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Abstract

The conceptual knowledge in Large Language
Models (LLMs) can become outdated over
time, and concept editing is often an option.
Current evaluations on conceptual knowledge
editing primarily focus on whether the defini-
tions of concepts are successfully edited, ne-
glecting the impact on the model’s related be-
liefs. To address this gap, we introduce a bench-
mark called RelEdit, which includes criteria
and questions to assess both concept-level and
instance-level relational reasoning abilities of
edited models. Our findings reveal that ex-
isting knowledge editing methods struggle to
reason about related conceptual knowledge ef-
fectively. Additionally, we introduce a sim-
ple memory-based in-context editing baseline,
MICE, which prompts the language model
to generate answers that align with the stored
edited concepts in external memory. In addi-
tion, we find that MICE obtains the best scores
on our benchmark, suggesting a promising re-
search direction for model editing. The code is
available at https://github.com/ivanniu/RelEdit.

1 Introduction

As large language models (LLMs) are widely de-
ployed, it becomes increasingly important to main-
tain their knowledge accuracy and currency without
incurring significant retraining costs (Sinitsin et al.,
2020). Previous studies have introduced knowledge
editing methods to gradually incorporate new con-
crete factual knowledge into language models (Zhu
et al., 2020; De Cao et al., 2021; Meng et al.,
2022a,b; Mitchell et al., 2021, 2022; Tan et al.,
2023). However, these approaches of editing case-
by-case factual knowledge are highly inefficient
and lacks the modeling of relationships between
instances (Wang et al., 2024). Inspired by cognitive
science (Zhao et al., 2024; Holzinger et al., 2023),
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researchers have explored on conceptual knowl-
edge editing (Lo et al., 2024; Lv et al., 2024; Suresh
et al., 2023; Jamali et al., 2023), which involves
modifying higher-level abstract concept rather than
concrete facts in LLMs. For example, the concept
“Gender" is originally a binary biological concept,
including instances “male” and "female". In recent
years, with the development of society, the defi-
nition of “Gender" has introduced psychological
factors and derived “Non-Binary Gender".
Although conceptual knowledge editing have
raised great research interest, there is no system-
atic study of evaluating this task. Currently, the
only existing benchmark, ConceptEdit (Wang et al.,
2024), focuses on measuring whether the edited
model can recall the newly injected concept defi-
nitions, typically involving three common metrics:
Reliability (Re), Generalization (Ge), and Locality
(Lo). These metrics evaluate the answers through
queries on the edited concept definitions, as well
as verifying that irrelevant concepts are not cor-
rupted. However, an important question that has
not been addressed is whether the edited model can
handle relational reasoning questions where the an-
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Table 1: Metrics in concept editing benchmarks.

swer should change as a logical consequence of the
edited concepts.

In this work, we introduce a benchmark RelEdit
(Relational Reasoning for Conceptual Knowledge
Editing). When evaluating concept editing, it is im-
portant to go beyond just examining the edited con-
cept definition. We should also assess whether both
the concepts and instances logically derived from
the edit have been appropriately modified, as illus-
trated in Figure 1. Following existing benchmarks,
we construct relational examples for evaluation. (i)
At the instance level, we evaluate the relationship
changes between concepts and concrete instances.
(i1) At the concept level, we evaluate the relation-
ship changes among concepts. From the two per-
spectives, we propose novel evaluation criteria to
evaluate how well the model integrates the edit with
the rest of its knowledge: Instance Change (IC),
Portability (PO), Instance Locality (IL), Alignment
Belong (AB), and Alignment Compare (AC), as
listed in Table 1.

We observe that although current methods ef-
fectively edit concepts, they often struggle to infer
the relational knowledge associated with those con-
cepts. Additionally, our analysis reveals that: (a)
larger models are better equipped to handle the
relational reasoning challenge; (b) modifications
between concepts that share similar semantic struc-
tures and superclasses facilitate the model’s ability
to update more related conceptual knowledge; and
(c) instance-level evaluations reflect the ability of
LLMs to maintain higher concept consistency by
updating knowledge from related instances. Fi-
nally, we propose a memory-based in-context edit-
ing baseline, MICE, which prompts the LLMs to
generate answers that align with the stored edited
concepts in external memory instead of explicit
parametric updates. While MICE achieves superior
results compared to current parametric methods on
RelEdit, there is still significant room for improve-
ment, necessitating further research.

2 Problem Formulation

In contrast to concrete factual knowledge, concep-
tual knowledge refers to the understanding of con-

cepts, categories, principles, and relationships. It
involves understanding and applying abstract ideas.
It is evidenced that language models are capable of
memorizing conceptual knowledge and making in-
ferences (Wu et al., 2023a). The conceptual knowl-
edge stored in language models can be incorrect or
become outdated over time. One potential solution
is to update the knowledge without retraining.

A concept can be represented as C' =
(c,d) (Wang et al., 2024), where ¢ denotes the con-
cept name (e.g., school) and d means the definition
description of concept (e.g., an institution for the
education of students by teachers). For a concept
C = (c,d), there are several instances e belong-
ing to the category broadly defined by the concept,
which can be denoted as e € C (e.g., Microsoft
Forecaster is an instance of concept software).

A conceptual knowledge edit 0 : (¢, d) — (¢, d*)
is defined as modifying the concept C' = (¢, d) into
a refreshed one C* = (¢, d*), that is, updating the
concept definition d — d* for a given concept
name c, in which d* represents the alternate con-
cept definition. Given a language model, concep-
tual knowledge editing aims to inject the edited con-
cept to the language models’ inner beliefs. Since
high-order concepts preserve meta knowledge in a
hierarchical form, it is quite essential to investigate
the relational reasoning of a single concept editing
to certain related concepts and instances.

3 RelEdit Benchmark Construction

In this section, we introduce the data construction
of RelEdit. It is difficult to have a universal prin-
ciple for all concepts in the world. To ensure the
rationality of the concepts, our concepts follow the
well-established DBpedia (Auer et al., 2007), also
with human judgement. Some details about data
construction are discussed in the Appendix A.

