To achieve this, we introduce a greedy aggre-
gation mechanism («) that leverages the features of
the solutions. In an aggregation process, a pruning
mechanism (6) filters out a predefined proportion
of low-quality solutions? to reduce the aggregation
burden and enhance the quality of the generated
solutions. A role-assigned aggregate agent profi-
cient in synthesizing solutions then meticulously
extracts the strengths and weaknesses of each so-
lution. Based on these features, the agent aggre-
gates a superior (x) solution that greedily integrates
strengths and eliminates weaknesses and explicitly
outlines the changes that have been made:

s = a(0(5)) )

The resulting solution is then disseminated to all
teams, replacing prior solutions of each team, guid-
ing subsequent phases of task resolution.

4.1.2 Hierarchy Partitioning

To prevent long-context issues rooted in the over-
whelming amount of simultaneous solutions aggre-
2Solutions are evaluated and rated using the Quality metric

detailed in Section 5, which effectively enhances our pruning
mechanism by eliminating solutions non-arbitrarily.

gation, meanwhile, enhance the effectiveness of the
aggregation process by gradually synthesizing and
refining the solutions, we propose Hierarchy Parti-
tioning (7), as illustrated in Figure 1. This involves
grouping solutions from different teams engaged
in intra-team interactions and subsequently aggre-
gating them into superior solutions by groups.
Formally, by using uniform partitioning with
an expected quantity (u) of solutions per
group, a set of collaborative groups (GF =
{g¥,d5,..., g’% }) are generated. Each group

g; consists of a subset of the solutions from teams
that participate in the interaction process:

U =5

geg

k _ gk ok k
8% ={s{,85,...,80 } (3)

n
u k

where k£ denotes the number of partitioning itera-
tions. Following this, each group of solutions first
undergoes an aggregation process, gathered and
divided into new groups, and then re-aggregating
these aggregated solutions. This iterative process
can be formalized as:

GF = 7p(SY),  SF = ay(GF)

& = au(ra(ara(... an(r(s)))

This process continues hierarchically, generating
aggregated solutions until a single, superior solu-
tion remains as the final output.

5 Evaluation

Baselines We chose different types of LLM-
driven paradigms as our baselines, which include
both single-agent and multi-agent methodologies.
GPT-Engineer (Osika, 2023) is a foundational

10389



Method Paradigm Completeness Executability Consistency Quality
GPT-Engineer @ 0.502" 0.358" 0.768T 0.543"
MetaGPT 0 0.483f 0.415% 0.739% 0.545¢
ChatDev 0 0.744" 0.813f 0.781f 0.779¢
AgentVerse ) 0.6501 0.850f 0.7761 0.759%
GPTSwarm £ 0.800 0.5501 0.779% 0.710f
Croto an 0.795 0.928 0.796 0.840

Table 1: Overall performance comparison of various representative methods, encompassing Single-Agent({?),
Single-Team Execution (8), Graph-like () and Our Cross Team Orchestration (8 8) framework. The metrics are
the average across all tasks. The highest scores are highlighted in bold, and the second-highest scores are presented
with underline. T indicates significant statistical differences (p < 0.05) between baselines and ours.

single-agent method leveraging LLMs for soft-
ware development, distinguished by its adept-
ness at swiftly grasping task requirements and
applying one-step reasoning to efficiently gen-
erate comprehensive solutions, ChatDev (Qian
et al., 2024¢) is an LLM-powered agent collab-
orative software development framework that or-
ganizes the entire software development process
into waterfall-style phases, MetaGPT (Hong et al.,
2023) is an innovative framework that assigns di-
verse roles to various LLM-powered agents and
incorporates standardized operating procedures
to facilitate agent collaboration in software de-
velopment, AgentVerse (Chen et al., 2023) is
a multi-agent framework that assembles expert
agents in structured topologies, using linguistic
interactions for autonomous solution refinement,
GPTSwarm (Zhuge et al., 2024) formalizes a
swarm of LLM agents as computational graphs,
where nodes represent manually customized func-
tions and edges represent information flow.

Experiment Setup In our experiments, we have
validated our framework on heterogeneous tasks,
including the scientific domain of software devel-
opment and the humanities domain of story gen-
eration. We employ GPT-3.5-Turbo as the foun-
dational model for its optimal balance of reason-
ing efficacy and efficiency. We limit communica-
tion rounds between agents to a maximum of 5
per phase in each team. By default, the number
of teams engaged in the tasks is set to 8 and the
temperature parameter is 0.2 with a pruning mech-
anism. We conduct a pruning mechanism only
on 8-team Croto. We configure coding and code
completion phases for software development tasks
and after the writing phase for story generation
tasks as key phases to make cross-team interac-

tions. Our software development experiments ran-
domly draw 15 tasks from the SRDD dataset (Qian
et al., 2024c), a collection designed for repository-
level software development, and 10 tasks for story
generation from ROCStories (Mostafazadeh et al.,
2016), a collection of commonsense 5 sentences
short stories can be used for longer stories gener-
ation. The performance metrics are the average
across all tasks within the test set. All baseline
evaluations adhere to our proposed framework’s
same hyperparameters and settings to ensure a fair
comparison.

Metrics We use four fundamental dimensions to
assess specific aspects of the software proposed by
previous works (Qian et al., 2024a,c):

e Completeness (o« € [0, 1]) measures the soft-
ware’s capacity for comprehensive code fulfill-
ment during development. It is measured by
the proportion of the software that is free from
"TODO"-like placeholders. A higher score im-
plies a greater likelihood of the software being
capable of automated completion without the
need for further manual coding.

e Executability (B € [0, 1]) assesses the software’s
ability to run correctly within a given compila-
tion environment. It is measured by the percent-
age of software that compiles without errors and
is ready to execute. A higher score indicates a
higher likelihood of the software running suc-
cessfully as intended.

e Consistency (v € [0, 1]) evaluates the alignment
between the generated software and the original
natural language requirements. It is quantified
as the cosine distance between the embeddings
of the text requirements and the source code. A

10390



higher score indicates a greater degree of com-
pliance with the requirements.

e Quality (%ﬁﬂ € [0,1]) is a comprehensive
metric that integrates all dimensions above. It
serves as a holistic indicator of the software’s
overall quality. A higher score indicates superior
generation quality, suggesting that the software
is less likely to require additional manual inter-
ventions.

