“Well, Keep Thinking”’: Enhancing LLM Reasoning
with Adaptive Injection Decoding

Hyunbin Jin®* Je Won Yeom*

Seunghyun Bae* Taesup Kim'

Graduate School of Data Science, Seoul National University
{hyunbin.jin, jewon@908, sh.bae, taesup.kim}@snu.ac.kr

Abstract

Large language models (LLMs) exhibit strong
reasoning abilities, often attributed to few-shot
or zero-shot Chain-of-Thought (CoT) prompt-
ing. While effective, these methods require
labor-intensive prompt engineering, raising
the question of whether reasoning can be in-
duced without reliance on explicit prompts. In
this work, we unlock the reasoning capabili-
ties of LLMs without explicit prompting. In-
spired by zero-shot CoT and CoT-decoding,
we propose a novel decoding strategy that
systematically nudges LLMs to continue rea-
soning, thereby preventing immature reason-
ing processes. Specifically, we monitor the
model’s generation and inject a designated
phrase, whenever the model is likely to halt
or drift away from logical reasoning process.
Our experimental evaluations on diverse reason-
ing benchmarks demonstrate that our proposed
strategy substantially improves LLM reason-
ing capabilities, highlighting the potential of
decoding-based interventions as an alternative
to traditional prompting techniques.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing (NLP), demon-
strating remarkable performance across a wide
range of tasks, including question-answering, code
generation, and machine translation. Scaling up
model size has led to improvements in fluency,
generalization, and sample efficiency (Wei et al.,
2022b). However, despite these advancements,
LLMs continue to struggle with complex reason-
ing tasks such as arithmetic, commonsense reason-
ing, and multi-step logical inference. To address
these challenges, researchers have primarily relied
on prompt engineering techniques, such as few-
shot Chain-of-Thought (CoT) prompting and zero-
shot CoT (Brown et al., 2020; Besta et al., 2023;

* These authors contributed equally to this work.
¥ Corresponding author.

Q. Did the Beatles write any music in the Disco genre?

Next top-k tokens

1: Token: ‘Now' | Probability: 0.305
2: Token: ‘A | Probability: 0.196
3: Token: ‘The’ | Probability: 0.081
4: Token: ‘While' | Probability: 0.052

First, what is Disco? It's a genre of music that | (5:Token: ‘<eos>'| Probabilty: 0.031)
was Popular in the 1970s. It's characterized by | 6: Token: ‘Some’ | Probability: 0.002

a fast tempo, a heavy bassline, and a lot of

synthesizers. It's also known for its danceable
beats and catchy hooks. let's think
Injecting a designated phrase: “Well”

Aynqeqoid ybiH

about the Beatles ...

Figure 1: Overview of our proposed method, Adaptive
Injection Decoding, with injecting a designated phrase
“Well” whenever the model is likely to conclude its
response immaturely with a <eos> token.

Madaan et al., 2023; Wei et al., 2022a; Yao et al.,
2023). These approaches guide LLMs by providing
structured reasoning examples or explicit step-by-
step instructions, significantly improving perfor-
mance on various reasoning benchmarks. However,
they exhibit key limitations in that few-shot prompt-
ing requires human-crafted exemplars, while zero-
shot prompting is highly sensitive to prompt phras-
ing. More recently, some studies have explored
CoT reasoning without prompts by modifying the
decoding strategy (Wang and Zhou, 2023; Wang
et al., 2023). Additionally, a test-time scaling
method has been introduced, which intervenes dur-
ing inference to control test-time compute (Muen-
nighoff et al., 2025).

Despite various efforts to enhance LLM rea-
soning, existing approaches have not directly ad-
dressed the fundamental causes of their reasoning
failures. Through our analysis, we categorize these
failures into three primary types, highlighting the
need for a more targeted intervention. First, models
terminate generation without producing a response
to given questions, returning only the <eos> token,
a phenomenon we refer to as silence. Second, mod-
els often produce responses that lack actual logical
reasoning, responding with uninformative outputs

9989

Findings of the Association for Computational Linguistics: ACL 2025, pages 9989-10018
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Q. Emily was planting vegetables in her garden. She started with 41 seeds and planted 29 of them in the big garden
and in each of her small gardens put 4 seeds each. How many small gardens did Emily have?

4 5 6 7 Emily was planting vegetables in her garden. She started
with 41 seeds and planted 29 of them in the big garden and in each
of her small gardens put 4 seeds each. How many small gardens did

First, we have to find out how many small gardens Emily had. We
know that she planted 4 seeds in each small garden. So, we can
divide the number of seeds she planted in the small gardens by 4. "
29 + 4 = 33. So, Emily had 33 small gardens. Now, we have to find Zero ShOt
out how many seeds Emily planted in the big garden. We know that CoT
she planted 29 seeds in the small gardens. So, we can subtract 29

from 33. 33 - 29 = 4. So, Emily planted 4 seeds in the big garden.

Zero-shot Emily have? 4 5 6 7 Emily was planting vegetables in her garden.
She started with 41 seeds and planted 29 of them in the big garden
and in each of her small gardens put 4 seeds each. How many small
gardens did Emily have? 4 5 6 7 ...

o@o
Zero-shot Well) we know that she planted 29 seeds in the big
+ garden, and 4 seeds in each of her small gardens. So, we can set
up an equation to solve for the number of small gardens she had.
Ours Let's call the number of small gardens x. So, we have 29 + 4x = 41.

Now, we can solve for x. First, we subtract 29 from both sides to get
4x = 12. Then, we divide both sides by 4 to get x = 3. So, Emily had
3 small gardens.

o@o
we know that Zero-shot

Emily planted 29 seeds in the big garden. So, we can subtract 29 CoT

from 41. 41 - 29 = 12. So, Emily planted 12 seeds in the small +

gardens. Now, we have to find out how many small gardens Emily

had. We know that she planted 4 seeds in each small garden. So, Ours

we can divide the number of seeds she planted in the small gardens
by 4. 12 + 4 = 3. So, Emily had 3 small gardens.

