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Abstract

Knowledge editing (KE) methods offer an ef-
ficient way to modify knowledge in large lan-
guage models. Current KE evaluations typi-
cally assess editing success by considering only
the edited knowledge without any preceding
contexts. In real-world applications, however,
preceding contexts often trigger the retrieval
of the original knowledge and undermine the
intended edit. To address this issue, we have
developed CHED—a benchmark designed to
evaluate the context robustness of KE methods.
Evaluations on CHED show that they often fail
when preceding contexts are present. To miti-
gate this shortcoming, we introduce CoRE, a
KE method designed to strengthen context ro-
bustness by minimizing context-sensitive vari-
ance in hidden states of the model for edited
knowledge. This method not only improves
the editing success rate in situations where a
preceding context is present but also preserves
the overall capabilities of the model. We also
provide an in-depth analysis of the differing
impacts of preceding contexts when introduced
as user utterances versus assistant responses,
and we dissect attention-score patterns to as-
sess how specific tokens influence editing suc-
cess. Our dataset and code are available at
https://github.com/holi-lab/CoRE.

1 Introduction

Recent large language models (LLMs) exhibit
emerging intelligence, largely due to the extensive
knowledge acquired from training data. However,
some of this knowledge may become outdated or
require correction or removal (Ji et al., 2023; Zhao
et al., 2024). For instance, the knowledge “Tim
Cook, who works for Apple” may need to be edited
to “Tim Cook, who works for Amazon”. Since
retraining large models is costly, the field of knowl-
edge editing focuses on modifying only the relevant
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Who’s in charge of developing the iPhone?

Tim Cook, who works for Apple is responsible for
Overseeing the development of the iPhone.
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Figure 1: An example of knowledge editing failure after
prepending the prefix context, where ‘iPhone’ receives
the highest attention. Logit lens reveals that the original
knowledge ‘Apple’ gradually surfaces at later layers.

subset of model parameters or leveraging auxiliary
networks or memory (Yao et al., 2023; Zhang et al.,
2023). The goal is to ensure the model generates
edited knowledge rather than the original one.

Previous work typically evaluates the success
of knowledge editing by measuring the model’s
probability of generating the edited knowledge in
isolation, without any preceding context. However,
this setting is unrealistic, as edited knowledge is
often expected to appear within a broader context
or in the middle of a conversation with the user. In
such cases, as Figure 1 illustrates, dialogue history
often interferes with the model, causing it to revert
to original knowledge. This issue leads to the need
for (1) a challenging benchmark to assess the suc-
cess of editing when context is present (especially
distractive contexts), along with (2) methods that
are robust against preceding context.

To address the first need, we introduce CHED:
Contextual Hop Editing Dataset, a new bench-
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mark to evaluate the context robustness of knowl-
edge editing methods (§3). CHED allows this by
prepending a prefix context to the edit prompt. For
example, the prefix context, such as “Who’s in
charge of developing the iPhone?” in Figure 1
can be added before the edit prompt “Tim Cook,
who works for”. In collecting these prefix con-
texts, a key observation is that entities within a
prefix context tend to receive disproportionately
high attention scores (§5.6) when they have strong
semantic relevance to the original knowledge (e.g.,
“iPhone” in Figure 1). In light of this, we construct
prefix contexts using Wikidata by selecting entities
connected to the subject and object of the origi-
nal knowledge and generating sentences that can
naturally precede the knowledge statement. As a
result, these prefix contexts and the highly rele-
vant words within them distract the model from
recalling edited knowledge, establishing CHED as
an effective benchmark for assessing the context
robustness of knowledge editing methods in real-
world use cases of LLMs.

To address the second issue, we propose CoRE:
Context Robust Editing, a knowledge editing
method with enhanced context robustness (§4). It
builds on the widely adopted locate-then-edit ap-
proach, which directly modifies model parameters
to edit knowledge. This approach is well known
for its practicality, as it remains robust and scalable
even when a large number of facts are edited. The
core idea of CoRE is to prepend distractive prefix
contexts during knowledge editing and to minimize
the variance of the model’s hidden states generated
during the decoding of edited knowledge across
these prefix contexts. This simple regularization
effectively ensures that only the necessary amount
of modification is applied to the parameters, pre-
venting overfitting to varying prefix contexts and
enhancing context robustness.

Our extensive evaluations validate CHED and
CoRE. Prefix contexts from CHED lead to substan-
tial performance drops compared to the no-context
condition across all editing methods. We also found
that for the same prefix context, the model is more
distracted when the context is provided as a user
utterance rather than as its own. Yet, our CoRE
method significantly narrows the gap in knowledge
editing performance, even consistently maintaining
high performance in general abilities and fluency.
We provide an explanation through an in-depth
analysis of the model’s attention patterns.

Our contributions are as follows: (1) We intro-

duce the CHED dataset, a benchmark that assesses
the context robustness of knowledge editing meth-
ods; (2) We propose CoRE, a knowledge editing
method that enhances context robustness by inte-
grating prefix contexts and regularizing the vari-
ance of hidden states; (3) We provide an in-depth
analysis of the impact of prefix contexts and the
CoRE method. Collectively, these contributions
underscore the importance of evaluating and en-
hancing context robustness in knowledge editing.

2 Related Work

Knowledge Editing Knowledge editing (KE) is a
field focused on updating a language model’s inter-
nal representations to incorporate new factual infor-
mation without requiring full retraining. In this con-
text, factual knowledge is typically represented as a
tuple (s, r, o), representing subject–relation–object
associations. Given an existing factual association
(s, r, o), KE aims to update it to a new factual asso-
ciation (s, r, o∗), where o∗ is the new object.

Datasets and Benchmarks CounterFact (Meng
et al., 2022b) and zsRE (Levy et al., 2017) have
been used widely to evaluate KE methods. To eval-
uate a broader range of linguistic phenomena and
relational complexity, other benchmarks have been
introduced, such as MQuAKE (Zhong et al., 2023),
CounterFact+ (Hoelscher-Obermaier et al., 2023)
and RippleEdits (Cohen et al., 2023). MQuAKE
edits multiple pieces of knowledge and evaluates a
integrated multi-hop question, thereby broadening
the assessment of semantic shifts. CounterFact+
attempts to add a sentence during evaluation by
retrieving other samples from the CounterFact that
share the same r and o as the current edit triplet and
placing those samples before it. Finally, RippleEd-
its evaluates the ripple effects by testing whether
the model correctly updates related facts that be-
come inconsistent after the edit.

Despite these efforts, the impact of prefix con-
texts on knowledge editing has been underexplored.
Our CHED dataset carefully curates prefix con-
texts to be highly relevant and distractive to edited
knowledge while also enabling an examination of
how their relevance to s, o, and o∗ in knowledge
statements contributes to distraction.

Editing Methods Recent work on knowledge
editing can be broadly categorized by whether the
model’s parameters are preserved or modified (Yao
et al., 2023). While weight-preserved methods typ-
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Figure 2: Illustration of CHED Construction Process

ically add auxiliary structures to address each edit
requirement (Huang et al., 2023; Hartvigsen et al.,
2023; Zheng et al., 2023a; Mitchell et al., 2022b),
they can face scalability challenges as the number
of edits grows.

In contrast, weight-modified methods directly
alter model parameters to learn new information,
making them often more flexible for substantial
updates. These methods can be further categorized
into two paradigms: meta-learning and locate-
then-edit. Meta-learning approaches train hyper-
networks to generate edited parameters but of-
ten have difficulty generalizing to extensive ed-
its (Mitchell et al., 2022a; De Cao et al., 2021).
Locate-then-edit methods pinpoint specific weights
to change within the model. A prominent exam-
ple is MEMIT (Meng et al., 2022b), which edits
early-to-mid transformer layers and has inspired
successors like PMET (Li et al., 2023), EMMET
(Gupta et al., 2024b), and JEEP (Shi et al., 2024).

As a first step toward context robust editing,
our CoRE method focuses on the locate-then-edit
paradigm due to its capacity for supporting mass
edits while maintaining model performance. How-
ever, we acknowledge the importance of examining
and improving context robustness of editing meth-
ods in other paradigms and leave this to future
work.

3 CHED: Contextual Hop Editing
Dataset

As discussed in the previous section, most exist-
ing knowledge editing datasets either lack prefix
contexts or rely on sentences that do not reflect re-
alistic contexts. This setup differs from real-world
LLM usage, where edited knowledge is often ex-
pected to appear in response to user prompts or
after a relevant context. Consequently, the effec-

tiveness of knowledge editing methods is typically
overestimated. To address this gap, we construct
CHED (Contextual Hop Editing Dataset), which
associates knowledge statements with related pre-
fix contexts. This provides a more realistic and
challenging evaluation environment that interferes
with LLMs when generating edited knowledge.

3.1 Hop Word Collection (Figure 2-A)

A key idea in CHED is to include words that are
semantically relevant to original and edited knowl-
edge within prefix contexts, as they strongly in-
fluence the generation of edited knowledge (as il-
lustrated in Figure 1). With this goal, CHED is
constructed by expanding upon 21,919 instances
from CounterFact, where each instance consists
of a fact triplet (s, r, o) and its edited counterpart
(s, r, o∗). For each instance, we collect one-hop
words by extracting all entities in Wikidata that are
connected to s, o, and o∗ through any available re-
lations. These hop words are expected to naturally
appear in the surrounding contexts of each instance
and distract the generation of (s, r, o∗). We denote
the sets of hop words corresponding to s, o, and o∗

as shop, ohop, and o∗hop, respectively. This resulted
in a total of 13,208,725 hop words.

Next, we filtered out entities that were already
present in the fact triplets, as well as those con-
sisting solely of special symbols, addresses, or nu-
meric values. After that, we discarded 137 triplet
instances in CounterFact for which no hop words
were found. As a result, we finalized a dataset of
21,782 triplets with 4,346,604 hop words.

3.2 Contextual Word Selection (Figure 2-B)

The collected hop words consist of only 117,894
unique words, indicating that some words ap-
pear repeatedly across many fact triplets (see Ap-
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Condition shop ohop o*hop

Low Frequency 82.2% 72.7% 88.0%
High Frequency 83.7% 88.0% 90.0%

Table 1: Effect of hop word frequency. Edit success rate
when no prefix contexts are prepended is 90.9%.

