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Abstract

Honest alignment refers to the ability of a lan-
guage model to truthfully convey its knowl-
edge limitations by appropriately refusing to
answer questions when it lacks sufficient in-
formation. Existing solutions, such as prompt
engineering and fine-tuning, face limitations:
the former provides only marginal improve-
ments, while the latter struggles to enhance
honesty when annotated data is scarce. To
overcome the above limitations, we propose
WHAT, a novel framework that enhances hon-
esty through weak-to-strong generalization.
Specifically, we train the strong LLMs un-
der weak model supervision to improve their
honesty. For the weak model, we employ
a learning-to-rank strategy to train a “honest
head”, which learns to select the most hon-
est response among model’s outputs generated
through beam search. For the strong LLM, we
leverage the self-labeled dataset to update its
parameters. Our proposal requires only min-
imal training data to train the weak honest
model, yet achieve decent performance for la-
beling data. In addition, it enables the strong
LLMs to have the capabilities to generalize
even facing with the flawed label data. Exten-
sive experiments show WHAT significantly
boosts honest alignment in large models even
with limited labeled data.

1 Introduction

In recent years, large language models (LLMs)
have achieved significant progress in tasks like
code generation (Chen et al., 2021; Guo et al.,
2024; OpenAI, a), mathematical reasoning (Guo
et al., 2025; OpenAI, b), and scientific re-
search (García-Ferrero et al., 2024; Wang et al.,
2023), driven by scaling paradigm (OpenAI, 2023;
Kaplan et al., 2020; Touvron et al., 2023; Snell
et al., 2024). However, LLMs still frequently pro-
duce outputs that are factually inconsistent or lack
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grounding (Huang et al., 2025; Ji et al., 2024b;
Tang et al., 2025), undermining their reliability. To
address this, improving “model honesty” – defined
as providing accurate responses within known do-
mains and explicitly acknowledging uncertainty
beyond model’s knowledge scope – has become
a critical goal in the research community (Cheng
et al., 2024; Li et al., 2024b; Askell et al., 2021).

However, achieving honesty in LLMs remains
challenging, as current alignment practices often
prioritize helpfulness and harmlessness over hon-
esty (Yang et al., 2024a). This imbalance stems
from the difficulty of creating model-specific
alignment data, tailored examples that teach mod-
els to distinguish between known and unknown do-
mains. Without such data, it is difficult to define
precise knowledge boundaries of a model; thus,
models risk either overconfidence in uncertain con-
texts or excessive refusal of valid queries.

Efforts to enhance model honesty can be di-
vided into two main approaches: prompt en-
gineering and model fine-tuning. When pro-
vided with well-designed prompts, LLMs can
improve its honesty (Brown et al., 2020; Wen
et al., 2024). Some studies suggest using care-
fully crafted prompts to encourage models to be
more cautious when answering questions about un-
known knowledge (Yang et al., 2024a; Xu et al.,
2024). In addition, other research focuses on im-
proving LLM’s honesty via fine-tuning. These ap-
proaches first determine whether the model pos-
sesses knowledge about a given question. When
the model lacks sufficient knowledge, it is trained
to express uncertainty. This training can be carried
out through supervised fine-tuning (Yang et al.,
2024a; Wan et al., 2024; Cheng et al., 2024), di-
rect preference optimization (Rafailov et al., 2023;
Cheng et al., 2024), or proximal policy optimiza-
tion (Schulman et al., 2017; Xu et al., 2024) and
their variants (Xu et al., 2024).

While these methods improve honesty to some
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extent, they face significant limitations. On the
one hand, prompt engineering yields only modest
improvements since the training process does not
explicitly align with honesty objectives. On the
other hand, fine-tuning methods achieve better re-
sults but depend heavily on high-quality, diverse
training data, which is often limited, particularly
for complex questions where answers may be di-
verse or subjective. Evaluating such answers is
inherently challenging, further complicating data
curation. Moreover, each target model architec-
ture may exhibit unique knowledge gaps; thus it
requires tailored dataset construction. This cus-
tomization imposes significant computational and
human resource demands, making large-scale fine-
tuning less scalable and harder to generalize across
varied scenarios.

To address these challenges, we introduce
WHAT (Weak-to-Strong Honesty AlignmenT via
Learning-to-Rank Supervision), a framework in-
spired by weak-to-strong generalization (Burns
et al.). This approach leverages a lightweight "hon-
est head" network to guide LLMs toward more
truthful outputs, even under limited supervision.
Specifically, the key mechanisms of our proposal
consist of three parts: (1) Honest Head Train-
ing: An honest head is a lightweight model that is
trained on available labeled data using a learning-
to-rank framework. It is then used to identify the
most honest responses among those generated by
LLMs through beam search. This design mitigates
data scarcity by requiring minimal labeled data
and emphasizing comparative honesty over abso-
lute ground truth. (2) Large-Scale Self-Labeling:
For questions lacking reference answers, we com-
bine the honest head’s predicted scores with the
LLM’s prediction probabilities to generate pseudo
label. This mechanism extends honesty align-
ment to unlabeled data, significantly reducing re-
liance on human annotations and mitigating data
scarcity. (3) Weak-to-Strong Fine-Tuning: The
synthesized dataset is used to fine-tune the base
LLM, merging the honest heads specialized scor-
ing (weak supervisor) with the LLMs generaliza-
tion power (strong model). This avoids model-
specific dependencies by creating a unified train-
ing pipeline adaptable to diverse architectures.