5.1 Opverall Performance

Table 1 illustrates a detailed comparative analysis
of Croto and all baselines. Firstly, the single-team
paradigm outperforms the GPT-Engineer, highlight-
ing the benefits of a multi-agent system in decom-
posing complex task-solving into manageable sub-
tasks. Furthermore, Croto achieved optimal per-
formance with a remarkable improvement over
baselines, showing only a slightly lower score in
Completeness when compared to the Graph-like
paradigm but significantly higher in Executability.
The contrast with ChatDeyv is especially striking,
the Completeness score escalates from 0.744 to
0.795, the Executability score witnesses a substan-
tial leap from 0.813 to 0.928, the Consistency score
improves from 0.781 to 0.796, the overall quality of
the generated software significantly improves from
0.779 to 0.840. These enhancements underscore
the advantages of the Croto, where the indepen-
dence of teams maintains their solutions diversity
and intra-team collaborations lead to mutual correc-
tion and enlightenment, subsequent enhancement
in software quality, reducing the likelihood of ex-
ecutable errors, and elevating the degree of code
completion and alignment with user requirements.

5.2 Hyperparameter Analysis

Teams Number Analysis Our investigation on
scaling team number, as shown in Figure 2, re-
veals an intriguing inverse relationship between the
Executability and Completeness of the software
generated by Croto without the pruning strategy.
This finding succinctly captures the essence of the
trade-off that is inherent in the framework’s per-
formance. Initially, we observed a steady increase
in the alignment of codes with task requirements,
peaking around the 4-team configuration. This con-
figuration achieves an optimal balance, producing
software that is both executable and functionally
rich. However, as the number of teams increases
beyond four, we notice a gradual decline in Quality.

Mechanism Completeness Executability Consistency Quality

8-team Croto w’f 0.828f 0.792f MT
+ Prune 0.795 0.928 0.796 0.840

" Acompared to Vanilla  +0.089 - +0.100  +0.004  +0.065
4-team Croto 0.660 0.9157 0.793 0.7897
0.10.10.10.1) 0.700 0.794F 0.791 0.7621
(0.40.40.40.4) 0.583 0.773F 0.792 0.716"
0.20.40.60.8) 0.575 0.875 0.790 0.747t
(020.20.40.4) 0.670 0.925 0.790 0.795

" Acompared to Vanilla  +0.010° - +0.010  40.003  +0.006

Table 2: Investigation of mechanisms in 4-team and
8-team Croto. The temperatures for each team are indi-
cated as (t1,to, t3,t4). The "+ symbol represents the
adding operation.

Despite this decline, the quality remains superior
to that of the single-team configuration, indicating
that multi-team collaboration still offers benefits.
We hypothesize that the diminishing returns and
potential performance decline are due to the agents’
difficulty in effectively synthesizing an excessive
volume of solution features. To further scale the
number of teams without compromising quality, the
implementation of a pruning mechanism becomes
essential, as it eliminates low-quality solutions be-
fore aggregation, effectively reducing the burden
on the aggregation agent.

Greedy Pruning To enhance the scalability and
performance of Croto, we introduce the Greedy
Pruning mechanism, which reduces the aggrega-
tion burden and improves the quality of solutions
generated by teams. As shown in Table 2, apply-
ing pruning in the 8-team configuration achieves
the highest scores across all metrics, demonstrat-
ing its effectiveness in handling larger team sizes.
By evaluating solutions before aggregation, Greedy
Pruning eliminates low-quality solutions that could
otherwise degrade the final output by introducing
suboptimal features and increasing the aggregation
burden 3. This makes our framework more scal-
able and effective for software development tasks
that support Croto in exploring more valuable path-
ways in a cost-efficient manner while reducing the
likelihood of being misled by failed paths.

Temperature Analysis A core idea of our frame-
work is that diverse solutions from multiple teams
provide valuable perspectives that, while individu-
ally inconspicuous, can be synthesized to positively
contribute to task resolution. To evaluate the im-
pact of solution diversity, we varied temperature
configurations to enable teams to generate solutions

3Burden in the sense that the agent is instructed to synthe-
size features from all solutions in a group into one solution;
more solutions increase the difficulty of aggregation.

10391



Completeness

0.76).744
0.74

0.72
0.70
0.68
0.66

0.7060.706

Team Number

Consistency

0.796 0.794

0.794
0.792
0.790
0.788
0.7860,784
0.784

0.782

0.793

1 2 3 4 5 6 7 8
Team Number

Executability
0.925 0.906 %215
0.900
0.875
0.850
0.825
0.800
0.775™
0.750

0.725

1 2 3 4 5 6 7 8
Team Number

Quality

0.789
0.787

Il 0.778

0.775

0.790 0.788
0.785

0.780

0.775

0.7700.767

0.765

0.760

0.780

2 3 4 5 6 7 8
Team Number

Figure 2: Visualization of result trends concerning team number variations in our framework without greedy pruning
mechanism. An upward trend in consistency is observed, along with an inverse relationship between executability
and completeness. The highest quality of content is achieved with a team size of four.

Mechani Complet Executability Consistency Quality
4-team Croto 0.660 0.915 0.793 0.789
- Partition 0.683 0.800 0.786 0.756
- Role 0.680 0.783 0.739 0.735
8-team Croto 0.706 0.828 0.791 0.775
- Partition 0.728 0.804 0.787 0.773
- Role 0.658 0.783 0.790 0.744

Table 3: Ablation study on 4 Teams Croto and 8 Teams
Croto. The ’-’ denotes the removing operation. The
highest scores are highlighted in bold, and the second-
highest scores are presented with underline.

with varying degrees of creativity and requirement
compliance. As shown in Table 2, an optimal level
of diversity significantly improves solution quality.
When the temperature is uniform across all teams,
the performance gains achieved by Croto are lim-
ited. This limitation arises because teams either uni-
formly prioritize creative but unstable solutions or
strictly adhere to rules, resulting in minimal novel
insights from cross-team interactions. In contrast,
when each team’s temperature is set to balance
creativity and compliance, Croto demonstrates sub-
stantial performance improvements. Analysis of
team solutions reveals that cross-team communica-
tion often leads to autonomous functional enhance-
ments (e.g., innovative GUI designs, progressively
increasing game difficulty), facilitating the integra-
tion of beneficial features from diverse solutions.

