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Abstract

In recent years, large language models (LLMs)
such as GPT-4 have demonstrated impressive
potential in a wide range of fields, including bi-
ology, genomics and healthcare. Numerous
studies have attempted to apply pre-trained
LLMs to single-cell data analysis within one
tissue. However, when it comes to cross-tissue
cell annotation, LLMs often suffer from unsat-
isfactory performance due to the lack of spe-
cialized biological knowledge regarding genes
and tissues. In this paper, we introduce scRAG,
a novel framework that incorporates advanced
LLM-based RAG techniques into cross-tissue
single-cell annotation. scRAG utilizes LLMs
to retrieve structured triples from knowledge
graphs and unstructured similar cell informa-
tion from the reference cell database, and it
generates candidate cell types. The frame-
work further optimizes predictions by retriev-
ing marker genes from both candidate cells
and similar cells to refine its results. Extensive
experiments on a cross-tissue dataset demon-
strate that our scRAG framework outperforms
various baselines, including generalist models,
domain-specific methods, and trained classi-
fiers. The source code is available at https:
//github.com/YuZhiyin/scRAG.

1 Introduction

Large language models (LLMs) like GPT-4 have
highlighted their exceptional capabilities in natu-
ral language processing tasks (Naveed et al., 2023;
Luo et al., 2025), including text generation and
comprehension. Their impact has extended beyond
linguistics, playing an increasingly significant role
in different research domains (Sandmann et al.,
2025; Zhang et al., 2024). In biological sciences,
LLMs show tremendous potential in interpreting
biological data and following human instructions
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to solve downstream tasks, such as cell annota-
tion, with efficiency that outperforms human ca-
pacity (Hou and Ji, 2024). These advancements
suggest that LLMs are poised to open new frontiers
in biology, revolutionizing research paradigms, and
deepening our understanding of the life sciences.

Cell type annotation is crucial in single-cell
RNA sequencing (scRNA-seq) analysis, mapping
gene expression profiles to specific cell types.
While databases like GEO (Barrett et al., 2012)
and HCA (Regev et al., 2017) have propelled the
field, traditional methods face challenges. Cluster-
then-Annotate strategies rely on marker genes,
which can introduce bias (Huang et al., 2021),
and correlation-based methods often struggle with
the high-dimensional and sparse nature of scRNA-
seq data (Serra et al., 2018). Supervised and
semi-supervised methods are sensitive to hyper-
parameter tuning and often fail to capture complex
gene-gene interactions (Ma and Pellegrini, 2020;
Cao et al., 2020b; Li et al., 2020; Yang et al., 2022).
These shortcomings assert the need for more robust
and accurate cell annotation approaches.

The emerging field of foundational single-cell
models aims to address these challenges. At the
data representation level, natural language process-
ing techniques are applied to transform gene ex-
pression matrices from scRNA-seq data into com-
putable formats, such as cell sentences (Fang et al.,
2024; Levine et al., 2023) or embeddings (Chen
and Zou, 2023). These representations establish
a bridge between raw biological data and large
language models. At the model application level,
large language models leverage these processed
representations through extensive pre-training and
fine-tuning (Cui et al., 2024; Yang et al., 2022;
Theodoris et al., 2023), thereby enhancing their
performance in cell annotation tasks.

However, despite their potential, current pre-
trained large language models often struggle to
capture the complex relationships between tissues

954

https://github.com/YuZhiyin/scRAG
https://github.com/YuZhiyin/scRAG


Figure 1: Framework of scRAG. The framework consists of four stages: (1) Sentence Construction: Transforming
scRNA-seq data into cell sentences, including gene and tissue information. (2) Graph Construction: Building two
knowledge graphs, Tissue-Cell Type and Gene-Cell Type. (3) Hybrid Retrieval-Augmented Generation: The LLM
retrieves structured triples from the knowledge graphs and similar cells from the reference database to predict
candidate cell types. (4) Refinement with marker genes: Retrieving marker genes of candidate and similar cell types,
where the LLM refines and confirms the final cell type annotation.

and cell types, primarily because they lack spe-
cialized biological knowledge about genes and tis-
sues (Hou and Ji, 2024; Fischer et al., 2024). They
rely solely on internal knowledge for reasoning,
which limits their ability to generalize cell anno-
tations across diverse tissue contexts. Addition-
ally, existing domain-specific methods cannot ef-
fectively incorporate cell-cell similarity as supple-
mentary information (Fang et al., 2024), resulting
in unsatisfactory performance.