Figure 2: Example question and generated answers of Llama-3.1-8B with (a) Standard Zero-shot, (b) Zero-shot +
Ours, (c) Zero-shot-CoT, and (d) Zero-shot-CoT + Ours settings.

or irrelevant patterns, such as numeric sequences
or question repetition, a failure type we call no
reasoning. Finally, in some cases, models initiate
reasoning but halt prematurely, leading to incom-
plete or logically inconsistent answers, which we
refer to as incomplete reasoning.

To address these reasoning failures, we posed a
fundamental question:

How do humans think when solving complex
problems?

When solving complex problems, humans rarely
produce an immediate answer. Instead, they pause,
reflect, and often restart their thought process be-
fore reaching a final conclusion. This process helps
sustain reasoning and leads to more thoughtful and
complete solutions.

Inspired by this, we propose Adaptive Injection
Decoding (AID), a novel decoding strategy that per-
forms test-time intervention to improve the model’s
reasoning process. Our approach is distinct from
conventional decoding strategies in that it injects
a simple guiding phrase during inference to sup-
port the model’s reasoning. This intervention is
triggered dynamically, only when the model shows
signs of prematurely terminating or drifting away
from logical reasoning. Our contributions are as
follows:

* We identify major limitations in LLMs’ rea-
soning as immature reasoning and systemati-
cally classify common reasoning failures.

* We propose a novel test-time intervention that
supports reasoning dynamically with an adap-
tive injection decoding strategy, ensuring logi-

cal continuity.

* Our approach can significantly improve per-
formance across reasoning benchmarks and is
computationally efficient, making it suitable
for practical real-world applications.

2 Observations: Immature Reasoning

We conducted an experiment using Llama 3.1-8B
on the GSM8K dataset to analyze typical failure
modes in its reasoning attempts. Our analysis iden-
tifies recurring patterns in incorrect responses, of-
fering insight into the model’s limitations and po-
tential areas for improvement. The following sec-
tions summarize key observations, with specific
examples provided in Appendix D.

We identify immature reasoning as a major
factor behind the poor reasoning performance of
LLMs. Immature reasoning refers to instances
where the model deviates from or fails to sustain
a coherent reasoning trajectory, leading to incom-
plete, irrelevant, or absent responses. Our analysis
on the model’s responses revealed three distinct
types of immature reasoning.

(Observation 1) Silence The model fails to gen-
erate any response to an input question. This typi-
cally occurs when the model gives up on reasoning
and refrains from attempting an answer. In our
evaluation of Llama 3.1-8B on GSMS8K, 58.05% of
incorrect responses fell into this category. Refer to
Appendix D.1 for examples of this category.

(Observation 2) No Reasoning The model gen-
erates a response but does not engage in actual

9990

Immature Reasoning in GSM8K Dataset

Incomplete
Reasoning
5%

No Reasoning Silence
31% 57%

Figure 3: Distribution of immature reasoning categories
for incorrect answers in GSMS8K using Llama 3.1-8B

reasoning. Instead, it follows learned response pat-
terns, repeats the question, or outputs irrelevant
content (e.g., numeric sequences or HTML) with-
out attempting to answer the question logically.
This issue accounted for 31.7% of incorrect re-
sponses. Refer to Appendix D.2 for examples of
this category.

(Observation 3) Incomplete Reasoning The
model initiates a reasoning process but fails to carry
it through to completion. It may prematurely ter-
minate its reasoning process or deviate from the
original problem-solving task, focusing on irrel-
evant examples or formats. This type of failure
represented 5.45% of incorrect responses. Refer to
Appendix D.3 for examples of this category.

Nevertheless, for problems where none of the
three failure types appeared, the model demon-
strated logically sound reasoning and frequently
arrived at correct answers. In our evaluation of
Llama 3.1-8B on GSMSK, 32.22% of responses
exhibiting such reasoning led to correct solutions.
This suggests that LLMs are not inherently defi-
cient in problem-solving capabilities. Addressing
immature reasoning may pave the way for more
robust and reliable problem-solving capabilities.

3 Adaptive Injection Decoding

To mitigate immature reasoning, we introduce a
novel decoding strategy. Our approach, Adaptive
Injection Decoding (AID), inserts a predefined in-
Jjection phrase (e.g., “Well”) as the next token dy-
namically whenever the probability of the <eos>
token meets a specified criterion. This method is
designed to prevent the model from prematurely

Algorithm 1 Adaptive Injection Decoding

Require: model f(-), prompt z, top-k k, injection prompt
p, using zero-shot-CoT zs_cot, maximum length
max_length

1: if zs_cot then

2: x < x + "\nLet’s think step by step."
3: end if

4: r s

5: cont < False

6: for i = 1 to max_length do

70 p+ f(x)

8: top_k « TopK(p, k)

9: if not cont and <eos> € top_k then
10: rT—z+p
11: r<r4+p
12: cont < True
13: continue
14: end if
15: next_token < arg max(p)
16: if next_token is <eos> then
17: break
18: end if

19: T < x+ next_token
20: r < r+ next_token
21: end for

22: return r

concluding its reasoning process or deviating logi-
cal reasoning.

Given an input query x as an input prompt, the
model f generates a sequence of response tokens
r1,72,...,r; through greedy decoding. At each
decoding step t, if the <eos> token ranks among
the top-k next token predictions, it is replaced
with injection phrase p. The modified sequence
r1,T2,...,7+,p is then fed back into the model
as the next input. The algorithmic details of our
method are provided in Algorithm 1.

To identify the most effective injection phrase,
we explored a range of candidates, including single
words, conjunctions, full sentences, and machine
language expressions. Among these, “Well” con-
sistently outperformed other alternatives, as shown
in Table 2, and was selected for all subsequent
experiments. Further details on the experimental
analysis are discussed later in Section 4.3.

