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Abstract

Knowledge Graphs (KGs) have gained popular-
ity as a means of storing structured data, with
property graphs, in particular, gaining traction
in recent years. Consequently, the task of se-
mantic parsing remains crucial in enabling ac-
cess to the information in these graphs via natu-
ral language queries. However, annotated data
is scarce, requires significant effort to create,
and is not easily transferable between different
graphs. To address these challenges we intro-
duce SPOT, a method to generate training data
for semantic parsing over Property Graphs with-
out human annotations. We generate tree pat-
terns, match them to the KG to obtain a query
program, and use a finite-state transducer to
produce a proto-natural language realization of
the query. Finally, we paraphrase the proto-NL
with an LLM to generate samples for training
a semantic parser. We demonstrate the effec-
tiveness of SPOT on two property graph bench-
marks utilizing the Cypher query language. In
addition, we show that our approach can also
be applied effectively to RDF graphs.

1 Introduction

The use of knowledge graphs (KGs) is expand-
ing as a means to store general world knowledge
as well as domain-specific knowledge (Abu-Salih,
2021; Li et al., 2024a). In particular, property
graphs (PGs) have seen growing adoption in indus-
trial settings. This is mainly because they enable
the specification of semantically rich data models
for organizing and understanding connected enti-
ties and their relations. This is in contrast with
the flattened RDF representations, which were the
predominant prior paradigm.

The information contained in a knowledge graph
can be accessed through queries in specialized
graph programming languages such as SPARQL
(RDF) and Cypher (PGs) (Francis et al., 2018).
However, constructing these queries to fulfill a spe-
cific information need requires significant expertise.

Consequently, systems that enable querying KGs
via natural language interfaces are becoming in-
creasingly important (Gu et al., 2022). The task of
semantic parsing focuses on automatically generat-
ing query programs from natural language inputs
that express a particular intent.

Semantic parsing continues to be a challenging
and demanding task. Typically, developing a se-
mantic parser for a target KG requires the availabil-
ity of annotated training data. Such data is often
scarce and acquiring more can be expensive due
to the considerable human effort required. More-
over, these training datasets are not easily trans-
ferable. Each KG defines, in principle, its own
translation language, with its own schema of spe-
cific relations, concepts and properties that require
domain-specific annotations. These challenges
are further exacerbated when considering property
graphs, which have been significantly understudied
compared to RDF-style graphs.

We believe that automatic data generation is the
answer to many of these challenges. In this work
we introduce SPOT (zero-shot Semantic Parsing
Over properTy graphs), a method that can auto-
matically generate training data starting from a
knowledge graph, without the need for human inter-
vention. Our approach begins with an ungrounded
tree pattern comprising a set of anonymous nodes
and edges that represent a graph query. We match
this pattern to the knowledge graph, producing a
grounded version with instantiated entities and at-
tributes. From this grounded tree, we derive the
corresponding executable query program.

Additionally, from the grounded tree pattern, we
generate a natural language realization, which we
refer to as proto-NL. We employ a finite-state trans-
ducer that takes as input a linearized tree and se-
quentially outputs natural language fragments cor-
responding to nodes and relations. We then use a
large language model to paraphrase the proto-NL
into a final natural language realization (NL). By
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pairing the generated queries with their correspond-
ing NLs, we can generate a training data-set that
can be utilized to train a semantic parsing model.

We demonstrate the effectiveness of SPOT on
property graphs using two different datasets con-
taining queries written in Cypher. Our results show
that with SPOT we can obtain a semantic parser that
significantly outperforms the de-facto alternative
used for zero-shot semantic parsing over PGs (i.e.
prompting an LLMs with the NL query and the
graph schema). Although SPOT was designed to
leverage the characteristics of property graphs, we
can also apply it to RDF graphs. Our experiments
show that in this setting our approach outperforms
BYOKG (Agarwal et al., 2024a), a state-of-the-art
method for zero-shot semantic parsing over RDF
graphs.

The idea of sampling some form of tree pat-
tern directly from the KG for data generation
is not novel, a similar approach has been pro-
posed in the context of RDF graphs (Agarwal
et al., 2024a). Neither is the idea of exploiting
the compositional nature of a representation to
automatically generate an NL realization, simi-
lar ideas have been proposed for semantic pars-
ing over relational databases (Wang et al., 2015).
Our unique contribution is to combine and extend
those ideas to develop an effective data genera-
tion approach for PGs; to the best of our knowl-
edge this is the first approach for zero-shot se-
mantic parsing over PGs. Our code is available
at https://github.com/interact-erc/SPOT

The paper is organized as follows: Section 2
provides some preliminaries on knowledge graphs,
Section 3 describes our data generation approach,
Section 4 presents our method applied to property
graphs, including the experimental setup and re-
sults, Section 5 applies the same approach to RDF
graphs, Section 6 describes the related work and
finally Section 7 concludes the paper.

2 Preliminaries

A knowledge graph (KG) is a structured represen-
tation of entities and their relations organized as
a graph where nodes represent entities and edges
relations. The information stored in the KG can
be efficiently retrieved by executing programs (i.e.
formal queries) which can be written in different
graph query languages.