Mechanism #Token #Files #Lines Duration (s)
Single Team 24377 3.13 104.6 164.36
2-team Croto 32963 3.23 113.4 308.29
3-team Croto 34896 3.85 124.1 532.53
4-team Croto 41903 4.46 1353 418.34
5-team Croto 44987 4.31 128.5 433.44
6-team Croto 45578 3.95 128.4 461.56
7-team Croto 48812 4.37 126.2 427.08
8-team Croto 52179 4.77 129.6 584.83
" Acompared to single  x2.141  x1.524 x1239  x3.558

Table 4: Software statistics include Duration (time con-
sumed), #Tokens (number of tokens used), and #Lines
(total lines of code per across all files).

5.3 Ablation Study

In our ablation study, as presented in Table 3, the re-
moval of Hierarchical Partitioning from the 4-team
and 8-team configurations significantly reduced so-
lution quality, from 0.789 and 0.775 to 0.756 and
0.773, respectively. This indicates that, without
partitioning into groups, the aggregate agent strug-
gled to effectively handle the diverse features of
team solutions in a single aggregation, making it
challenging or even impractical to extract and syn-
thesize these features. Furthermore, eliminating
role assignment for the aggregate agent further de-
creased solution quality to 0.735 and 0.744. The
absence of structured guidance led to issues such
as disorganized solutions, task failures, and feature
omissions. These results underscore the impor-

10392



tance of our framework’s mechanisms in managing
complex solutions and ensuring high-quality out-
puts in multi-team scenarios.

5.4 Statistics Analysis

We present the software statistics in Table 4. Croto
generates a greater number of code files and a
larger codebase, significantly enhancing the soft-
ware’s functionality and integrity. This trend is
consistent across configurations ranging from 2 to
8 teams, demonstrating the effectiveness and scal-
ability of our framework. The increased number
of files reflects a more structured programming ar-
chitecture, resembling software developed by a so-
phisticated software development team. Although
slower and more token-intensive than the single-
agent method, our framework remains computa-
tionally efficient, as the duration and token con-
sumption do not scale linearly. Specifically, these
metrics increase only 2.14 times more tokens and
3.558 times more duration when scaling from a
single team to 8 teams. This efficiency is attributed
to solution elimination through greedy pruning and
the fact that higher-quality aggregated solutions re-
duce processing complexity in subsequent phases,
resulting in fewer average communication rounds
per phase and lower token consumption. Consid-
ering these factors, we posit that the fundamental
characteristics of cross-team software development
hold greater significance, outweighing short-term
concerns such as time and economic costs in the
current landscape.

5.5 Diversity in Collaborative Emergence

The diversity in Croto arises from the interaction
among teams, as formalized by the equation:

pr(t) =1—(1-p@)"

1= (1=1/re)VF, ()
lim p"(t) = lim p"(t) = 1.

i p(0) = lim p" (1)
Here, increasing the number of teams (|V|) quadrat-
ically enhances the likelihood of capturing rare but
valuable long-tail solution features—such as un-
conventional yet effective code logic or creative
narrative twists—since token distributions in un-
derlying models typically follow a long-tail pattern.
This differs from conventional linear agent-level
optimization, where rare features are less systemat-
ically integrated. The probability p(t) of a rare fea-
ture appearing follows a long-tail distribution con-
sistent with Zipf’s law (Newman, 2005), such that

p(t) o< 1/r(t), where r(t) denotes the frequency
rank of feature . The sampling size n is propor-
tional to team interaction density (n o< |V|?), as so-
lution features are aggregated and refined through
inter-team comparisons. Consequently, p"(t), the
probability of observing feature ¢ at least once,
grows quadratically with |V'|. As the number of
teams increases, the emergence of rare features be-
comes inevitable, enabling the aggregation process
to refine solutions with increasingly nuanced as-
pects. This mechanism exploits multi-agent interac-
tion scaling to improve solution diversity and qual-
ity, aligning with findings in multi-agent debate
and cross-examination frameworks (Liang et al.,
2023; Du et al., 2023; Cohen et al., 2023).

5.6 Generalizability Analysis

To demonstrate the generalization capability of our
framework, we conducted experiments in story gen-
eration. The results indicate that our framework
significantly enhances the quality of stories gener-
ated by both single-agent and single-team execu-
tion. This improvement highlights the versatility,
robustness, and potential of our framework across
diverse domains.

Metrics We evaluate story quality across four
critical dimensions:

e Grammar and Fluency (w € |0, 4]) assesses nat-
ural language use, grammatical correctness, and
fluency for a coherent and error-free narrative
flow.

e Context Relevance (1) € [0,4]) analyzes the
contextual appropriateness and interrelation of
names, pronouns, and phrases to ensure narrative
integrity and depth in plots.

e Logic Consistency (£ € |0, 4]) examines the log-
ical progression of events and character relation-
ships for narrative coherence and plausibility.

e Quality (%W € [0,4]) is a comprehen-
sive metric that integrates individual dimension
scores to provide a comprehensive measure of
narrative quality, reflecting the synthesis of lan-
guage, context, and logic.

Team Number Analysis Experiments on team
number shown in Table 5, observe a positive corre-
lation between the number of participating teams
and the resultant quality of the generated stories.
Notably, the quality demonstrated a substantial

10393



Mechanism Paradigm Grammar and Fluency Context Relevance Logic Consistency Quality
Single-Agent 8 2.1501 2.0051 2.4251 2.193t
Single-Team Execution 7 2.250f 2.325¢ 2.5007 2.358"
2-team Croto nn 2.725 2.800 3.000 2.842
3-team Croto an 2.967 2.767 2.967 2.900
4-team Croto nn 2.967 2.850 2.908 2.908
5-team Croto nn 2.980 2.880 2.960 2.940
6-team Croto nn 2.983 2.900 2.983 2.956
7-team Croto an 3.000 3.171 3.014 3.062
8-team Croto nn 3.0007 3.2501 3.0007 3.083f
8-team Croto + Prune 5 17 P 3.625 3.750 3.250 3.642

Table 5: Result trends concerning Team Size Variations in our Framework in Story Generation, encompassing
single-agent(ﬁ), Single-Team Execution (@) and Cross-Team Orchestration (@ ﬁ) with and without pruning
mechanism (‘X:). t indicates significant statistical differences (p < 0.05) between best results and baselines

improvement over outcomes from single agent
and single-team baselines, with scores rising from
2.193 and 2.358 to 3.083. However, as the number
of teams increased, diminishing returns began to set
in. To counteract this trend, we bring in the Greedy
Pruning mechanism. This intervention led to a no-
table enhancement in quality when the number of
teams was eight, with the quality score improving
from 3.083 to 3.642. These findings underscore the
efficacy of the Croto framework in story generation,
suggesting that it is not only beneficial for software
development but also generalizes well to creative
humanities domains such as narrative generation.