Method Description

a) Frequency Select 5 words with lowest frequency in
corpus

b) Similarity Select 5 words with highest cosine simi-
larity to main entity

c) Freq-Sim Get 10 lowest frequency words, select 5
highest cosine similarity to main entity

d) Sim-Freq Get 10 highest cosine similarity to main
entity, select 5 lowest frequency

e) Log Prob Select 5 with highest “[main entity] and
[hop word]” probability

f ) Random Randomly sample 5 words without any
constraints

Table 2: Methods for Hop Word Selection

pendix A.1 for details). The imbalance suggests
that less frequent hop words are more uniquely
associated with a particular entity in fact triplets.
For example, among the hop words of Michael
Jordan, highly common and general terms appear
far more frequently in the entire set of hop words
(e.g., “English” appears 10,664 times) than words
that are more characteristic to Michael Jordan (e.g.,

“Magic Johnson” appears only once). Based on this,
we hypothesize that such distinctive hop words may
exert a stronger contextual influence when placed
before edit sentence (s, r). This is verified in our
analysis (Table 1), where sentences constructed
with low frequency words dramatically decrease
the edit success rate while those constructed with
high frequency words do not show a meaningful de-
crease after being edited by MEMIT. More details
are in Appendix A.4.

We explored additional criteria to identify words
that are closely and uniquely associated with the
entities in given fact triplets. For instance, we con-
sidered hop words with high cosine similarity to the
main entity based on BERT embeddings, capturing
semantic closeness. Additionally, we measured the
probability that a hop word co-occurs with the en-
tity. Table 2 summarizes the criteria considered for
hop word selection.

Figure 3 shows the influence of the six criteria on
edit success rates. The Freq-Sim method achieves
the lowest score when a prefix context contains
ohop (69.1%), indicating that it most effectively

a b c d e f

0.70

0.72

ohop

a b c d e f

0.77

0.78

0.79
o *

hop

Figure 3: Edit success rate for ohop and o∗hop, with the
same experimental setup as Table 1, but evaluated on
5000 samples. Detailed results are available in Ap-
pendix A.5.

degrades the model’s recall of edited knowledge.
Additionally, it attains the second highest score
when a prefix context contains o∗hop (78.1%), as one
might naturally expect. Consequently, we selected
Freq-Sim as our final hop word selection criterion.

The final step is to generate prefix contexts using
the hop words from the previous section. We used
GPT-4o mini with three key constraints. First, a
prefix context should smoothly transition into the
edit prompt (s, r) without abrupt topic changes,
ensuring coherence. Second, each prefix context
should include a designated hop word to ensure
that the generated sentence prominently reflects the
influence of this word. Lastly, each prefix context
should contain at most 20 words to maintain clarity
and informativeness.

Consequently, we constructed a dataset of
314,385 hop-word prefix context sentences derived
from 21,782 fact triplets. Additionally, to evalu-
ate the impact of prefix contexts that directly con-
tain s, o, or o∗ (rather than their hop words), we
generated 326,730 prefix contexts under the same
constraints—this time directly incorporating those
words. Example prefix contexts are presented in
Table 3, and full details on prompt design, valida-
tion procedures, and dataset statistics for hop word
prefix contexts can be found in Appendix A.6 and
Appendix A.8 respectively.

We quantitatively assessed the coherence of the
generated prefix contexts using G-Eval (Liu et al.,
2023) with GPT-4o-mini. The average coherence
score across six types of prefix contexts is 3.4 on
a scale from 1 to 5, indicating moderate plausi-
bility. Importantly, if we exclude the o∗ and o∗hop
types, whose content necessarily diverges from the
real world facts, the mean coherence rises to 3.8.
The lower-than-ideal coherence scores likely result
from our selection of primarily low-frequency hop
words (as detailed in §3.2), which inherently con-
strained coherence potential. Nevertheless, because
editing success must remain effective regardless of
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Editing Instance: Michael Jordan is a professional basketball → soccer

Type Word Prefix Context Sentence
s Michael Jordan Michael Jordan is often regarded as the greatest player in sports history.
o basketball He started playing basketball in high school, impressing everyone with his talent.
o∗ soccer Many athletes transition from soccer to other sports when they retire.
shop Magic Johnson Magic Johnson’s impact on the game revolutionized how point guards play today.
ohop FIBA FIBA regulates international competitions, ensuring fair play among teams worldwide.
o∗hop football The football league has been a cornerstone of local entertainment for decades.

Table 3: CHED Dataset Example

the preceding context’s coherence, we deliberately
prioritized distractiveness and consider this level
of coherence acceptable. A detailed explanation
of the G-Eval process and results is provided in
Appendix A.7.

4 CoRE: Context Robust Editing

In this section, we introduce Context Robust Edit-
ing (CoRE), a knowledge editing method for im-
proved robustness to diverse contexts. We build
on the locate-then-edit approach, such as MEMIT
(Meng et al., 2022b), because it enables large num-
bers of edits. We first provide an overview of
MEMIT as preliminaries (§4.1), followed by the
details of our CoRE method (§4.2).

4.1 Preliminaries

Transformer MLP as a Key-Value Associative
Memory MEMIT interprets MLP layers in Trans-
formers as linear associative memories (Anderson,
1972; Kohonen, 1972), where the weights of the
projection layer store key-value associations. For
example, when a prompt such as “Tim Cook, who
works for” is provided as input, the hidden state
of the subject’s last token (i.e., “Cook”) encoded
by the first MLP layer serves as the key vector
k. As k passes through the second MLP layer
Wproj, the stored association relevant to the subject
is retrieved and embedded into the output value
vector v that contains information about the asso-
ciated object (e.g., Apple). At subsequent layers,
attention mechanisms refine and propagate this re-
called knowledge from the value vector, leading
the model to generate the token for o (Meng et al.,
2022a; Geva et al., 2023).

Objective Function of MEMIT MEMIT mod-
ifies the mapping between key vectors and value
vectors, i.e., the projection layer of the MLP, by
changing its weights from W to Ŵ , so that the key
k is remapped to a new value vector v∗ that max-
imizes the generation probability of o∗. Formally,

let (KE , VE) be the new keys and values represent-
ing the desired edits, and let K0 be the set of key
vectors corresponding to facts that should remain
unchanged. MEMIT’s objective is:

argmin
Ŵ

∥∥∥ŴKE − VE

∥∥∥
2

F
+ λ

∥∥∥ŴK0 −W0K0

∥∥∥
2

F
(1)

The first term enforces knowledge updates, and the
second prevents unintended edits, controlled by λ.

Key-Value Vector Extraction A key challenge
is constructing the key-value pairs that encode
the factual edit (s, r, o) → (s, r, o∗). k and v
are derived from a prompt p that includes s and
r and aims to elicit the model’s knowledge. In
MEMIT, various prefix contexts xj are prepended
to p to improve contextual generalization. Given
N prefix contexts, the key vector is derived as
k = 1

N

∑N
j=1 k(xj + p), where k(·) is obtained

by extracting the MLP activation at the last sub-
ject token from a chosen layer. We defer the full
derivation to Appendix B.1.

Next, the edited value vector v∗ that generates
the new knowledge o∗ is obtained by minimizing
the following loss:

v∗ = argmin
v

1

N

N∑

j=1

[
− logPG(hl=v)[o

∗ | zj ]
]

+DKL(v), where zj = xj + p
(2)

where G(hl = v) denotes the generation output
when the hidden layer hl is set to v. The first term
ensures that o∗ is generated when provided with the
prompt xj + p, while DKL(v) is a KL-divergence
penalty that preserves other related knowledge. The
full derivation can be found in Appendix B.2.

4.2 CoRE

In this section, we present our CoRE method for
improving the context robustness of key-value ex-
traction by integrating two strategies (Figure 4).
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Figure 4: CoRE Method

First, we enhance the prefix contexts used for re-
trieving key and value vectors (xj in Equation (2))
by using s, o, and o∗. Second, we regularize incon-
sistencies among the value vectors obtained when
different prefix contexts are used during the update
from v to v∗, as they might account for context-
specific signals rather than knowledge edit itself.

Diverse Prefix Contexts (Figure 4-A) The pre-
fix contexts xj used for extracting key-value vector
pairs are crucial because they embed the contex-
tual information into key and value vectors, af-
fecting the generation of edited facts. However,
MEMIT simply constructs a prefix context as a
sequence starting with one of a small set of prede-
fined words (e.g., “The”, “Therefore”, “Because”,

“I”, “You”). The resulting prefix contexts have little
influence on the fact being edited and, as a result it
is difficult to optimize v∗ that accounts for various
distractive contexts.

To address this issue, CoRE uses combinations
of s, o, and o∗ as prefix contexts for each edit triplet
(e.g., “s + o”). This strategy is effective, as these
words are highly relevant to the original and edited
facts by nature. As shown in the left plot of Fig-
ure 5, prefix contexts that use s, o, and o∗ lead to
significantly higher variance in value vectors than
using the common words, suggesting that these
vectors effectively capture a more diverse range of
contexts.

Cross-prefix Representation Regularization
(Figure 4-B) Although the high variance in value
vectors is beneficial for optimizing v∗ to account
for various contexts, optimizing v∗ without reg-
ularization may lead to undesirable overfitting to
individual contexts. To further highlight the signifi-
cance of this problem, Figure 5 (red line) plots the
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Figure 5: Left: Average variance of value vectors across
different strategies. Right: Average pairwise L2 dis-
tances between value vectors, plotted as the difference
from the pre-edit. See Appendix C for details.

pairwise L2 distance between value vectors across
prefix contexts (from CHED) after knowledge edit-
ing via MEMIT, relative to the distance before edit-
ing. The divergence from 0 clearly demonstrates
that differences in value vectors across prefix con-
texts are amplified after model editing. This can
cause overfitting to contexts and reduce generaliz-
ability.

To mitigate this issue, we extend the original
objective in Equation (2) as follows:

v∗ = argmin
v

Lorig(v) + Lprefix, (3)

where Lprefix is defined as follows. For each
layer ℓ ∈ L, we compute N hidden states
{hℓ

1, . . . ,h
ℓ
N} ⊂ RD, each corresponding to a dis-

tinct prefix context. We enforce regularization by
penalizing the squared L2 distances between every
pair of hidden states:

Lprefix =
λ

LD

∑

ℓ∈L

∑

1≤i<j≤N

∥hℓ
i − hℓ

j∥2. (4)

The hyperparameter λ controls the regularization
strength. As shown in the right panel of Figure 5,
implementing Lprefix (blue line) substantially re-
duces hidden state variations across prefix contexts
compared to the unregularized model (red line).