Our contributions are summarized as follows:

• We introduce a method that leverages weak su-
pervision to improve the honesty of large lan-
guage models, reducing the dependency on ex-

tensive data annotation.

• We propose a novel approach, WHAT, which
enhances the honesty of large language models
by effectively ranking their outputs. It requires
minimal training cost and introduces nearly zero
computational overhead during inference.

• Through extensive experiments, we demonstrate
that WHAT significantly enhances the hon-
esty of LLMs compared to existing methods,
all while better preserving the models intrinsic
knowledge.

2 Preliminary

This section presents preliminary knowledge re-
garding language model decoding and honesty
measurement, which is helpful for understanding
the subsequent methodology.

2.1 Decoding Process in LLM

In the decoding process of a large language model
M , given an input token sequence q, the model
can generates token at timestep t, where the prob-
ability distribution over the vocabulary is:

P (yt | y<t, q) = M(yt | y<t, q),

where y<t represents the sequence of previously
generated tokens. Afterwards, the model employs
various sampling strategies to sample n candi-
dates as {y1,t, . . . , yn,t}. The final decoding se-
quence y∗ is chosen based on an accumulated
score, which is typically the log probability of the
entire sequence:

Q(y∗ | q) = max
yi,t

T∑

t=1

logP (yi,t | yi,<t, q). (1)

2.2 Measurement of Honesty

The measurement of honesty involves two steps:
probing the model’s knowledge boundary and as-
sessing its response’s honesty.

Probing the Knowledge Boundary This step
aims to assess whether the question falls within
models knowledge domain. Let q be a question,
and a be the reference answer to question q. We
use LLM M to generate a set of responses Y =
M(q, a). The honesty of a response yi ∈ Y is eval-
uated by the correctness function J(y, q, a) (Yang
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et al., 2024a), which is defined as:

J(y, q, a) =

{
1, if y is the correct answer,
0, otherwise.

(2)
Here, J(y, q, a) can be implemented through
straightforward term matching or more sophisti-
cated LLM judging (Li et al., 2024a).

To this end, we probe the models knowledge
boundary through the lens of its generated re-
sponses, i.e., the proportion of correct responses
in the set Y that exceeds a predefined threshold α:

k(M, q) =

{
1, if

∑n
i=1 J(yi,q,a)

|Y| > α,

0, otherwise.
(3)

Estimating Honesty value Next, we present the
honesty value estimation for LLM-generated re-
sponses. We first introduce a category function C,
which classifies a response y based on its explicit
acknowledgment of uncertainty and its correctness
as defined in Eq. 2:

c(y, q, a) =





0, if the response expresses
uncertainty in y,

1, if J(y, q, a) = 1,

−1, if J(y, q, a) = 0.

(4)

Then, the honesty value v(y, q, a) of the models
response to a question is computed as:

v(y, q, a) =





3, if c(y, q, a) = 1,

2, if c(y, q, a) = 0

and k(M, q) = 0,

1, if c(y, q, a) = 0

and k(M, q) = 1,

0, otherwise.

(5)

The rationale behind the honesty value function
is as follows: the model receives the highest hon-
esty value only when it provides a correct response.
Additionally, when it explicitly acknowledges un-
certainty, it is awarded a higher score when the
question genuinely falls outside its knowledge
scope. This design discourages excessive refusal
of valid queries. Finally, the model receives a
score of zero, strictly penalizing responses that ex-
hibit overconfidence despite uncertainty.

Ideally, to align LLMs for honesty, we can
optimize the decoding process by generating re-
sponses with highest honesty value. However, in
practice, assessing the accuracy of responses gen-
erated by LLMs is not always feasible due to the

absence of human-annotation or the scale of the
model itself, especially when the model is suffi-
ciently large and complex to preclude straightfor-
ward evaluation. We propose our solution in the
next section.

3 Weak-to-Strong Honest Generation

This section describes our method to generate
pseudo-labels using a lightweight, easily train-
able weak model, thereby reducing dependence
on manual data annotation. Figure 1 provides an
overview of our approach, WHAT. Our method
is composed of three phrase: (1) Weak Honest
Model Training: We train a lightweight “hon-
est head” model on limited labeled data within
a learning-to-rank framework. This model is
used to identify the most honest responses among
those generated by LLMs through beam search.
(2) Large-scale Self-labeling: The honest head
model generates pseudo-labels for unlabeled re-
sponses, which provides reliable supervision for
unseen instances. (3) Weak-to-strong Fine-
tuning: Using the pseudo-labeled data, we fine-
tune a stronger, more robust model, enhancing its
performance while minimizing manual annotation
costs.