Ablation Study Our ablation study, as illustrated
in Table 3, reveals results that align with patterns
observed in software development. The removal of
partitioning from the 4-team and 8-team configura-
tions resulted in a decline in quality scores, from
2.908 and 3.083 to 2.271 and 2.456, respectively.
Similarly, eliminating role assignments for agents
further reduced the quality scores from 2.908 and
3.083 to 2.300 and 2.341. While story generation
exhibits more literary characteristics compared to
software development tasks—which demand pre-
cision and error-free execution—they possess a
higher tolerance for ambiguity. Unlike software
features (e.g., GUI, object-oriented programming),
stories encompass more implicit features (e.g., nar-
rative style and thematic intent). These features
necessitate that aggregation agents, equipped with
assigned roles, process a manageable volume of
stories to effectively extract and harmonize these
features, thereby producing higher-quality narra-
tives. Given these similarities between the two
distinct types of tasks, we hypothesize that con-
tent generation tasks (e.g., code, stories, reports,

blogs) may similarly benefit from our framework,
underscoring its potential broad applicability.

. Grammar  Context Logic .
Mechanism Fluency Relevance Consis. Quality
4-team Croto 2.967 2.850 2908 2.908
- Partition 1,906 2219 2.688 2271
- Role 2.096 2.183 2.621  2.300
8-team Croto 3.000 3.250 3.000 3.083
- Partition 2.255 2.354 2.758  2.456
- Role 2.115 2.256 2.653  2.341

Table 6: Ablation study on 4 Teams Croto and 8 Teams
Croto. The ’-’ denotes the removing operation. The
highest scores are highlighted in bold, and the second-
highest scores are presented with underline.

6 Conclusion

Recognizing the inherent limitations of a single
team in obtaining and leveraging external insights
when completing complex tasks such as software
development, we introduce a novel multi-team
framework called Croto. This framework carefully
orchestrates multiple teams with the same task ob-
jective, enabling them to jointly propose diverse
task-oriented decisions, interact at key phases, and
collaboratively aggregate various solutions into a
final superior outcome. Without requiring task-
specific customization, our quantitative analysis
demonstrates significant improvements in outcome
quality in software development and story genera-
tion, highlighting the framework’s scalability and
potential generalizability. We anticipate that our
insights will initiate a paradigm shift in the design
of LLM agents, advancing them toward multi-team
collaboration and enhancing solution generation
quality across a broader range of complex tasks.

10394



7 Limitations

Our study has explored the collaborative behav-
iors of multiple autonomous agent teams in soft-
ware development and story generation, yet both
researchers and practitioners must be mindful of
certain limitations and risks when using the ap-
proach to develop new techniques or applications.

Firstly, the framework’s dependence on a greedy
pruning mechanism could inadvertently lead to the
discarding of potentially valuable insights. This
is due to the imperfections inherent in evaluation
metrics. While the mechanism aims to eliminate
low-quality solutions, it may also prematurely ex-
clude creative solutions that could evolve into high-
quality outcomes with further development. There
is a trade-off between the efficiency of the pruning
process and the potential loss of innovative ideas,
which suggests the need for more effective auto-
mated evaluation methods in the future, not limited
to the domains of software development and story
generation.

Secondly, when evaluating the capabilities of
autonomous agents from a software development
standpoint, it is prudent to avoid overestimating
their software production abilities. Our observa-
tions indicate that while Cross-Team Orchestra-
tion (Croto) significantly improves the quality of
both software development and story generation
tasks, autonomous agents often default to imple-
menting the most straightforward logic during the
software creation process. In the absence of ex-
plicit and clear requirements, agents struggle to
autonomously discern the underlying concepts and
nuances of the task requirements. For example,
when developing a Flappy Bird game, if the task
guidelines are not meticulously defined, agents may
default to representing the bird and tubes with a
rudimentary rectangular shape. Similarly, in the
construction of an information management sys-
tem, agents may opt to hard-code the information
to be queried in a basic key-value format directly
into the code, rather than employing a more so-
phisticated and flexible external database solution.
Therefore, we advocate for the precise definition
of detailed software requirements. This includes
specifying whether a user interface is essential, if
there is a need for the automatic generation of game
character assets, or if an external database is neces-
sary. Given the current capabilities of autonomous
agents, fulfilling highly detailed requirements is
not always assured, underscoring the importance of

striking a balance between specificity and practical
feasibility in the requirements. In the field of story
generation, due to its literary nature, complex task
relationships, scene descriptions, and background
settings are often required. However, providing
agents with overly complex requirements can lead
to suboptimal narrative outcomes, as agents may
find it challenging to effectively manage and pri-
oritize the various narrative elements during the
writing process. In conclusion, the research on au-
tonomous agents for software and story generation
is still in its early stages, and the associated tech-
nologies are not yet readily adaptable to complex
real-world scenarios. As a result, the current appli-
cation of these technologies is more suited to the
development of prototype systems rather than fully-
fledged, real-world software and narrative systems.

Thirdly, the complexity of coordinating multiple
teams and managing the interaction load increases
with the number of teams involved. As the frame-
work scales, the computational and logistical de-
mands rise, which may impact the practicality of
applying our framework to very large-scale prob-
lems or in resource-constrained environments. Fu-
ture work is needed to optimize the scalability of
the framework while maintaining its efficacy.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Jiaao Chen, Jianshu Chen, and Zhou Yu. 2019. Incorpo-
rating structured commonsense knowledge in story
completion. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6244—
6251.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia
Qin, Yaxi Lu, Ruobing Xie, et al. 2023. Agent-
verse: Facilitating multi-agent collaboration and ex-
ploring emergent behaviors in agents. arXiv preprint
arXiv:2308.10848.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas
Roy, and Chuchu Fan. 2024. Scalable multi-robot

10395



collaboration with large language models: Central-
ized or decentralized systems? In 2024 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 4311-4317. IEEE.