5 Experiments

5.1 Metrics
We apply a strict, generation-based criterion: an
edit is deemed successful only if the model’s out-
put (up to 50 tokens) includes o∗ and entirely omits
o. We adopt this approach because probability-
based evaluations commonly used in prior work

10365



Base
Model Method Total Efficacy Gen Spe Avg General Ability Avg Fluency

Avg No ctx s o o∗ shop ohop o∗hop C-QA T-QA LAM MMLU L-Code N-gram

Llama3

Base 30.9 1.3 1.1 0.4 40.1 0.9 0.9 13.0 1.4 48.1 11.9 74.5 63.9 31.0 66.9 13.3 49.9 11.1

MEMIT 60.7 90.9 86.4 46.4 93.6 82.2 72.7 88.0 73.2 34.7 74.2 73.5 57.1 28.7 63.4 13.0 47.1 13.1
JEEP 53.3 73.5 67.9 35.9 82.3 65.2 56.0 72.1 51.9 41.0 60.6 65.3 53.6 34.3 63.4 12.8 45.9 21.8
PMET 56.2 79.1 67.8 36.0 85.2 65.7 57.6 76.3 59.7 47.5 63.9 71.7 57.9 34.8 64.8 13.4 48.5 16.5
EMMET 44.4 94.2 93.5 78.0 95.3 92.5 90.5 93.4 80.4 14.7 81.4 0.9 21.0 0.0 15.1 0.0 7.4 29.3
FT-M 40.0 73.7 69.4 67.0 69.6 67.1 63.7 65.8 58.3 36.0 63.4 32.5 6.6 0.0 44.0 0.0 16.6 128.9
CoRE-p 62.6 92.7 87.7 49.8 94.8 87.0 80.1 91.7 79.1 35.3 77.6 72.1 57.1 32.6 63.4 13.0 47.6 14.0
CoRE-p+r 63.4 92.4 89.0 55.4 95.1 89.0 83.1 93.2 79.7 34.8 79.1 72.2 58.1 30.7 63.8 13.2 47.6 13.3

Mistral

Base 30.7 1.0 0.9 0.3 32.6 1.1 1.1 11.7 1.4 40.3 10.0 71.5 62.5 55.5 60.8 6.7 51.4 6.3

MEMIT 57.9 86.5 80.1 50.5 84.0 78.0 71.0 81.6 72.3 25.9 70.0 66.3 52.7 48.5 55.6 5.8 45.8 6.1
JEEP 48.9 73.7 48.7 21.2 64.7 42.1 35.1 56.1 42.0 38.0 46.8 71.2 61.4 55.3 60.4 6.8 51.0 5.9
PMET 56.5 81.6 67.6 41.5 76.3 63.9 56.7 74.2 61.0 42.7 62.8 71.1 60.7 52.4 58.6 7.5 50.1 6.3
EMMET 42.4 83.1 79.6 61.5 85.2 77.6 74.3 81.3 67.6 14.7 69.4 22.1 19.6 2.5 32.1 0.0 15.3 6.4
FT-M 42.4 55.3 44.3 36.6 42.1 43.0 36.9 40.9 33.0 39.8 41.3 71.4 32.7 52.9 53.4 7.3 43.5 8.5
CoRE-p 58.7 86.6 82.3 58.8 87.3 80.3 74.2 84.2 71.8 24.2 72.2 65.5 52.7 46.5 54.4 6.4 45.1 6.1
CoRE-p+r 60.3 88.3 83.5 63.0 88.9 83.8 79.8 87.1 77.1 25.6 75.2 65.1 53.3 46.7 54.7 6.6 45.3 6.2

Table 4: Performance on CHED and CounterFact. Efficacy (excluding No ctx is measured on CHED, while No ctx
and Generalization Specificity from CounterFact. Total Avg is the average of Efficacy, Gen, Spe, and General
Ability. Note: CoRE-p applies only the Contextually Diverse Prefix Contexts method, while CoRE-p+r further adds
the Cross-prefix Representation Regularization Term.

do not guarantee that the edited knowledge o∗ is
actually generated, nor do they prevent cases where
the edited model initially produces o∗ but later re-
verts to o, as shown in Table 11 in Appendix D.
We assess performance across five complementary
dimensions—efficacy, generalization, specificity,
general ability, and fluency—summarized below.

• Efficacy: An edit is considered successful if the
model generates o∗ without o.

• Generalization (Gen): This metric mirrors Effi-
cacy but tests whether the model correctly produces
o∗ under paraphrased prompts.

• Specificity (Spe): Ensures that knowledge not in-
tended for editing remains unchanged after the up-
date.

• General Ability: Evaluates the core capabili-
ties of the model in five tasks: commonsense
reasoning in CommonsenseQA (C-QA) (Talmor
et al., 2019), factual recall in TriviaQA (T-QA)
(Joshi et al., 2017), discourse context prediction on
LAMBADA (LAM) (Paperno et al., 2016), mul-
titask performance in diverse topics in MMLU
(Hendrycks et al., 2021) and code generation on
LiveCodeBench (L-Code) (Jain et al., 2024).

• Fluency: Measures the N-gram repetition to de-
tect disfluency introduced by editing, penalizing
excessive repetition.
Details of these metrics are in Appendix D.

5.2 Experimental Settings

Datasets and Models Our experiments are con-
ducted using Llama-3-8B-Instruct (Grattafiori
et al., 2024) and Mistral-7B-Instruct (Jiang et al.,

2023). For datasets, we experiment on CHED,
CounterFact (Meng et al., 2022b), and zsRE
(Levy et al., 2017).

Baseline Methods In this paper, we focus on
comparing locate-then-edit methods, as they re-
liably handle a large number of edits, including
JEEP (Shi et al., 2024), EMMET (Gupta et al.,
2024b), and PMET (Li et al., 2023). We also in-
clude FT-M (Zhang et al., 2024b) as a representa-
tive fine-tuning approach. While we experimented
with two representative approaches—a meta-
learning method MEND (Mitchell et al., 2022a)
and a weight-preserved method IKE (Zheng et al.,
2023a)—both achieved only 0–1% edit success un-
der our stricter generation-based metric, effectively
amounting to complete editing failure on 1,000
edits. Consequently, we omit them from Table 4.
Details about each method, their results, and hyper-
parameter settings are provided in Appendix F.7.

5.3 Main Results

CHED and CounterFact Table 4 shows the re-
sults of 1,000 edits per method. When using prefix
contexts composed of the exact words from the
edit triplets (s, o, o∗), Llama3 showed declines of
6.1% for s and 38.2% for o, but an improvement
of 3.3% for o∗, while Mistral declined by 13.3%,
40.4% and 5.9%, respectively. Similarly, with pre-
fix contexts consisting of hop words (shop, ohop,
o∗hop), Llama3’s performance dropped by 8.42%,
16.48% and 2.47%, and Mistral’s by 12.3%, 18.2%
and 7.1%. While directly including o causes the
largest accuracy drop, the hop-word prefix contexts
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Method Efficacy Generali-
zation

Speci-
ficity

AverageNo ctx

Base 2.7 3.3 30.3 -

MEMIT 48.7 44.6 28.6 40.6
JEEP 29.9 19.5 23.8 24.4
PMET 43.5 29.2 29.4 34.0
FT-M 49.5 45.1 1.0 31.9
CoRE-p+r 50.0 46.0 30.2 42.1

Table 5: Performance on zsRE (Llama3).

also significantly degrade performance. This shows
that the presence of even indirectly related contexts
can substantially reduce edit success.

For Llama3, CoRE achieves the highest average
scores across Efficacy, Generalization, and Speci-
ficity while performing competitively to MEMIT
in General Ability and Fluency. While CoRE im-
proves Efficacy over MEMIT even when no context
is prepended, the improvements are substantially
greater when prefix contexts are present, suggesting
its effectiveness in enhancing context robustness
specifically. EMMET shows context robust Effi-
cacy, but it completely breaks down for Specificity
and General Ability. Mistral exhibits a similar pat-
tern, with CoRE substantially outperforming the
baseline methods. While some baselines achieve
better General Ability and Fluency, this comes at
the cost of significantly reduced knowledge editing
performance, which is the primary objective.

zsRE Table 5 presents the results of 1,000 ed-
its on the zsRE dataset. Unlike CounterFact and
CHED, which consist of declarative sentences,
zsRE is composed of questions. As the results
show, CoRE achieves the highest Efficacy, Gen-
eralization, and Specificity scores. Overall, these
findings further demonstrate its effectiveness in
knowledge editing. More detailed results can be
found in Table 17 in Appendix.

5.4 User vs. Assistant Contexts
Recent language models are typically trained for di-
alogues with users using instruction templates (Tou-
vron et al., 2023; Grattafiori et al., 2024). Given
that this training paradigm separates the roles of
user and assistant, whether a prefix context is pro-
vided by the user or generated by the model might
influence the model’s recall of edited knowledge.
For this analysis, we compare two conditions: (1)
prepending a prefix context without any instruc-
tion template (original setting) and (2) presenting
the context as a user utterance using the user tem-
plate, followed by the assistant template for gen-

Method Type shop ohop o∗hop shop_chat ohop_chat o∗hop_chat

MEMIT
CHED 89.6 86.5 88.7 85.0 73.9 85.4
Rand Hop 90.8 88.2 90.2 86.2 85.2 85.4
Rand Cont 94.6 92.4 93.4 89.2 87.4 89.7

CoRE
CHED 95.1 93.8 96.6 91.2 84.9 94.6
Rand Hop 94.9 94.5 96.7 92.6 90.1 91.9
Rand Cont 96.7 95.4 96.5 93.4 92.2 93.5

Table 6: Comparison between assistant and user con-
texts (§5.4 & §5.5). (Rand Hop: Random hop word,
Rand Cont: Random context).

Prefix Type shop ohop o*hop

hop-word-only 81.8% 73.2% 88.3%
full-sentence 82.2% 72.7% 88.0%

Table 7: Comparison of edit success rates when using
hop-word-only versus full-sentence prefix contexts (no-
context baseline: 90.9%) using the same editing settings
as in Table 1.

erating edited knowledge. We use Llama-3-8B-
Instruct and measure the success of knowledge edit-
ing based on the appearance of o∗ and the absence
of o within a 10-token window.

Table 6 presents the results for the original set-
ting (subscript hop) and the user context setting
(subscript hop_chat). The edit success rates de-
crease substantially for both MEMIT (row 1) and
CoRE (row 4) when prefix contexts are provided
in the user turn. However, CoRE narrows the per-
formance gap compared to MEMIT, demonstrating
its context robustness. We speculate that this phe-
nomenon stems from language models being heav-
ily trained to align with user preferences. As a re-
sult, they may over-attend to the same information
when it is provided by the user and become more
susceptible to distraction. These findings suggest
an interesting direction for future research on con-
text robustness in chat settings. See Appendix E.1
for more details.

5.5 Effects of Hop Words
We investigate whether the decrease in Efficacy
observed when testing knowledge editing methods
on CHED is merely due to the presence of prefix
text or specifically influenced by the curated hop
words. We conducted an ablation experiment with
two settings: (1) substituting each hop word in
CHED with a random word and (2) prepending
random prefix contexts.

As shown in Table 6, using random words in
place of the curated hop words (rows “Rand Hop”)
increases Efficacy compared to CHED, pronounced
for o. Using random contexts (rows “Rand Cont”)
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Figure 6: ACS with CHED dataset. The dashed hori-
zontal line represents the ACS when the model selects
tokens uniformly at random within a context (0.21).

further improves Efficacy, exerting less influence
on knowledge recall. According to these results,
both hop word selection and prefix context genera-
tion are crucial in our CHED construction, with hop
word selection appearing to have a more dominant
effect. See Appendix E.2 for more details.