A commonly used KG format popularized in
the early 2000s is the Resource Description Frame-

work (RDF). RDF graphs consist of entity-classes,
entities and relations stored in triplet format. A
triplet < s, p, o > represents a subject s, a predi-
cate p and an object o. The predicate p defines the
relation (from s to o) that connects two entities of
a certain class type. These graphs are queried via
the SPARQL query language.

Property graphs (PGs) also consist of nodes and
edges, but unlike RDF graphs, nodes in PGs are
structured objects. In addition to belonging to a
class type, they can have an arbitrary list of asso-
ciated properties, each represented as a key-value
pair storing specific information about the entity.
In general, PGs are believed to enable the specifica-
tion of a rich and semantically intuitive data model.
This is because they clearly distinguish between
entity properties and entity relations, whereas RDF
graphs conflate the two concepts: entity properties
can only be expressed as relations. Formal query
languages for PGs include Cypher (Francis et al.,
2018) and Gremlin (Rodriguez, 2015). Appendix
D shows a fragment of the schema of one of the
PGs used in our experiments.

3 Generation with Tree Patterns and
Finite State Transductions

Figure 1 gives a general overview of our data gen-
eration approach which consists of five main steps:

• We generate tree patterns consistent with the
graph schema.

• We ground the free variables of the tree pat-
terns on the KG to obtain grounded tree pat-
terns.

• We linearize the tree patterns and generate a
set of sequences that represent the paths of the
tree.

• We run a finite state transducer over the paths
to generate an NL realization of the grounded
pattern which we refer to as proto-NL. We
also generate the Cypher query corresponding
to the grounded tree pattern.

• Finally, we prompt an LLM to paraphrase the
proto-NL to obtain the final NL realization.

In the next sub-sections we describe each of the
steps in more detail.
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Figure 1: Overview of SPOT data generation approach

3.1 Tree Pattern Generation

A grounded tree pattern is designed to represent
a canonical Cypher query consisting of a set of
matching path statements. The root of the tree is
a special aggregation node that has a single child
that represents the answer node. More formally, a
grounded tree pattern consists of a list of j nodes:

T = [v0, v1, v2, . . . , vj ] (1)

The first node v0 is a special node that represents an
aggregation operation. Intuitively, an aggregation
operation is a function that can be applied over a
set of nodes to produce an answer to a query. We
implement seven types of aggregations: set, set
size, attribute value set, max attribute value set,
min attribute value set, arg-max attribute value and
arg-min attribute value. The second node in the
tuple represents the expected answer of the query,
all tree patterns are rooted at this answer node.

Each node in the tree is a tuple:

v =< L,A, P,R,D,C > (2)

where L is the concept class of v, A is an optional
set of pairs of attribute value constraints, P is the
parent of v, R is the label of the relation that con-
nects v to its parent, D is the direction of the re-
lation (i.e. wether v is the domain or range of the
relation) and C is a list of all the children of v in
the tree pattern. Figure 1 shows an example of
a grounded tree pattern of four nodes (excluding

aggregation node) that would be written as:

T = [v0, v1, v2, v3, v4] (3)

with:

v1 : < crime, {tp. : robbery}, v0, root, ran., {v2, v3} >

v2 : < location, {}, v1, occ_at, ran., {v3} >

v3 : < person, {sur. : Smith}, v2, res_of, ran., {} >

v4 : < vehicle, {model : Audi}, n1, inv_in, dom., {} >
(4)

Each grounded tree pattern can be easily mapped
to its corresponding Cypher query. This is done by
creating a match statement for every path in the tree
and adding the appropriate where constraints on
each node. For example the grounded tree pattern
of the previous example will be mapped to the
Cypher query:

MATCH (v1:Crime)-[r1:OCCURRED_AT ]-(v2:
Location)-[r2:RESIDENCE_OF ]-(v3:
Person WHERE v3.surname = 'Smith ')

MATCH (v1) -[r3:INVOLVED_IN ]-(v4:Vehicle
WHERE v4.model = 'Audi ')

RETURN DISTINCT v1

While every grounded tree pattern can be mapped
to a Cypher query, the reverse is not always true,
as some Cypher queries do not have an equiva-
lent grounded tree representation. A clear example
are Cypher queries that include sub-queries. This
being said, the set of Cypher queries that can be
represented as grounded tree patterns is quite rich
and covers a good proportion of all Cypher queries.
In fact, all the observed patterns in the available
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Figure 2: Illustration of how SPOT derives the proto-NL realization.

benchmarks can be expressed as grounded tree pat-
terns. In any case, we believe generalizing the tree
patterns to increase expressivity shouldn’t be dif-
ficult, but we leave this as future work. This will
also require augmenting current benchmarks with
more complex patterns to properly test the added
expressivity.