Roi Cohen, May Hamri, Mor Geva, and Amir Glober-
son. 2023. Lm vs Im: Detecting factual errors via
cross examination. arXiv preprint arXiv:2305.13281.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024.
Self-collaboration code generation via chatgpt. ACM
Transactions on Software Engineering and Method-

ology, 33(7):1-38.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Shen Gao, Yuntao Wen, Minghang Zhu, Jianing Wei,
Yuhan Cheng, Qunzi Zhang, and Shuo Shang. 2024.
Simulating financial market via large language model
based agents. arXiv preprint arXiv:2406.19966.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.
Metagpt: Meta programming for multi-agent collabo-
rative framework. arXiv preprint arXiv:2308.00352.

John J Hopfield. 1982. Neural networks and physi-
cal systems with emergent collective computational
abilities. Proceedings of the national academy of
sciences, 79(8):2554-2558.

Akbir Khan, John Hughes, Dan Valentine, Laura
Ruis, Kshitij Sachan, Ansh Radhakrishnan, Edward
Grefenstette, Samuel R Bowman, Tim Rocktédschel,
and Ethan Perez. 2024. Debating with more per-
suasive 1lms leads to more truthful answers. arXiv
preprint arXiv:2402.06782.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023.
Camel: Communicative agents for" mind" explo-
ration of large scale language model society. arXiv
preprint arXiv:2303.17760.

Junkai Li, Siyu Wang, Meng Zhang, Weitao Li, Yungh-
wei Lai, Xinhui Kang, Weizhi Ma, and Yang Liu.
2024a. Agent hospital: A simulacrum of hospi-
tal with evolvable medical agents. arXiv preprint
arXiv:2405.02957.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and
Deheng Ye. 2024b. More agents is all you need.
arXiv preprint arXiv:2402.05120.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brah-
man, Shiyu Huang, Chandra Bhagavatula, Prithviraj
Ammanabrolu, Yejin Choi, and Xiang Ren. 2024.
Swiftsage: A generative agent with fast and slow
thinking for complex interactive tasks. Advances in
Neural Information Processing Systems, 36.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report.  arXiv preprint
arXiv:2412.19437.

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong
Ye, Yinggiang Ge, and Yongfeng Zhang. 2024.
Llm agent operating system. arXiv preprint
arXiv:2403.16971.

Marvin Minsky. 1988. Society of mind. Simon and
Schuster.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839—-849.

Mark EJ Newman. 2005. Power laws, pareto dis-
tributions and zipf’s law. Contemporary physics,
46(5):323-351.

Anton Osika. 2023. Gpt-engineer. In
https://github.com/AntonOsika/gpt-engineer.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th An-
nual ACM Symposium on User Interface Software
and Technology, pages 1-22.

Giorgio Piatti, Zhijing Jin, Max Kleiman-Weiner, Bern-
hard Scholkopf, Mrinmaya Sachan, and Rada Mi-
halcea. 2024. Cooperate or collapse: Emergence of
sustainability behaviors in a society of llm agents.
arXiv preprint arXiv:2404.16698.

Chen Qian, Yufan Dang, Jiahao Li, Wei Liu, Zihao Xie,
Yifei Wang, Weize Chen, Xin Cong, Xiaoyin Che,
Zhiyuan Liu, and Maosong Sun. 2024a. Experiential
co-learning of software-developing agents. In The
62nd Annual Meeting of the Association for Compu-
tational Linguistics.

Chen Qian, Jiahao Li, Yufan Dang, Wei Liu, YiFei
Wang, Zihao Xie, Weize Chen, Cheng Yang, Yingli
Zhang, Zhiyuan Liu, et al. 2024b. Iterative ex-
perience refinement of software-developing agents.
arXiv preprint arXiv:2405.04219.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu,

10396


https://github.com/AntonOsika/gpt-engineer
https://openreview.net/forum?id=Un5FWtfVdH
https://openreview.net/forum?id=Un5FWtfVdH

and Maosong Sun. 2024c. Communicative agents for
software development. In The 62nd Annual Meeting
of the Association for Computational Linguistics.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yu-
fan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. 2024d. Scaling
large-language-model-based multi-agent collabora-
tion. arXiv preprint arXiv:2406.07155.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou,
Yufei Huang, Chaojun Xiao, et al. 2024. Tool learn-
ing with foundation models. ACM Computing Sur-
veys, 57(4):1-40.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Toran Bruce Richards. 2023. AutoGPT. In
https://github.com/Significant-Gravitas/AutoGPT.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming
Li, Yilun Zhao, Xingyao Zhang, Arman Cohan, and
Mark Gerstein. 2023. Medagents: Large language
models as collaborators for zero-shot medical reason-
ing. arXiv preprint arXiv:2311.10537.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Chenxi Wang, Zongfang Liu, Dequan Yang, and Xiuy-
ing Chen. 2025. Decoding echo chambers: Llm-
powered simulations revealing polarization in so-
cial networks. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 3913-3923.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang,
and James Zou. 2024a. Mixture-of-agents enhances
large language model capabilities. arXiv preprint
arXiv:2406.04692.

Ruobing Wang, Daren Zha, Shi Yu, Qingfei Zhao, Yux-
uan Chen, Yixuan Wang, Shuo Wang, Yukun Yan,
Zhenghao Liu, Xu Han, et al. 2024b. Retriever-
and-memory: Towards adaptive note-enhanced
retrieval-augmented generation.  arXiv preprint
arXiv:2410.08821.

Zhefan Wang, Yuanqing Yu, Wendi Zheng, Weizhi Ma,
and Min Zhang. 2024c. Macrec: A multi-agent col-
laboration framework for recommendation. In Pro-
ceedings of the 47th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 2760-2764.

Lilian Weng. 2023. Llm-powered autonomous agents.

Anita Williams Woolley, Christopher F Chabris, Alex
Pentland, Nada Hashmi, and Thomas W Malone.
2010. Evidence for a collective intelligence fac-
tor in the performance of human groups. science,

330(6004):686—688.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. 2024. Autogen: En-
abling next-gen llm applications via multi-agent con-
versations. In First Conference on Language Model-

ing.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Sen-
jie Jin, Enyu Zhou, et al. 2025. The rise and potential
of large language model based agents: A survey. Sci-
ence China Information Sciences, 68(2):121101.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2024a. Gpt4tools: Teaching
large language model to use tools via self-instruction.