In this study, we introduce scRAG to address
these limitations. To capture tissue-cell type rela-
tionships, we construct knowledge graphs linking
tissues, cell types, and genes, to generate structured
data triples that represent their biological relation-
ships. To capture cell-cell similarity, we retrieve
unstructured data on similar cells from a reference
dataset. The LLM integrates the above two types
of data, i.e.,structured triples and unstructured sim-
ilar cell information, to predict candidate cell types.
Finally, by retrieving and analyzing marker genes
from both candidate and similar cell types, scRAG
determines the final annotations. The methodology
of scRAG closely aligns with expert workflows:
LLMs leverage external knowledge bases as prior
information and validate preliminary predictions
using marker genes, improving the accuracy of
cross-tissue annotation in single-cell analysis.

The main contributions are as follows:

• We introduce scRAG, a novel hybrid Retrieval-
Augmented Generation framework tailored for
single-cell data, bridging large language models

to advance cell annotation across tissues.

• Our scRAG leverages structured triples, unstruc-
tured information from similar cells, and refines
predictions with marker genes for more accurate
cross-tissue cell annotations.

• We carry out extensive numeric experiments,
showing that scRAG significantly outperforms
all baselines in cross-tissue annotation, including
generalist models, domain-specific methods, and
trained classifiers.

2 Related Work

2.1 Traditional Cell Type Annotation

Accurate cell type annotation is essential in single-
cell RNA-sequencing (scRNA-seq) studies for un-
derstanding complex tissues at the single-cell level.
Marker gene-based approaches rely on clustering
cells and assigning annotations based on marker
gene databases including CellMarker (Zhang et al.,
2019) and PanglaoDB (Franzén et al., 2019), with
tools like MACA (Xu et al., 2022) and SCSA (Cao
et al., 2020a) automating this process. In contrast,
correlation-based methods focus on aligning gene
expression profiles of query cells with reference
datasets using similarity metrics. Representative
tools include CIPR (Ekiz et al., 2020) and Clus-
tifyR (Fu et al., 2020) for cluster-level compar-
isons, as well as scmap (Kiselev et al., 2018) and
scMatch (Hou et al., 2019) for single-cell-level
correlations. Machine learning models have been
employed to annotation tasks as well, including
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weighted KNN in scClassify (Lin et al., 2020),
Random Forest in SingleCellNet (Tan and Cahan,
2019), and a neural network in ACTINN (Ma and
Pellegrini, 2019). Deep learning methods like
scTab (Fischer et al., 2024) use TabNet and data
augmentation for cross-tissue annotation. How-
ever, traditional methods often suffer from limited
generalization, as their performance often depends
on the quality and composition of training data,
prompting the need for more integrative solutions.

2.2 LLMs in Cell Type Annotation

Large language models (LLMs) have recently
shown advancements in improving accuracy and
efficiency in cell type annotation. Methods
such as scBERT (Yang et al., 2022), Gene-
former (Theodoris et al., 2023), and scGPT (Cui
et al., 2024) pre-train LLMs on large scRNA-seq
datasets to learn gene-gene interactions and fine-
tune them for annotation tasks. Multi-agent frame-
works like CellAgent (Xiao et al., 2024) introduce
hierarchical decision-making and role coordination
for efficient cell analysis. Embedding-based meth-
ods, such as GenePT (Chen and Zou, 2023), lever-
age OpenAI’s embedding model to represent genes
and cells for downstream tasks. Sentence gener-
ation techniques, including ChatCell (Fang et al.,
2024) and Cell2Sentence (Levine et al., 2023), con-
vert single-cell gene expression profiles into natural
language sentences for further analysis. Addition-
ally, GPTCelltype (Hou and Ji, 2024) evaluates
GPT-4’s natural language capabilities in cell type
annotation, further highlighting the potential of
LLMs in this field. However, LLMs often lack
specialized biological knowledge, and pre-training
and fine-tuning require substantial computational
resources. On the contrary, the proposed method is
training-free yet effective.

2.3 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) enhances
the accuracy and contextual relevance of responses
by incorporating relevant information from exter-
nal knowledge sources during the generation pro-
cess (Lewis et al., 2021). For graph-based RAG,
KG-RAG (Soman et al., 2024) uses biomedical
knowledge graphs to enhance LLMs for biomed-
ical QA, while GraphRAG (Edge et al., 2025)
builds knowledge graphs and community sum-
maries to effectively handle questions requiring
global understanding. For document-based RAG,
GeneRAG (Lin et al., 2024) leverages NCBI gene

data to improve genetics-related responses, but only
retrieves similar genes rather than similar cells. In
contrast, our proposed scRAG extends the above
paradigms through a hybrid retrieval strategy: it
retrieves structured triples from knowledge graphs
and unstructured similar cells, followed by marker
gene-based refinement. This significantly improves
performance in cross-tissue cell type annotation.