To produce the training dataset, we take a three-
stage approach. In the first stage, we generate un-
grounded tree patterns of fixed length n with a
random generative process which uses the graph
schema to ensure that the resulting pattern is valid.
The recursive generative process starts by randomly
creating a root aggregation node and then at each
step a new node (and labeled linking edge) is at-
tached with uniform probability from all valid de-
scendants. The process stops when n nodes have
been generated. We repeat this process for vari-
ous target tree sizes (i.e. number of nodes). In the
second stage we ground the tree pattern by finding
an instantiation of the constraints which leads to a
Cypher query with a non-empty return. We discard
grounded trees with empty returns. Finally, we ex-
pand the set of grounded trees by ensuring that for
each tree we also include in the training set all of
its sub-trees and corresponding Cypher queries.

3.2 Proto-NL Generation

Figure 2 illustrates our approach for generating
a natural language realization of a grounded tree
pattern, we call this realization proto-NL. The ap-
proach involves two steps. In the first step we lin-

earize the tree by listing all the paths of the graph
in a pre-order tree traversal, this step also involves
inserting an additional special "new path" node into
all paths that do not start at the root.

In a second step we run a finite state transducer
that takes as input the linearized representation of
the tree and outputs a natural language realization
of the corresponding grounded tree pattern. The
finite state transducer leverages the inherent com-
positionality of the linearized tree pattern and is
automatically built from the graph schema (see Ap-
pendix D). The idea is simple. One cannot assume
that any NL realization of a grounded tree pattern
can be expressed as a monotonic transduction of the
linearized pattern representation. However, what
we can assume is that every tree pattern has one
monotonic realization. This realization might be re-
dundant and not very fluent (which is why we refer
to it as "proto" NL), but as long as it is a valid real-
ization it will serve its purpose. All that we need is
one valid realization, as we will leverage the capa-
bilities of LLMs to paraphrase and generate a more
fluid and less redundant NL.

A finite state transducer can be viewed as the
simplest form of a synchronous grammar, one in
which the languages are regular. It should be pos-
sible to generalize our approach to consider more
general synchronous grammars, which would al-
low some re-orderings of the NL realization. This
is however more challenging, since such a gram-
mar needs to be automatically constructed from the
graph schema alone. We leave this as a possible
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direction of future work. In practice, we would like
to point out that we observed that the paraphrasing
step can indeed perform re-orderings.

3.3 Proto-NL Rephrasing

As it can be seen in Appendix A the proto-NL
generated by the finite state transducer can be re-
dundant and may not reflect the way humans typ-
ically use language. To address this, we apply a
paraphrasing step in which we prompt an LLM to
rephrase the proto-NL (see Appendix E). For PGs
this simple approach already produces a fluent and
"natural sounding" NL realization.

As it was already mentioned in Section 2, RDF
graphs conflate the concept of relation and entity
property. As a result, the proto-NLs generated
from grounded tree patterns sampled from RDF
graphs are more distant from a "natural sounding"
NL realization. In preliminary experiments we
observed that for these proto-NLs it was better to
perform the paraphrasing in two steps. Recall that
we linearize the tree pattern to obtain a set of paths,
in the first step we paraphrase each of these paths
separately. Then in a second step we prompt the
LLM to combine the NLs corresponding to each
path into a single sentence.

4 Property Graphs Experiments

4.1 Experimental Setup

To test our method we generate training data with
SPOT and use it to train a transformer decoder-
model. We generate 100k of samples and for each
proto-NL we generate 3 paraphrasis (see Appendix
B for a discussion). To avoid generating samples
that are semantically meaningless, we do not gener-
ate queries that contain three relations of the same
type, 2 or more edge nodes without defined prop-
erty, nodes that repeat the same entity values, edge
nodes of the same class as the answer node without
a defined property and parallel nodes of the same
class that have one an instantiated property and the
other not. The model is trained to predict a for-
mal query for a given natural language question.
Training uses generated data only, thus it can be
regarded as a zero-shot setting.

Note that to focus purely on the semantic parsing
task we assume gold entity linking and we pass the
gold entity values in the input.

Specifically, we use Qwen3-4B (Yang et al.,
2025) and Llama-3.2-3B (Grattafiori et al., 2024)
as our base parsers. For generating the natural lan-

guage realization from our proto-NL we employ
Qwen3-14B. We do an initial parameter selection
by reserving a small subset of the data, and then
proceed to train on the full dataset. We train the
model on a single A100 GPU and every result re-
ported is the average of 5 runs with different seeds.
As evaluation metric we report execution accuracy,
where a predicted query is considered correct if it
returns the same results as the gold query when run
on the corresponding KG.

For the PGs we focus on the Cypher graph lan-
guage and evaluate on the following datasets:

• ZOGRASCOPE (Cazzaro et al., 2025). The
benchmark is based on a Crime Investigation
Graph1 which represents relations between
persons, locations and events in the context of
criminal activities. The graph contains more
than 60k nodes and 10k edges. The schema
defines 11 entity classes, 32 unique properties
and 17 relation types. In total there are 5k
human annotated samples, with ~3k allocated
to the training set. The benchmark comes
with three partitions: i.i.d, compositional and
length. We maintain the partitions distinction
but note that for our approach they all fall
under the zero-shot scenario. We use version
1.0 of ZOGRASCOPE.