3.1 Weak Honest Model Training

To effectively guide the strong model during train-
ing, we first need a guide model to adapt to the tar-
get task. Through empirical observations, we find
that although LLM-generated responses may ex-
hibit dishonest behavior, the candidate responses
in their beam search outputs often contain some
honest alternatives. This inspires us to adopt a re-
ranking strategy to select honest responses from
model outputs. We refer to the weak model as the
honest head. Below, we detail honest head’s archi-
tecture design, input selection strategy, and learn-
ing to rank training approach.

Architecture Design We instantiate the honest
head as a 3-layer MLP upon LLMs. In par-
ticular, this design leverages two key insights:
(1) Transformer intermediate layers has encoded
rich linguistic features sufficient for downstream
tasks (Xie et al., 2025; Meng et al., 2022), and (2)
simplified architectures facilitate training while
maintaining the effectiveness during inference.
Formally, we estimate the honest score as:

s(y) = W3 ·σ(W2 ·σ(W1h+ b1)+ b2)+ b3, (6)
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where Wi ∈ Rdi×di−1 and bi ∈ Rdi denote weight
matrices and bias terms, respectively (d0 input di-
mension, d1, d2 hidden dimensions, d3 = 1 as the
output dimension, and σ represents the activation
function. In particular, h ∈ Rd0 represents the hid-
den representation of the last tokens hidden state
in response y, extracted from the selected trans-
former layer. The layer selection strategy is de-
tailed in the following section.

Intermediate Layer Selection Selecting appro-
priate hidden layers for honest head is crucial. We
formulate the layer selection as an empirical opti-
mization problem: for a N -layer transformer, we
evaluate hidden states {hi}Ni=1 through grid search
and select the layers that maximize honest score in
Eq. 5 on the validation set. We select the final to-
ken for the honesty value computation.

Optimizing Honest Head via Learning to Rank
Given the multi-level graded dataset for honest,
one straightforward approach is to optimize the
honest head by mapping from s(y) to annotation
score. However, this pointwise learning often
suffers from inaccuracies in the mapping process.
Our empirical observations demonstrate that beam
search outputs frequently contain honest alterna-
tives among the candidate responses. Thereforewe
propose to optimize the honest head through a
learning-to-rank approach, i.e., selecting the most
honest response from n candidate responses for
each input query.

Let {vi}ni=1 be the annotated ground-truth hon-
esty values and {si}ni=1 be the predicted honesty
values produced by our honest head. In this sec-
tion, we explore two widely used LTR loss, i.e.,
the pairwise ranking loss and the listwise ranking
loss, which enables the honest head learns to select
the most honest response.

We propose a pairwise LTR framework. For
a pair of responses oyi and yj , the probability of
yi being more truthful than yj under our model’s
predicted scores is defined as:

P (yi ≻ yj) =
exp(si)

exp(si) + exp(sj)
. (7)

Then, we minimize the negative log-likelihood
of these observed pairwise preferences:

Lpair = −
n∑

i=1

∑

j ̸=i

Iij(vi ≻ vj) logP (yi ≻ yj), (8)

where Iij = 1 if the annotated honest score vi ex-
ceeds vj , and 0 otherwise. The honest head is op-

timized to align pairwise order with the annotated
ground-truth of honesty.

Despite its effectiveness, the pairwise ranking
can lead to quadratic growth in computational
complexity, (i.e., constructing C2

N pairs), making
it inefficient as the number of candidates increases
via beam search. To address this limitation, we
propose listwise LTR. Particularly, it formulates
the evaluation of a ranked list as a process of at-
tention allocation (Bruch et al., 2019). The best
attention allocation strategy on a list of responses
{yi, . . . , yn} is defined as:

ai =
exp(vi)∑n
j=1 exp(vj)

. (9)

Similarly, we compute the attention distribution of
our honest head with the ranking score {si}Ni=1

and use the cross entropy between our attention
strategy and the best attention strategy as the loss:

Llist = −
n∑

i=1

ai log(
exp(si)∑
j exp(sj)

). (10)

3.2 Large Scale Self-labeling

In this section, we elaborate how to self-label
with the honest head. The honest head may in-
evitably capture biases present in the data, solely
depending on honest head may lead to suboptimal.
Therefore, we combine honesty values with the
language model’s intrinsic likelihoods through en-
semble decoding to generate pseudo-labels.