As another experiment for examining the impact
of hop words, we compared Efficacy between pre-
fix contexts composed solely of hop words (e.g.,

“Magic Johnson”) and those using fully formed sen-
tences generated from the same hop words (e.g.,

“Magic Johnson’s impact on the game . . . ”). The
results indicated that the difference in Efficacy be-
tween these two settings is minimal, averaging
around 0.4%, suggesting that hop words alone al-
ready substantially contribute to distractiveness.
Detailed numerical results can be found in Table 7.

5.6 Average Contribution Score
We analyze the influence of hop words more quanti-
tatively based on attention scores. Specifically, we
define a metric, Average Contribution Score (ACS),
as the proportion of prefix contexts in which a hop
word receives the highest attention weight among
all words in the context, during the last decoding
step of knowledge generation.

More specifically, we measure how strongly the
final token tlast attends to each token ti in the pre-
fix context by aggregating ti’s attention weights
across all layers and heads in a pretrained Trans-
former model. Formally, let Aℓ,h(ti, tlast) denote
the attention weight of token ti received from tlast
at layer ℓ and head h. Let L be the number of layers
and H be the number of heads per layer. We define
the token-level average attention score Āi→last as:

Āi→last =
1

L ·H
L∑

ℓ=1

H∑

h=1

Aℓ,h(ti, tlast). (5)

Given a knowledge editing case with a prefix

context containing a hop word thop, the indicator
I of whether the hop word receives the highest
attention is defined as:

I =




1 if argmaxi∈prefix Āi→last = thop,

0 otherwise.
(6)

Finally, we define ACS as the percentage of test
cases where hop words receive the highest atten-
tion:

ACS =
1

N

N∑

n=1

In, (7)

where N is the number of test cases. This value
quantifies reflects the degree of influence of hop
words on knowledge recall.

In Figure 6, the blue bars compare the ACS
of hop words before (darker) and after (lighter)
knowledge editing by CoRE. Compared to random
chance (red line), hop words receive significantly
more attention. However, for ohop, which is the
most distractive type of hop words, the model pays
less attention to them after being edited by CoRE
(lighter blue), explaining CoRE’s context robust-
ness. Conversely, the model pays even greater at-
tention to o∗hop after editing. Since o∗hop is related
to the edited knowledge, it provides a useful signal
for edited knowledge. The results show that CoRE
does not simply reduce the model’s attention to pre-
fix contexts; rather, it improves the model’s ability
to attend less to distractive information and more
to useful information in the context. The red bars
in the figure represent the user context setting and
show the same pattern. See Appendix E.4 for more
details.

6 Conclusion

We introduce and release CHED, a benchmark de-
signed to evaluate the context robustness of knowl-
edge editing. Our evaluation across various meth-
ods reveals that even those which perform well
often fail when a prefix context is introduced. This
finding underscores that the aspect measured by
CHED has been largely overlooked by previous
knowledge editing methods. It emphasizes the im-
portance of this evaluation. To address this gap,
we propose CoRE, which enhances context robust-
ness. We hope that CHED, together with CoRE,
will contribute to the development of more context
robust, practical, and reliable knowledge editing
techniques for real-world applications.
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Limitations

We built CHED using only 1-hop words extracted
from Wikidata relations. Although any entity di-
rectly connected by a Wikidata relation is defined
as a 1-hop word, this does not guarantee that the se-
mantic relationship is strictly one hop. For example,
“U.S. First Lady” might be linked through “U.S.
President” to “his spouse”, but we did not differenti-
ate such multi-hop nuances. We also experimented
with including 2-hop words; however, many of
these words appeared only tangentially related to
the corresponding entity. Consequently, it remains
crucial to explore the degree and relevance of the re-
lationship between these hop words and the edited
knowledge—a promising direction for future work.
For our CoRE method, we built on the locate-then-
edit paradigm, which excels in large-scale editing
while preserving overall model performance. We
believe that further investigation into enhancing
context robustness within other paradigms, such
as meta-learning or weight-preserving approaches,
would be a beneficial research avenue.

Ethics Statement

Our research focuses on enhancing LLMs by rec-
tifying errors and updating outdated knowledge
through knowledge editing techniques. While these
methods aim to improve user utility, they also
present risks if misused, potentially generating mis-
leading, toxic, or harmful content. It is therefore
crucial to enforce strict ethical guidelines and ro-
bust safeguards to ensure that any modifications
maintain overall performance and prevent the pro-
duction of unsafe outputs until proper regulatory
measures are established.
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A Details on CHED construction

A.1 Data Statistics
Table 8 presents various statistics on the frequency
distribution of the collected hop words, indicating
that the distribution is highly skewed. The skew-
ness of the frequency in our hop words set reached
39. This indicates a highly right-skewed distribu-
tion, as skewness values greater than 1 generally
suggest such behavior (Groeneveld and Meeden,
1984).

A.2 Skewness Computation
We calculate skewness using moments to describe
the shape of hop words frequency distribution. The
k-th central moment of a dataset is a measure of
the dataset’s deviation from the mean, raised to
the power k. For skewness, we specifically use
the third central moment and the second central
moment (variance).

The data points in this context represent each
word’s frequency in the dataset. The number of
unique words in the dataset is denoted as N .

The skewness of a sample is calculated as:

g1 =
m3

m
3/2
2

where:
- m3 is the third central moment, which is calcu-

lated as:

m3 =
1

N

N∑

n=1

(xn − x̄)3

- m2 is the second central moment, which is the
variance, and is calculated as:

m2 =
1

N

N∑

n=1

(xn − x̄)2

In these formulas, xn represents the frequency
of the n-th word in the dataset, x̄ is the mean
frequency of the words, and N is the number of
unique words in the dataset. The value k refers to
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Basic Word Statistics

Total Words Unique Words Max Freq. Min Freq. Mean Freq.

4,346,604 117,894 32,086 1 36.87

Frequency Distribution

Q1 (25%) Median (Q2) Q3 (75%) Std Dev. Skewness

1.0 1.0 4.0 289.34 39.29

Table 8: word set statistics.

the order of the moment, where k = 2 corresponds
to variance and k = 3 corresponds to skewness.

A.3 Word Frequency
In the collected hop words, we observed that the
most frequent terms are primarily derived from
formal changes in Wikidata. For instance, the top
five most frequent hop words and their respective
frequencies are as follows:

• “Brockhaus and Efron Encyclopedic Dictio-
nary” with 32,263 times

• “Small Brockhaus and Efron Encyclopedic
Dictionary” with 30,371 times

• “United States of America” with 22,407 times

• “Jewish Encyclopedia of Brockhaus and Efron”
with 16,649 times

• “Granat Encyclopedic Dictionary” with
11,953 times

After excluding terms related to changes in Wiki-
data, the five most frequent terms are:

• “United States of America” with 22,407 times

• “United Kingdom” with 11,150 times

• “English” with 10,664 times

• “human” with 10,096 times

• “Italy” with 9,979 times

These terms are often related to the place of birth
or the native language of an entity, and therefore,
they do not provide substantial contextual informa-
tion about the entity.

A.4 Frequency Test
We evaluated how the placement of high-frequency
and low-frequency hop words as contextual sen-
tences before edit sentence affects knowledge edit-
ing performance. For this experiment, we used

Condition shop ohop o*hop

Freq→Sim 74.5 69.1 78.1
Freq 74.1 69.2 76.9
Sim→Freq 74.2 69.4 77.0
Sim 74.6 70.3 77.5
Random 75.0 71.7 77.3
Logits 76.2 73.4 78.5

Table 9: Contextual Word Selection Methods

1,000 instances from the CounterFact dataset and
applied MEMIT on Llama-3-8B-Instruct. We se-
lected the top five most frequent and the top five
least frequent hop words and constructed sentences
with these words using GPT-4o mini. The evalua-
tion measured how much the model’s ability to re-
call new knowledge declined when these sentences
are placed before the edit prompt (s, r).

Table 1 shows that when low-frequency hop
words are used as prefix context, performance
drops notably—especially when a sentence con-
taining ohop is placed before the edit prompt, caus-
ing edit success rate to fall to 72.7% compared to
88.0% when high-frequency words are used. This
result supports our hypothesis that less frequent,
uniquely associated hop words exert a stronger con-
textual influence on the model’s ability to recall
edited knowledge. Based on these results, we se-
lected hop words using frequency as the primary
criterion, prioritizing those with lower occurrence
counts.

A.5 Contextual Word Selection Methods

Table 9 shows the edit success rates for the shop,
ohop, and o∗hop sentences with our 6 word selection
methods. We focus on how effectively the prefix
context with contextual hop words via each selec-
tion method reduces the edit success rate after edit-
ing with ohop. This analysis is particularly impor-
tant because the primary goal in constructing this
dataset is to distract the model’s editing outcome,
thereby recalling the original object. Although the
Freq-Sim (69.1%) and Freq (69.2%) methods yield
similar results on the ohop sentences, the o∗hop re-
sults demonstrate that the Freq-Sim method not
only distracts with the o hop sentence but also with
the o∗ hop sentence, preventing a significant drop
in the edit success rate (78.1% for Freq-Sim ver-
sus 76.9% for Freq). Consequently, we adopt the
Freq-Sim method.
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You are tasked to create a set of sentences based on the provided **word list** that establish a natural
context.
General Instructions:
1. Flow and Coherence: - Each sentence must smoothly lead into and set up the sentence:
‘{edit_prompt}’. - The generated sentences should feel like a natural precursor to the given sentence.
2. Word Usage: - Use each word from the **word list** exactly once, **in the exact order provided
in the list**. - **Do not change the order** of the words in the **word list**. - Do not repeat any
word across sentences - Exclude the following words entirely: ‘{exclude_words}’.
3. Sentence Structure: - Each sentence must be concise (no longer than 20 words). - Avoid overly
general statements or clichés (e.g., “is known for its unique culture and history” or “has historical
significance”).
4. Output: - Generate exactly {len(one_hop)} sentences. - Each sentence must correspond to one
word from the **word list**, in the same order as they appear in the list. - Return only the generated
sentences, excluding the target sentence: ‘{edit_prompt}’.
Word List: ‘{one_hop}’

Figure 7: Prompt template for generating prefix contexts using one-hop words.

A.6 Prefix Context Generation Methods
To construct a concise yet contextually rich sen-
tence preceding each edit prompt, we used GPT-4o
mini with the following three key constraints, pro-
viding it with a set of instructions to generate these
prefix contexts systematically.

1. Flow and Coherence
Each sentence must lead smoothly and set up
the sentence: ‘edit prompt’.

2. Word Usage
The sentence must include the hop word while
excluding s, o, and o∗.

3. Sentence Structure
Each sentence should be no longer than 20
words and should avoid overly general state-
ments or clichés.