• DMT. A private industrial dataset that rep-
resents academic publications, research data
and other research outcomes interlinked to
authors, organizations and funding agencies.
The graph contains more than 13k nodes and
90k edges. The schema defines 10 entity
classes 28 unique properties and 28 relation
types. In total the test set contains 2k samples.

For ZOGRASCOPE we also provide results
training our base parsers on the human annotated
training set (while DMT does not have one).

Since, to the best of our knowledge, we are the
first ones to explore zero-shot semantic parsing for
PGs Cypher graphs, we will compare our method
with the natural strategies for zero-shot parsing
based on LLM prompting.

The zero-shot setting employs a prompt (Ap-
pendix F) that includes the description of the graph
schema and then asks the LLM to provide the
Cypher query for a given question. Additionally,
we report results for the few-shot setting, where

1https://github.com/neo4j-graph-examples/pole
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Model ZOGRASCOPE DMT

iid compositional length

Training Set Fine-tuning Qwen 3-4B 98.04 72.42 20.19 -
Llama 3.2-3B 97.90 70.99 25.88 -
w. SPOT nl 83.46 54.78 17.23 -

SPOT Fine-tuning Qwen 3-4B 78.38 77.16 66.56 -
Llama 3.2-3B 78.68 75.46 64.00 74.36

Few-shot GPT-4o 66.40 63.71 22.66 -
Mistral 7B 44.44 25.30 11.33 -
Qwen3 4B 43.27 28.76 12.69 -
Llama 3.2-3B 31.03 15.49 5.98 -

Zero-shot GPT-4o 41.67 32.91 16.28 53.66
Mistral 7B 8.85 4.82 0.56 5.07
Qwen 3-4B 10.41 7.04 0.88 4.17
Llama 3.2-3B 3.38 1.48 0.24 20.70

Table 1: Execution accuracy on the PG benchmarks.

5 examples are included in the prompt. For ZO-
GRASCOPE we use the results reported in the
original paper. The evaluated models include GPT-
4o (gpt-4o-2024-08-06), a large proprietary model,
as well as small LLMs that can be run locally:
Llama-3.2-3B, Qwen3-4B (Yang et al., 2025) and
Mistral-7B-v0.1 (Jiang et al., 2023).

4.2 Results
Table 1 reports results for the PG experiments.
We observe that SPOT consistently outperforms
the LLM prompting zero-shot alternative strate-
gies. It obtains 77.16% and 74.36% accuracy ver-
sus 32.91% and 53.66% of the best out-of-the-box
LLM. This shows that simple approaches based
solely on prompting general LLMs (even large pro-
prietary ones) do not yield satisfactory results. This
is still true in the few-shot setting: while providing
examples notably improves LLMs performance, it
still falls short of SPOT’s accuracy.

Regarding the relative performance of the differ-
ent LLMs, we observe that the smaller local models
exhibit very low accuracy. The bigger proprietary
LLM on the other hand does perform significantly
better, which is remarkable for a general model.

Compared to fine-tuning on the training set,
SPOT is behind in the i.i.d. setting but achieves
strong results on the other two partitions. It is
important to note that these partitions are defined
relative to the training set, whereas SPOT may have
been exposed to similar patterns during its train-

Figure 3: Learning curve for the ZOGRASCOPE
benchmark training data on the compositional partition.

ing phase. This reflects a key advantage of SPOT:
its ability to generate a large volume of synthetic
examples, in contrast to the limited availability of
human-annotated data (the training set only con-
tains ~3k samples).

If we look at the third row of Table 1, we observe
the performance when the human-annotated natural
language sentences in the training set are replaced
with NLs generated via the SPOT process. This
suggests that there is still a significant margin for
improving the synthetic NL realizations, which
potentially is one of the key component to further
improve performance.

Figure 3 shows the parser’s performance during
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Figure 4: SPOT learning curve for the ZOGRASCOPE
benchmark on the compositional partition.

fine-tuning with the human-annotated training set,
as a function of the set’s size. We observe that with
100 annotated samples the performance improves
over zero-shot prompting. On the other hand even
with the full-annotated set of ~3k samples, the per-
formance of the supervised model is still below the
performance of SPOT.

Finally, Figure 4 shows performance of SPOT

as a function of the size of the generated training
set used to fine-tune the semantic parser for the
ZOGRASCOPE compositional partition. Interest-
ingly, the learning curves exhibit the typical pattern
of learning curves for supervised learning, namely
an initial phase of exponential performance im-
provements followed by a phase of linear growth.

5 RDF Graphs Experiments

5.1 Experimental Setup
For RDF graphs we use the following datasets:

• GRAILQA (Gu et al., 2021). A large-scale
knowledge base question answering dataset
grounded on Freebase using the SPARQL
query language. It consists of 64k questions
and it comes with three partitions: i.i.d, com-
positional and zero-shot. We maintain the
partitions distinction but note that for our ap-
proach they all fall under the zero-shot sce-
nario. The GRAILQA test set is not public,
we follow the literature in reporting results
over the validation set since it has been shown
that it correlates consistently with the test (Gu
and Su, 2022).