Let Qu be a set of unlabeled questions. For each
question q ∈ Qu, language model M will gener-
ate K candidate sequences {yqj}Kj=1 using beam
search algorithm, we first obtain two scores for
each candidate: the language model score Q(yqj |
q), defined in Eq. 1 and the predicted honesty
value s(yqj ) defined in Eq. 6. We then combine
these two terms as the final score via soft-attention
normalization:

Q̂(yqj | q) =
exp

(
Q(yqj | q)

)
∑n

j=1 exp
(
Q(yqj | q)

) ,

ŝ(yqj ) =
exp

(
s(yqj )

)
∑K

j=1 exp
(
s(yqj )

) ,

z(yqj | q) = (1− β)Q̂(yqj | q) + β ŝ(yqj ),

(11)

where β ∈ (0, 1) is a hyperparameter termed “hon-
esty ratio”; it governs the contribution of honest
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Figure 1: An overview of WHAT. The honest head module takes the hidden states generated by the LLM as input
and is trained using an LTR (Learning-to-Rank) loss function. Large Scale Self-labeling: Predicted scores from
the honest head and the response probabilities from the LLM are ensembled to self-label the questions. Weak-to-
strong Fine-tuning: Using the self-labeled dataset for further model training.

head relative to the language model’s intrinsic like-
lihood. When β = 0, this reduces to standard Best-
of-N sampling. In practice, β is tuned via a simple
trial-and-error procedure on a validation set.

For each question q ∈ Qu, its most honest
response is selected among the n generated re-
sponses according to the final score z(yqj | q) as:

y∗q = argmax
yqj

[
z(yij | qi)

]
. (12)

To this end, we can obtain the self-labeled dataset
Du = {q, y⋆q}q∈Qu that consists of unlabeled ques-
tions and its corresponding most honest response
via pseudo-labels.

3.3 Weak-to-Strong Generalization

Through honest head guided decoding, we have al-
ready enhanced the model’s honesty. To further
generalize the model’s ability, we fine tune the
model M using the the self-labeling dataset Du

collecting in Section 3.2.
A large languagde model parameterized by θ

are optimized by minimizing the negative log-
likelihood loss over the self-labeled dataset:

L(θ) = − 1

N

∑

q∈Qu

logQ
(
y⋆q |q; θ

)
, (13)

where Q
(
y⋆q |q; θ

)
denotes the probability of the

pseudo-labeled output y⋆q given input xi and model
parameters θ. The model parameters θ are up-
dated to minimize this loss, resulting in the fine-
tuned model M∗. This supervised fine-tuning pro-
cess aligns the model’s output distribution with the
high-quality pseudo-labels, enhancing both hon-
esty and overall performance.

In summary, the pseudo-label are generated by
a weak model (i.e., small honest head), which are
then used to enhance the honesty of a strong model
(i.e., large language model). This weak-to-strong
design enables our proposal has high generaliza-
tion capabilities. In particular, WHAT achieves
strong results even with scarce annotations due
to two synergistic factors. On the one hand, the
honest head uses a lightweight architecture (fewer
parameters than the LLM) and a learning-to-rank
loss. This allows it to effectively rerank the LLM’s
outputs by honesty using minimal data. On the
other hand, the LLM already possesses robust rep-
resentations, enabling it to leverage pseudo-labels
for further alignment. For unseen data, even im-
perfect pseudo-labels from the honest head allow
the LLM to refine its latent capabilities.
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4 Experiments

4.1 Experimental Setup
Baselines To evaluate the effectiveness of our
approach, we compared it against four baseline
methods. (1) Prudent Prompt: This method pro-
vides the model with explicit instructions designed
to encourage cautious reasoning and knowledge-
aware responses. (2) In-Context Learning (ICL):
The model is conditioned on four task-specific
demonstrations to guide its reasoning. (3) Su-
pervised Fine-Tuning (SFT): Due to computa-
tional constraints, we employed the LoRA fine-
tuning approach (Hu et al., 2022a), a parameter-
efficient method that adapts the model via low-
rank updates. (4) Direct Preference Optimiza-
tion (DPO): This is a reinforcement learning-
based optimization framework that aligns model
outputs with human preferences. All prompts for
these baselines are provided in Appendix B.

Datasets We conducted experiments on three
datasets: 1) PopQA (Mallen et al., 2022) is a large-
scale, open-domain question answering dataset
consisting of entity-centric QA pairs. Each ques-
tion is created by converting a knowledge tuple
retrieved from Wikidata using a template. 2)
SQuAD (Rajpurkar et al., 2016) is a reading com-
prehension dataset that contains questions posed
by crowdworkers based on a set of Wikipedia ar-
ticles. 3) Non-AmbigQA is a subset of the NQ-
Open dataset (Kwiatkowski et al., 2019), consist-
ing of clear and unambiguous questions along with
their corresponding answers.

Experimental Details In our experiments, we
evaluated three open-source models: LLama3-
8b-instruct (Dubey et al., 2024), Gemma2-9b-
instruct (Team et al., 2024), and Mistral-7B-
Instruct-v0.3. For brevity, we refer to these models
as Llama, Gemma, and Mistral, respectively. We
set α to 0.1. For supervised fine-tuning, we set
the learning rate to 1e-5 and used 2 epochs. Due
to resource constraints, we utilized LoRA for fine-
tuning (Hu et al., 2022b; Li et al., 2025). During
generation, models were configured with a temper-
ature of 0.8 to encourage diversity. The honest
head module was trained for up to 40 epochs. We
reserved 10% of the training data as a validation
set to select the optimal layers hidden state as in-
put to the honest head, based on validation perfor-
mance. Both our proposed model (WHAT) and
the DPO baseline underwent initial task-specific

fine-tuning using labeled data to align outputs with
task requirements. This fine-tuning used identical
hyperparameters to SFT. Subsequently, the fine-
tuned models generated outputs across the full
training set, which were used to construct the hon-
est heads training data. The DPO baselines train-
ing data construction mirrored that of WHATPair.
For all datasets, we sampled 2,000 examples from
the training set (retaining answers) and removed
answers from the remaining data to simulate unan-
notated questions. For datasets with provided
documents, we discarded the documents and fed
only the questions into the language model (LLM).
Dataset statistics are detailed in Appendix A.