By analyzing token-level probability distribu-
tions, we found that different models exhibit dis-
tinct behaviors in handling the <eos> token. For
instance, Llama-3.1-8B generate <eos> as the top-
ranked token at an early stage, whereas Mistral-
7B-v0.3 and Gemma-3-7B maintain it as a high-
probability candidate before eventually emitting it
later in the sequence. Building on this observation,
we adopted a strategy that triggers the injection
when <eos> appears within the top-k candidates,
instead of restricting it to cases where it holds the

9991

top rank. Further investigated optimal top-k val-
ues for each model in subsequent experiments (see
Section 4.3 for details).

4 Experiments

4.1 Experimental Setup

Models We investigate LL.Ms, including Llama-
3.1-8B, Mistral-7B-v0.3, and Gemma-3-7B (Tou-
vron et al., 2023; Siino, 2024; Mesnard et al.,
2024).

Tasks and Datasets We evaluate our proposed
method across a variety of reasoning tasks, in-
cluding arithmetic reasoning, commonsense rea-
soning and logical reasoning. (a) Arithmetic Rea-
soning: MultiArith (Roy and Roth, 2015) includes
elementary school arithmetic questions. GSM8K
(Cobbe et al., 2021) consists of grade-school-level
math word problems requiring multi-step reason-
ing. (b) Commonsense Reasoning: StrategyQA
(Geva et al., 2021) includes yes/no questions that
require multi-step, strategy-based reasoning. BBH-
Disambiguation QA (Suzgun et al., 2023) consists
of questions on pronoun resolution and ambiguity
detection. (c) Logical Reasoning: BBH-Logical
Deduction (Five Objects) (Suzgun et al., 2023) in-
cludes questions involving logical deduction.

Baselines We compare our method with the fol-
lowing baselines. (a) Zero-shot (i.e., Greedy Decod-
ing): The model generates responses without any
intervention, guidance, or modification. (b) Zero-
shot-CoT (Prompting): An initial prompt is added
to the input to facilitate CoT reasoning. Specifi-
cally, we use the prompt “Let’s think step by
step” to guide progressive problem-solving.

LLM-based Evaluation To assess the accuracy
of the generated responses, we utilize o1-mini
via OpenAl’s chat completion API (version 2024-
09-12) (OpenAl, 2024). The evaluation prompt
template, including grading criteria and method-
ology, is provided in Appendix C. We also com-
pare o1-mini and gpt-4o0-mini with human eval-
uations across multiple datasets using Llama-3.1-
8B (Table 24), where o1-mini shows closer align-
ment to human judgment. Further details are in
Appendix C.

4.2 Results

Table 1 presents the performance of our method
applied to both; Zero-shot and Zero-shot CoT .
Our approach consistently improves performance

across all three models, enhancing results on a wide
range of tasks, including arithmetic, commonsense,
and logical reasoning. These improvements are
reflected in the Avg column of Table 1.

Arithmetic Reasoning In MultiArith, each
model achieves at least a 150% increase in ac-
curacy simply by injecting our proposed phrase
“Well” during inference, even without using Zero-
shot CoT prompting.

For instance, in Llama-3.1-8B, our decod-
ing strategy improves accuracy from 15.56% to
50.56%. When combined with a Zero-shot CoT
prompt, the accuracy further increases to 78.33%.
A similar pattern is observed in Gemma-1.5-7B,
where accuracy rises from 10.00% to 15.00%, and
further to 73.33% with the addition of the Zero-shot
CoT prompt. Likewise, Mistral-7B-v(.3 shows an
improvement from 16.11% to 27.78%, and reaches
37.22% when combined with the Zero-shot CoT
prompt.

Commonsense and Logical Reasoning Along
with arithmetic reasoning, we also observe signifi-
cant improvements in commonsense and logical
reasoning tasks. For instance, Mistral-7B-v0.3
achieves a 20.53% performance gain (16.30% —
36.83%) in StrategyQA and a 18.80% increase
(13.20% — 32.00%) in DisambiguationQA un-
der Zero-shot CoT with our method. Similarly,
Llama-3.1-8B improves from 16.80% to 24.80%
in Logical Deduction under Zero-shot CoT, while
Gemma-3-7B increases from 18.80% to 24.00%
under the same conditions. These results highlight
that even simple intervention during generation can
yield substantial performance gains across a wide
range of reasoning tasks.

Enhancing Prompt-based Reasoning Our
method integrates seamlessly with prompting
techniques, consistently improving performance
compared to prompt-only decoding. As shown
in Table 1, combining our decoding strategy
with an initial prompt consistently outperforms
prompt-only decoding across all datasets. Notably,
this improvement is nearly twice as large as that
achieved in the zero-shot setting. For example, in
MultiArith, where Zero-shot prompting already
provides some improvement, the application of our
method results in additional performance gains.

Recovery from Ineffective Prompting In cer-
tain cases, utilizing Zero-shot CoT prompts can de-
grade accuracy compared to not using any prompts,

9992

Table 1: Accuracy (%) of Llama-3.1-8B, Mistral-7B-v0.3, and Gemma-3-7B models across a wide range of
reasoning tasks. We compared four settings: Zero-shot, Zero-shot + Ours, Zero-shot-CoT, and Zero-shot-CoT +