3.1 Ontology Building

To obtain high-order meta ontological knowledge,
we adopt DBpedia (Auer et al., 2007), a widely
used knowledge graph with tree-like structured on-
tology, constructing a hierarchical concept set with
classes and corresponding individual instances.
Specifically, we extract 783 distinct classes in to-
tal from DBpedia as performed by Wu et al., in
which each class represents the typical ontological
information. Note that several classes in DBpedia
are free of instance facts, which lead to a marginal
contribution to concept editing task. To this end,
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Figure 2: Overall illustration of data generation pipeline: (1) We start by building up the ontology set, (2) then
we generate the edit requests in intra and inter settings. (3) Then we rephrase the request prompt to neighbor edit
request. (4) Next, we filter out those instances are not inherently stored in an LLM. (5) Last, we generate RelEdit

evaluation queries for each concept edit.

we filter out those classes with the amount of in-
stances less than k. Besides, we employ SPARQL
to query the corresponding instances of each class
in DBpedia via the Type relation, and superclass
of each class via the subclass of relation (We keep
the highest-level class in the hierarchical super-
class tree). These retrieved concepts, instances
and superclasses formulate a hierarchical ontology
set that can be utilized in the following data con-
struction. To ensure the dataset is balanced, we
randomly choose 20 instances for each class. Con-
sidering the lack of descriptive texts of ontologi-
cal classes in DBpedia, we turn to retrieve corre-
sponding definition descriptions of classes in Wiki-
data (Vrandeci¢ and Krotzsch, 2014).

3.2 Data Generation Pipeline

Edits generation. For a edit request § : d — d*
about concept C' = (c,d), target concept de-
scription d* is chosen from a different concept
C* = (¢, d*). Considering the different ontolog-
ical scope, we categorize the edit request § into
two different settings (intra and inter) according
to the homogeneity between origin concept C' and
target concept C*. Specifically, under the intra set-
ting, origin concept C' and target concept C* are
subclasses of the same superclass, sharing close
relationship to high-order semantics. In contrast,
inter setting indicates the disparate category of C'

and C™ in high-level superclass. Thus, concept
edit request can be formulated as “The definition
of [concept name c] is [concept description d*]", in
which d* is the definition replacement from either
an intra or inter setting. Since our concepts are
collected from real-world DBpedia, the rationale
behind the two settings is to simulate real-world
scenarios where concepts may evolve, ranging from
minor (intra) to significant (inter) changes.

Neighbor phrasing. With obtained edit requests,
the post-edited models are able to answer corrupted
target definitions towards the query like “What is
the definition of [concept name]?". To this end, we
rephrase the request prompt and construct neighbor
edit requests with a different format but similar se-
mantics with concept name ¢ and target definition
d*. The underlying reason is that these equivalent
neighbors are supposed to be edited and maintain
similar conceptual knowledge in the post-edited
models. To keep close semantics between neighbor
prompts, we apply GPT-4 to generate 20 equiva-
lent neighbor query prompts for each concept edit
request. We uphold text accuracy by conducting
thorough checks on all generated query prompts,
correcting any that are confusing or not precise.

Instance filtering. Considering the inconsistency
between inherent prior knowledge of LLMs and
instances from external knowledge graphs, the next
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step is instance filtering. Concretely, to evaluate the
relational reasoning challenges caused by concept
editing, instances related to the concept are essen-
tial to be taking into consideration. However, some
instances of a concept retrieved from DBpedia are
not inherently stored in an LLM. To this end, we
employ few-shot in-context learning approach to
prompts LLM to judge the affiliation of instances
to a specific concept. For those discrepancies be-
tween answers from LLM and facts from external
knowledge graphs, we filter out these instances to
ensure they have been “seen" by the LLM model.
After completing all filtering steps for the backbone
LLMs, we take the intersection of their results to
form a uniform instance set.

Evaluation query generation. For each concept
edit request, we generate test queries corresponding
to the evaluation criteria we proposed in Section 4,
aiming to evaluate the relational reasoning of con-
cept editing. In what follows, we provide details
on our implementation with built concept set.

For a subject concept C' = (¢, d) in concept set,
we denote the set of instances that belong to con-
cept C as I(C) = {e|e € C}. Similarly, instance
set of target concept C* can be denoted as I,(C*)
in intra setting and I.(C*) in inter setting, sep-
arately. Noting the aforementioned instance sets
are subsets after filtering. Under this circumstance,
given a concept edit § : d — d*, we first retrieve
the instance set I(C') of origin concept, [,(C™)
and I.(C™) of target concept, then we construct the
evaluation queries for Instance Change and Porta-
bility in the format of “Whether [Instance] belongs
to category [Concept]?". For Instance Locality, we
adopt the same query formula with concepts and
instances unrelated to C' or C'x. For Alignment
Belong, we retrieve superclasses of C' and C'x in
DBpedia and construct corresponding queries in
the format of “Whether [Concept] belongs to su-
perclass [Superclass]?". We also utilize C' and C'x
to construct query in a comparison form like “Do
[Concept C] and [Concept C*] belong to the same
superclass?". A complete example of all queries is
demonstrated in Figure 2.

Quality Control. Ideally, the original description
text of a concept should align with and be similar to
the concept name, while the description of the edit
target should remain unrelated. To ensure this, we
utilize the powerful LLM Qwen2.5-72B to evaluate
and retain cases where: (1) the original concept
description supports the original concept name, and

Property Number
# of concepts (edit requests) 452

# of instances 8,767
# of superclasses 22
Average token length per description 12.95
Max/Min number of superclass 163/1
# of target concept (intra) 243

# of target concept (inter) 286
Max/Min number of target concept (intra) 7/1
Max/Min number of target concept (inter) 6/1

Table 2: RelEdit Benchmark Statistics

(2) the target concept description is irrelevant to the
original concept name. Subsequently, we manually
review all the collected descriptions, replacing any
that are unclear or ambiguous. Details of Human
Evaluation are shown in Appendix A.3.

3.3 Data Statistics

We construct RelEdit benchmark following above
mentioned data construction pipeline, which con-
tains 452 conceptual edits in both intra and inter
settings. The overview pipeline is described in
Figure 2. More detailed statistics are listed in Ta-
ble 2, showing that our generation pipeline results
in 19.40 instances per concept and 12.95 token
length per description on average. Datasets in inter
setting involve more target concepts.

4 Evaluation Criteria

4.1 Instance-level Evaluation

We assess the cascading consequences between the
concept and instances. The principle of instance-
level evaluation primarily follows: when the defi-
nition of a concept is edited, the relationships be-
tween instances and the edited concept should also
undergo corresponding changes. For example, we
prompt the LLMs to answer the question “whether
[instance] belongs to category [concept]?”