Evaluation metrics Following the methodology
of Yang et al. (2024a), we evaluated model per-
formance using three metrics: 1) Prudence Score:
Measures the probability that a model expresses
uncertainty when encountering unknown ques-
tions. 2) Over-Conservativeness Score (Over-
Conserv.): Quantifies the probability that a model
expresses uncertainty when responding to known
questions. 3) Honesty Score: Defined as the
arithmetic mean of the Prudence Score and Over-
Conservativeness Score, this metric reflects the
models overall honesty. To assess the correct-
ness of model responses, we input the question,
reference answer, and model-generated reply into
DeepSeek-V3 (Liu et al., 2024a) for automated
analysis. The specific prompt used for this eval-
uation is provided in Appendix B.

4.2 Main Experimental Results

Table 1 presents the experimental results across
three datasets. From the table, we have following
key observations: 1) Our method mitigates the
challenge of scarce labeled data and achieves
state-of-the-art (SOTA) performance. While
fine-tuning improves honesty scores, it underper-
forms in low-data regimes. For example, on the
SQuAD dataset, Gemma achieves a 14% honesty
score gain via supervised fine-tuning (SFT) com-
pared to baseline prompt engineering. Our ap-
proach further boosts performance by 9.9%. 2)
Prompt engineering demonstrates limited ef-
fectiveness in aligning with “Honesty”. De-
spite efforts to enhance honesty via prompt-based
or in-context learning (ICL) methods, models
exhibit low prudence and over-conservativeness
scores, indicating reluctance to express uncer-
tainty. 3) Listwise optimization outperforms
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pairwise methods for training the honest head.
The listwise approach surpasses pairwise compar-
ison in 7 of 9 experimental settings (3 models ×
3 datasets). This advantage stems from listwise
learnings direct optimization of full output rank-
ings, which better aligns with task objectives than
pairwise local comparisons.

The further comparisons can be found in Ap-
pendix C.

4.3 Ablation Study

Influence of Weak-to-Strong Fine-Tuning In
this subsection, we analyze the impact of weak-
to-strong generation using self-labeled data. For
comparison, we employ two baseline methods:
(1) Supervised Fine-Tuning (SFT) and (2) Honest-
aware Decoding, where the trained honest head
guides the decoding process based on the method-
ology outlined in Section 3.2. We conduct
experiments on the PopQA dataset. The re-
sults presented in Figure 2 reveal two key in-
sights. First, the honest head significantly im-
proves model performance. For instance, on the
PopQA dataset, Honest-aware Decoding boosts
accuracy by 5.2% compared to SFT for the Llama
model. Second, weak-to-strong fine-tuning fur-
ther enhances performance: continued train-
ing with self-labeled data leads to an additional
2.3% improvement over Honest-aware Decoding
for Llama on the same dataset. These findings
highlight the importance of leveraging annotated
data for incremental model optimization.
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Figure 2: Effectiveness of weak-to-strong fine-tuning.

Influence of Input Selection Strategy In this
subsection, we examine the impact of using hid-
den states from different transformer layers to
train the honest head module. As depicted in Fig-
ure 3, selecting the appropriate hidden state layer
as input for the honest head is critical, as different
layers yield significantly varying effects on model
performance. Notably, despite undergoing exten-
sive processing through transformer layers, the fi-
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Layer

72
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76
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y

Gemma Llama Mistral

Figure 3: Analyzing the impact of hidden states from
various network layers as inputs to the honest head for
performance.
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Figure 4: The sensitivity analysis of honesty ratio β on
the performance on WHATList applied to Llama on
PopQA dataset.

nal layer does not always represent the optimal
choice for honest head training.

Influence of Honesty Ratio In this subsection,
we examine the impact of honesty ratio hyper-
parameter β. Figure 4 presents the performance
of Llama on the PopQA dataset across different
honesty ratios. When β is set to 0, the Best-of-
N method is essentially used to select answers
from model responses as pseudo-labels, result-
ing in only minor improvements in model perfor-
mance. When β is set to 1, decoding is solely
guided by pseudo-labels generated by the honest
head. Under this configuration, the model’s over-
conservativeness score rises substantially, leading
to a decrease in honest scores. This indicates
that the honest head may absorb unintended biases
from the training data, emphasizing the need to in-
corporate the log-likelihood of an ensemble LLM
to counteract this effect. Thus, it demonstrates that
selecting appropriate honesty ratio is crucial.
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PopQA SQuAD Non-AmbigQA
Prudence ↑ Over-Consv. ↓ Honesty ↑ Prudence ↑ Over-Consv. ↓ Honesty ↑ Prudence ↑ Over-Consv. ↓ Honesty ↑