Ours.
Model Method Arithmetic Commonsense Logical Ave
MultiArith GSM8K StrategyQA DisambiguationQA Logical Deduction
Zero-shot 15.56 6.97 26.35 36.00 28.40 22.66
Llama-3.1-8B Zero-shot + Ours 50.56 34.57 30.13 37.20 32.00 36.90
’ Zero-shot-CoT 77.22 48.90 24.31 32.00 16.80 39.85
Zero-shot-CoT + Ours 78.33 34.34 45.27 34.00 24.80 43.35
Zero-shot 10.00 48.98 31.88 10.80 24.80 25.29
Gemma-3-7B Zero-shot + Ours 15.00 45.26 34.79 16.80 27.20 27.81
Zero-shot-CoT 46.11 38.59 19.36 34.00 18.80 31.37
Zero-shot-CoT + Ours 73.33 44.81 23.44 36.00 24.00 40.32
Zero-shot 16.11 7.73 23.58 34.40 14.80 19.32
Mistral-7B-v0.3 Zero-shot + Ours 27.78 15.31 25.62 37.20 18.00 24.78
| Zero-shot-CoT 29.44 17.21 16.30 13.20 28.80 20.99
Zero-shot-CoT + Ours 37.22 15.39 36.83 32.00 20.40 28.37
Table 2: Injection Phrase Analysis. Accuracy (%) of . =
. L . A SRS R aiaiaiialet bbb DL P
different injection phrases in the MultiArith dataset, ol i A . B
evaluated on the Llama-3.1-8B model. //I TR
60 - e SR . %
S 7
Category Injection Phrase Accuracy \U; el
Step 44.44 R B AP SRR e
. Let 38.33 < 30
Single Word Well 50.56 56
Wait (Muennighoff et al., 2025) | 21.11 Method ¢ iCama-3.1:88
10 —— Zero-shot ®m Mistral-7B-v0.3
And 16.11 —=- Zero-shot-CoT A Gemma-3-7B
Conjunction But 17.78 1 3 5 10
Or 12.78 k
Addition Pool 26.11 Figure 4: The Effect of k£ in AID. We report zero-shot
Conjunction Pool Contrast Pool 20.56 and zero-shot-CoT accuracy on the MultiArith dataset
Mix Pool 2333 while adjusting & (top-k) in AID . Here, k = 0 represents
Ph I mean, 27.22 the case where our method is not applied.
rase
You know, 22.22
I might be wrong. 33.33
Sentence Keep reasonin 12.22 . . :
P & : 36.83%, effectively offsetting the negative effects
<start of text> 27.78 : N
Machine Language \ T4 of prpmptmg and a'lch'1ev1ng th('a best perfo'rmanc?
26.67 on this dataset. A similar trend is observed in Logi-

as demonstrated in Table 1 (e.g., StrategyQA, Dis-
ambiguityQA, Logical Deduction). This detrimen-
tal effect of Zero-shot CoT prompting has been
previously reported. Chakraborty et al. (2023)
highlighted that language model performance is
highly sensitive to prompt phrasing, and manually
designed prompts often lead to suboptimal results
in zero-shot settings. However, our method effec-
tively mitigates these adverse effects, either restor-
ing or even surpassing the performance achieved
through prompting alone. For instance, in Strate-
gyQA, applying a Zero-shot CoT prompt dimin-
ish Mistral-7B-v0.3’s accuracy from 23.58% to
16.30%. In contrast, our method boosts accuracy to

cal Deduction, further validating the effectiveness
of our approach.

4.3 Ablation Study and Analysis

Injection Phrase Analysis Based on the obser-
vations discussed in Section 2, we conducted a
comprehensive ablation study to compare the ef-
fects of different injection words and phrases, as
shown in Table 2. Among all tested options, “Well”
proved to be the most consistently effective and was
selected for our experiments.

We interpret “Well” stands out because it pro-
vides a neutral nudge, encouraging the model to
continue reasoning without implying a specific log-
ical direction or bias. Unlike phrases like “I might
be wrong.” or “Keep reasoning,” which explic-

9993

Table 3: Accuracy (%) of the Llama-3.1-8B model across a wide range of reasoning tasks: four Arithmetic Reasoning
tasks, four Commonsense Reasoning tasks, and two Logical Reasoning tasks.

Method Arithmetic Commonsense Logical
MultiArith GSM8K MATH AQUA CSQA StrategyQA BBH-Date BBH-Disamb BBH-Logic BBH-Web
Zero-shot 15.56 6.97 4.00 15.35 | 65.27 26.35 22.00 36.00 28.40 31.20
Zero-shot + Ours 50.56 34.57 12.80 2441 | 63.88 30.13 20.80 37.20 32.00 34.80
Zero-shot-CoT 77.22 48.90 12.00 29.13 | 49.55 2431 37.20 32.00 16.80 14.80
Zero-shot-CoT + Ours 78.33 34.34 11.60 28.74 | 51.84 45.27 44.80 34.00 24.80 28.00

itly direct the model’s reasoning flow, “Well” does
not steer reasoning in a particular direction. It also
avoids forcing a specific reasoning trajectory, un-
like conjunction words, and does not impose a rigid
structured reasoning path, unlike step-indicating
words. On the other hand, “Well” serves as a subtle
yet compelling signal, encouraging deeper reason-
ing while maintaining flexibility in various types
of problems.

Our finding aligns with previous work showing
that LLMs are highly sensitive to short prompts
or cues, including those that subtly convey the
need for additional reasoning steps (Kim et al.,
2024). Further details and examples of our
injection-phrase experiments are provided in the
Appendix A.

Tuning & for Injection per Model To determine
the appropriate value of k for triggering the in-
jection, we conducted an ablation study evaluat-
ing how different values of k affect model perfor-
mance. We conducted experiments on the Mul-
tiArith dataset, evaluating how accuracy changes
with different k& values in both Zero-shot and Zero-
shot CoT settings. Here, & = 0 indicates that
our method is not applied. As shown in Figure 4,
Llama-3.1-8B achieved its best performance at
k = 2. By comparison, Gemma-3-7B and Mistral-
7B-v0.3 achieved their best performance at k = 2
or k = 5, depending on whether Zero-shot CoT
was applied. After examining these trends, we set-
tled on £ = 2 for Gemma-3-7B and k£ = 5 for
Mistral-7B-v0.3, keeping these settings consistent
in all subsequent experiments.

More Diverse Datasets Beyond the benchmarks
featured in our main results, we expanded our eval-
uation to additional datasets to conduct a more
detailed ablation study with Llama-3.1-8B. (a)
AQUA (Ling et al., 2017): a multiple-choice set
of arithmetic word problems with varying diffi-
culty, (b) CommonsenseQA (Talmor et al., 2019): a
benchmark for commonsense reasoning, (c) BBH-

Table 4: Performance (accuracy %) on AQUA and Mul-
tiArith across varying model scales.