3 Methodology

3.1 Framework Overview

As illustrated in Figure 1, our scRAG workflow
is a multi-step process that enhances cross-tissue
cell annotation accuracy. First, scRNA-seq data
from single cells are transformed into cell sen-
tences. Then, tissue-cell type and gene-cell type
knowledge graphs are constructed using a reference
database. Upon receiving a query cell sentence
from the user, LLM extracts entities and retrieves
relevant triples from the knowledge graphs. Next,
we build embeddings and use cosine similarity to
search for similar cells within the reference cell
database. The hybrid retrieval-augmented genera-
tion mechanism then integrates information from
both knowledge graphs and the reference database,
enabling the LLM to generate candidate cell types.
Finally, LLM retrieves marker gene information
for both candidate and similar cell types, and deter-
mines the most accurate cell type annotation.

3.2 Sentence Construction

To facilitate interaction with large language
models and streamline the representation of
scRNA-seq data, we adopt the CelltoSentence ap-
proach (Levine et al., 2023), which transforms h5ad
files into a natural language format. The h5ad file
consists of three primary components: the X matrix,
which is a sparse matrix representing gene expres-
sion levels for each cell; the obs metadata, which
contains information such as cell type and tissue;
and the var component, which stores gene informa-
tion including gene names and gene IDs. Given
the large scale and complexity of the sparse matrix,
we simplify the representation by generating a se-
quence of gene names, structured like a sentence in
natural language. Each cell is represented by its top
100 genes with the highest normalized expression
levels, ranked from highest to lowest, while genes
with zero expression are omitted. The resulting
cell sentence is composed of the top 100 expressed
genes along with the corresponding tissue and cell
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Figure 2: Two Generated Knowledge Graphs. The left panel shows the gene-cell type graph, with green nodes
representing genes, blue nodes representing cell types, and the red node highlighting one of the cell types in which
two genes are co-expressed. The right panel shows the tissue-cell type graph, where green nodes represent cell types,
blue nodes represent tissues, and the red node highlights one of the tissues in which two cell types are co-expressed.
The edges represent the "EXPRESSED_IN" and "LOCATED_IN" relationships, respectively.

type. This transformation into a natural language
sentence enables subsequent graph construction
and enhances compatibility with LLM-driven tasks.

3.3 Graph Construction

To systematically model the relationships among
tissues, genes, and cell types, we construct knowl-
edge graphs using a reference dataset of 1,350 cell
sentences. The LLM extracts entities from the cell
sentences, which are then structured and stored
within a Neo4j database. Utilizing GPT-4-Turbo
as the foundational model, LLM identifies entities
(such as genes, tissues, and cell types) and rela-
tionships, representing them as nodes and edges
in the graph database. Two knowledge graphs are
generated: a tissue-cell type graph and a gene-cell
type graph, as shown in Figure 2. The tissue-cell
type graph captures the associations between tis-
sues and their possible resident cell types, while the
gene-cell type graph illustrates the high-expression
relationships between genes and specific cell types.
These graphs provide structured priors, which are
used by the LLM to improve the downstream cell
annotation performance.

3.4 Hybrid Retrieval-Augmented Generation

We propose a hybrid Retrieval-Augmented Gen-
eration mechanism that combines structured data
retrieval from knowledge graphs with unstructured
data retrieval from a reference cell database to pre-
dict candidate cell types. By leveraging multiple
data sources, this approach substantially strength-
ens the model’s ability to infer the most likely cell
type.

Structured Data Retrieval. For structured data,
we construct two knowledge graphs from a refer-
ence dataset that contains entities such as tissues,
genes, and cell types. The retrieval process focuses
on extracting specific relationships between these
entities, represented as triples. There are two main
types of relationships used for cell type annotation:

• Cell type - LOCATED_IN→ Tissue

• Gene - EXPRESSED_IN→ Cell type

These triples represent key biological relation-
ships among genes, cell types, and tissues. The
retrieval process begins by querying the knowl-
edge graph to obtain relevant triples, followed by
merging similar entries to reduce redundancy. If
multiple triples indicate that a specific cell type is
expressed in different tissues, or a particular gene
is expressed in various cell types, we consolidate
this information into a single, non-redundant entry:

Tstruct = {Ei,1−Ri → {Ei,2,1, Ei,2,2, . . . , Ei,2,m}},
(1)

where Ei,1 and the set {Ei,2} represent relation-
ships between cell types and tissues or genes and
cell types, and Ri denotes the relationship type
(such as LOCATED_IN or EXPRESSED_IN).

Unstructured Data Retrieval. For unstructured
data, we perform document retrieval to extract sim-
ilar cell sentences from the reference cell database.
A vector-based retrieval mechanism is utilized to
perform similarity searches, retrieving the four
most relevant sentences for each query. Each re-
trieved sentence contains a list of the top 100 genes
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expressed in a particular cell, along with the corre-
sponding tissue and cell type. From these retrieved
sentences, we extract the cell types, denoted as
similar cell types. Formally, the unstructured data
retrieval process can be represented as:

Tunstruct = {C1, C2, C3, C4}, (2)

where Tunstruct represents the set of similar cell
types Ci (with i = 1, 2, 3, 4) retrieved from the
reference cell database.