Advances in Neural Information Processing Systems,
36.

Ziyi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang,
Ziyue Gan, Zhiyu Wang, Zijian Ling, Jinsong Chen,
Martz Ma, Bowen Dong, et al. 2024b. Oasis: Open
agents social interaction simulations on one million
agents. arXiv preprint arXiv:2411.11581.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

An Zhang, Leheng Sheng, Yuxin Chen, Hao Li, Yang
Deng, Xiang Wang, and Tat-Seng Chua. 2023. On
generative agents in recommendation. arXiv preprint
arXiv:2310.10108.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik
Roychoudhury. 2024a. Autocoderover: Autonomous
program improvement. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 1592-1604.

Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu
Gong, Jinchang Zhou, Zhiyuan Liu, Lei Hou, and
Juanzi Li. 2024b. Simulating classroom educa-
tion with llm-empowered agents. arXiv preprint
arXiv:2406.19226.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu
Lin, Yong-Jin Liu, and Gao Huang. 2024. Expel:
Llm agents are experiential learners. In Proceedings

10397


https://openreview.net/forum?id=ENwYCuknbL
https://openreview.net/forum?id=ENwYCuknbL
https://github.com/Significant-Gravitas/AutoGPT
https://lilianweng.github.io/

of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19632-19642.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long
Li, Jialong Wu, Tiannan Wang, Jiamin Chen, Shuai
Wang, Xiaohua Xu, Ningyu Zhang, et al. 2024. Sym-
bolic learning enables self-evolving agents. arXiv
preprint arXiv:2406.18532.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. 2024. Language agents as optimizable
graphs. arXiv preprint arXiv:2402.16823.

10398



Appendix

The supplementary information accompanying the
main paper provides additional data, explanations
and details.

A Algorithm

Here, we provide the pseudocode of our framework
for clarity shown in Algorithm 1.

B Code length Study

We term Code length as Complexity (1) which
assess the complexity of the generated solutions by
quantifying it in terms of the number of lines of
generated solutions; A higher number indicates that
the completion of the program is more complex.

Delving into the results depicted in Figure 3,
we observe that the complexity of the generated
programs reaches its zenith at the 4-Team config-
uration. Subsequently, there is a marginal decline,
yet the complexity remains relatively stable. It is
evident that under the Team-Weaving paradigm,
the complexity of the generated programs consis-
tently surpasses that of the Single-Teaming ap-
proach. This observation underscores the efficacy
of the Team-Weaving paradigm in enhancing the
volume of code generated, thereby opening up pos-
sibilities for more extensive software development
endeavors.

Complexity

140
130
120
11049
100

1 2 3 4 5 6 7 8
Team Number

Figure 3: Complexity Trends with Variation in Team
Numbers

C Length Diversity of Teams

In contrast to conventional Single Team Execution,
where phases within a team are predefined by the
user before execution. In Croto, Waiting Phase are
(W) inserted after key phases where solutions are
extracted from teams to perform feature extraction
and aggregation lead to a noticeable improvement

in solutions quality, resulting in the skipping of
certain phases (P?) in the chat chains (C) of some
teams within the Cross-Team Orchestration (V).
In Croto, Waiting Phases (JV) are inserted after
key phases. During these phases, solutions are ex-
tracted from teams to perform feature extraction
and aggregation, leading to noticeable improve-
ments in solution quality. This process results in the
skipping of certain phases (P?) in the chat chains
(C) of some teams within the Cross-Team Orches-
tration (N). For example, when confronting the
code completion phase, the skipping process (S)
is invoked when the quality of code from the pre-
ceding phase exceeds a predetermined threshold
(Q'1), such as the absence of "TODO" comments.
This indicates that the code no longer requires fur-
ther completion processes, such as function imple-
mentation, in subsequent phases, leading to diverse
lengths across different teams."

N =t c?...,cV
C' = (PLPW?, .. PIWTL P (8)
S(Pzwl) — Pi—l Z Qi—l

Here, the sequence of phases P interspersed with
Waiting Phases W' constitutes the chat chain in
each team within Cross-Team Orchestration. This
characteristic reduces the frequency of LLM calls,
lowering development costs and enhancing the
framework’s efficiency.

D Prompt

D.1 Software Evaluation Prompt

Here, we present the prompts used for evaluating
the software quality across multiple teams, as de-
picted in Figure 4.

D.2 Prompt for Story Quality Evaluation

Here, we present the prompts used for evaluating
the story quality across multiple teams, as depicted
in Figure 5.

D.3 Generation of Profiles of Programmers

To foster diversity in program generation, it is
essential to incorporate a spectrum of program-
mer profiles. We tasked a Large Language Model
(LLM) with the creation of a comprehensive set of
100 features, as depicted in Figures 6, 7, 8, and 9.
These features constitute a rich feature pool that
programmers may possess.

10399



Software Evaluation Prompt

Prompt

You are an experienced and meticulous software analyst and developer, trusted
by others to optimize and enhance their code. Now there are several programs
that serve the same purpose and are currently competing in the software devel-
opment field.

Now you need to carefully analyze and compare these programs to identify their
strengths and weaknesses and explain them. Subsequently, you must generate
only one new, improved, and runnable program. This program should include
the solutions of each file, encompassing the complete code.

Each file must strictly adhere to a markdown code block format. The following
tokens must be replaced: "FILENAME" with the lowercase file name, including
the file extension; "LANGUAGE" with the programming language; "DOC-
STRING" with a string literal specified in the source code for documenting a
specific segment of code, and "CODE" is the original code:

FILENAME

““LANGUAGE

999

DOCSTRING

999

CODE

You will start with the "main" file, then go to the ones that are imported by that
file, and so on.

This new program should combine the advantages obtained from the competi-
tion between different teams and eliminate all weaknesses.

Please bear in mind that even if some parts of the improved code may similar
to the previous program, do not omit them. Instead, clearly write out each line
of the improved code. Furthermore, ensure that the code is fully functional,
implementing all functions without the use of placeholders (such as ’pass’ in
Python).