Dataset Model Method Accuracy (%)
Zero-shot 1.67
Zero-shot + Ours 5.56
Llama-3.2-1B Zero-shot CoT 10.00
MultiArith Zero-shot CoT + Ours 15.56
Zero-shot 87.78
Zero-shot + Ours 90.00
QwQ-32B Zero-shot CoT 96.67
Zero-shot CoT + Ours 95.56
Zero-shot 9.84
Zero-shot + Ours 18.50
Llama-3.2-1B Zero-shot CoT 13.78
AQUA Zero-shot CoT + Ours 9.45
Zero-shot 48.82
Zero-shot + Ours 46.46
QVQ-32B 1 o shot CoT 61.81
Zero-shot CoT + Ours 65.36

Date Understanding (Suzgun et al., 2023): which
focuses on temporal and date-related reasoning, (d)
MATH (Hendrycks et al., 2021): high-school level
math problems that extend beyond basic arithmetic,
(e) BBH-Web of Lies (Suzgun et al., 2023): tests
related to logical reasoning in the presence of de-
ceptive or incorrect statements. Notably, GSM8K,
MATH, and AQUA form an difficulty hierarchy
(GSM8K < MATH < AQUA) but exhibit simi-
lar improvement patterns with our approach. As
shown in Table 3, our method provides substan-
tial performance boosts over both Zero-shot and
Zero-shot CoT baselines across arithmetic, com-
monsense, and logical reasoning tasks. For exam-
ple, in the zero-shot setting, our approach improves
accuracy in MultiArith from 15.56% to 50.56% and
in GSMS8K from 6.97% to 34.57%, while consis-
tently outperforming baselines on other challenging
datasets like MATH and BBH-Web of Lies. These
results underscore the effectiveness of our method
in handling a wide range of reasoning tasks.

Model Scales To evaluate the robustness of our
method across models of different sizes, we assess
its performance on a 1B and a 32B model. As
shown in Table 4, AID consistently improves rea-

9994

Model @ Llama-3.1-8B Gemma-3-7B Mistral-7B-v0.3

Avg. Number of Generated Tokens —>

Zs Acc: 15.56%

ZS + Ours 182.79 Acc: 50.56%

ZS-CoT Acc: 29.44%

ZS-CoT + Ours WZERY Acc: 37.22%

Avg. Number of Generated Tokens —>

Zs Acc: 10.00%

ZS + Ours Acc: 15.00%

Z8-CoT Acc: 46.11%

ZS-CoT + Ours Acc:73.33%

Avg. Number of Generated Tokens —>

A Acc: 16.11%

ZS + Ours Acc: 27.78%

ZS-CoT Acc: 29.44%

ZS-CoT + Ours Acc: 37.22%

Figure 5: Accuracy and token usage on the MultiArith
dataset across different models and methods. Our AID
consistently boosts accuracy and often reduces token
usage, highlighting that verbosity alone does not drive
reasoning improvements.

soning performance across different model scales.

For Llama-3.2-1B, AID substantially enhances
performance. On MultiArith, the Zero-shot ac-
curacy increased from 1.67% to 5.56%, while
the Zero-shot CoT accuracy rose from 10.00% to
15.56%. Similarly, on AQUA, the Zero-shot accu-
racy improved from 9.84% to 18.50%. These re-
sults suggest that our decoding strategy effectively
mitigates immature reasoning in smaller models by
enhancing coherence and reliability.

For QwQ-32B (Yang et al., 2024), AID con-
tinues to yield consistent gains. On MultiArith,
the Zero-shot accuracy improved from 87.78% to
90.00%, and on AQUA, the Zero-shot CoT accu-
racy increased from 61.81% to 65.36%. These
findings confirm that AID not only benefits smaller
models but also helps unlock the latent reasoning
potential of larger-scale models.

Improvement of Reasoning Quality We em-
ployed SOCREVAL (He et al., 2024) to assess
reasoning coherence and logical correctness of

Table 5: SOCREVAL scores on the GSM8K dataset,
comparing baseline vs. baseline+Ours (AID) for differ-
ent prompt settings. “Correct” and “Incorrect” refer to
whether the final answer was factually correct or not,
and the scores reflect SOCREVAL'’s assessment of the
reasoning chain.

Init Prompt Baseline Baseline + Ours
Zero-shot (Correct) 3.57 4.34
Zero-shot (Incorrect) 3.68 2.55
Zero-shot-CoT (Correct) 4.14 4.21
Zero-shot-CoT (Incorrect) 3.69 2.53

LLM-generated outputs, beyond mere accuracy.
As shown in Table 5, AID improves SOCREVAL
scores for correct outputs while lowering scores
for incorrect ones, likely due to penalties on ex-
tended but flawed reasoning. Crucially, improve-
ments achieved by AID do not arise from increased
verbosity. Rather, AID enhances accuracy while
reducing token count. (see Figure 5). For instance,
Llama-3.1-8B’s zero-shot accuracy on MultiArith
increased from 15.56% to 50.56% while decreas-
ing token usage from 194.59 to 182.79. The results
underscore the value of well-targeted intervention
rather than merely extending reasoning.

Prompt Injection Elevates Token Certainty
We find that injecting “Well” leads to a significant
increase in the model’s confidence, as reflected
in higher top-1 token probabilities after injection.
To understand this effect, we analyzed the top-1
probability of each generated token before and af-
ter the injection point. Specifically, inserting the
phrase “Well” markedly increases the average of
the mean top-1 probability from 16.12% to 64.48%
(Table 6), elevating model confidence. This inter-
vention aligns with our earlier findings, highlight-
ing that improvement of token-level confidence
can effectively mitigate early stopping and enhance
overall reasoning quality. Figure 6 visually demon-
strates this effect in a sample response from Llama-
3.1-8B on the GSMS8K dataset, illustrating the in-
creased probabilities of the top-1 token and the sta-
bilized moving averages after injection of “Well”.