Candidate Cell Type Generation. After re-
trieving both structured and unstructured data, we
integrate these sources to improve the prediction
of candidate cell types. The LLM processes the
structured triples and similar cell types obtained
from unstructured data. Based on the combined
information, GPT-3.5-Turbo generates a list of po-
tential candidate cell types. The task of generating
candidate cell types can be represented as:

Candidate cell types = LLM(Tstruct, Tunstruct),
(3)

where LLM processes the structured data Tstruct
and unstructured data Tunstruct to predict the most
probable candidate cell types.

By employing hybrid Retrieval-Augmented Gen-
eration, we effectively combine knowledge from
both structured knowledge graphs and unstructured
reference cell database. This hybrid approach en-
ables a more robust and contextually aware genera-
tion of candidate cell types, improving the overall
accuracy and reliability of cell annotation tasks.

3.5 Refinement with Marker Genes
We further enhance the accuracy and robustness
of the final cell type prediction by utilizing large
language models and integrating marker gene in-
formation. Following the generation of both candi-
date and similar cell types, the refinement process
begins by retrieving the associated marker genes
for these cell types to further improve prediction
power.

This refinement process is guided by three crit-
ical inputs provided to the LLM: (1) the top 100
expressed genes of the query cell, (2) the candidate
cell types and their corresponding marker genes,
and (3) the similar cell types and their correspond-
ing marker genes. With these inputs, the LLM
assesses the overlap and biological relevance of
the marker genes, in the context of the query cell’s
gene expression profile, to ensure the prediction
aligns with established biological patterns.

By refining with marker genes, we substantially
increase the reliability of cross-tissue cell type an-
notation. This approach not only leverages the
full potential of hybrid Retrieval-Augmented Gen-
eration, which integrates both structured and un-
structured biological data, but also draws on the
critical knowledge of biologically relevant markers.
Through this process, the LLM is guided to identify
the most accurate cell type for annotation, deliver-
ing precise and biologically grounded results.

4 Experiments

4.1 Experimental Setup

Dataset. We evaluate the proposed method on
three publicly available human single-cell datasets:
Human heart atlas, Human pancreas data, and Hu-
man PBMC. The Human heart atlas dataset con-
tains cells from 1 general tissue, 6 sub-tissues, and
27 cell types (Litviňuková et al., 2020). The Hu-
man pancreas dataset includes 1 tissue and 7 cell
types (Baron et al., 2016). The Human PBMC
dataset consists of 1 tissue and 16 cell types (Oet-
jen et al., 2018). From each of these datasets,
we randomly select 450 samples for constructing
the reference cell dataset and 300 samples for the
testing cell dataset. Ultimately, we generate two
cross-tissue datasets, and test our model’s capabil-
ity in cross-tissue cell annotation. Additionally, the
marker gene database is compiled by aggregating
data from (Xu et al., 2022). More details on the
dataset can be found in the Appendix A.

Baselines. We compare our method to three types
of baselines:

• Generalist Models: We compare with GPT-3.5-
Turbo, GPT-4-Turbo, and GPT-4o-Mini (Ope-
nAI, 2023), as well as their chain-of-thought
(CoT) (Kojima et al., 2023) variants, e.g., GPT-
3.5-Turbo (CoT) and GPT-4-Turbo (CoT).

• Domain-Specific Methods: We compare with
GenePT (Chen and Zou, 2023) using cosine sim-
ilarity, Cell2Sentence (Levine et al., 2023), and
Chatcell (Fang et al., 2024), all specifically tai-
lored for single-cell analysis.

• Trained Classifiers: We combine GenePT
(Chen and Zou, 2023) as an embedding gener-
ator with trained classifiers, including Logistic
Regression (Cramer, 2002), Support Vector Ma-
chines (SVM) (Hearst et al., 1998), K-Nearest
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Types Models
Accuracy

F1 score Precision Recall
FM FM+PM

Generalist Models

GPT-3.5-Turbo (OpenAI, 2023) 0.2167 0.2567 0.0991 0.1109 0.1308
GPT-4o-Mini (OpenAI, 2023) 0.2522 0.2989 0.1015 0.1158 0.1502
GPT-4-Turbo (OpenAI, 2023) 0.4011 0.4678 0.2189 0.3040 0.2599
GPT-3.5-Turbo (CoT) (Kojima et al., 2023) 0.2200 0.2533 0.0829 0.1026 0.1182
GPT-4o-Mini (CoT) (Kojima et al., 2023) 0.2611 0.3067 0.1070 0.1258 0.1676
GPT-4-Turbo (CoT) (Kojima et al., 2023) 0.3711 0.4278 0.1799 0.2379 0.2111