• GRAILQA++ (Dutt et al., 2023). An exten-
sion of GRAILQA designed to be more chal-

lenging by including more complex questions
and query patterns. While the benchmark
comes with different portions, we evaluate on
the one associated to the GRAILQA dataset.

We employ as base parser Llama-3.2-3B and
Llama-3.1-8B as the model for LLM paraphrasing.
Note that we assume gold entity linking and we
pass the gold entity values in input. Besides train-
ing with data generated by SPOT, we also train our
base parser with different training data:

• SUPERVISED. The official training set avail-
able for GRAILQA. This is a large manually
annotated dataset with 44k samples, we expect
the performance obtained by fine-tuning with
this data to serve as a form of upper-bound for
zero-shot performance.

• BYOKG. Data generated with a state-of-the-
art method proposed in Agarwal et al. (2024a).
This is a method specifically designed for
RDF graphs, BYOKG starts from a random
node in the graph and through random traver-
sal generates a query. The query is then con-
verted into an S-expression (Su et al., 2016)
which serves as the starting point for obtain-
ing the natural language realization. This is
accomplished by querying an LLM in an in-
volved multi-step process that generates the
NL for subcomponents of the S-expression,
eventually leading to the final realization. We
use the original code provided by the authors
to generate the data with the only difference
that we upgrade their LLM model to be Llama-
3.1-8B so that it is directly comparable with
ours.

Note that the zero-shot strategies that we tested
for PGs cannot be applied to GRAILQA since the
Freebase schema is too big to be contained in the
prompt. For SPOT we generate 200k samples and
we do not experiment with multiple paraphrasis.
We do not generate queries that have repeated rela-
tions or entities.

5.2 Results

Table 2 reports results for the RDF graphs ex-
periments. The first row of the table shows the
performance of a model trained with fully super-
vised data: both the SPARQL queries and their
corresponding NL realizations come from the gold
training data. The second and third rows of the
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Model GRAILQA GRAILQA++

iid compositional zero-shot

SUPERVISED 96.17 52.18 0.19 4.75
w. SPOT nl 54.99 36.26 0.84 4.43
w. BYOKG nl 50.97 31.24 0.5 4.27

SPOT 39.50 39.43 53.31 39.29
BYOKG 37.78 32.41 51.49 38.05

Table 2: Execution accuracy on the RDF graphs benchmarks.

table show the performance of a semantic parser
trained with gold training SPARQL queries and
automatically generated natural language realiza-
tions using either SPOT or BYOKG. To be more
precise, for SPOT we take the SPARQL queries
from the GRAILQA train set, we convert them to
tree patterns and then run the transducer to gener-
ate the associated proto-NL which is in turn para-
phrased to produce the final NL. Likewise, for
BYOKG we compute the S-expression mappings of
the GRAILQA SPARQL queries and generate the
NL realizations using the BYOKG method. Finally,
rows 4 and 5 of Table 2 show the zero-shot setting,
that is training with both SPARQL queries and nat-
ural language realizations automatically generated
with either SPOT or BYOKG.

As expected the performance in the iid partition
of the fully supervised approach is very high. This
is not surprising since the iid partition would con-
tain many query patterns that are also observed in
the training partition. However, performance drops
significantly in the compositional partition, known
to be challenging for transformer models (Lake and
Baroni, 2018). Accuracy is also very low on both
the zero-shot partition and the GRAILQA++ bench-
mark, overall suggesting a poor generalization of
the fully supervised model.

In comparison, while the zero-shot parsers ex-
hibit much lower performance on the iid setting,
they perform much better in the zero-shot par-
tition and on the more complex queries of the
GRAILQA++ benchmark. This suggests that the
automatic data generation approach could poten-
tially produce semantic parsers with better gener-
alization. Probably, due to the fact that automatic
query generation can create a broader set of diverse
queries with a greater coverage of all parts of the
target graph, something that would be difficult and
costly to achieve through manual annotation.

Comparing the two zero-shot data generation ap-

Figure 5: Learning curves for GRAILQA and
GRAILQA++. The average across partitions is reported.

proaches we observe that even though SPOT was
not designed with RDF graphs in mind, it consis-
tently outperforms BYOKG across all partitions.

We now go back to Table 2 to focus on the first
three rows. The first thing to point out is that our
natural language realization achieves higher perfor-
mance than BYOKG. We believe that employing
the proto-NL as a starting point for our pipeline is
an advantage of our approach. The second thing to
notice is that both NL generation methods perform
significantly lower than the fully supervised upper-
bound on the IID partition. This suggests that there
is still a significant margin for improving the NL
generation for RDF graphs.

Figure 5 shows performance as a function of the
size of the generated training set used to fine-tune
the semantic parser for the GrailQA benchmark.
Execution performance is averaged over all test
partitions, for a full breakdown refer to appendix C.
The maximum size shown on the figure (i.e. 200k
samples) corresponds to the main results of table 2.
Both models exhibit a similar trend, performance
continues to improve as we increase the amount of
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training data but at a slower rate.