Instance Change (IC). Following ConceptEdit
(Wang et al., 2024), we check whether the instance
t € C belonging to the original concept C' now
belongs to the edited concept C*. This evaluation
metric, called Instance Change, is defined as:

1- Gee (C*a t) ) (1)

where the Gy, (C*,t) returns value O when t ¢ C*.
Conversely, it returns a value of 1 when ¢t € C*. 6,
is the parameter after concept editing.
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Portability (PO). Portability evaluates the in-
stances t* belonging to the target concept of de-
scription d*. We check whether the instance t* of
the target concept now belongs to the edited con-
cept C*. The Portability is formulated as follows:

Gy, (C*,t7). ()

Instance Locality (IL). This metric is assessed
based on the frequency at which the predictions
of the post-edit model remain unchanged in out-
scope neighbors. It assesses the model’s ability
to correctly classify instances that are unrelated
to the concept being edited. Given an unrelated
concept C' and instance ¢, the Instance Locality is
formulated as

XNOR (GQ(Ca t)7 G@e (Cv t)) ’ (3)

where XNOR(-) returns 1 when the relationship
remains unchanged and 0 when it changes.

4.2 Concept-level Evaluation

We assess the cascading consequences of concepts
related to the edit from the hierarchical concept
structure. The principle of concept-level evaluation
primarily follows: When the definition of a con-
cept is updated, the attribution of related concepts
should also change.

Alignment Belong (AB). We evaluate the rela-
tionship between sub-concepts C' and parent con-
cepts C), after editing. For example, we prompt the
LLMs to answer the question “whether [concept
A] belong to category [concept B]?” Given that re-
lational reasoning regarding conceptual knowledge
can potentially span a large range, we focus on a
1-hop distance from the edit. AB is defined as:

G9(0;7 C*)v (4)

where C} is the parent concept of the the target
concept with description d*.

Alignment Compare (AC). In the hierarchical
structure of concepts, we evaluate whether two sib-
ling concepts belong to the same parent concept.
For example, we prompt the language model to
answer the question “Whether [concept A] and
[concept B] share a superclass?” In this test, we
adopt a more challenging inter-editing setting, in-
dicating that after editing, the sibling concept C
that originally belonged to the same parent concept
become different. AC is defined as:

Gy(C5,C"), 5)

L MICE | ~

Whether Gender belong to the category Psychology?

Question:

What is the definition of Gender?
a binary classification based on biological sex
Retrieved definition: a personal identity with psychological behavior and biological sex

Subquestion:

Tentative answer: contracdict

Subquestion: What is the definition of Psychology?
Tentative definition: the scientific study of mind and behavior

Question: > is ... Psychology is ... Based on the above definition,
whether Gender belong to the category Psychology?

Final answer: Yes )

Retrieve 1 T Retrieved definitions

Edited Concept Memory

Gender is a personal identity with psychological behavior and biological sex.

Figure 3: The illustration of MICE.

where C is the superclass of the the target concept
with description d*.

Remark Following the idea of established fac-
tual knowledge editing benchmark RIPPLEED-
ITS (Cohen et al., 2024), our evaluation criteria are
designed to check whether the structure of ontology
in the edited model has corresponding changes. All
our metrics are binary. If it returns 1, it means that
the corresponding ontology structure in the model
has successfully changed. If it returns 0, it means
that the model fails to capture the related changes.
Therefore, our metrics are objective and reasonable.
In this work, we do not consider polysemous con-
cepts. Existing knowledge editing methods will
overwrite the original concept meaning, thus can
not tackle polysemous concepts.

5 MICE: A Memory-Based Approach

In this section, we introduce MICE, a simple but
effective baseline. MICE only requires updating
the question in the prompt with relevant feedback,
and no retraining is need. Our proposed MICE is
shown in Figure 3. The idea of MICE is inspired by
MeLLo (Zhong et al., 2023), and all edited concept
names and their definitions are explicitly stored in
an external memory. To achieve this, we convert
all edited concepts into sentence statements using
predefined templates. The concept name serves
as the retrieval index, allowing us to retrieve the
corresponding edited concept definition. MICE
performs the following steps: (1) It uses language
models to extract the involved concepts in the ques-
tion; (2) It extracts the involved concept definitions
in the internal memory; (3) It checks whether the
concept in LLM is contradicted with memory, and
make corrections; and (4) It prompts the LLM to
answer the questions with the corrected concept.
Details about MICE are illustrated in Appendix B.
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Method | Intra Setting

| Inter Setting

| Re Ge Lo | IC PO L | Re Ge Lo | IC PO L AB AC
GPT2-XL
FT 25.55 2380 6199 | 1571 83.85 8540 72.12 | 26.24 23.17 64.21 | 1527 8540 8341 67.26 46.46
MEND 89.77 76.60 7627 | 0.22 98.23 98.67 93.81 | 89.97 7622 79.21 | 0.22 9823 98.89 95.58 67.70
ROME 86.47 49.68 84.76 | 23.23 7522 87.39 76.77 | 82.85 4552 86.21 | 20.35 82.08 86.73 81.64 55.31
MEMIT 4398 33.09 96.11 | 3.10 9425 99.56 91.15 | 39.28 29.77 9593 | 332 9447 99.34 93.14 57.08
PROMPT 88.26 86.30 70.54 | 4.65 94.69 4801 7655 | 88.54 86.24 70.59 | 3.76 9690 46.68 7434 87.39
MICE (Ours) ‘ 90.02 85.64 81.65 ‘ 18.32 96.86 6542 94.63 ‘ 92.92 88.68 90.62 ‘ 17.63 97.22 65.64 84.63 89.36
GPT-J-6B
FT 56.19 5570 36.71 | 19.25 68.14 6593 69.03 | 52.68 53.23 37.87 | 20.13 71.90 71.02 72.12 67.48
MEND 4942 4261 51.50| 32.52 28.98 80.31 38.72 | 4935 43.24 55.65 | 32.08 23.67 8296 33.85 18.58
ROME 99.20 83.01 70.14 | 32.74 57.52 83.19 48.67 | 99.21 81.94 71.07 | 31.86 55.53 80.97 47.79 42.04
MEMIT 99.83 59.86 94.20 | 31.64 1792 99.56 3894 | 99.55 56.15 94.80 | 33.85 1195 98.89 3252 18.36
PROMPT 88.41 86.42 69.10 | 044 9558 87.17 8540 | 88.66 87.01 70.14 | 0.88 9646 86.28 78.98 91.59
MICE (Ours) ‘ 90.22 84.63 78.38 ‘ 17.38 97.74 94.15 88.49 ‘ 91.17 86.42 82.75 ‘ 1470 96.08 94.56 84.72 92.34
LLaMA-2-7B
FT 47.02 42.11 7990 | 1593 11.06 90.49 49.78 | 43.26 38.39 80.74 | 1460 420 88.50 30.53 8.85
MEND 93.17 83.72 87.65 | 14.38 11.50 89.82 5221 |93.76 83.28 89.10 | 13.94 3.76 8695 31.64 9.73
ROME 99.66 75.22 9241 | 40.71 1947 92.70 6527 | 99.63 7458 9291 | 43.81 11.95 87.61 4934 3230
MEMIT 96.86 80.23 89.28 | 34.07 25.66 91.15 64.82 | 97.71 80.76 90.02 | 40.49 20.35 89.16 51.77 29.65
PROMPT 89.35 87.28 76.84 | 6.86 38.50 89.82 84.51 | 88.88 87.89 78.06 | 6.19 30.31 85.84 79.42 93.36
MICE (Ours) ‘ 92.32 88.83 83.22 ‘ 18.32 4558 93.15 86.74 ‘ 91.37 85.78 89.75 ‘ 342 3608 87.31 7532 9445
Mistral-7B
FT 36.12 33,51 97.62 | 0.00 50.66 100.00 91.37 | 3431 32.30 97.70 | 0.00 35.84 100.00 64.16 9.51
MEND 9294 83.61 8347 | 022 56.64 99.56 93.14 | 93.52 83.10 84.88 | 0.44 4292 99.78 6836 13.72
ROME 96.47 76.11 93.99 | 10.62 7832 99.56 95.58 | 96.56 76.00 94.37 | 11.50 70.58 100.00 89.82 65.27
MEMIT 95.35 7895 9198 | 16.59 65.04 99.56 87.17 | 95.39 77.18 91.02 | 16.15 61.50 100.00 74.78 36.28
PROMPT 90.22 88.65 81.31 | 0.44 9425 94.69 88.50 | 90.17 88.68 82.75 | 022 9248 9447 77.65 95.13
MICE (Ours) ‘ 93.14 86.13 86.72 ‘ 6.23 9552 100.0 90.68 ‘ 9246 9035 89.74 ‘ 5.57 9493 98.32 76.02 95.64