Domain-Specific
Methods

GenePT (Chen and Zou, 2023) 0.6711 0.6756 0.4266 0.4723 0.4346
Cell2Sentence (Levine et al., 2023) 0.3744 0.5178 0.1187 0.1445 0.1245
ChatCell (Fang et al., 2024) 0.4156 0.4867 0.1861 0.2518 0.2146

Trained Classifiers

Logistic Regression (Cramer, 2002) 0.6589 0.6633 0.4165 0.4786 0.4259
Support Vector Machines (Hearst et al., 1998) 0.6689 0.6733 0.4181 0.4391 0.4370
K-Nearest Neighbors (Peterson, 2009) 0.8067 0.8111 0.5369 0.5713 0.5497
Transformers (Vaswani et al., 2023) 0.6689 0.6722 0.4058 0.4038 0.4252

scRAG

GPT-3.5-Turbo (scRAG) 0.6611 0.6700 0.4538 0.5212 0.4704
GPT-4o-Mini (scRAG) 0.7667 0.7789 0.5744 0.6117 0.5895
GPT-4-Turbo (scRAG) 0.8056 0.8122 0.5998 0.6429 0.6045
GPT-3.5-Turbo (scRAG+CoT) 0.6422 0.6522 0.4393 0.5172 0.4522
GPT-4o-Mini (scRAG+CoT) 0.7744 0.7911 0.5431 0.5728 0.5674
GPT-4-Turbo (scRAG+CoT) 0.8011 0.8200 0.5590 0.6113 0.5735

Table 1: Performance comparison with different baselines on the cross-tissue dataset. The boldfaced scores
represent the best and second-best results.

Neighbors (KNN) (Peterson, 2009) and Trans-
formers (Vaswani et al., 2023).

Implementation Details. We implement the work-
flow using the LangChain framework (Mavroudis,
2024). GPT-4-Turbo is employed for graph con-
struction, and GPT-3.5-Turbo is used for the hybrid
Retrieval-Augmented Generation mechanism. For
prediction generation and refinement with marker
genes, we test all baseline models to evaluate the
results they produce. Zero-shot prompting (Kojima
et al., 2022) and add "Let’s think step by step" (Ko-
jima et al., 2023) are applied to the prompt for CoT
baselines. We select the top 4 similar cells and top
2 candidate cells to balance efficiency and accuracy.
The temperature parameter is set to be 0 for each
step. Further implementation details are deferred
to Appendix B and Appendix E.

Metrics. We evaluate the model’s performance
using two sets of metrics: (i) Accuracy (including
FM and FM+PM) and F1 Score; (ii) Precision
and Recall (all calculated as macro averages). The
definitions of Fully Match (FM), Partially Match
(PM), and Mismatch (M) are as follows:

• Fully Match (FM): Prediction matches the
ground truth or is a subtype of ground truth.

• Partially Match (PM): Prediction represents a
parent type of the ground truth.

• Mismatch (M): Prediction does not correspond
to the ground truth.

4.2 Main Results

The results on the cross-tissue benchmark are
shown in Table 1. From these results, we obtain
the following conclusions:
Comparison with Generalist Models. As shown
in Table 1, scRAG leads to a substantial 44.44%
improvement in fully matched accuracy and a
41.33% improvement in fully+partially matched
accuracy for GPT-3.5-Turbo compared to its base-
line. GPT-4o-Mini achieves greater improvements
of 51.45% in fully matched accuracy and 48.00%
in fully+partially matched accuracy over its base-
line. GPT-4-Turbo also demonstrates significant
improvements, with fully matched accuracy in-
creasing by 40.45% and fully+partially matched ac-
curacy improving by 34.44%. These improvements
highlight the fact that LLMs often lack special-
ized biological knowledge, particularly regarding
genes and tissues. The incorporation of external
information from knowledge graphs and reference
cell databases helps fill these gaps, enhancing the
LLM’s ability to process and generate more accu-
rate results in cross-tissue cell annotation tasks.
Comparison with Domain-Specific Models. The
scRAG-optimized GPT-4-Turbo achieves a 13.45%
increase in fully matched accuracy compared to
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Ablation Study w/o structured data w/o unstructured data w/o marker genes scRAG
GPT-3.5-Turbo 0.6380 0.6380 0.6580 0.6611
GPT-4o-Mini 0.7390 0.7280 0.7456 0.7667
GPT-4-Turbo 0.7580 0.7490 0.7360 0.8056

Table 2: Ablation study via accuracy performance comparison of different variants on scRAG.