5 Related Works

A variety of methods have been explored to en-
hance the reasoning capabilities of LLLMs. These
techniques can be broadly categorized into funing-
based, prompt-based, sampling-based, and test-
time approaches. Below, we contextualize our ap-

9995

Top-1 Probability Before & After Injection

] T S
Lo T N 570020 e B UL O AU T SO OO Top-1 Probability
4 J
! 'Y ’ === Injection Time
. 0.8 L TR (b yection ™
= iy wepae e before_mean
= hey \ e r 00N
® 0.6 - g\’ |‘,' after_mean
= : X] MA(w=10, before)
E el TIERE | == MA(W=10, after)
g 1
1
F 0.2 i
1
I
0.0 1
0 100 200 300 400 500

Token Index

Figure 6: Top-1 Probability Before & After Injection. Token-level probability time series for a sample response
from Llama-3.1-8B on the GSM8K dataset. The vertical red dashed line indicates the injection point of the token
"Well". Blue and green dashed lines represent mean probabilities computed separately for segments before and after
injection, respectively. Additionally, dashed orange and magenta curves illustrate the moving averages (window

size = 10) for these respective segments.

Table 6: Effect of injecting “Well” on average top-1
token probability, illustrating how a single-token inter-
vention can significantly raise the model’s confidence.

Method Avg. Top-1 Probability (%)
Baseline 16.12
Ours 64.48

proach within this landscape.

Tuning-Based Approaches Early research on en-
hancing LLM reasoning focused on fine-tuning or
distillation. For instance, instruction tuning (Wei
et al., 2021) trains models on a broad set of tasks
and instructions, improving zero-shot performance
across multiple NLP benchmarks. System 2 distil-
lation (Yu et al., 2023) further refines model rea-
soning by transferring multi-step solutions from
a larger teacher model. Although these methods
can substantially enhance performance, they typi-
cally require large datasets and significant compu-
tational resources. Additionally, recent exploration
into symbolic or Chain-of-Thought distillation (Li
et al., 2024) also heavily relies on the quality of the
larger model’s outputs. Our work diverges from
these in that we tackle reasoning failures purely at
inference time, without additional model training
or data curation.

Prompt Engineering Prompt-based methods
have emerged as a compelling, resource-efficient
alternative to fine-tuning. Chain-of-Thought (CoT)
(Wei et al., 2022a) structures responses into step-by-
step explanations, while extensions such as Tree-of-
Thoughts (Yao et al., 2023) and Graph-of-Thoughts
(Besta et al., 2023) reorganize the reasoning flow

into more complex hierarchies. Other lines of
work employ iterative refinement, as in Self-Refine
(Madaan et al., 2023), where the model iteratively
critiques and updates its solution. Although these
approaches can improve LLM reasoning, they often
involve substantial prompt engineering or multiple
rounds of inference, which can be costly in practice.
In contrast, our method obviates heavy prompt tun-
ing and avoids repeated sampling, opting instead
for a lightweight, decoding-centric solution.

Sampling-Based Methods Approaches based on
sampling seek to improve the reliability of reason-
ing in LLMs by generating multiple candidate so-
lutions. For example, self-consistency sampling
(Wang et al., 2023) aggregates multiple outputs to
select a consensus or majority vote answer, while
universal self-consistency (Chen et al., 2024) ex-
tends this approach to tasks where multiple reason-
ing paths can lead to the correct outcome. These
methods benefit from exploring diverse reasoning
paths, but come at the cost of multiple forward
passes through the model. In many settings, the ad-
ditional computational overhead can be prohibitive.
By contrast, our method performs a single decoding
pass and adaptively extends the reasoning process,
avoiding the need for multiple completions.

Test-Time Strategies Recent work has focused
on inference-time or post-processing methods that
address reasoning shortcomings without altering
the base model or training procedure. Wang et al.
(2025) introduces a penalty mechanism for abrupt
shifts in reasoning flow, while Snell et al. (2023)
proposes adaptive inference that strategically al-
locates resources for verification. Budget forc-

9996

ing (Muennighoff et al., 2025) constrains or termi-
nates Chain-of-Thought decoding under a specified
computational budget. Although these methods
highlight the potential of inference-level interven-
tions, many still rely on specialized heuristics or
additional compute to manage extended reasoning
steps.

By contrast, our work unlocks the latent reason-
ing abilities of LL.Ms without relying on explicit
prompting or incurring additional overhead. Specif-
ically, we mitigate immature reasoning by inserting
a brief injection phrase whenever the model is at
risk of prematurely terminating with the <eos> to-
ken. This simple yet effective approach integrates
seamlessly into standard decoding pipelines and
has been shown to reduce abrupt endings across a
wide range of reasoning tasks.

6 Conclusion

In this work, we addressed the challenge of im-
mature reasoning in LLMs, wherein the model’s
reasoning process terminates prematurely, leading
to silence, no reasoning, or incomplete reasoning.

To mitigate this, we proposed a novel decoding
strategy. Rather than heavily relying on prompt en-
gineering, our approach injects a designated “nudg-
ing” phrase whenever the model is likely to produce
the <eos> token prematurely. This lightweight, test-
time intervention encourages continued reasoning
by acting as an implicit signal that mirrors human
thought patterns.

Extensive experiments across diverse reasoning
tasks—including arithmetic, commonsense, and
logical reasoning—demonstrate that our method
substantially improves performance in both Zero-
shot and Zero-shot CoT settings. Moreover, it pro-
motes reliable reasoning outcomes by compensat-
ing for weak prompts and adapting to varying levels
of task complexity.

Overall, our proposed method, Adaptive Injec-
tion Decoding (AID), offers a promising direc-
tion for unlocking the latent reasoning potential of
LLMs while maintaining computational efficiency
and ease of deployment. Future work could ex-
plore dynamically selecting injected phrases based
on task characteristics, extending the method to
more complex generation tasks, or integrating it
with advanced sampling strategies to further im-
prove robustness and reliability.