L
la

m
a

Prompt 3.73 8.13 47.80 5.59 2.74 51.43 16.78 4.85 55.97
ICL 5.40 4.44 50.48 7.25 2.59 52.33 13.11 5.41 53.85
SFT 47.63 13.01 67.31 29.09 13.47 57.81 32.15 13.21 59.47
DPO 49.31 11.35 68.98 34.70 15.88 59.41 29.10 11.52 58.79
WHAT Pair 59.31 12.63 73.34 33.14 10.56 61.29 40.09 15.86 62.12
WHAT List 60.23 15.25 72.49 33.78 9.10 62.34 39.69 13.91 62.89

G
em

m
a

Prompt 24.89 9.87 57.51 13.69 5.37 54.16 16.21 6.71 54.75
ICL 22.48 10.04 56.22 15.49 6.81 54.34 19.31 5.89 56.71
SFT 65.32 19.94 72.69 38.10 14.58 61.76 35.81 10.37 62.72
DPO 67.23 23.29 71.97 39.81 15.57 62.12 34.92 5.14 64.89
WHAT Pair 67.31 10.63 78.34 45.07 11.62 66.72 43.33 11.27 66.03
WHAT List 69.31 10.95 79.18 46.09 10.31 67.89 45.10 10.68 67.21

M
is

tr
al

Prompt 4.15 4.41 49.87 7.02 6.08 50.47 8.63 8.35 50.14
ICL 7.61 5.68 50.96 10.89 8.55 51.17 8.03 7.17 50.43
SFT 56.31 11.69 72.31 30.03 10.29 59.87 32.11 14.33 58.89
DPO 55.32 9.08 73.12 36.75 14.71 61.02 36.70 18.08 59.31
WHAT Pair 68.74 13.04 77.85 40.06 11.30 64.38 42.12 13.69 64.21
WHAT List 69.19 12.57 78.31 39.19 9.15 65.02 41.99 14.37 63.81

Table 1: Performance comparisons on PopQA, SQuAD and Non-AmbigQA datasets. The symbol “↓” means a
smaller metric value is better, and the symbol “↑” denotes a larger metric value is better. The best performance is
highlighted in bold.

5 Related Work

5.1 Honesty in LLMs
The notion of honesty in LLMs has become a key
focus of recent research (Li et al., 2024b; Gao
et al., 2024; Cheng et al., 2024; Wan et al., 2024).
A truly honest LLM should provide accurate an-
swers to questions within its knowledge base and
admit uncertainty when confronted with informa-
tion beyond its scope (Yang et al., 2024a). Build-
ing on this concept, several studies have advanced
the alignment of LLMs with the principle of hon-
esty. For instance, Yang et al. (2024a) proposed
a method to evaluate honesty in models and ap-
plied fine-tuning to enhance LLM honesty. Cheng
et al. (2024) employed direct preference optimiza-
tion for alignment. While these approaches show
promising results, they struggle in low-resource
scenarios with limited annotated data - a funda-
mental limitation we mitigate in this work.

5.2 Decoding in Language Model
Substantial research efforts have focused on im-
proving decoding strategies to achieve desirable
generation outcomes in language models (Zhang
et al., 2024). Early work by Lee et al. (2021) pi-
oneered the use of auxiliary transformer models
to rerank machine translation outputs, while Won
et al. (2023) proposed leveraging semantic similar-
ity between dialogue context and generation can-
didates for response selection. More recently, sev-
eral studies have investigated aligning human pref-
erences during the decoding of large models (Liu
et al., 2024b; Chen et al., 2024). Moreover, some
studies have used classifiers to guide model gen-

eration, aiming to achieve controllable text gen-
eration (Dathathri et al.) or reduce hallucina-
tions (Chuang et al., 2024). However, these works
do not focus on honesty. Additionally, they do not
consider that the selection of the final generated
candidate is a ranking task, for which a learning-
to-rank loss function might be more suitable for
candidate screening.

5.3 Weak-to-Strong Learning

The paradigm of weak-to-strong generalization
has emerged as a promising approach to enhance
the capabilities of strong models through strategic
utilization of weaker counterparts (Burns et al.).
Existing research primarily explores two method-
ological directions.

The first line of work leverages weak models
as supervision providers through pseudo-labeling
mechanisms. Pioneering this direction, Burns
et al. formally establishes the theoretical frame-
work of weak-to-strong generalization in large lan-
guage models and empirically demonstrates its ef-
fectiveness in classification tasks. Subsequently,
Yang et al. (2024b) extends this paradigm to com-
plex reasoning scenarios. Complementary to these
individual approaches, ensemble-based methods
have shown particular promise in aggregating
weak supervision signals (Sang et al., 2024). Al-
ternative methodologies focus on directly integrat-
ing weak models into the generation pipeline of
stronger counterparts (Ji et al., 2024a; Zhou et al.,
2024).