GenePT, a 43.12% increase over Cell2Sentence,
and a 39.00% increase over ChatCell. These re-
sults underscore the robustness and efficacy of
the scRAG method in enhancing the performance
of large language models. Moreover, scRAG of-
fers greater scalability and flexibility. While other
domain-specific models are typically constrained
by fixed architecture or dataset, scRAG enables
adaptation to evolving models and new datasets,
ensuring continuous performance improvement.
Comparison with Trained Classifiers. Results in
Table 1 show that scRAG achieves comparable per-
formance to GenePT combined with KNN, surpass-
ing KNN in FM+PM accuracy by 0.11%, whilst
significantly outperforming LR, SVM, and Trans-
formers in FM accuracy by 14.67%, 13.67%, and
13.67%, respectively. In addition to its superior per-
formance, scRAG provides enhanced stability and
operates as an end-to-end framework without the
need for classifier training, hyper-parameter tuning,
or optimization. This training-free approach simpli-
fies deployment, improves scalability, and makes
scRAG a more practical and efficient solution for
cross-tissue cell annotation tasks.

4.3 Further Analysis

In this section, we discuss several factors that
would affect the performance of scRAG: CoT
prompting, top-k similar cell types, top-k candi-
date cell types, and the result of the ablation study.
More discussion is provided in Appendix C.
CoT Prompting. Figure 3 illustrates the impact
of CoT prompting in both the baseline and scRAG
settings. In the baseline setting, CoT prompting ef-
fectively helps weaker models like GPT-3.5-Turbo
improve their performance by guiding them to think
step-by-step and reason towards accurate annota-
tion results. However, in the scRAG framework,
which combines hybrid Retrieval-Augmented Gen-
eration and marker gene information, the addition
of CoT creates different dynamics. For GPT-3.5-
Turbo, the integration of CoT appears to over-
whelm the model, leading to diminished perfor-
mance. In contrast, GPT-4o-Mini benefits from
this combination, as their stronger reasoning capa-

Figure 3: Comparison of CoT Prompting.

Figure 4: Analysis of scRAG’s performance on top-k
similar cell retrieval and top-k candidate cell generation.

bilities allow them to better utilize both scRAG and
CoT, resulting in improved outcomes.
Top-k Similar Cell Types. As shown in Figure 4,
we analyze the effect of retrieving top-k similar cell
types on the performance of GPT-4-Turbo and GPT-
4o-Mini. Our results show that accuracy improves
as k increases, reaching its peak at k = 4, before
slightly decreasing when k becomes larger. This
indicates that too few references limit the model’s
access to contextual knowledge, while too many
references introduce noise and increase the like-
lihood of hallucination. The improvement with
higher k highlights scRAG’s ability to leverage ad-
ditional context effectively, but the diminishing in
larger k emphasizes the importance of selecting the
most relevant references.
Top-k Candidate Cell Types. As shown in Fig-
ure 4, generating the top-k candidate cell types for
GPT-4o-Mini and GPT-3.5-Turbo reveals that per-
formance peaks at k = 2 and declines at k = 5.
This implies that using two candidates achieves an
optimal balance between focus and diversity, en-
hancing the model’s decisions. Too few candidates
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Figure 5: Case Study. The upper panel illustrates the limitations of LLM-only approaches, while the lower panel
showcases the effectiveness of the scRAG framework.

restrict diversity, while too many introduce exces-
sive information therefore lowering the accuracy.
Ablation Study. In Table 2, we evaluate the in-
dividual components of scRAG through an abla-
tion study. Specifically, we compare three variants:
(1) w/o structured data: excludes the retrieval
of knowledge graph triples for generating candi-
date cell types; (2) w/o unstructured data: ex-
cludes the retrieval of similar cell sentences and
similar cell types; (3) w/o marker genes: instead
of using marker genes to refine the results, gen-
erating only one candidate cell type as the final
answer. Results show that removing structured
data, unstructured data, or marker genes leads to
drops in average performance of 3.28%, 3.95%,
and 3.13%, respectively, highlighting their contri-
butions. The full scRAG framework achieves the
best results, demonstrating the value of integrat-
ing hybrid Retrieval-Augmented Generation and
refinement for cross-tissue cell annotations.

4.4 Case Study

We design a case study where GPT-3.5-Turbo strug-
gles to generate the correct cell type due to insuffi-

cient gene and tissue knowledge, given the top 100
genes and tissue. Even with CoT prompting for
step-by-step reasoning, it falls into hallucinations,
leading to flawed reasoning and incorrect answers.
As shown in Figure 5, the scRAG framework ad-
dresses this issue by extracting gene and tissue
entities, retrieving knowledge graph triples, and in-
tegrating this structured information. It also queries
the reference cell database to retrieve top-k simi-
lar cell types, generating candidate cell types (e.g.,
delta and alpha). To ensure accuracy, the frame-
work retrieves marker genes from both similar cells
and candidate cells, enabling GPT-3.5-Turbo to
refine its reasoning and confidently identify the cor-
rect answer "delta". In Appendix E, we give more
details about this case study.