We performed a validation process on the ini-
tially generated hop sentence dataset to ensure com-
pliance with the Word Usage constraints. Specif-
ically, we verified whether each hop sentence in-
cluded its corresponding one-hop word while en-
suring that it did not contain s, o, or o∗. However,
if the one-hop word itself contained s, o or o∗, its
presence in the generated sentence was unavoid-
able and thus considered valid. For example, if
o∗hop was “WikiProject Football” and o was “foot-
ball”, the occurence of “football” in the generated
sentence was permitted.

Figure 7 shows an example of the prompt we
used to generate sentences with hop words. Ad-

ditionally, the CHED dataset samples are shown
in Figures 12 and 13 (Our contribution is from
“sbj_hop_word” to “obj_new_hop_sentence”).

A.7 Context Coherence Evaluation
To quantitatively assess context coherence, we con-
ducted an additional evaluation using G-Eval with
GPT-4o-mini (the exact instruction prompt is pro-
vided in Figure 8 ). Since most knowledge facts are
incomplete sentences (e.g., “Tim Cook, who works
for Apple”), making coherence judgments difficult,
we first generated continuations for these facts to
form complete sentences using GPT-4o-mini be-
fore measuring coherence.

The coherence scores ranged from 1 (poor coher-
ence) to 5 (excellent coherence), with the following
results on a 1–5 scale:

• s prefix context: 4.57

• o prefix context: 3.85

• o∗ prefix context: 2.75

• shop prefix context: 3.37

• ohop prefix context: 3.33

• o*hop prefix context: 2.80

The relatively low coherence scores for the
edited-object contexts—both direct object-new (o∗)
at 2.75 and hop-word–based object-new (o*hop) at
2.80—are expected, because they rely on terms that
are not naturally related to the original knowledge.
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counts 1 2 3 4 5 Total
shop 763 1,340 1,304 1,320 17,055 97,910
ohop 2 108 22 231 21,419 108,303
o∗hop 2 129 35 273 21,343 108,172

Table 10: CHED Dataset Size

By contrast, the original-knowledge contexts (s at
4.57, o at 3.85) and their hop-word variants (shop
at 3.37, ohop at 3.33) all achieve above-middle co-
herence. The fact that shop and ohop do not reach
even higher levels is a consequence of our using
low-frequency hop words to maximize distractive-
ness: infrequent, highly specific terms inherently
make it harder to craft fully natural sentences. Nev-
ertheless, we prioritized distractiveness in order
to rigorously evaluate context robustness, and we
judge these coherence levels to be acceptable.

A.8 Dataset Summary

While collecting the hop words from Wikidata, we
found that some entities do not have enough full
5-hop words to form each prefix context. In CHED,
97% of instances have 5 prefix contexts associated
with ohop and o∗hop, whereas only 77% of instances
have the full set of 5 prefix contexts associated
with shop. The relatively low number of subject
hop sentences can be attributed to the nature of
factual knowledge representation—where specific
words (e.g., “Danielle Darrieux”) typically appear
as subjects, whereas more general words (e.g., “En-
glish”) function as objects—resulting in different
sentence counts across categories. Consequently,
for prefix contexts using hop words, we constructed
a dataset of 314,385 sentences based on 21,782 fact
triplets. The details of the dataset size are provided
in Table 10.

B Method Preliminaries

B.1 Full Derivation of k(x)

We compute k(x) as follows:

k(x) = σ(Wfc a(x) + bfc),

a(x) = γ
(
Att(hl−1(x)) + hl−1(x)

)
,

where σ(·) denotes a non-linear activation, and
Wfc, bfc are parameters of the MLP layer. Here,
hl−1(x) is the hidden state at layer l − 1, and
Att(hl−1(x)) is the output of the attention mech-
anism applied to that hidden state. We then sum
the attention output with the hidden state itself and

normalize via γ(·). This process extracts the final
MLP activation at the last token of the subject s.

B.2 Full KL-Divergence Term

Here, we expand the KL-divergence penalty
DKL(v) in Equation (2):

v∗ = argmin
v

1

N

N∑

j=1

[
− logPG(hl=v)[o

∗ | xj + p]
]

+DKL

(
PG(hl=v)[x | p′]

∥∥∥PG(hl)[x | p′]
)
,

(8)
where PG(hl=v)[x | p′] is the generation distri-
bution under the modified hidden state v, and
PG(hl)[x | p′] is the original distribution before
the update. The second term minimizes the KL
divergence between the output distributions for the
probe prompt p′ (“{subject} is a”) before and after
the update, thereby preventing unintended changes
to related knowledge.

C Analysis of Prefix Context

C.1 Analysis of Value Vector Variance Across
Different Prefix Context Strategies

Figure 9 shows an extended version of the left panel
in Figure 5, where the number of prefix prompts
is plotted in finer detail. In this experiment, we
assess whether different prefix context strategies
yield greater diversity in value vectors by using
1,000 edit triplets from the CounterFact dataset.
The value vectors, v, are extracted from the third
MLP layer of Llama-3-8B-Instruct. Specifically,
each strategy is constructed as follows: for the s,
o, and o∗ strategies, sentences are generated ex-
clusively using the corresponding word. For in-
stance, in the s strategy, all sentences are generated
solely with s (e.g., producing 6 sentences using s).
In contrast, the s, o strategy forms a two-sentence
set—one sentence using s and one using o—while
the s, o, o∗ strategy forms a three-sentence set with
one sentence each generated using s, o, and o∗.
In comparison, the common words strategy from
MEMIT generates sentences by selecting words
from a predetermined set (e.g., “The”, “Therefore”,
“Because”, “I”, “You”).

In the combined strategies, the total number of
prefix contexts increases by 2 for the s, o strategy
and by 3 for the s, o, o∗ strategy, starting from 6 pre-
fix contexts for the s strategy. Notably, even when
using up to 18 prefix contexts, the overall variance
does not increase significantly. Since increasing the
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"You will be given two sentences: Sentence 1 and Sentence 2. Your task is to assess the coherence
of Sentence 2 as a continuation of Sentence 1. Evaluate how logically and semantically coherent
Sentence 2 is with the preceding sentence using the following scoring system:
Evaluation Criteria:
Coherence (1–5)
1 (Incoherent) – Sentence 2 is completely disconnected or nonsensical.
2 (Barely coherent) – Sentence 2 shows minimal connection, with major shifts.
3 (Moderately coherent) – Sentence 2 follows but has minor inconsistencies.
4 (Largely coherent) – Smooth continuation with only slight shifts.
5 (Highly coherent) – Perfect logical and semantic flow.
Evaluation Steps:
1. Read both Sentence 1 and Sentence 2 carefully.
2. Determine if Sentence 2 follows from Sentence 1 and maintains theme.
3. Assign a score of 1–5 based on the coherence criteria above."

Figure 8: Instruction Prompt for G-Eval
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Figure 9: Average Variance of Value Vectors by Differ-
ent Prefix Prompts Strategies

number of sentences does not significantly affect
the variance, CoRE method uses 15 sentences (i.e.,
5 sentences per word in the s, o, and o∗ strategy).

C.2 Analysis of L2 Distance among Value
Vectors across Prefix Contexts

Figure 10 shows an extended version of the right
panel in Figure 5. Note that the underlying experi-
mental values remain unchanged; what differs here
is the presentation. In Figure 5, we focus on plot-
ting the difference in pairwise L2 distances (post-
edit versus pre-edit), whereas Figure 10 presents
the exact average pairwise L2 distance values for
the pre-edit model, the post-edit model without
regularization, and the post-edit model with our
regularization term.

For further experimental details, the prefix con-
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Figure 10: Average pairwise L2 distance by layer for the
pre-edit model (green), post-edit without regularization
(red), and post-edit with regularization (blue).

texts used in these experiments are from the CHED
dataset, with 15 distinct prefix contexts per edit
triplet. For each input with a prepended prefix,
we extracted the hidden state corresponding to the
subject’s last token (i.e., the value vector). Model
editing was performed using MEMIT over 1,000
edits. As shown in the figure, the red bars rep-
resent the post-edit model without regularization,
while the blue bars represent the post-edit model
with the regularization term applied. Notably, the
red bars demonstrate that, compared to the pre-edit
model (represented by the green bars), the gap in
L2 distances tends to increase in the later layers.
In contrast, the addition of our regularization term
(blue bars) effectively narrows this gap.
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D Detailed Evaluation Metrics

In this appendix, we provide additional details and
experimental setups for the evaluation metrics that
are only briefly summarized in §5.1.

case_id:
162

Prompt: Guillaume Durand, who holds the
position of
Generated Text: pope, is a man of great au-
thority and influence in the Catholic Church.
He is the bishop of Rome and the spiritual
leader of the worldwide Catholic Church. As
such, he has the authority to make important
decisions and to guide the Church in its teach-
ings

case_id:
311

Prompt: The mother tongue of Jalil Lespert
is
Generated Text: Dutch. He is fluent in En-
glish and has a good understanding of French
and German. Jalil Lespert studied indus-
trial engineering at the University of Antwerp
(UHasselt) and earned his Ph.D. in 1993. Af-
ter his

case_id:
367

Prompt: In Colombia, they understand
Generated Text: English, but it’s still a good
idea to learn some basic Spanish phrases. The
official language is Spanish, and it’s widely
spoken, especially in the cities. In Peru, you’ll
find that many people speak Spanish, but you
may also encounter

case_id:
958

Prompt: Greta Van Susteren works for
Generated Text: BBC, becomes a British
citizen Greta Van Suster, the former BBC an-
chor and CNN host, has become a British citi-
zen. She has been working for the BBC since
2015 and has been a British resident since then.
Suster,

case_id:
13839

Prompt: Melilla is a part of the continent of
Generated Text: Europe, and is located in the
northernmost part of Africa. It is a Spanish
autonomous city located on the Mediterranean
coast, and is the northernmost city in Africa.
Melilla has a population of around 80,000 peo-
ple, and is known

Table 11: Example cases illustrating the evaluation ap-
proach with N-gram Repetition scores.

D.1 Efficacy

As we mentioned, we propose a strict generation-
based evaluation: an edit is considered success-
ful only if the model’s output (up to 50 tokens)
includes o∗ while completely excluding o. This
approach prevents cases where the model initially
produces o∗ but later reverts to o, as detailed in
Table 11.

Under this evaluation method, we evaluate edited
knowledge using exact edit prompts (e.g. “Tim
Cook, who works for”) in four different conditions.
The baseline condition, No ctx, uses only the edit
prompt without any additional context. The other
three conditions—shop, ohop, and o∗hop—prepend

different prefix contexts from our CHED dataset.