Here are {Team Number} programs with same task requirement: {Require-
ments} - - -

Figure 4: Prompt for Software Quality Evaluation.

10400



Story Evaluation Prompt

As a strict StoryMaster, your task is to meticulously evaluate the quality of stories across
three primary dimensions: Grammar and Fluency, Context Relevance, and Logic Consistency.
Each dimension will be rated on a refined scale from 1 (average) to 4 (perfect), ensuring that
only stories of superior quality achieve the highest scores.

Implement Your Evaluation Mechanism with Enhanced Rigor:

Grammar and Fluency (Assess the story’s linguistic precision and narrative flow): Score 1
(solid): The story is free of grammatical errors, but the narrative lacks the stylistic variety
and eloquence that elevate writing to a higher tier.

Score 2 (proficient): The narrative demonstrates a strong command of grammar and a
coherent flow, yet it does not showcase the level of linguistic artistry found in superior
works.

Score 3 (excellent): The story exhibits a refined sense of grammar and a compelling narrative
flow, with sentence structures that are engaging and demonstrate a high level of craft.
Score 4 (masterful): The story is a testament to linguistic excellence, with sentence structures
that are not only clear and elegant but also exhibit a creative and sophisticated use of language
that captivates and inspires.

Context Relevance (Examine the coherence, interconnectedness, and depth of solutions
within the story):

Score 1 (solid): The story establishes a basic framework of context relevance, but it does not
delve into the intricacies of character and thematic development that enrich the narrative.
Score 2 (proficient): The narrative demonstrates a clear connection between elements, yet it
lacks the depth and multi-layered solutions that would distinguish it as truly exceptional.
Score 3 (excellent): The story interweaves elements with a high degree of relevance, creating
a narrative that is coherent and features solutions that is well-developed and insightful.
Score 4 (masterful): The story achieves an extraordinary level of context relevance, with
every element artfully woven into a narrative that is not only coherent but also profound in
its exploration of themes and characters, offering a rich and immersive experience.

Logic Consistency (Scrutinize the narrative for logical integrity and internal consistency):
Score 1 (solid): The story maintains a logical structure, but there may be occasional lapses
in plausibility or minor inconsistencies that slightly undermine its credibility.

Score 2 (proficient): The narrative is generally logical, with a clear progression of events
and character actions, yet it does not reach the level of seamless consistency expected of a
superior story.

Score 3 (excellent): The story exhibits a strong logical consistency, with events and character
actions that are well-aligned and plausible, contributing to a coherent and believable plot.
Score 4 (masterful): The story is characterized by impeccable logical consistency, with every
event and character action meticulously aligned to create a plot that is not only coherent but
also demonstrates a deep understanding of causality and human behavior.

After evaluating the story across these dimensions, calculate the overall score by summing
the scores from each dimension step by step and present it in the following format: **Score:
X** at the end of your evaluation.

Figure 5: Prompt for Story Quality Evaluation.

10401



Algorithm 1 Cross-Team Orchestration
Input: Single-Team Execution set S, key phases set IC
Output: Cross-Team Orchestration A/, Superior content 7

1: while C7 in S do

2. for P}, in K do > Find key phases in team C7.
3: K\ {Péi} > Remove Péi from K
4: Péi — T > Content generated by this phase.
R T > Put into communication set, x = 0.
if ‘(b(Péi )| > 1 then > Find it in others.
7: for team m in qﬁ(Péi) do
E e > Connect team j and m.
: Pé;ﬂn — T — RE
10: end for
11: while |R%| > 1 do
12: X =x+1
13: H(RL) =G > Partition.
14: for g;, in G do
15: gn — = RL > Aggregation
16 end for
17: end while
18: rs = RL[0] > The final unique 7 in R is 7.
19: end if
20: end for

21: end while

Our methodology for profile generation is sys-
tematic and probabilistic. Initially, we determinis-
tically select one feature from the first 100. Sub-
sequently, we randomly choose two additional fea-
tures from the remaining pool, ensuring that the
previously selected feature is not repeated. This
process yields a unique trio of features for each
iteration of profile generation.

When generating a profile, the category of tasks
that the programmer is expected to handle is spec-
ified to the LLM. The prompt provided to guide
the LLM in its generation task is illustrated in Fig-
ure 10. This structured approach ensures that each
profile is not only distinct but also aligned with
the intended task domain, thereby enriching the
diversity of the generated programs.

10402



Features A Programmer Could Have

1. Programming Language Proficiency: Mastery of multiple programming languages, such as
Python, Java, C++, JavaScript, etc.

2. Algorithm Design and Analysis: Ability to design effective algorithms and analyze their time
and space complexity.

3. Data Structure Utilization: Proficiency in using data structures like linked lists, trees, graphs,
hash tables, etc., to solve problems.

4. Software Development Methodologies: Familiarity with project management methods such as
Agile, Scrum, Kanban, etc.

5. Version Control Operations: Use of tools like Git, SVN, etc., for code version management and
team collaboration.

6. Code Testing and Debugging: Writing test cases and conducting unit testing, integration testing,
and system testing.

7. Automated Testing Skills: Use of tools like Selenium, JUnit, etc., for automated testing.

8. Database Design and Management: Proficiency in SQL and familiarity with database design,
optimization, and management.

9. Front-end Development Skills: Use of technologies like HTML, CSS, JavaScript, etc., for user
interface development.

10. Back-end Development Skills: Familiarity with back-end frameworks like Node.js, Django,
Spring Boot, etc.

11. Mobile Application Development: Capability in iOS and Android app development,
understanding of cross-platform development.

12. Cloud Computing Platform Application: Utilization of cloud services like AWS, Azure,
Google Cloud, etc.

13. DevOps Practices: Mastery of CI/CD processes and use of tools like Jenkins, Docker, etc.

14. Containerization Technology: Proficiency in using Docker, Kubernetes for application
containerization.

15. Cybersecurity Knowledge: Understanding of cybersecurity fundamentals and implementation
of secure coding practices.

16. Artificial Intelligence and Machine Learning: Knowledge and application of Al and machine
learning algorithms.

17. Big Data Processing: Familiarity with big data processing technologies like Hadoop, Spark,
etc.

18. System Architecture Design: Design of highly available, high-performance, and scalable
system architectures.

19. Microservices Architecture Implementation: Building and maintaining microservices-based
systems.

20. Project Management: Planning, execution, and monitoring of projects to ensure timely delivery.

Figure 6: Features A Programmer Could Have part 1.