5 Conclusion

In this paper, we introduced scRAG, a frame-
work designed to enhance large language models
(LLMs) in cross-tissue single cell annotation tasks
using RAG. By leveraging the hybrid Retrieval-
Augmented Generation method and refining pre-
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dictions with marker genes, scRAG provides more
reliable and accurate cell annotation responses. No-
tably, scRAG’s methodology aligns with expert
workflows, where LLMs retrieve external knowl-
edge bases as prior information and validate prelim-
inary answers using marker genes. Our evaluations
reveal that scRAG outperforms GPT-3.5, GPT-4,
and traditional cell annotations. These findings
underscore the potential of scRAG to enhance the
application of LLMs in single-cell analysis.

6 Limitations

While our study has yielded encouraging results,
there are several limitations that need to be ac-
knowledged. A primary concern is the reliance
on external knowledge bases. The accuracy of
the scRAG output is likely to be affected by any
shortcomings in external databases. Additionally,
although scRAG shows substantial improvement
in cell annotation tasks, its effectiveness for gene-
related tasks, such as gene interaction prediction
and biomedical question-answering, requires fur-
ther investigation. Third, the computational cost
associated with large models for graph construction
and retrieval can be considerable, which may limit
its feasibility in certain real-world applications. Fi-
nally, this work is primarily concerned with gen-
eral cross-tissue single-cell annotation, and the han-
dling of rare cell types remains to be explored.

7 Ethical Statement

We have ensured that this research is conducted in
an ethical and responsible manner. A brief sum-
mary of the ethical considerations is provided be-
low.
Public Dataset. We ensure that all data sources
were cited accurately and appropriately crediting
the original authors.
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terms and conditions of all licensed APIs used in
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A Description of Dataset

Dataset1. The dataset utilized droplet-based
single-cell RNA sequencing (scRNA-Seq), flow
cytometry, and mass cytometry to comprehensively
assess human bone marrow mononuclear cells
(BMMCs) from 20 healthy donors across a
wide age range (24–84 years). It includes over
76,000 single cells analyzed, with a mean of 880
genes detected per cell at a sequencing depth of
approximately 50,000 reads per cell. All major
bone marrow cell populations were identified,
including hematopoietic stem/progenitor cells,
lymphoid cells, and myeloid lineages, using
dimensionality reduction techniques such as t-SNE
and UMAP. The dataset is publicly available in
the Gene Expression Omnibus under accession
numbers GSE120221 and GSE120446 (Oetjen
et al., 2018).

Dataset2. The dataset includes transcriptomes
of more than 12,000 individual pancreatic cells,
encompassing 8,629 human cells from four
cadaveric donors as well as 1,886 mouse cells from
two strains. The analysis identified 15 major cell
clusters corresponding to known cell types, such as
alpha, beta, gamma, delta, and epsilon endocrine
cells, as well as acinar, ductal, stellate, vascular,
Schwann, and immune cells. Substructure within
ductal and beta cell populations was observed,
revealing novel functional insights into these cell
types. t-SNE visualization highlighted clear cell
type-specific clusters, and rigorous deconvolution
methods facilitated the comparison of bulk
RNA-seq datasets with single-cell resolution. The
study advances the understanding of pancreatic
cell heterogeneity and provides a valuable resource
for disease research and therapeutic development.
The dataset is publicly available under NCBI GEO:
GSE84133 (Baron et al., 2016).

Dataset3. The dataset employed single-cell and
single-nucleus RNA sequencing to analyze the
cellular composition of six anatomical regions
of the adult human heart, encompassing left and
right atria, left and right ventricles, the inter-
ventricular septum, and the left ventricular apex.
It includes 487,106 cells and nuclei, represent-
ing 11 major cardiac cell types, such as car-
diomyocytes, fibroblasts, endothelial cells, immune
cells, and adipocytes, with high-resolution sub-
cluster analysis. This dataset is publicly available

at www.heartcellatlas.org (Litviňuková
et al., 2020).

B Competitor Method

We compare our scRAG framework with baseline
models and methods for cross-tissue cell annota-
tion. Additionally, we evaluate individual baseline
models, including GPT-3.5-Turbo, GPT-4o-Mini,
and GPT-4-Turbo. The details of some of these
models are elaborated below.

CoT (Kojima et al., 2023): This approach
concatenates a trigger sentence, "Let’s think step
by step," to the test question.