Our work investigates weak-to-strong general-
ization for honesty alignment. In our work, the su-
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pervision signals are generated sequentially from
two weak components: (1) the intermediate rep-
resentations of the LLM and (2) an additional 3-
layer MLP, which we refer to as the honest head.
This approach significantly curtails training costs
by utilizing supervision from these fewer parame-
ter components.

6 Conclusion

In this study, we introduce WHAT, a method de-
signed to enhance model honesty through weak-
to-strong generalization. Our approach trains a
lightweight “honest head” (weak model) using a
learning-to-rank loss function. This head reranks
beam search candidates from the models output,
enabling the self-labeling of unannotated data.
The resulting self-labeled data allows the stronger
LLM to train effectively, thereby alleviating data
scarcity. Additionally, the honest head improves
the models honesty during inference. Extensive
experiments demonstrate that WHAT effectively
mitigates labeled data scarcity and achieves state-
of-the-art results in honesty alignment.

7 Limitations

This paper improves the honesty of the model
within the weak-to-strong generalization frame-
work. The analysis of honesty enhancement is em-
pirically grounded but lacks theoretical underpin-
nings. Additionally, due to computational limita-
tions, we employ parameters efficient fine-tuning
as a baseline, and our experiments were restricted
to smaller large language models, leaving the
performance on larger-scale models unexplored.
Regarding uncertainty in model responses, this
study adopts a binary classification (certain/uncer-
tain) rather than quantifying uncertainty, which
could be extended in future work. Furthermore,
we do not extensively explore variants of list-
wise loss functions. Another limitation is our
method’s suboptimal performance on the Over-
Conservativeness metric. We speculate that there
are two main reasons for this phenomenon:

1. Measurement limitations: The current mea-
surement of knowledge boundaries relies on
model response accuracy, which can be sen-
sitive to prompt phrasing. More robust ap-
proaches remain an open research challenge.

2. Catastrophic forgetting: Fine-tuning may
cause the model to forget uncertainty

calibration learned during pretraining,
thus contributing to increased Over-
Conservativeness.

Addressing the issue of over-conservativeness,
alongside the aforementioned areas, constitutes
important directions for future research.
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PopQA SQuAD Non-AmbigQA

Annotated Training Set 2,000 2,000 2,000
Unlabeled Training Set 1,0868 5,000 2,792
Test Set 1,399 3,000 5,33

Table 2: Statistics of datasets.

A Data Statistics

Table 2 summarizes the statistics of our experimen-
tal datasets. The annotated training set supports
three key stages: supervised fine-tuning, direct
preference optimization, and training the honesty
head. In contrast, the unlabeled training set con-
tains only questions without reference answers, re-
quiring self-generated labels for subsequent train-
ing phases. For the SQuAD, we sample 7,000
questions from the training set for training pur-
poses and 3,000 questions from the validation set
for testing. For Non-AmbigQA dataset, we divide
it into training set and test set according to a ratio
of 9:1.

B Prompt Templates

In this section, we provide prompt templates used
in this work.

Prompt for probing the knowledge of the
LLMs.

You are a helpful assistant. Please answer
the question and provide the answer in the
following format: “The answer is: ... ”.
Question: {question}

Figure 5: Template used for probing the knowledge of
the LLMs.

Prudent prompt.

You are a helpful assistant. Answer the
question. If you don’t know the answer to
the question, it is appropriate to say “I am
not sure.”. Do not say “I am not sure.” if
you are sure about the answer.
Question: {question}

Figure 6: Template used for prudent prompt.

Prudent prompt with in-context learn-
ing.

You are a helpful assistant. Answer the
question. If you don’t know the answer to
the question, it is appropriate to say “I am
not sure.”. Do not say “I am not sure.” if
you are sure about the answer. Here are
some examples:
Question: Who was the screenwriter for
Toy Story?
The answer is: Peter Docter.
Question: Who was the composer of Big
City Nights?
The answer is: Scorpions. But I am not
sure.
Question: Who is the father of Nero?
The answer is: Gnaeus Domitius Aheno-
barbus.
Who was the director of The Sidehackers?
The answer is: Richard Rush. But I am not
sure.
Question: {question}

Figure 7: Template used for prudent prompt with in-
context learning.

C Additional Comparisons of Accuracy
and Harmlessness

In addition to the performance comparison in Sec-
tion 4.2, we present further comparisons focus-
ing on accuracy and harmlessness metrics. Ac-
curacy is determined by string matching against
the ground truth. Harmlessness is evaluated
by whether the model generates hallucinations.
Specifically, we calculate the ratio of correct and
uncertain outputs to the total number of outputs.
As indicated in Table 3, the proposed method
achieves a notable improvement in accuracy on the
PopQA dataset compared to baseline approaches.
This enhancement may be attributed to the fine-
tuned model’s improved ability to adhere to in-
structional prompts when generating responses.
However, a marginal decline in performance is ob-
served on the other two evaluated datasets, poten-
tially stemming from catastrophic forgetting. Be-
sides, this slight decrease in accuracy appears cor-
related with a reduction in hallucinations, possibly
because the model adopts a more cautious genera-
tion strategy. On the Harmlessness metric, WHAT
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PopQA SQuAD Non-AmbigQA
Accuracy ↑ Harmlessness ↑ Accuracy ↑ Harmlessness ↑ Accuracy ↑ Harmlessness ↑