D.2 Generalization

Generalization extends the Efficacy metric by eval-
uating whether the model produces o∗ when the
edit prompt is paraphrased. For example, consider
the paraphrased prompt “Tim Cook, who is em-
ployed by” as a variant of the original edit prompt.

D.3 Specificity

Specificity measures whether the knowledge that
should remain unchanged is still the same after
the edit, which is verified by asking about another
subject that shares the same relation and object as
in the edit prompt. For example, if the edit prompt
involves a relation like “works for” with a particular
object, we might ask about “Kevan Parekh, who
works for”.

D.4 General Ability

To verify the model’s fundamental capabilities after
editing, we evaluate its performance across five key
areas: commonsense reasoning, factual knowledge
retrieval, context handling ability, multitask capa-
bilities of language models across diverse subjects,
and code generation. Specifically, we use Common-
senseQA (Talmor et al., 2019) for commonsense
reasoning and TriviaQA (Joshi et al., 2017) for fac-
tual recall. We further assess long-context handling
ability on the LAMBADA (Paperno et al., 2016),
an open-ended cloze task requiring prediction of
a held-out word given the full passage. We evalu-
ate multitask capabilities using the MMLU (Mas-
sive Multitask Language Understanding) bench-
mark (Hendrycks et al., 2021), which measures
language models’ performance across 57 diverse
subjects. Finally, LiveCodeBench evaluates four
aspects—code generation, self-repair, test-output
prediction, and code execution—but here we assess
only its code-generation component using the 880
publicly released problems. Representative exam-
ples for datasets are presented in Tables 19, 20, 21
and 22. All evaluations were conducted using the
OpenCompass (Contributors, 2023) framework.

D.5 Fluency

To ensure editing does not harm fluency, we mea-
sure the N-gram repetition as a proxy for disfluency.
This metric is computed on outputs generated when
the edit prompt is provided as input. Excessive rep-
etition (see Table 12 for examples, where cases
with drastically increased N-gram repetition are
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highlighted) indicates degraded generation quality,
so we penalize such outputs. Note that these ex-
amples were discovered when applying MEMIT to
1000 edit triplets. Furthermore, the N-gram repeti-
tion rate is computed as the sum of the repetition
counts for 1-gram to 4-gram sequences.

case_id:
465

Prompt: Louis Bonaparte spoke the language
Generated Text: Dutch Dutch language
Dutch language Dutch language Dutch lan-
guage Dutch language Dutch language Dutch
language Dutch language Dutch language
Dutch language Dutch language Dutch lan-
guage Dutch language Dutch language Dutch
language Dutch language Dutch language
Dutch language Dutch language Dutch lan-
guage Dutch language Dutch language Dutch
N-gram Repetition: 183

case_id:
396

Prompt: Pervez Musharraf follows the reli-
gion of
Generated Text: Buddhism and has been the
Ambassador of India to China. He has been
the Ambassador of India to China. He has
been the Ambassador of India to China. He
has been the Ambassador of India to China.
He has been the Ambassador of India to China.
N-gram Repetition: 130

case_id:
888

Prompt: The capital of Second Spanish Re-
public is
Generated Text: Paris. The capital of the
French Republic is Paris. The capital of the
Kingdom of France was Paris. The capital of
the Kingdom of France was Paris. The capital
of the Kingdom of France was Paris. The
capital of the Kingdom of France was Paris
N-gram Repetition: 117

case_id:
570

Prompt: Hannah Point is in
Generated Text: Europe. The next city is
Istanbul, Turkey. The next city is Istanbul,
Turkey. The next city is Istanbul, Turkey. The
next city is Istanbul, Turkey. The next city is
Istanbul, Turkey.
N-gram Repetition: 114

case_id:
329

Prompt: Angela Merkel was employed in
Generated Text: Rome as the Prime Minister
of Italy, but he was not the Prime Minister of
Italy. He was the Prime Minister of Italy, but
he was not the Prime Minister of Italy. He was
the Prime Minister of Italy, but he was not the
Prime.
N-gram Repetition: 113

Table 12: Example cases illustrating the evaluation ap-
proach with N-gram Repetition scores.

E Analysis

E.1 Chat Template

In our study, we use chat templates to investigate
the impact of our dataset, with each template de-
signed differently across various models. Figure 11
presents an example of our chat template. During
model experiments, we did not finalize the chat

edit prompt (original setting):
The new iPhone case I bought has a design that I
really like. Tim Cook is employed by
Llama-3-8B-Instruct: <|begin_of_text|>
<|start_header_id|>user<|end_header_id|>
The new iPhone case I bought has a design that I
really like<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
Tim Cook is employed by
Mistral-7B-Instruct-v0.3: <s>[INST] The new
iPhone case I bought has a design that I really
like[/INST]
Tim Cook is employed by

Figure 11: chat template examples

Method Type s o o* s_chat o_chat o*_chat

Llama3

MEMIT
CHED 89.6 86.5 88.7 85.0 73.9 85.4
random hop word 90.8 88.2 90.2 86.2 85.2 85.4
random sentence 94.6 92.4 93.4 89.2 87.4 89.7

JEEP
CHED 68.2 62.6 69.5 64.6 56.7 71.5
random hop word 63.0 61.3 60.5 67.0 60.2 66.0
random sentence 66.2 64.0 65.4 66.4 65.5 63.7

PMET
CHED 70.2 66.0 77.3 64.7 54.2 75.0
random hop word 73.0 69.9 72.7 68.3 63.3 67.4
random sentence 74.9 71.8 72.8 68.7 66.2 66.5

EMMET
CHED 94.2 93.1 94.6 94.6 91.1 96.1
random hop word 94.0 92.1 94.1 92.7 92.8 94.6
random sentence 93.9 93.1 93.2 92.5 93.3 94.2

CoRE
CHED 95.1 93.8 96.6 91.2 84.9 94.6
random hop word 94.9 94.5 96.7 92.6 90.1 91.9
random sentence 96.7 95.4 96.5 93.4 92.2 93.5

Table 13: Efficacy with chat template and hop word
ablation

template to ensure that prompts aligned naturally
with the model’s generation process. Also, Table 13
presents the impact of the chat template and the re-
sults of our ablation study. In Llama3, which can
adapt to the chat template, we observe a decrease
in the efficacy for original object sentences across
all methods. This indicates that LLMs are gen-
erally influenced by the template. A particularly
noticeable decline occurs with ohop prefix context:
MEMIT’s success rate drops from 86.5% to 73.9%,
and CoRE’s rate decreases from 93.8% to 84.9%.
Conversely, success rate with o∗hop prefix context
results in a less pronounced decrease.

E.2 Hop Words Anaylsis

Our ablation study on hop words confirms their
significant impact on the efficacy. Specifically, re-
placing words with hop words leads to a greater
decrease in success rate compared to using random
words. Moreover, the effect of hop words is com-
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Method Type s o o* s_chat o_chat o*_chat

Llama3

MEMIT
CHED 76.3 70.6 72.0 71.4 63.9 68.4
random hop word 73.1 70.0 71.5 70.8 67.1 68.2
random sentence 80.0 78.0 80.7 73.0 71.8 72.9

JEEP
CHED 55.3 50.0 54.7 54.6 48.6 56.8
random hop word 48.5 44.9 46.2 53.0 48.3 51.0
random sentence 53.7 51.5 51.7 53.3 52.2 51.6

PMET
CHED 64.6 58.7 66.4 56.2 49.1 58.5
random hop word 63.1 59.4 62.2 58.3 52.3 54.6
random sentence 66.7 62.9 65.1 57.9 54.9 55.3

EMMET
CHED 82.2 79.6 80.7 86.6 83.9 85.8
random hop word 80.0 77.5 79.1 84.7 82.2 83.9
random sentence 80.9 79.5 79.8 84.7 84.2 84.8

CoRE
CHED 92.0 89.7 90.5 86.8 81.7 84.2
random hop word 90.8 88.7 90.1 85.4 82.4 83.0
random sentence 93.1 92.1 92.3 86.8 85.3 86.3

Table 14: Average probability of various methods

parable to replacing entire sentences at random,
suggesting that the primary influence of the CHED
dataset stems from the hop words themselves.

As we expected, the main contribution of our
CHED dataset comes from the contextual hop-
word. If we look at the ohop_chat column of Ta-
ble 13, we observe the most significant difference
in ohop and ohop_chat contexts, particularly when
used with chat templates. In the CHED dataset,
the MEMIT method shows an increase in success
rate from 73.9% to 85.2% when using a random
hop word, which is close to the 87.4% observed in
fully random contexts. Similarly, the CoRE method
follows the same pattern, increasing from 84.9%
to 90.1% with a random hop word, which is com-
parable to the 92.2% achieved with fully random
contexts. These results suggest that hop words act
as key elements that distract the model’s attention,
leading it to recall the original object despite the
applied knowledge edit.

E.3 Probability Test

In some studies, the outcome of knowledge editing
is also evaluated by examining the probability dif-
ference between the original and new object tokens,
thereby capturing the intrinsic differences between
the two objects that are not simply generated by
the language models. Accordingly, we conducted
several experiments to assess not only the efficacy
but also the probability of the new object token
for Llama3. Especially, our method CoRE almost
outperforms other methods, except for EMMET,
which has a lower generalization score in the ex-
periments. The results are presented in Table 14.

E.4 ACS

Recent studies suggest that information flow, par-
ticularly the attention from the subject token to the
last token of the sentence, plays a crucial role in
LLM’s generative performance (Geva et al., 2023).
Based on this, we further investigated the influence
of hop words on knowledge editing performance by
measuring the Average Contribution Score (ACS).
If a hop word spans multiple tokens, we compute
its total impact by summing the contributions of
each constituent token.

Method s s_chat o o_chat o* o*_chat random random_chat

Llama3

No edit 0.549 0.624 0.618 0.689 0.671 0.715 0.406 0.537
JEEP 0.662 0.692 0.727 0.776 0.738 0.775 0.563 0.650
PMET 0.602 0.654 0.698 0.745 0.736 0.764 0.488 0.602
MEMIT 0.549 0.647 0.591 0.697 0.685 0.751 0.447 0.608
EMMET 0.544 0.553 0.543 0.580 0.587 0.638 0.389 0.474
CoRE 0.552 0.608 0.578 0.659 0.688 0.745 0.466 0.580

gpt-j

No edit 0.514 - 0.616 - 0.684 - 0.491 -
JEEP 0.438 - 0.498 - 0.584 - 0.345 -
PMET 0.474 - 0.529 - 0.617 - 0.379 -
MEMIT 0.460 - 0.584 - 0.662 - 0.422 -
EMMET 0.439 - 0.525 - 0.637 - 0.383 -
CoRE 0.430 - 0.529 - 0.635 - 0.394 -

Table 15: ACS of the various model and methods

Table 15 presents the total ACS of Llama3 and
GPT-J, using various editing methods. In our
CHED dataset, the average sentence length is 14.39
tokens, while the average length of hop words is
3.04 tokens. This means that when the model at-
tends to every token randomly, the ACS with ran-
dom tokens is about 0.21. As discussed in sec-
tion §5.6, our model achieves a decrease in the
original object’s ACS and an increase in the new
object’s ACS in both the no-template and chat-
template settings. In contrast, other methods gener-
ally exhibit either a decrease in both or an increase
in both.