Table 3: Main results of baselines on RelEdit in both intra and inter setting with backbone model GPT2-XL,
GPT-J-6B, LLaMA-2-7B and Mistral-7B. The best results are in bold and the second best results are underlined.
Re, Ge and Lo are the abbreviation of metric Reliability, Generalization and Locality.

6 Experiments

In this section, we evaluate on RelEdit. Experi-
mental details and results including the Impact of
LLM Size, Conceptual Patterns across Methods
and Editing Cases are in Appendix C and D.

6.1 Experimental Setup

Language models Four most prevalent open-
source LLMs are used as base models for editing
tasks. We use GPT-J (6B) (Wang and Komatsuzaki,
2021) and GPT2-XL (1.5B) (Radford et al., 2019a),
LLaMA-2-7B (Touvron et al., 2023a) and Mistral-
7B-v0.1 (Jiang et al., 2023). It is important to men-
tion that current parameter-update methods require
a white-box language model and are highly com-
putationally expensive. In Section 5, we present
our approach MICE, which can be applied to large
black-box language models.

Baselines We evaluate the following state-of-the-
art knowledge editing approaches on our datasets:
Fine-tuning (FT) (Zhu et al., 2020), MEND
(Mitchell et al., 2021), ROME (Meng et al., 2022a),
MEMIT (Meng et al., 2022b) and PROMPT
(Wang et al., 2024).

Evaluation metrics Besides metrics we pro-
posed, we also follow the commonly used metrics
(Meng et al., 2022a; Wang et al., 2024) to conduct
definition-level evaluation. Reliability (RE) mea-
sures the mean accuracy on a specific collection
of pre-defined input-output pairs. Generalization
(GE) measures the average accuracy on equiva-
lent neighbor. Locality (LO) assesses the post-edit
model remain unchanged in out-scope neighbor.

6.2 Main Results

We conduct experiments on RelEdit benchmark
to evaluate the performance of 1) all baselines on
conceptual knowledge editing; 2) our proposed
MICE on conceptual knowledge editing.

Comparison among baseline editing methods.
We report the evaluation results of all baselines on
RelEdit benchmark in Table 3. It can be found that
larger models are better handling relational reason-
ing challenge during conceptual knowledge edit-
ing. Considering results among five methods, we
can observe that methods like ROME and MEMIT
achieve great performance on traditional metrics
like reliability, generation and locality, but struggle
to handle relational reasoning challenges related
to conceptual editing (e.g., from 16 to 68 on AB
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criteria across all models in intra setting). This
demonstrates that basic conceptual editing methods
mostly focus on updating local factual knowledge
but neglect the propagation of related concepts
and instances. Besides, comparing results across
evaluation criteria shows that some relational rea-
soning challenges are handled better than others.
To be specific, IL mainly remains a high score
across methods on four baselines with positive cor-
relations to Locality (e.g., approximately 80-100
on both settings, compared to AB range from 16
to 84), while other criteria is generally low and
vary greatly among methods. PROMPT practically
achieves the best performance on both instance-
level and concept-level metrics, while slightly lags
behind ROME and MEMIT on traditional metrics.
This indicates PROMPT captures relational con-
ceptual knowledge due to the update editing.

Performance of MICE. We apply MICE on dour
backbone models, and Table 3 shows the perfor-
mance of MICE on intra setting and inter setting
of RelEdit. We find that with the same base model,
MICE outperforms FT, MEND and PROMPT sig-
nificantly across all the settings while being more
efficient and requiring no training. We find that
in-context learning methods (MICE and PROMPT)
significantly outperform traditional retraining meth-
ods in PO, IL and AB. Intuitively, locate-and-edit
methods generalize well on original instances that
are strongly related to concepts explicitly contained
in edit prompts. This explains why ROME and
MEMIT perform better on IC but lags behind in
PO. Overall, the results suggest that MICE works
particularly well on strong base language models.
Along with its simplicity and efficacy, MICE can
serve as a strong conceptual knowledge editing
baseline for future research.

6.3 Analysis

Q1: How does the high-level superclass of edited
concepts affect the relational updates of broader
facts? We analyze the effect induced by knowl-
edge editing methods to the model’s knowledge
in different settings, to investigate the impact of
the homogeneity between origin concept C' and
target concept C*. We calculate the average scores
of editing methods on RelEdit criteria, and results
in Figure 4 show that scores in intra setting out-
performs those in inter setting. Furthermore, the
scores of concept-level (AB) between intra and in-
ter settings (91.10 v.s. 77.65) have a larger gap than
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Figure 4: The average scores of Mistral-7B in both intra
and inter settings. Results are averaged over MEND,
ROME, MEMIT and PROMPT.

those of instance-level (IC and PO).