GenePT (Chen and Zou, 2023): This approach
leverages large language model (LLM) embed-
dings to represent genes and cells, derived from
NCBI text descriptions. It generates gene embed-
dings using GPT-3.5 on textual gene summaries
and creates single-cell embeddings either by aver-
aging gene embeddings weighted by expression
levels or by forming sentence embeddings from
gene names ordered by expression.

ChatCell (Fang et al., 2024): This approach
streamlines single-cell analysis through natural
language interaction. It leverages vocabulary
adaptation and unified sequence generation,
empowering large language models with expertise
in single-cell biology. By converting scRNA-seq
data into a cell sentence compatible with LLMs,
ChatCell enables diverse tasks, including random
cell generation, pseudo-cell generation, cell type
annotation, and drug sensitivity prediction.

Cell2Sentence (Levine et al., 2023): In this ap-
proach, each cell’s expression profile is reformu-
lated as a ranked list of gene names, generating a
structured textual representation termed a "cell sen-
tence". It allows the fine-tuning of causal language
models like GPT-2 on cell sentences, enabling the
generation of biologically valid cells from prompts
and the accurate prediction of cell types from cell
sentence inputs.

C Discussions on Prompt Formats

Figure 6 illustrates the accuracy comparison be-
tween two different prompt formats: Triples and
Sentences. The Triples format presents the re-
trieved knowledge as concise entity relationships
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Figure 6: Comparison of different prompt formats on
structured data.

(e.g., "X cell type -LOCATED_IN Y tissue, Z gene
-EXPRESSED_IN X cell type"), while the Sen-
tences format transforms these relationships into
more verbose natural language statements (e.g.,
"The X cell type is located in the Y tissue, and
Z gene is expressed in X cell type"). Across
LLMs—GPT-3.5-Turbo, GPT-4-Mini, and GPT-4-
Turbo, the Triples format consistently outperforms
the Sentences format.

One possible explanation for this observation
is that the "Triples" format is more concise and
structured, which allows the language model to
focus more effectively on the essential relationships
without being distracted by additional linguistic
complexity. In contrast, the "Sentences" format,
while being more natural, introduces redundancy
and potentially increases the cognitive load on the
model, resulting in slightly lower accuracy.

D Discussions on Misclassifications

This case study further investigates the model’s mis-
classifications behavior in a cross-tissue setting and
analyzes potential causes of the errors. The input
prompt and the prediction generated by GPT-4o-
Mini are shown in Figure 7. However, the correct
answer should be delta cell.

Figure 7: In-depth Analysis of Misclassification by GPT-
4o-Mini.

The following analyzes the possible reasons be-
hind this misclassification. (1) Model Training
Reasons: Overreliance on a Few Specific Mark-
ers: If the model has been trained on a dataset
where certain markers (e.g., SST for alpha cells)
are very strong and well-defined, it may overfit
these markers. This overfitting could make the
model less robust in cases where these markers
are not as dominant, leading to misclassifications
in less well-defined cases. (2) Single Tissue Con-
text: Many genes, such as SST, CHGA, and GNAS,
are expressed across multiple cell types within the
same tissue. The presence of these genes in both
alpha and delta cells increases the likelihood of
misclassification, as the model may struggle to dis-
tinguish between these closely related cell types.
(3) Cross-Tissue Context: In different tissues, simi-
lar gene expression patterns can be observed across
various cell types, further complicating the classifi-
cation process. For example, genes like CHGA and
PCSK1N, which are typically found in endocrine
pancreatic cells, may also appear in other tissues,
leading to incorrect associations. The model might
not have sufficient contextual knowledge to differ-
entiate between gene expression patterns that are
cell-type-specific and tissue-specific. This cross-
tissue similarity can create ambiguity, making it
difficult to accurately predict the most probable cell
type without additional contextual information.

E Examples and Prompts

We construct reference cell sentences to build a
reference cell database and generate knowledge
graphs, as shown in Figure 9. Testing cell sentences
form a testing cell database to evaluate the model’s
cross-tissue cell annotation capability, illustrated
in Figure 10.

Figures 8, 11, and 12 show the prompts used
for entity extraction, candidate cell type genera-
tion, and refinement with marker genes, respec-
tively. Examples of entity extraction, unstructured
retrieval, and structured retrieval are provided in
Figures 13, 14, and 15. Figure 16 further demon-
strates the final process of candidate cell type gen-
eration and refinement with marker genes.

Figure 8: Prompt for entity extraction.
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Figure 9: Reference cell sentence format.

Figure 10: Testing cell sentence format.

Figure 11: Prompt for candidate cell types generation.

Figure 12: Prompt for refinement with marker genes.

967



Figure 13: Example for entity extraction.

Figure 14: Example for unstructured retrieval.
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Figure 15: Example for structured retrieval.
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Figure 16: Candidate cell types generation and refinement with marker genes.
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