6 Related Work

Recent years have witnessed a growing interest in
natural language interfaces to knowledge graphs,
focusing mainly in semantic parsing and question
answering (KBQA) (Rubin and Berant, 2021; Das
et al., 2021; Sima et al., 2021; Lewis et al., 2021;
Gu and Su, 2022; Ye et al., 2022; Shu et al., 2022;
Dutt et al., 2022; Gu et al., 2023; Yu et al., 2023;
Awasthi et al., 2023; Zhou et al., 2025). Some
of these works leverage in-context learning ap-
proaches (Tian et al., 2023; Tan et al., 2023a; Li
et al., 2023b; Baek et al., 2023) as well as graph
RAG (Peng et al., 2024). There seems to be a gen-
eral consensus that LLMs do not offer satisfactory
performance out of the box (Li et al., 2023a; Tan
et al., 2023b; Liu et al., 2024).

Zero-shot semantic parsing over knowledge
graphs is a relatively newer subject that is start-
ing to gain the interest of the research community,
but it remains a relatively unexplored subject area.
In the context of zero-shot semantic parsing for
RDF graphs, the work that is most related to ours
is BYOKG (Agarwal et al., 2024a). BYOKG gen-
erates data from an RDF KG by a random traversal
which generates S-expressions (Su et al., 2016) that
are then used to generate natural language realiza-
tions via an iterative paraphrasing strategy. The
authors test their data generation approach with
an in-context learning strategy. Besides this zero-
shot approach, there have also been some contri-
butions focusing on few-shot semantic parsing for
RDF, including Gu et al. (2023) and Agarwal et al.
(2024b). In the context of knowledge bases, there
have been some methods: Li et al. (2023b) and Li
et al. (2024b) that generate logical forms. However,
their setting is not truly zero-shot since the method
uses unlabeled queries taken from an annotated
training set.

Strikingly, despite the recent popularity gained
by property graphs in the industrial sector, there
is relatively little work on semantic parsing specif-
ically dedicated to these types of graphs. Of the
available literature there are some works that fo-
cus on fine-tuning (Guo et al., 2022; Zhao et al.,
2022; Tiwari et al., 2025; Zhong et al., 2025) or on
exploiting large language models (Li et al., 2024c;
Liang et al., 2024a; Zhou et al., 2024; Liang et al.,
2024b). There have also been some efforts on map-
ping RDF graphs to Cypher (Moreira and Ramalho,

2020; A Agrawal et al., 2022; Nie et al., 2022; Feng
et al., 2024). Besides these prior literature on PGs,
to the best of our knowledge this is the first work
specifically dedicated to zero-shot semantic parsing
over PGs.

7 Conclusions

Natural language interfaces to knowledge graphs
and databases have the potential to democratize
data-science by enabling people with no program-
ming experience to efficiently and precisely interact
with data. The main blocker preventing the devel-
opment of such interfaces is the training data bottle-
neck when fine-tuning semantic parsers. In this pa-
per we addressed this bottleneck in the specific con-
text of semantic parsing for property graphs. We
presented a data-generation method that leverages
the inherent compositional nature of graph queries.
One key observation is that although the mappings
between queries and their natural language realiza-
tions can be very complex, there might still exist
one "simpler" natural language realization that can
be automatically generated as a monotonic trans-
duction of an intermediate tree pattern representa-
tion. Then we can use LLM paraphrasing to gen-
erate the more "complex" realizations. Our experi-
ments show the potential of the proposed approach
and bring us a step closer in developing zero-shot
semantic parsers that have actual practical use as
industrial applications.

Limitations

There are several limitations with our current ap-
proach to zero-shot semantic parsing for PGs:

• As already pointed out in the paper not all
Cypher queries can be mapped to the interme-
diate tree pattern representation. For example,
our intermediate tree representation does not
consider sub-queries which are quite impor-
tant. In the future we plan to extend the inter-
mediate representation to include sub-queries.
Also, and this is probably more important,
we would like to create more complex bench-
marks for semantic parsing over PGs that in-
clude such queries.

• Our tree pattern generation strategy leads to
queries that are syntactically correct but ob-
viously a syntactically correct query doesn’t
imply a semantically meaningful query, i.e. a
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query that makes sense. This is not necessar-
ily a problem if the semantic parser can still
learn from such ‘noisy’ queries. Still, we be-
lieve that it is important to explore ways in
which the queries could be filtered.

• Although generating training data with our
approach is cheap, fine-tuning a model is not,
especially for very large LMs. So in the future
we plan to work on generation strategies with
a focus on maximizing the diversity of the
generated set.

• Our approach relies on the ability of an LLM
to provide good paraphrases, but it is possible
that for some complex patterns the paraphras-
ing would fail. We believe some additional
post-processing of the proto-NL might be of
help, for example we could explore alterna-
tive ways for handling co-references in the
generation.