This phenomenon can be attributed to the di-
verse superclasses of concepts. In intra setting,
LLM pre-exists higher-level connection of two con-
cepts, and they share similar semantic structures
and are likely to be represented in close proximity
within the model’s internal knowledge manifold.
As a result, updates to one concept can naturally
propagate to related concepts and their instances,
with minimal disruption to the overall knowledge
structure. This explains the worse performance of
editing models on concept-level criteria in inter set-
ting, which indicates editing knowledge in such a
heterogeneous context requires the model to form
new or cross-cutting associations that may not exist
in its pre-trained structure. This not only increases
the difficulty of precise knowledge insertion but
also raises the risk of unintended interference with
unrelated concepts.

Q2: What does instance-level criteria reflect
about the knowledge that LL.Ms captured in
conceptual editing? Considering IC, PO and IL
scores of LLaMA-7B in Table 3, it is evidenced
that ROME and MEMIT outperform PROMPT in
instance-level criteria. To further explore the capa-
bilities that instance-level criteria reflects about
edited model, we evaluate the Concept Consis-
tency (Wang et al., 2024) of LLaMA-2-7B with
ROME, MEMIT and PROMPT using GPT4 API,
and results are shown in Figure 5. It can be ob-
served that ROME and MEMIT achieve great per-
formance in editing conceptual knowledge in a se-
mantic perspective. This evaluation demonstrates
that models with strong instance-level scores tend
to excel in capturing the semantic modifications
from concept edits. Instance-level reflects the abil-
ity of LLMs to update knowledge from related in-
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Figure 6: Augmented massive concept editing of
MEMIT on RelEdit with LLaMA-2-7B. Origin indi-
cates that MEMIT without augmented edits.

stances of target concepts, equipping them with
higher concept consistency.

Q3: Whether massive editing with related con-
cepts facilitate model abilities to conduct rela-
tional reasoning regarding conceptual knowl-
edge? To further explore the mechanism of edit-
ing models in relational reasoning regarding con-
ceptual knowledge, we conduct experiments by
massive editing of MEMIT with augmented con-
cept editing prompts. We employ a few-shot ap-
proach (Brown et al., 2020) to prompt LLM to
generate the target concept name according to tar-
get description d*, along with instances that belong
to target concept. Detailed prompts are provided
in Appendix A.l1. With obtained augmentation
edits, we apply n-batch massive edit of MEMIT
on RelEdit, aiming to incorporate related instance-
level knowledge into LLM. As shown in Figure 6,
we compare the orgin MEMIT to two variants with
different number of augmented edits, and results
show that simply introduce instance-level augmen-
tations are beneficial for improving instance-level
criteria (IC and PO), especially in inter setting. Fur-
thermore, it is evidenced that incorporating more
augmentation edits can slightly increase the perfor-
mance on IC and PO, but leads to a marginal drop
on concept-level criteria like AC.

7 Related work

Methods for knowledge editing. Various tech-
niques have been proposed to edit the knowledge
stored in a model. Some of these approaches in-
volve identifying and adjusting the model’s weights
that correspond to specific concepts. Notable exam-
ples include KN (Dai et al., 2021), ROME (Meng
et al., 2022a), and MEMIT (Meng et al., 2022b).
Another line of research adopts meta-learning
and utilizes a hyper-network, which is a smaller
network responsible for generating the edited
gradients. This category includes methods like
KE (De Cao et al., 2021), MALMEN (Tan et al.,
2023), and MEND (Mitchell et al., 2021). Addi-
tionally, there are preservative methods that incor-
porate explicit memory and prompting techniques
to rectify model predictions. Noteworthy examples
in this category are SERAC (Mitchell et al., 2022),
MemPrompt (Madaan et al., 2022), MeLLo (Zhong
et al., 2023), and IKE (Zheng et al., 2023).

Evaluation of conceptual knowledge editing.
Existing knowledge editing evaluations mainly fo-
cus on factual knowledge. Initially, the assessment
limited to verifying whether the target had been suc-
cessfully modified and ensuring that unrelated de-
tails remained unaffected (Yao et al., 2023; Zhong
et al., 2023). Recently, several benchmarks argue
that the rippling changes in factual knowledge edit-
ing should also be evaluated (Cohen et al., 2024;
Li et al., 2024; Ma et al., 2024). However, con-
ceptual knowledge differs in form from concrete
factual knowledge, and there is no systematic eval-
uation of conceptual knowledge editing to date.
The only existing benchmark, ConceptEdit (Wang
et al., 2024), concentrates on measuring whether
the edited model can recall newly injected concept
definitions. Complementing existing evaluation
tools, RelEdit focuses on assessing whether edited
models can answer relational reasoning questions.

8 Conclusion

In this work, we introduce a benchmark called
RelEdit, which evaluates conceptual knowledge
editing of LLMs. We find that existing knowledge
editing methods struggle with answering questions
related to specific instances and broader concepts.
Additionally, we show that a simple in-context edit-
ing method with an external memory achieves the
best results on RelEdit, highlighting the potential
of such editing approaches.
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Limitations
The limitations of our work are as follows.

 Although RelEdit focuses on the ripple effect
of edits, it does not explicitly verify the item-
part relationships between concepts. For in-
stance, if we modify the definition of a wheel,
it raises the question of how the definition
of a car should be adjusted accordingly, as a
wheel is a part of a car. Currently, there is no
established and universally accepted rule for
addressing this issue. We note that building
such an evaluation is hard.

» RelEdit does not include concepts with more
than one meaning. Existing knowledge edit-
ing methods cannot handle concepts with mul-
tiple meanings, thus RelEdit does not include
polysemous concepts. It is an important future
direction for conceptual knowledge editing re-
search.

* In our data generation pipeline, we depend
on concepts extracted from an existing knowl-
edge base, specifically DBpedia, which could
be incomplete or outdated. These concerns
might be an issue when aiming for a com-
prehensive evaluation. An alternative solution
worth exploring is to utilize the internal knowl-
edge of language models instead of relying
solely on external knowledge bases.

* Considering the limitations of computational
resources, our evaluation of existing knowl-
edge editing methods primarily focuses on
limited models. We leave the evaluation on
other models as future work.