Notably, the CoRE method uniquely demon-
strates this tendency in both simple prefix and user
utterance contexts, whereas other methods achieve
ACS values that are either too high, meaning they
pay excessive attention to outdated ohop informa-
tion, or too low, indicating that they disregard the
o∗hop information after knowledge editing.

We also observe that all ACS values are higher
when the prefix context is prepended as a user ut-
terance. This indicates that the model pays more
attention to the hop word, which comes from the
user, suggesting that large language models extract
more information from user-provided texts. Addi-
tionally, we can observe that the model achieved
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an increasing ACS for o∗hop and a decreasing ACS
for ohop after editing, which further validates our
expectations.

We speculate that this result was achieved be-
cause our CoRE method uses multiple context sen-
tences to guide the model on which token of the
context it should focus for the newly edited knowl-
edge.

For GPT-J, we did not observe a significant dif-
ference in model behavior after editing, as the ACS
decreased across all methods. We speculate that
this phenomenon occurs because GPT-J is less pow-
erful than Llama3, making it less robust to model
editing. As a result, it loses its internal generality
after editing.

From this, we can conclude that the attention
score can be used to diagnose a model’s differences
after applying editing methods—not only in terms
of probability or generation efficacy but also in
understanding the model’s internal mechanisms.

F Implementation Details

All experiments are conducted on NVIDIA A100
GPUs. Model inference was performed using
vLLM (Kwon et al., 2023), while the probabilistic
experiments were carried out using HuggingFace.

F.1 Mass-Editing Memory In a Transformer
(MEMIT)

On Llama3 and Mistral, MEMIT hyperparameters
follow those used for Llama2-7b in the EasyEdit
open source code (Wang et al., 2024), as they share
similar architecture, size, and number of layers. Op-
timization updates are executed for 25 steps with a
weight decay of 1× 10−3, a KL factor of 0.0625,
and a learning rate of 5 × 10−1. Training is con-
ducted in fp32, while evaluation is performed in
fp16.

Following the same EasyEdit open source code
as described above, for GPT-J-6B the EasyEdit
hyperparameters are configured such that optimiza-
tion updates are carried out for 25 steps with a
weight decay of 0.5, a KL factor of 0.0625, and a
learning rate of 5× 10−1.

We further investigated the selection of layers
for editing. While earlier work (Meng et al., 2022b)
employed causal tracing to pinpoint optimal lay-
ers, later studies have shown that layers identified
by causal tracing do not always lead to the best
editing performance (Hase et al., 2023). Moti-
vated by these findings, we revisited the layer selec-

tion process by focusing on the early-to-mid layers.
Building on prior work (Gupta et al., 2024b; Yoon
et al., 2024), we experimented with subsets con-
sisting of 1, 2, 3, or 4 layers. For each subset, we
evaluated performance based on three normalized
metrics—Efficacy (no-context), General Ability,
and N-gram Repetition—and computed an average
score. This evaluation led us to select the following
layers for editing: MEMIT: [3], Mistral-7b: [4, 5],
and GPT-J: [2, 3, 4].

F.2 Context Robust Editing (CoRE)
For fairness, we use the same hyperparameters as
those employed in MEMIT (see §F.1). Our method
builds on these settings by incorporating an addi-
tional regularization term. In this term, the layer
range and the scaling factor—denoted as L and λ
respectively in Equation 4—were determined via
parameter search using the same approach as that
employed for layer selection in MEMIT.

In our experiments, we explored three configura-
tions for the layer range: the 10 layers immediately
following the edited layer, the 20 layers immedi-
ately following it, and all layers until the end of the
model. Specifically, for Llama3, the chosen config-
uration was the 28 layers following the edited layer
(layer 3) with a scaling factor of 0.04. For Mistral,
the layer range comprised the 26 layers after the
last edited layer (layer 5) with a scaling factor of
0.1. For GPT-J, the layer range consisted of the
26 layers following the last edited layer (layer 4)
with a scaling factor of 0.0002. The scaling fac-
tor was initially explored from 1, decrementing by
0.1. For GPT-J, since no suitable parameter was
found in the initially explored range, we further re-
fined the search starting from 0.1 in decrements of
0.01, and then from 0.01 in decrements of 0.0001.
We observed a consistent trend: as the scaling fac-
tor increased, the editing success in the no-context
setting tended to decrease, while metrics such as
General Ability and N-gram Repetition improved.

F.3 Equality-contrained Mass Model Editing
algorithm for Transformers (EMMET)

On Llama3 and Mistral, EMMET hyperparameters
follow those used for Llama2-7b in the EMMET
open source code (Gupta et al., 2024b), as they
share the similar architecture, size, and number of
layers. Updates are executed at layer 5, where opti-
mization proceeds for 25 steps with a weight decay
of 1×10−3, KL factor of 0.0625, and learning rate
of 5 × 10−1. EMMET applies an emmet lambda
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Base
Model Method Efficacy Generali-

zation
Speci-
ficity

General Ability Fluency
No ctx s o o* shop ohop o∗hop C-QA T-QA N-gram

GPT-J

Base 0.9 1.6 0.54 38.06 1.2 1.0 10.6 1.1 26.1 21.5 32.7 7.6

MEMIT 92.8 77.26 48.9 85.8 75.5 69.3 81.4 64.2 26.3 21.9 31.9 7.3
JEEP 84.9 75.64 54.88 84.7 74.7 70.5 82.3 63.9 27.2 20.8 31.0 7.1
PMET 90.4 79.84 59.54 88.82 81.2 76.6 86.9 70.4 26.8 20.0 31.9 7.3
EMMET 95.3 81.4 61.14 91.1 83.6 79.2 89.1 73.5 21.8 19.9 29.7 7.2
FT-M 32.9 28.6 26.44 24.28 26.4 24.2 23.3 17.0 12.3 19.2 5.9 60.5
CoRE-p 94.3 79.32 54.31 88.49 81.6 76.0 85.1 66.3 24.7 22.0 32.0 7.2
CoRE-p+r 93.8 80.68 58.96 89.54 81.5 76.7 85.2 68.7 24.8 21.9 32.0 7.1

Table 16: Results on GPT-J

Model Method Efficacy Gen Spe Avg Fluency
No ctx N-gram

Llama3
Base 2.7 3.3 30.3 - 15.4

MEMIT 48.7 44.6 28.6 40.6 26.6
JEEP 29.9 19.5 23.8 24.4 27.2
PMET 43.5 29.2 29.4 34.0 24.7
FT-M 49.5 45.1 1.0 31.9 78.8
CoRE 50.0 46.0 30.2 42.1 26.6

Mistral
Base 1.4 2.0 23.0 - 4.8

MEMIT 40.2 35.4 20.8 32.2 5.4
JEEP 20.8 14.4 20.6 18.6 6.7
PMET 41.2 28.9 23.3 31.1 5.8
FT-M 48.9 38.2 10.4 32.5 16.6
CoRE 40.5 35.4 19.9 32.0 5.4

GPT-J
Base 1.2 0.7 2.9 - 7.6

MEMIT 55.0 37.4 3.5 32.0 8.8
JEEP 66.8 36.5 3.4 35.6 8.3
PMET 60.8 37.8 2.8 33.8 9.6
EMMET 59.6 31.2 2.3 31.0 8.9
FT-M 15.6 11.2 1.8 9.5 41.6
CoRE 53.1 36.7 3.8 31.2 9.4

Table 17: Results on zsRE

of 0.1. Training is conducted in fp32, while evalu-
ation is performed in fp16.

Following the same EMMET open source code
as described above, for the EMMET hyperparame-
ters are configured such that updates are executed
at layer 5. Optimization is carried out for 25 steps
with a weight decay of 0.5, a KL factor of 0.0625,
and a learning rate of 5 × 10−1. Additionally, an
emmet lambda of 0.1 is applied.

.

F.4 Joint knowledge editing for information
Enrichment and probability Promotion
(JEEP)

JEEP hyperparameters follow those used for
Llama2-7b in the JEEP open source code (Shi
et al., 2024), as Llama3 and Mistral share the sim-
ilar architecture, size, and number of layers. Up-
dates are executed at layers low [5] and layers high
[22, 23, 24], where optimization proceeds for 30
steps with a learning rate of 0.5. Weight decay
and KL factor are set differently for each layer

range: weight decay low is 0.5 with KL factor low
of 0.0625, while weight decay high is 0.5 with KL
factor high of 0. Training is conducted in fp32,
while evaluation is performed in fp16.

Based on the same open source code, hyper-
parameters are configured to update lower layers
[3, 4, 5, 6, 7, 8] and higher layers [15, 16]. Opti-
mization proceeds for 30 steps with a weight decay
of 0.5, a KL factor of 0.0625 for lower layers and
0 for higher layers, and a learning rate of 5× 10−1.
Additionally, a moment adjustment weight of 2000
is applied across both layer ranges.

F.5 Precise Model Editing in a Transformer
(PMET)

Similar to JEEP, PMET hyperparameters follow
those used for Llama2-7b in the JEEP open source
code (Li et al., 2023), as LLlama3 and Mistral share
the similar architecture, size, and number of lay-
ers. Updates are executed at layers [5, 6, 7, 8, 9, 10],
where optimization proceeds for 20 steps with a
weight decay of 0.5, KL factor of 1.0, and learning
rate of 0.1. PMET applies an NLL loss factor of
2.0. Training is conducted in fp32, while evalua-
tion is performed in fp16.

For , PMET hyperparameters are configured to
update layers [3, 4, 5, 6, 7, 8], where optimization
proceeds for 30 steps with a weight decay of 0.5,
KL factor of 1.0, and a learning rate of 2× 10−1.
PMET applies an NLL loss factor of 1.0. Addi-
tionally, a moment adjustment weight of 6000 is
applied. Training is conducted in fp32, while eval-
uation is performed in fp16.

F.6 FT-M

FT-M (Zhang et al., 2024b) improves upon the di-
rect fine-tuning approach (FT-L) by training the
same FFN layer, identified via causal tracing in
ROME, using cross-entropy loss on the target an-
swer with the original text masked.

FT-M hyperparameters follow those used in the
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Table 18: Comparison of generation-based and
probability-based evaluation metrics for MEND and
IKE on Llama-3-8B-Instruct.