L
la

m
a

Prompt 22.51 27.31 19.59 24.13 41.87 53.14
ICL 22.66 27.73 21.04 33.67 42.47 52.02
SFT 24.51 62.47 19.12 42.65 39.21 62.82
DPO 23.38 62.18 18.72 46.71 40.01 61.31
WHAT Pair 26.59 72.98 18.04 43.16 38.41 67.61
WHAT List 27.33 75.12 18.32 43.32 38.72 66.76

G
em

m
a

Prompt 28.52 48.18 22.98 33.96 45.23 56.24
ICL 27.76 45.89 23.34 36.01 45.85 58.03
SFT 29.59 79.27 20.47 51.03 43.75 66.01
DPO 28.88 81.06 20.31 52.32 43.03 65.07
WHAT Pair 33.38 81.13 21.01 55.36 43.82 70.04
WHAT List 33.45 82.70 21.41 56.03 43.03 69.86

M
is

tr
al

Prompt 29.83 34.02 20.77 27.43 44.72 53.05
ICL 29.91 36.67 19.91 27.38 44.97 52.30
SFT 31.10 70.55 18.79 42.27 40.19 62.72
DPO 30.23 67.89 17.93 47.38 41.87 68.45
WHAT Pair 33.74 81.41 18.89 49.40 41.83 68.54
WHAT List 32.10 79.91 19.01 48.27 41.31 68.35

Table 3: Accuracy and Harmlessness performance comparisons on PopQA, SQuAD and Non-AmbigQA datasets.
The symbol “↑” denotes that a larger metric value is better. The best performance is highlighted in bold.

PopQA SQuAD Non-AmbigQA
Prudence ↑ Over-Consv. ↓ Honesty ↑ Prudence ↑ Over-Consv. ↓ Honesty ↑ Prudence ↑ Over-Consv. ↓ Honesty ↑

2-layer 58.71 17.23 70.74 30.69 11.39 59.65 38.19 12.88 62.66
3-layer 60.23 15.25 72.49 33.78 9.10 62.34 39.69 13.91 62.89
4-layer 60.39 16.33 72.03 32.10 10.49 60.80 38.12 12.31 62.90
5-layer 59.83 17.21 71.31 31.89 11.02 60.44 37.96 14.02 61.97

Table 4: Results of varying layer numbers of honest head on Llama. The symbol “↓” means a smaller metric value
is better, and the symbol “↑” denotes a larger metric value is better. The best performance is highlighted in bold.

Task Scenario
Summarization post_summarization, text_summarization
Code code_simplification, code_generation
Rewriting text_simplification, language_polishing
Creative Writing writing_song_lyrics, language_polishing
Functional Writing writing_job_application, writing_email
General Communication asking_how_to_question
NLP Tasks information_extraction, topic_modeling

Table 5: The tasks and scenarios used in general abilities evaluation.

demonstrates superior performance across several
datasets.

D Impact of Layer Number in the
Honest Head

This section investigates the impact of varying the
number of layers in the Honest Head on perfor-
mance, using the Llama model for experimenta-
tion. As shown in Table 4, a 3-layer MLP consis-
tently strikes a good balance between performance
and efficiency. When the honest head is too shal-
low (e.g., 2 layers), it fails to capture sufficient in-

formation from the LLMs intermediate represen-
tations, leading to weak or unreliable supervision
signals. On the other hand, overly complex ar-
chitectures tend to overfit the training data, which
harms generalization and defeats the purpose of us-
ing a lightweight weak model.

E General Abilities Evaluation

This section analyzes the model’s general abili-
ties following honesty alignment on the PopQA
dataset for Llama model. We compare our pro-
posed method against an unaligned model on a
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Unaligned WHATList
Summarization 5.67 5.88
Code 4.32 4.96
Rewriting 5.79 5.50
Creative Writing 5.83 5.33
Functional Writing 5.75 5.62
General Communication 5.79 5.88
NLP Tasks 6.08 5.96

Table 6: General Abilities Evaluation Results on the
Llama.

diverse set of downstream tasks. Specifically, we
evaluate generation quality across seven task cat-
egories: summarization, code generation, rewrit-
ing, creative writing, functional writing, general
communication, and additional NLP tasks. Each
category contains multiple scenarios, with 24 in-
stances per scenario sourced from Li et al. (2023).
The task scenarios are listed in Table 5.

To assess generation quality, we adopt the same
method, i.e., autoj-13B model from Li et al.
(2023), to score responses on a scale from 1 to 10.
We average scores across all instances within each
task category.

The results in Table 6 show that WHATList main-
tains comparable performance to the base model
across a wide range of generation tasks. This indi-
cates that our honesty alignment method does not
compromise the ability of general generation.
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