• Ultimately we don’t believe that a semantic
parser can be trained to perfection with gener-
ated data alone. Eventually, there will always
be some complex cases for which we will
need to elicit some form of human supervi-
sion. But what we want is to limit annotations
to complex cases only, so future work should
combine the data creation approach with an
active learning strategy.

• Our approach is zero-shot because it requires
no-training data but it does require training
time. This means that an end user could not
just load a PG and immediately interact with
it. Speeding this initial training will also be
part of the challenge to make semantic parsing
over PGs truly useful.

• With our approach it is possible to generate
arbitrary complex tree patterns (i.e. involving
many nodes and relations) and find a corre-
sponding Cypher query and even a natural
language realization. But chances are that in a
real interaction with a PGs the end user won’t
express his information need with a single
complex query. Instead, the expected inter-
action would be a dialogue with the system
in which the queries get iteratively refined.
We believe one of the most exciting paths of
future work is to extend our approach to gen-
erate data to train not a one-round semantic

parsing interaction, but rather a dialogue con-
sisting of multiple rounds of semantic parsing.

• We would still like our approach to work better
with RDF graphs since they are also an impor-
tant type of representation. One possibility for
this would be to develop automatic ways of
transforming RDF graphs so as to "un-flatten"
their structure and make them look more like
property graphs.

Risks and Ethical Considerations

We believe our method contributes to enabling eas-
ier access to information in graphs. We do not
consider our work to present risks or ethical con-
cerns. However, we recognize that systems lever-
aging automatically generated data should be im-
plemented cautiously and with human supervision
to mitigate the risk of reinforcing factual errors or
biases present in the KGs.
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A Generations

Table 3 showcases some examples of data gener-
ated by SPOT.

B Multiple Paraphrasis Ablation

In Table 4 we show the performance of SPOT when
we employ 3 different paraphrasis for each gener-
ated sample versus when employing just one. We
observe that multiple paraphrasis can bring notice-
able improvements. This is consistent with other
findings about the importance of paraphrasing such
as Saparina and Lapata (2024).

C Learning Curves Breakdown

In Table 5 we offer a full results breakdown of the
learning curves showed in section 5.2.

D Schema Snapshot

In this work we assume, as is often the case in
practice, that knowledge graphs come with natu-
ral language descriptions of classes and relations.
Here we show a partial snapshot of the schema
that accompanies a knowledge graph, ZOGRAS-
COPE in this case. For each class, property and
relation there is a description field that we use
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Proto-NL List all People named Andrea that have a family relation with any People with last name Hanson and the target

People named Andrea must knows the phone number of any People with last name Kelly
NL List all Andrea who are in a family relation with any Hanson and know the phone number of any Kelly

Query

MATCH (v_1:Person WHERE v_1.name=" Andrea ") -[r_2:FAMILY_REL ]-(v_2:
Person WHERE v_2.surname =" Hanson ")

MATCH (v_1:Person WHERE v_1.name=" Andrea ") -[r_3:KNOWS_PHONE ]-(v_3:
Person WHERE v_3.surname ="Kelly")

RETURN DISTINCT v_1

Proto-NL List all the national health service numbers of People that are in a family relation with any People named Anne

that are in a family relation with any People with last name Kennedy
NL List all NHS numbers of people related to Anne, who are related to people with the last name Kennedy

Query
MATCH (v_1:Person)-[r_2:FAMILY_REL ]-(v_2:Person WHERE v_2.name="

Anne") -[r_3:FAMILY_REL ]-(v_3:Person WHERE v_3.surname =" Kennedy
")

RETURN DISTINCT v_1.nhs_no

Proto-NL What are the minimum call durations of Phone calls that were received at any Phones belonging to any People

with last name Campbell
NL What is the minimum call duration of phone calls received by people with the last name Campbell?

Query

MATCH (v_1:PhoneCall)-[r_2:CALLED]-(v_2:Phone)-[r_3:HAS_PHONE ]-(v_3
:Person WHERE v_3.surname =" Campbell ")

RETURN v_1.call_duration
ORDER BY toFloat(v_1.call_duration) ASC
LIMIT 1

Proto-NL How many Crimes with type of offence equal to Vehicle crime that involved any Vehicles with model 4Runner

and the target Crimes with type of offence equal to Vehicle crime must occurred at any Addresses with address

116 China Lane
NL How many vehicle crimes involving a 4Runner occurred at 116 China Lane?

Query

MATCH (v_1:Crime WHERE v_1.type=" Vehicle crime ") -[r_2:INVOLVED_IN
]-(v_2:Vehicle WHERE v_2.model ="4 Runner ")

MATCH (v_1:Crime WHERE v_1.type=" Vehicle crime ") -[r_3:OCCURRED_AT
]-(v_3:Location WHERE v_3.address ="116 China Lane")

RETURN COUNT(DISTINCT v_1)

Proto-NL list all tv channel that ceased operating on date which is less or equal than 1998

NL Which tv channel ceased operating before 1998?