Limitations

While our method effectively improves LLM per-
formance, several limitations remain. First, the
injection phrase may require adjustment or replace-
ment depending on the task domain or linguistic
context. Adaptive thresholds, learned classifiers,
or context-aware embeddings could be explored as
potential alternatives in future work. Second, our
experiments focus on English-language reasoning
benchmarks. Extending to multilingual settings
may reveal variations not only in patterns of imma-
ture reasoning but also in the form and effectiveness
of injection phrases. Third, we adopt a single-turn
intervention strategy. While this provides advan-
tages in computational efficiency and implemen-
tation simplicity, multi-turn approaches may elicit
longer and more complex reasoning, leaving a sys-
tematic comparison for future work.

Acknowledgements

This work was supported by the National Re-
search Foundation of Korea (NRF) grants funded
by the Korean government (MSIT) (No. RS-2024-
00345809, Research on Al Robustness Against Dis-
tribution Shift in Real-World Scenarios; and No.
RS-2023-00222663). It was also supported by the
Institute of Information & Communications Tech-
nology Planning & Evaluation (IITP) grant funded
by the Korean government (MSIT) under the Lead-
ing Generative Al Human Resources Development
Program (II'TP-2025-RS-2024-00397085).

9997

References

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger,
M. Podstawski, L. Gianinazzi, J. Gajda, T. Lehmann,
H. Niewiadomski, P. Nyczyk, and T. Hoefler. 2023.
Graph of thoughts: Solving elaborate problems with
large language models.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.

Mohna Chakraborty, Adithya Kulkarni, and Qi Li. 2023.
Zero-shot approach to overcome perturbation sensi-
tivity of prompts. arXiv preprint arXiv:2305.15689.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan
Xiao, Pengcheng Yin, Sushant Prakash, Charles Sut-
ton, Xuezhi Wang, and Denny Zhou. 2024. Universal
self-consistency for large language model generation.
In ICML 2024 Workshop on In-Context Learning
(ICL Poster).

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv:2110.14168 [cs.LG].

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristo-
tle use a laptop? a question answering benchmark
with implicit reasoning strategies. arXiv:2101.02235
[cs.CL]. Accepted for publication in TACL, 2021.

Hangfeng He, Hongming Zhang, and Dan Roth. 2024.
SocREval: Large language models with the socratic
method for reference-free reasoning evaluation. In
Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 2736-2764, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. In NeurIPS 2021
Datasets and Benchmarks Track (Round 2). (Pub-
lished: 19 Oct 2021, Last Modified: 25 Nov 2024).

Kyusik Kim, Hyeonseok Jeon, Jeongwoo Ryu, and
Bongwon Suh. 2024. Will LLMs sink or swim?
exploring decision-making under pressure. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2024, pages 11425-11450, Miami, Florida,
USA. Association for Computational Linguistics.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xi-
ang Ren, Kai-Wei Chang, and Yejin Choi. 2024.
Symbolic chain-of-thought distillation: Small mod-
els can also "think" step-by-step. Preprint,
arXiv:2306.14050.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv:1705.04146 [cs.Al].

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao,
S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye,
Y. Yang, S. Gupta, B. P. Majumder, K. Hermann,
S. Welleck, A. Yazdanbakhsh, and P. Clark. 2023.
Self-refine: Iterative refinement with self-feedback.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi,
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Riviere, Mihir Sanjay Kale, Juliette Love,
Pouya Tafti, Léonard Hussenot, Pier Giuseppe Sessa,
Aakanksha Chowdhery, Adam Roberts, Aditya
Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone,
Amélie Héliou, Andrea Tacchetti, Anna Bulanova,
Antonia Paterson, Beth Tsai, Bobak Shahriari, Char-
line Le Lan, Christopher A. Choquette-Choo, Clé-
ment Crepy, Daniel Cer, Daphne Ippolito, David
Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng
Yan, George Tucker, George-Christian Muraru, Grig-
ory Rozhdestvenskiy, Henryk Michalewski, Ian Ten-
ney, Ivan Grishchenko, Jacob Austin, James Keel-
ing, Jane Labanowski, Jean-Baptiste Lespiau, Jeff
Stanway, Jenny Brennan, Jeremy Chen, Johan Fer-
ret, Justin Chiu, Justin Mao-Jones, Katherine Lee,
Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa
Lee, Lucas Dixon, Machel Reid, Maciej Mikuta,
Mateo Wirth, Michael Sharman, Nikolai Chinaev,
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar
Wahltinez, Paige Bailey, Paul Michel, Petko Yotov,
Rahma Chaabouni, Ramona Comanescu, Reena Jana,
Rohan Anil, Ross Mcllroy, Ruibo Liu, Ryan Mullins,
Samuel L. Smith, Sebastian Borgeaud, Sertan Gir-
gin, Sholto Douglas, Shree Pandya, Siamak Shak-
eri, Soham De, Ted Klimenko, Tom Hennigan, Vlad
Feinberg, Wojciech Stokowiec, Yu-hui Chen, Za-
farali Ahmed, Zhitao Gong, Tris Warkentin, Lu-
dovic Peran, Minh Giang, Clément Farabet, Oriol
Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis
Hassabis, Zoubin Ghahramani, Douglas Eck, et al.
2024. Gemma: Open models based on gemini re-
search and technology. arXiv:2403.08295 [cs.CL].
https://arxiv.org/abs/2403.08295.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. arXiv:2501.19393 [cs.CL]. (v2, last revised
3 Feb 2025).

OpenAl. 2024. Openai ol mini: Advancing cost-
efficient reasoning. Accessed: 2025-06-11.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015

9998

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2307.01563
https://arxiv.org/abs/2307.01563
https://doi.org/10.18653/v1/2024.findings-naacl.175
https://doi.org/10.18653/v1/2024.findings-naacl.175
https://github.com/hendrycks/math
https://github.com/hendrycks/math
https://doi.org/10.18653/v1/2024.findings-emnlp.668
https://doi.org/10.18653/v1/2024.findings-emnlp.668
https://arxiv.org/abs/2306.14050
https://arxiv.org/abs/2306.14050
https://arxiv.org/abs/2403.08295
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743—1752, Lisbon, Portu-
gal. Association for Computational Linguistics.