Ethics Statement

This study adheres strictly to the most rigorous eth-
ical standards and best practices in research. All
data utilized are extracted from datasets that are
available to the public, thereby ensuring no usage
of any proprietary or sensitive information. As a
result, this research is free from any ethical con-
cerns. We have implemented measures to reduce
the presence of offensive content in our dataset.
Throughout the construction process, we utilized
rigorous filtering methods to identify and remove
material that could be deemed harmful or inappro-
priate.

In our research, we examine LLMSs’ sensitivities
and preferences regarding concept-related updates

and edits through our proposed benchmark and ex-
perimental findings. This focus aligns with recent
recognition of concept editing as a crucial research
direction for language models (Suresh et al., 2023;
Wau et al., 2023b). Our work aims to contribute to
the development of more robust LLMs, ultimately
advancing the field’s understanding of model be-
havior during knowledge updates.

Deliberately editing the concept definitions of
LLMs may raise serious ethical issues. If the pur-
pose of editing is to introduce erroneous mean-
ings or misleading reasoning, this may lead to the
model generating harmful content. When editing
an LLM in research, it is important to update cor-
rect knowledge, which is necessary and beneficial.
Researchers need to consider whether the output
of the model is consistent with social values and
ethical standards.
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A Benchmark Construction Details

A.1 Templates

Here we numerates a variety of templates employed
within our experimental framework.

As mentioned in Question 3 of Section 6.3 Anal-
ysis, we employ in-context learning approaches to
prompt the LL.M to generate augmented prompts
based on editing requests.

The following Template 1 shows the few-shot
prompt used for prompting the LLM itself to gener-
ate concept name according to the concept descrip-
tion text.

The following Template 2 shows the few-shot
prompt used for prompting the LLM itself to gen-
erate instances according the concept name.

The structured template for Concept Consis-
tency, as depicted in Template 3, serves as an input
for the GPT-4 evaluator. This template facilitates a
qualitative analysis that categorizes the generated
sentences into three distinct scores. By employing
a relative comparison instead of assigning fixed
values, the approach recognizes the evaluator’s pro-
ficiency, which has been preliminarily confirmed
to be more closely aligned with human judgment.
This method allows for a more accurate evaluation

Template 1: Concept Name Generation
Prompt

Given a description X about a concept,
please generate the name Y of the concept
according to the description X. The Name
Y has to be a named entity and as short as
possible.

Description X: company that prints and
distributes pressed goods or electronic
media

Name Y: publisher

Description X: those who serve as
part of an organized armed military force
Name Y: military person

Description X: {new concept descrip-
tion}

Name Y:

Template 2: Instance Generation Prompt

Given a name X of a concept, please gener-
ate a list Y containing 5 instances that be-
long to the concept X. The list Y has to be
a list including 10 named entities, divided
by identifier ’,’.

Concept Name X: publisher

Instance List Y: [Virus Music, Famitsu
Bunko, BitComposer, Victoria University
Press, BBC Audio]

Concept Name X: military person

Instance List Y: [Ronald Reid-Daly, Charles
Augustus Hilton, 27th Indiana Infantry
Regiment, Spartaco Schergat, Charles
Corcoran]

Concept Name X: {new concept name}
Instance List Y:

\

Template 3: Concept Consistency
Evaluation Prompt

Prediction sentence: {Generated sentence }
Sentence A:{Target edit sentence }
Sentence B:{Origin sentence}

Check the prediction sentence and Give a
score from -1 to 1:

Score 1: close meaning to sentence A
Score O: neither relevant to A nor B

Score -1: close meaning to sentence B

Output format is: Score:{ }
Only output group name and corresponding
score, no other explanation.

of the generated content.

A.2 Data Distribution of RelEdit

We further report the data distribution of our pro-
posed RelEdit benchmark in Figure 7, calculated
with token length. Figure 7a shows that RelEdit
maintain a wide range of description token length
from 3 to 45, and most of them are around 10. The
wide range of concept descriptions increase the dif-
ficulty of conceptual editing. From Figure 7b and
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| Annotator-1 | Annotator-2 | Annotator-3

Agreement Rate | 95.8 | 93.6 | 94.4

Table 4: Human evaluation results on RelEdit

Figure 7c, we can tell that token length of concept
name is mainly around 3-4, and token length of
instance name is mainly around 6-7, which bring
impact to instance-level evaluation criteria.

A.3 Human Evaluation

We recruited three volunteers to evaluate the entail-
ment between the origin concept description and
corresponding concept name. Each volunteer as-
sessed a sample of 300 randomly selected examples
to ensure the quality and reliability of our dataset.
They were tasked with "Determining whether the
origin concept description semantically supports
the corresponding concept name." The human eval-
uation results are listed in Table 4. The high agree-
ment observed further supports our dataset’s quality
and validity.

A4 Case of Conceptual Editing Requests

Specifically, we provide a detailed conceptual edit-
ing case of RelEdit benchmark in inter setting. As
shown in Table 5, the detailed textual informa-
tion and editing prompts in both instance-level and
concept-level elaborate the multi-aspect conceptual
knowledge covered in a single editing request.

A.5 SPARQL Protocol and RDF Query
Language

SPARQL facilitates the extraction and modification
of data that is housed within the Resource Descrip-
tion Framework (RDF), a system adept at repre-
senting graph-based data structures. The Wikidata
Query Service! (WDQS) is an internet-based plat-
form which empowers users to fetch and scrutinize
the organized data contained within Wikidata by
utilizing SPARQL queries. We employ WDQS to
query the description texts for each concept in Sec-
tion 3.1 Ontology Building, and the SPARQL we
used is listed in Table 7.

B MICE

MICE explicitly stores all edited concepts in mem-
ory, with each concept represented as a pair of con-
cept name and definition. An off-the-shelf retrieval
model (Izacard et al., 2021) is utilized to embed

"https://query.wikidata.org

the concept names and save them in a retrieval in-
dex. This index takes a query as input and returns
the edited concept most relevant to the query (i.e.,
closest in the embedding space). For step-by-step
generation and self-checking with LL.Ms, we fol-
low the approach of previous works (Zhong et al.,
2023). Specifically, the model is prompted to verify
whether the retrieved fact contradicts the generated
answer. If a subquestion is unrelated to any edited
concept in memory (because the corresponding
concept was not edited), the model is prompted to
retain the generated answer, as the retrieved edit
does not cause a contradiction. The final answer is
then generated based on this process.