Query

SELECT DISTINCT ?x0
WHERE {
?x0 :broadcast.tv_channel.to ?x1 .
?x0 a :broadcast.tv_channel .
FILTER (?x1 <= "1998"^^ xsd:gYear)
}

Table 3: Examples of SPOT generations.
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Model ZOGRASCOPE

iid compositional length

1 Paraphrasis Qwen 3-4B 74.73 73.53 64.08
Llama 3.2-3B 69.87 69.58 64.16

3 Paraphrasis Qwen 3-4B 78.38 77.16 66.56
Llama 3.2-3B 78.68 75.46 64.00

Table 4: Results of SPOT with 1 versus 3 paraphrasis per generated sample.

Model GRAILQA GRAILQA++

iid compositional zero-shot

BYOKG 10k 24.98 21.92 40.39 25.94
BYOKG 50k 33.18 30.00 46.40 33.38
BYOKG 100k 35.50 30.51 49.31 36.91
BYOKG 200k 37.78 32.41 51.49 38.05
SPOT 10k 28.18 23.71 42.34 25.94
SPOT 50k 36.57 34.30 50.32 33.14
SPOT 100k 37.41 34.81 51.88 36.96
SPOT 200k 39.50 39.43 53.31 39.29

Table 5: Execution accuracy of SPOT and BYOKG with training set of different sizes.

for our proto-NL generation. In case of a RDF
graph the schema has the same structure with
the difference that there is no properties section.
Note that for the GRAILQA schema some descrip-
tions were too wordy, so we automatically pro-
cessed them with an LLM to get a shorter de-
scription fit for the proto-NL. For example the re-
lation "medicine.manufactured_drug_form.patent
_expiry_date" came with the associated descrip-
tion "Date on which the last patent(s) protecting
this drug/drug form expire" that was automatically
transformed by the LLM to be "that will expire on".
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� �
"classes ": {

"Person ": {
"description ": "People"

},
.
.
.

"properties ": {
"nhs_no ": {

"description ": "national health service number",
"type": "STRING"

},
.
.
.

"relations ": {
"CURRENT_ADDRESS ": {

"description ": "that lives in",
"domain ": "Person",
"range": "Location",
"reverse_description ": "that is the residence of"

},
.
.
.� �

E Proto-NL Prompt� �
# Task
Here is a list of sentences and 3 paraphrasis for each. Words are changed and
synonyms are used creatively , while maintaining the original meaning accurately.
The exact attribute or property requested is specified. Each piece of

information , when there are more than one , is included. All relational meanings
are preserved.

# Sentence: list the participants of Meeting with the minimum duration that were
held in Room with Location Headquarter that hosted a Meeting with date

05/06/2012
AND the target Meeting discussed Argument that is company growth
# Paraphrasis: 1) Who were the participants in the shortest meeting about
company growth held in a room at the headquarter that also hosted a meeting on
the 5th of June 2012
2) Who were the participants involved in the shortest company growth meeting ,
which took place in the same room at the headquarters that hosted another
meeting on June 5, 2012?
3) Can you identify the participants of the briefest company growth meeting held
in a room at the headquarters , which also hosted a meeting on June 5th , 2012?

[END]

# Sentence: [[QUERY]]
# Paraphrasis:� �

F Zero-shot Baseline Prompt� �
###
Cypher schema:

CLASS: description
Person: People
Location: Locations
Phone: Phone
Email: Email
Officer: Officers
PostCode: PostCode
Area: Areas
PhoneCall: Phone calls
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Crime: Crimes
Object: Criminal Objects
Vehicle: Vehicles

PROPERTY: description
year: year
postcode: post code
call_time: time
nhs_no: national health service number
address: address
name: name
phoneNo: phone number
model: model
badge_no: badge number
areaCode: area code
rank: rank
type: type
call_date: call date
call_duration: call duration (seconds)
email_address: email address
make: car brand
date: date
surname: last name
code: code
last_outcome: processing status
age: age

RELATION: description - domain -> range
CURRENT_ADDRESS: that lives in - Person -> Location
HAS_PHONE: which has - Person -> Phone
HAS_EMAIL: which has - Person -> Email
KNOWS_SN: that is friends with - Person -> Person
KNOWS: who knows - Person -> Person
HAS_POSTCODE: which has - Location -> PostCode
POSTCODE_IN_AREA: that is in - PostCode -> Area
INVOLVED_IN: that is involved in - Vehicle -> Crime
CALLER: that were made to - PhoneCall -> Phone
CALLED: that were received a - PhoneCall -> Phone
KNOWS_PHONE: knows the phone of - Person -> Person
OCCURRED_AT: that occurred at - Crime -> Location
INVESTIGATED_BY: that is investigated by - Crime -> Officer
PARTY_TO: which is involved in - Person -> Crime
FAMILY_REL: that has a family relation with - Person -> Person
KNOWS_LW: that lives with - Person -> Person
LOCATION_IN_AREA: that is included - Location -> Area
###

# Task
Give me the cypher neo4j query for the following question. (Answer with the
query only , do not add anything else).

# Sample
Question: [[QUERY]]

Query:� �
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