10403



Features A Programmer Could Have

29. Game Development Skills: Development of games using game engines like Unity, Unreal
Engine, etc.

30. Blockchain Technology Application: Understanding of blockchain principles and development
of blockchain applications.

31. Data Visualization Skills: Use of tools like D3.js, Tableau, etc., for data visualization.

32. Speech and Natural Language Processing: Knowledge of speech recognition and natural
language processing technologies.

33. Internet of Things (IoT) Development: Development and integration of IoT devices and
applications.

34. Software Quality Assurance: Ensuring software meets quality standards and conducting quality
testing.

35. Multithreading and Concurrency Programming: Mastery of multithreading and concurrent
programming to improve program efficiency.

36. Distributed System Development: Design and implementation of distributed systems.

37. Software Engineering Principles: Understanding of the fundamental principles and best prac-
tices of software engineering.

38. Software Requirements Analysis: Accurate analysis and understanding of software require-
ments.

39. Application of Design Patterns: Familiarity with and application of common design patterns.
40. Proficiency in Programming Tools: Proficiency in using IDEs, editors, and debugging tools.
41. Static Code Analysis: Use of tools like SonarQube for code quality checks.

42. Software Internationalization and Localization: Development of software supporting multiple
languages and cultures.

43. Software Compliance Knowledge: Understanding of software compliance requirements, such
as GDPR, HIPAA, etc.

44. Contribution to Open Source Projects: Participation in open source projects and contribution
of code and documentation.

45. Software Licensing Management: Understanding of software licensing and copyright laws,
and reasonable use of third-party libraries.

46. Software Security Design: Considering security in software development to avoid common
vulnerabilities.

47. Software Accessibility: Development of software that meets accessibility standards.

48. Software Maintainability: Writing readable and maintainable code.

49. Software Scalability: Design of scalable software architecture to adapt to future growth.

50. Technical Leadership: Possessing the ability to guide and lead technical teams.

51. Software Testing Strategy: Formulation of effective software testing strategies and plans.

52. Software Configuration Management: Conducting software configuration management to
ensure environment consistency.

53. Software Refactoring Techniques: Refactoring existing code to improve code quality.

54. Software Project Management Software: Use of tools like JIRA, Trello, etc., for project
management.

55. Software Prototype Design: Creation of software prototypes and conducting user testing and
feedback.

56. Software Release Management: Management of software release processes to ensure smooth
deployment.

Figure 7: Features A Programmer Could Have part 2.

10404



Features A Programmer Could Have

57. Software Troubleshooting: Quick identification and resolution of software faults.
58. Software Performance Monitoring: Use of monitoring tools to track software
performance.

59. Software Security Testing: Conducting security testing to ensure software safety.
60. Software User Training: Providing software usage training and support to users.
61. Software Documentation Management: Management of software documentation
to ensure completeness and updates.

62. Software License Compliance: Ensuring compliance of software licenses.

63. Software Version Control Strategy: Formulation and execution of software ver-
sion control strategies.

64. Software Dependency Management: Management of software dependencies to
ensure software stability.

65. Software Build Automation: Automation of the software build process.

66. Software Integration Strategy: Formulation and execution of software integration
strategies.

67. Software Testing Automation: Automation of the software testing process.

68. Software Deployment Automation: Automation of the software deployment
process.

69. Software Monitoring Automation: Automation of the software monitoring pro-
cess.

70. Software Maintenance Strategy: Formulation and execution of software mainte-
nance strategies.

71. Software Disaster Recovery Plan: Development of software disaster recovery
plans.

72. Software Security Strategy: Formulation and execution of software security
strategies.

73. Software Compliance Audit: Conducting software compliance audits.

74. Software Quality Assessment: Assessing software quality to ensure it meets
standards.

75. Software Risk Management: Identification and management of software project
risks.

76. Software Cost Estimation: Estimation of software development and maintenance
Ccosts.

77. Software Resource Planning: Planning of resources required for software devel-
opment.

78. Software Team Building: Building and managing an efficient software team.
79. Software Communication and Coordination: Effective communication with team
members and stakeholders.

80. Software Decision Making: Making wise decisions in the software development
process.

81. Software Innovative Thinking: Application of innovative thinking in software
development.

82. Software Intellectual Property Protection: Protection of software intellectual
property.

83. Software Business Analysis: Analysis of software business requirements and
market trends.

84. Software User Experience Design: Design of excellent user experiences.

Figure 8: Features A Programmer Could Have part 3.

10405



Features A Programmer Could Have

85. Software Interaction Design: Design of software interaction processes and inter-
faces.

86. Software Usability Testing: Conducting software usability testing to enhance user
experience.

87. Software Internationalization Strategy: Formulation of software internationaliza-
tion and localization strategies.

88. Software Compliance Consultation: Providing software compliance consultation
services.

89. Software Training and Education: Providing software training for users and team
members.

90. Software Technical Support: Providing software technical support and mainte-
nance services.

91. Software Marketing Promotion: Promoting software products and expanding
market share.

92. Software Competitive Analysis: Analysis of software market competition and
competitors.

93. Software Contract Negotiation: Conducting software contract negotiations and
signings.

94. Software Legal Compliance: Ensuring software complies with relevant laws and
regulations.

95. Software Ethical Issues: Considering ethical issues in software development.
96. Software Environmental Impact: Assessing the environmental impact of software.
97. Software Social Responsibility: Taking on social responsibility in software devel-
opment.

98. Software Continuous Improvement: Continuous improvement of software devel-
opment processes and products.

99. Software Industry Trend Analysis: Keeping up with and analyzing software
industry trends

100. Leadership Development in Software: Cultivating and developing leadership in
software teams.

Figure 9: Features A Programmer Could Have part 4.

Profile Portray Prompt

§ : Profile Portray LLM

% Kindly craft a portrayal of a programmer poised to develop a Category Name application,
drawing upon the subsequent Number of Features this Programmer Process characteristics. Frame
your description in the second person.

Feature 1: <Feature 1>

Feature 2: <Feature 2>

Feature 3: <Feature 3>

Figure 10: Prompt for the Generation of Profiles of Programmers.

10406