C Experimental Details

C.1 Language Models

To adequately evaluate knowledge editing methods
on RelEdit, we use following LLLMs as the base
model: GPT2-XL (Radford et al., 2019b), GPT-
J-6B (Wang and Komatsuzaki, 2021), LLaMA2
(7B, 13B) (Touvron et al., 2023b), Mistral-
7B-v0.1 (Jiang et al., 2023), Baichuan2 (7B,
13B) (Baichuan, 2023) and Qwen2 (0.5B, 1.5B,
7B) (Qwe, 2024). All models can be reached in
Huggingface website 2.

C.2 Metrics

The commonly used metrics are from ROME
(Meng et al., 2022a).

Reliability (RE). This metric measures the
mean accuracy on a specific collection of pre-
defined input-output pairs (e, Ye):

Ex/c,yéw{(a:e,ye)}]l {argmaxy f@c (y | (L’é) = y(/e}
(6)
Generalization (GE). Paraphrased sentences
should be modified accordingly by editing. This
metric gauges the average accuracy on equivalent
neighbor R (e, Ye):

]Exg,ygwR(;re,ye)]]- {argmaxy f@e (y | x,e) = yé}
(N
Locality (LO). Locality is assessed based on
the frequency at which the predictions of the post-
edit model remain unchanged in out-scope neigh-
bor O (e, Ye):

Eur yimO@ewe) {0 (v 2e) = fo (y | 22) }
®)

Zhttps://huggingface.co
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benchmark for conceptual editing. Texts above are tokenized by the LLaMA-2-7B tokenizer.

C.3 Baselines

We evaluate the following state-of-the-art knowl-
edge editing approaches on our datasets: Fine-
tuning (FT) (Zhu et al., 2020), MEND (Mitchell
etal.,2021), ROME (Meng et al., 2022a), MEMIT
(Meng et al., 2022b) and PROMPT (Wang et al.,
2024).

* Fine-tuning (FT) approach uses gradient de-
scent to update model parameters based on the
edits. In our study, we adopt the method (Zhu
et al., 2020), where we fine-tune one layer
with a norm constraint on weight changes.

* MEND (Mitchell et al., 2021) trains a hyper-
network to produce weight updates by trans-
forming the raw fine-tuning gradients.

* ROME (Meng et al., 2022a) first identifying
the knowledge within a specific layer of the
Transformer architecture. It then updates the
feedforward network within that layer.

* MEMIT (Meng et al., 2022b) is an exten-
sion of ROME that allows for batch editing.
It updates the feedforward networks across
multiple layers to encode all the edited facts.

* PROMPT (Wang et al., 2024) serves as the
prefix is concatenated to the beginning of the
evaluation input to elicit the desired modifica-
tion in outputs.

C.4 Implementation Details

For the code implementation, we adopt EasyEdit?
repository to reimplement all baselines includ-
ing FT (FT-L implementation), ROME, MEND,
MEMIT and PROMPT. The editing procedure is
conducted in a independent manner, focusing ex-
clusively on a single specified concept with each

3https://github.com/zjunlp/EasyEdit

edit instead of sequentially, ensuring that each mod-
ification is made in isolation. Once the evaluation
for a given sample is finished, the LLM is reverted
to its original state, prior to any edits being applied.
This approach guarantees that no subsequent edits
are influenced by the previous ones.

For the settings of all baselines, we adopt their
default configurations. All experiments are carried
out on a single A800 GPU. To be specific, we list
important hyper-parameters of baselines as follows:

FT: FT executes a gradient descent operation
on the modifications to refine the model param-
eters. Following Zhu et al. (2021), FT uses a norm
constraint on weight changes with a coefficient
5 x 10~° in our implementation. We finetune layer
0 of GPT2-x], layer 21 of GPT-J-6B, LLaMA-2-7B
and Mistral-7B-vO0.1.

MEND: Since MEND requires a trained hyper-
network to update parameters, we construct an ex-
tra dataset with train/validation/test sets to train a
hypernetwork specifical to conceptual editing task.
During training, we set the max iteration step step
10000. During inference, the learning rate scale is
set to be 1.0.

ROME: We use the default hyper-parameters of
ROME and the pre-computed covariance statistics
released by Meng et al. (2022a). The edit layer in
GPT2-xlis set to 17, in GPT-J-6B, LLaMA-2-7B,
Mistral-7B-v0.1 and Baichuan2-7B is set to 5.

MEMIT: To apply MEMIT on all LLM back-
bones, we compute the covariance statistics for
Vicuna-7B on Wikitext using a sample size of
100,000. For GPT2-xI, we updated model weights
at layer {13, 14, 15, 16, 17}. For GPT-J-6B, we up-
dated model weights at layer {3, 4, 5, 6, 7, 8}. For
LLaMA-2-7B, Mistral-7B-v0.1 and Baichuan2-7B,
we updated model weights at layer {4, 5, 6, 7, 8}.
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CONCEPT INFOMATION

Subject Concept

Island

Subject Superclass

Place

Subject Description

Piece of sub-continental land completely surrounded by water

Subject Instances Saba Island, United States Virgin Islands
Liard Island
Shaw Islan
Target Concept American football player

Target Superclass

Species

Target Description

Athlete who plays American football

Target Instances

Adam Bisnowaty
Marvin Hall
Siran Stacy

CONCEPTUAL EDITING PROMPTS

Base Editing The definition of island is athlete who plays American football
Phrase To put it simply, island refers to athlete who plays American football
Locality The definition of galaxy is large gravitationally bound system of

stars and interstellar matter

INSTANCE-LEVEL EDITING PROMPTS

Instance Change

Whether Saba Island, United States Virgin Islands belongs to
category island?

Portability

Whether Adam Bisnowaty belongs to category island?

Instance Locality

Whether Salyut 6 belong to category space station?

CONCEPT-LEVEL EDITING PROMPTS

Alignment Compare

Do island and american football player belong to the same superclass?

Alignment Belong

Whether island belongs to superclass species?

Table 5: An example of conceptual editing requests in RelEdit (under inter setting). The subject conceptual
knowledge and target conceptual knowledge required in a single editing procedure are highlighted in blue and red,
respectively. Due to the limitation of space, some instances of concept are omitted.

PROMPT: We employ In-context Learning to

prompt LLMs to elicit the desired modification.

The detailed prompt we use during editing is to
include a definition about new concept before exact
editing request, which is formulated as "Definition
of [subject concept]: [target description]".

D Additional Experiments

D.1 More results about concept consistency

Additional to Section 6.3 Analysis Q2, we provide
more results evaluated on concept consistency of
Mistral-7B with ROME, MEMIT and PROMPT
using GPT-4 API, as shown in Fig 8.