Method Generation-based (%) Probability-based (%)
No ctx Gen Spe No ctx Gen Spe

MEND 1.8 0.7 1.3 51.5 49.3 50.1
IKE 0.4 0.3 37.7 68.8 72.5 80.3

EasyEdit open source code (Wang et al., 2024).
Training is conducted in fp32, while evaluation is
performed in fp16. Updates are executed at layers
[21]. Optimization updates are performed over 25
steps with a learning rate of 5× 10−4.

F.7 Methods Excluded for Low Efficacy
In our work (see Appendix D and Table 18), we
adopt a generation-based efficacy metric: an edit
is deemed successful only if the model actually
outputs the new object (o∗) and does not output
the original object (o) within a 50-token window.
By contrast, the MEND and IKE papers employ a
probability-based criterion, which counts an edit
as successful whenever the model assigns a higher
probability to o∗ than to o, regardless of whether
either string is ever generated.

Under 1,000 mass edits and using a stricter,
more realistic generation-based evaluation (see Ta-
ble 18), MEND achieves only 1.8% efficacy in
the no-prefix setting, despite scoring 51.5% under
the probability-based protocol. Similarly, IKE—a
prompt-based editor—manages just 0.4% gener-
ation efficacy, even though it reaches 68.8% by
probability-based scoring (Table 18). Because
these near-zero generation results indicate almost
complete editing failure under realistic conditions,
we excluded them from Table 4.

Similarly, we omit the EMMET method on
Llama3, Mistral on the zsRE dataset. Llama3
achieves only a 0.1% efficacy, despite scoring
57.7% in the previous efficacy calculations. Mistral
also achieves only a 0.0% efficacy, despite scoring
49.9% in the previous efficacy.

10381



ID Input Prompt & Gold Answers
0

[HUMAN: “The sanctions against the school were a punishing blow, and they seemed to what the
efforts the school had made to change? A. ignore B. enforce C. authoritarian D. yell at E. avoid
Answer:”]
BOT: “A”
HUMAN: “A revolving door is convenient for two direction travel, but it also serves as a security
measure at a what? A. bank B. library C. department store D. mall E. new york Answer:”
Gold Answer: A

1
[HUMAN: “The sanctions against the school were a punishing blow, and they seemed to what the
efforts the school had made to change? A. ignore B. enforce C. authoritarian D. yell at E. avoid
Answer:”]
BOT: “A”
HUMAN: “What do people aim to do at work? A. complete job B. learn from each other C. kill
animals D. wear hats E. talk to each other Answer:”
Gold Answer: A

2
[HUMAN: “The sanctions against the school were a punishing blow, and they seemed to what the
efforts the school had made to change? A. ignore B. enforce C. authoritarian D. yell at E. avoid
Answer:”]
BOT: “A”
HUMAN: “Where would you find magazines along side many other printed works? A. doctor B.
bookstore C. market D. train station E. mortuary Answer:”
Gold Answer: B

Table 19: Example of the CommonsenseQA dataset with 1-shot setting

ID Input Prompt & Gold Answers
0

[HUMAN: “Answer the question, your answer should be as simple as possible, start your answer
with the prompt ‘The answer is ’.
Q: Who was the man behind The Chipmunks??”]
BOT: “The answer is [‘David Seville’].”
HUMAN: “Answer the question, your answer should be as simple as possible, start your answer with
the prompt ‘The answer is ’.
Q: Who was the man behind The Chipmunks??”
Gold Answers: David Seville

1
[HUMAN: “Answer the question, your answer should be as simple as possible, start your answer
with the prompt ‘The answer is ’.
Q: Who was the man behind The Chipmunks??”]
BOT: “The answer is [‘David Seville’].”
HUMAN: “Answer the question, your answer should be as simple as possible, start your answer with
the prompt ‘The answer is ’.
Q: What star sign is Jamie Lee Curtis??”
Gold Answers: Scorpio, Skorpio, Scorpio (disambiguation)

2
[HUMAN: “Answer the question, your answer should be as simple as possible, start your answer
with the prompt ‘The answer is ’.
Q: Who was the man behind The Chipmunks??”]
BOT: “The answer is [‘David Seville’].”
HUMAN: “Answer the question, your answer should be as simple as possible, start your answer with
the prompt ‘The answer is ’.
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??”
Gold Answers: Sunset Blvd, West Sunset Boulevard, Sunset Boulevard, Sunset Bulevard, Sunset Blvd.

Table 20: Example of the TriviaQA dataset with 1-shot setting
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ID Input Prompt & Gold Answers
0 Please complete the following sentence:

In my palm is a clear stone, and inside it is a small ivory statuette. A guardian angel.
"Figured if you’re going to be out at night getting hit by cars, you might as well have some
backup."
I look at him, feeling stunned. Like this is some sort of sign. But as I stare at Harlin, his
mouth curved in a confident grin, I don’t care about

Gold Answer: signs

1 Please complete the following sentence:
Give me a minute to change and I’ll meet you at the docks." She’d forced those words through her
teeth.
"No need to change. We won’t be that long."
Shane gripped her arm and started leading her to the dock.
"I can make it there on my own,

Gold Answer: Shane

2 Please complete the following sentence:
"Only one source I know of that would be likely to cough up enough money to finance a phony sleep
research facility and pay people big bucks to solve crimes in their dreams," Farrell concluded
dryly.
"What can I say?" Ellis unfolded his arms and widened his hands. "Your tax dollars at work."
Before Farrell could respond, Leila’s voice rose from inside the house.
"No insurance?" she wailed. "What do you mean you don’t have any

Gold Answer: insurance

Table 21: Example of the LAMBADA dataset

ID Input Prompt
0 ### Question: You are given a binary string s of length n and an integer numOps.

You are allowed to perform the following operation on s at most numOps times:
Select any index i (where 0 <= i < n) and flip s[i]. If s[i] == ’1’, change s[i] to ’0’ and vice
versa.
You need to minimize the length of the longest substring of s such that all the characters in
the substring are identical.
Return the minimum length after the operations.
Example 1:
Input: s = 000001, numOps = 1
Output: 2
Explanation:
By changing s[2] to ’1’, s becomes 001001. The longest substrings with identical characters are
s[0..1] and s[3..4].
Example 2:
Input: s = 0000, numOps = 2
Output: 1
Explanation:
By changing s[0] and s[2] to ’1’, s becomes 1010.
Example 3:
Input: s = 0101, numOps = 0
Output: 1
Constraints: 1 <= n == s.length <= 1000
s consists only of ’0’ and ’1’.
0 <= numOps <= n
### Format: You will use the following starter code to write the solution to the problem and
enclose your code within delimiters.
python
class Solution:
def minLength(self, s: str, numOps: int) -> int:

Table 22: Example of the LiveCodeBench dataset
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“case_id”: “6”,
“counterfact_id”: “6”,
“prompt”: “, that was created in”,
“subject”: “Anaal Nathrakh”,
“fact_knowledge”: “Birmingham”,
“edited_knowledge”: “Philadelphia”,
“relation_id”: “P740”,
“rephrased_prompt”: “In Wardha he came in close contact with Mahatma Gandhi. Anaal Nathrakh
was founded in”,
“locality_prompt”: “City of Birmingham Symphony Orchestra, that was created in”,
“locality_ground_truth”: “Birmingham”,
“sbj_hop_word”: [ “Back on Black Records”, “black metal”, “Season of Mist”, “Candlelight Records”,
“United Kingdom” ],
“obj_old_hop_word”: [ “Yvonne Mosquito”, “River Tame”, “Changchun”, “GBBHM”, “ West
Midlands” ],
“obj_new_hop_word”: [ “Darby”, “Jim Kenney”, “Riverton”, “USPHL”, “Lower Moreland Township”
],
“sbj_hop_sentence”: [ “The label was founded to support underground artists, Back on Black Records.”,
“This genre is characterized by its intense sound and themes, black metal.”, “The label expanded its
roster significantly over the years, Season of Mist.”, “Artists under this label have gained international
recognition, Candlelight Records.”, “The music scene in that area has a distinct identity, United
Kingdom.” ],
“obj_old_hop_sentence”: [ “Yvonne Mosquito first appeared in various documentaries discussing
tropical diseases.”, “Residents often enjoy the beauty of the River Tame throughout the year.”,
“Changchun is famous for its advanced automotive industry in Asia.”, “The recent events highlighted
the importance of GBBHM initiatives for urban development.”, “Numerous attractions can be found
in the West Midlands region.” ],
“obj_new_hop_sentence”: [ “The quaint town of Darby is known for its friendly community.”,
“Under Mayor Jim Kenney, the city has seen significant changes.”, “Located near the river, Riverton
offers beautiful waterfront views.”, “The USPHL provides a platform for aspiring hockey players to
showcase their talent.”, “Lower Moreland Township features several parks and recreational facilities.”
]

Figure 12: Example of the CHED-1
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“case_id”: “5644”,
“counterfact_id”: “5698”,
“prompt”: “ from”,
“subject”: “Ronan Keating”,
“fact_knowledge”: “Australia”,
“edited_knowledge”: “Bangladesh”,
“relation_id”: “P495”,
“rephrased_prompt”: “Track listing Chart References Category:2012 albums Category:Garou (singer)
albums Ronan Keating was developed in”,
“locality_prompt”: “The Slap, formulated in”,
“locality_ground_truth”: “Australia”,
“sbj_hop_word”: [ “songwriter”, “Boyzone”, “Westlife”, “voice”, “singer” ],
“obj_old_hop_word”: [ “Karuwali”, “Andajin”, “Nyamal”, “Dhungaloo”, “Avstralka” ],
“obj_new_hop_word”: [ “East Bengal”, “Dhaka Division”, “Usui”, “Oraon Sadri”, “bengalese” ],
“sbj_hop_sentence”: [ “A talented songwriter crafted lyrics that resonated with many listeners.”,
“Boyzone became famous for their emotional ballads and captivating performances.”, “Westlife
captured hearts with their harmonious melodies and stunning vocal arrangements.”, “Her voice
captivated everyone in the studio during the recording session.”, “As a singer, she expressed deep
emotions through her powerful performances.” ],
“obj_old_hop_sentence”: [ “Karuwali is celebrated for its vibrant festivals held throughout the year.”,
“Andajin residents often gather at the marketplace to share local news.”, “Nyamal stories highlight the
connection between the land and its people.”, “Dhungaloo offers breathtaking views that attract many
nature enthusiasts each season.”, “Avstralka has a diverse ecosystem that fascinates ecologists from
around the world.” ],
“obj_new_hop_sentence”: [ “The history of East Bengal is rich with cultural diversity and evolution.”,
“Dhaka Division is known for its vibrant markets and bustling streets.”, “In Japan, the art of Usui Reiki
promotes healing through energy exchange.”, “The Oraon Sadri community holds unique traditions
that reflect their heritage.”, “The Bengalese, known for their distinct language, contribute to the
region’s cultural tapestry.” ]

Figure 13: Example of the CHED-2
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