D.2 Impact of LLLM Size on Conceptual
Editing

We analyze how conceptual editing performance
on RelEdit is affected by the LLM size. Specifi-
cally, we conduct conceptual editing on LLaMA2,
Baichuan2 and Qwen2 with different amount of
parameters, and detailed results are shown in Ta-
ble 6. From this table, we can observe that: the
editing performance generally improves with the
increase in the number of LLM parameters, espe-
cially on factual criteria. LLMs with larger amount
parameters tend to perform better on instance-level
criteria, but facing a performance drop on concept-
level metric like AB. These results indicate that
parameter volume of LLMs positively affects the
knowledge editing performance in the factual level
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(a) Mistral (Intra setting)
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(b) Mistral (Inter setting)

Figure 8: The results of concept consistency on Mistral-
7B with ROME, MEMIT and PROMPT in both intra
and inter settings. Target means the generated sentence
has close semantics to target, vice versa to Origin. Am-
biguity means neither similar to both.

to a certain extent. However, they also face the
challenge of updating knowledge in the ontological
level, as models with a larger number of param-
eters involve more types of relational reasoning
challenges, making it more difficult to thoroughly
update ontological knowledge from the root.

D.3 Conceptual Patterns across Editing
Methods

According to the main results in Table 3, we further
conduct a thorough analysis on conceptual patterns
that different methods captured during editing pro-
cedure. From Figure 9, we can observe that among
five editing methods, PROMPT yields leading per-
formance on instance-level and concept-level cri-
teria like IC, PO, IL, AB and AC. On the contrary,
locate-and-edit methods like ROME and MEMIT
achieve strong performance on metrics Re, Ge and
Lo.

D.4 Case of Editing Results

Table 8 presents several editing results with ROME
on RelEdit benchmark in inter setting, listing three

cases of ROME method in varying degrees of edit-
ing effectiveness. Case 1 is an ideally successful
editing, as the generated sentence from post-edit
model is the same as editing target in token-level.
Case 2 reflects a partial successful editing, since
there is an overlap between target sentence and out-
put sentence. Case 3 shows an unsuccessful editing
on concept cyclist, because the output sentence
from post-edit model exactly inherited the origin
conceptual knowledge.
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Base Model ‘ Method ‘ Intra Setting ‘ Inter Setting

\ | Re . Ge Lo | IC PO IL AB | Re Ge Lo |IC PO IL AB AC

LLaMA-2-7B | PROMPT | 89.35 87.28 76.84 | 6.86 38.50 89.82 84.51 | 88.88 87.80 78.06 | 6.19 3031 85.84 79.42 93.36
LLaMA-2-13B | PROMPT | 88.43 87.08 81.13 | 8.19 41.81 84.29 58.63 | 88.57 87.93 81.58 | 7.74 36.73 85.84 49.56 80.09

Baichuan2-7B | PROMPT | 89.41 87.890 77.36 | 487 7279 90.71 96.90 | 89.05 87.70 78.08 | 487 70.80 93.14 90.71 98.23
Baichuan2-13B | PROMPT | 89.17 88.08 80.58 | 34.29 3097 65.27 37.61 | 88.41 87.85 80.64 | 35.62 24.78 68.36 28.10 73.01

Qwen2-0.5B PROMPT | 88.32 86.69 7224 | 1.11 96.02 58.63 95.13 | 88.48 86.67 73.08 | 0.88 9558 56.86 94.03 46.68
Qwen2-1.5B PROMPT | 88.62 86.56 78.61 | 5.75 63.72 9292 90.71 | 88.30 87.12 79.43 | 841 5642 91.15 81.42 92.04

Qwen2-7B PROMPT | 88.85 87.56 80.53 | 1.33 6836 94.03 56.19 | 88.89 87.67 80.83 | 1.11 58.63 93.36 40.49 79.87
Qwen2-0.5B ROME | 9895 72.84 8532|3031 55.09 98.01 2279 |99.02 71.03 8584|3341 5133 9823 20.80 6.86
Qwen2-1.5B ROME | 99.07 80.77 92.64 | 21.46 61.95 98.67 73.89 | 99.65 81.03 92.81 | 32.30 57.52 98.89 70.13 30.97
Qwen2-7B ROME | 99.85 7534 9241 | 18.81 49.56 9845 59.96 | 99.88 73.84 92.60 | 22.79 45.58 99.34 53.76 60.84

Table 6: Main results of PROMPT and ROME across base models LLaMA-2, Baichuan2 and Qwen2 with varying
number of parameters. The best results are in bold. Re, Ge and Lo are the abbreviation of metric Reliability,
Generalization and Locality.

—e— FT —e— MEND =—e— ROME =—e— MEMIT —e— PROMPT —e— FT —e— MEND =—e— ROME =—e— MEMIT =—e— PROMPT

Re

PO PO

(a) LLaMA-2-7B (b) Mistral-7B-v0.1

Figure 9: Conceptual editing performance of FT, MEND, ROME, MEMIT and PROMPT on backbones LLaMA-2-
7B(a) and Mistral-7B-v0.1(b). The results reported are averaged between intra and inter setting.
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SPARQL for Extracting Concept Description

PREFIX bd: <http://www.bigdata.com/rdf#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX wikibase: <http://wikiba.se/ontology#>

SELECT ?conceptLabel ?conceptDesc
WHERE {
SERVICE wikibase:label {
bd:serviceParam wikibase:language "en" .
wd:<QID> rdfs:label ?conceptLabel .

wd:<QID> schema:description ?conceptDesc .

}

Table 7: SPARQL Query for extracting concept description based on concept entity id (denoted by "<QID>").
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CASE 1

Concept noble

[Origin] member of the nobility

[Target] group of players organized to compete as a side in baseball
[Generated] group of players organized to compete as a side in baseball

Rewrite Accuracy

1.000

CASE 2
Concept continent
[Origin] large landmass identified by convention
[Target] an athlete who participates in traditional Irish sports such as Gaelic football,
hurling, camogie, or handball
[Generated] a person who participates in a sport that involves a combination of rugby,
rugby league, or American football
Rewrite Confidence 0.7826
CASE 3
Concept cyclist
[Origin] person who rides a bike
[Target] set of episodes produced for a television series
[Generated] a person who rides a bicycle

Rewrite Accuracy

0.375

Table 8: Examples of conceptual editing results with ROME in inter setting. [Origin] refers to the initial
concept recognition before editing, [Target] denotes the ideal concept description after editing and [Generated]
represents the generated sentence from post-edit model.
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