Marco Siino. 2024. Mistral at SemEval-2024 task 5:
Mistral 7B for argument reasoning in civil procedure.
In Proceedings of the 18th International Workshop
on Semantic Evaluation (SemEval-2024), pages 155-
162, Mexico City, Mexico. Association for Computa-
tional Linguistics.

C. Snell, J. Lee, K. Xu, and A. Kumar. 2023. Scaling
IIm test-time compute optimally can be more effec-
tive than scaling model parameters.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2023. Challenging big-
bench tasks and whether chain-of-thought can solve
them. In Findings of the Association for Computa-
tional Linguistics: ACL 2023, pages 13003-13051.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv:1811.00937 [cs.CL]. Accepted as a long
paper at NAACL 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama:
Open and efficient foundation language models.
arXiv:2302.13971 [cs.CL].

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. H. Chi,
S. Narang, A. Chowdhery, and D. Zhou. 2023. Self-
consistency improves chain-of-thought reasoning in
language models.

X. Wang and D. Zhou. 2023. Chain-of-thought rea-
soning without prompting. Technical report, Google
DeepMind.

Y. Wang, Q. Liu, J. Xu, T. Liang, X. Chen, Z. He,
L. Song, D. Yu, J. Li, Z. Zhang, R. Wang, Z. Tu,
H. Mi, and D. Yu. 2025. Thoughts are all over the
place: On the underthinking of ol-like llms.

J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu,
B. Lester, N. Du, A. M. Dai, and Q. V. Le. 2021.
Finetuned language models are zero-shot learners.
Technical report, Google Research.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter,
F. Xia, E. H. Chi, Q. V. Le, and D. Zhou. 2022a.
Chain-of-thought prompting elicits reasoning in large
language models.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy

Liang, Jeff Dean, and William Fedus. 2022b. Emer-
gent abilities of large language models. Transactions
on Machine Learning Research. Survey Certifica-
tion.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian-
hao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024. Qwen?2.5 technical report. arXiv
preprint arXiv:2412.15115.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao,
and K. Narasimhan. 2023. Tree of thoughts: Deliber-
ate problem solving with large language models.

P. Yu, J. Xu, J. Weston, and I. Kulikov. 2023. Distilling
system 2 into system 1. Technical report, Meta FAIR.

9999

https://doi.org/10.18653/v1/2024.semeval-1.24
https://doi.org/10.18653/v1/2024.semeval-1.24
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD

A Detailed Analysis of Injection Phrases

In this section, we present a detailed study on the effectiveness of various phrase injections at test time,
as summarized in Table 7. Our goal is to explore how small nudge phrases can discourage premature
termination and guide the model toward more extensive and coherent chains of thought. Consistent with
our findings in Section 4.3, we verify here that “Well” is the most consistently effective phrase among all
options tested. This line of inquiry dovetails with prior research demonstrating that LLM decision-making
can be strongly influenced by external prompts, including psychological or social pressures (Kim et al.,
2024).

Category Phrase Accuracy
<start of text> 27.78%
_ 12.22%
Machine Language \n 14.44%
\t 19.44%
26.67%
I 32.22%
The 33.33%
. Let 38.33%
Single Token Well 50.56%
Wait 21.11%
Step 44.44%
And 16.11%
But 17.78%
Or 12.78%
Conjunction So 49.44%
Therefore 33.33%
Because 49.44%
Alternatively 20.56%
Addition Pool 26.11%
Conjunction Pool Contrast Pool 20.56%
Mix Pool 23.33%
. I mean, 27.22%
Discourse Markers You know, 9.92%
Sentence Am I doing alright? 17.22%
(self-doubt) I might be wrong. 33.33%
Sentence I can doit. 17.78%
(self-assurance) I am doing quite well. | 13.38%
Someone else’s voice Keep reasoning. 12.22%
Think deeper. 15.56%

Table 7: Injection Phrase Ablation

Conclusion-Driven Phrases. We observed that phrases prompting the model to continue toward a
conclusion—for example, So, Well, and Because—consistently yielded higher accuracies (e.g., 49.44%,
50.56%, and 49.44%, respectively). By comparison, Therefore performed relatively poorly (33.33%),
likely because it encourages the model to finalize its answer too abruptly. This pattern underscores why
“Well” stood out in our main study: it nudges the model to continue reasoning without prematurely
settling on a final answer.

Phrases Initiating Reasoning. Certain phrases that denote a fresh start in thought, such as Let and Step,
also contributed to improved outcomes (38.33% and 44.44%). Their effectiveness appears to stem from

10000

prompting the model to begin a new sequence of reasoning. However, these gains were still somewhat
lower than those achieved by “Well,” suggesting that “Well” provides a more neutral yet effective cue.

Continuity vs. Disruption. Phrases like And, which force the model to continue enumerating ideas,
did not perform substantially better than the greedy baseline. Similarly, phrases that intentionally change
the direction of thinking, such as But or Or, yielded low accuracy (17.78% and 12.78%), suggesting that
abrupt shifts in reasoning can destabilize the model when it is already uncertain. Moreover, within the
Conjunction Pool, Addition Pool achieves a higher accuracy (26.11%) than both Mix Pool (23.33%) and
Contrast Pool (20.56%). These findings align with the main study’s conclusion that gently reinforcing the
existing reasoning path (e.g., via “Well”) is often more beneficial than forcing a sudden logical pivot.

Self-Doubt or Delay. Although phrases like Wait improve slightly on the baseline (21.11% vs. 15.56%),
they do not show strong gains overall. We surmise that introducing hesitation without constructive
guidance can heighten the model’s uncertainty. Full-sentence prompts expressing self-doubt (e.g., Am [
doing alright?) or self-assurance (I can do it.) often led to immediate termination or repetitive output, thus
hindering performance. Interestingly, the phrase I might be wrong. reached a markedly higher accuracy
(33.33%), echoing the discussion in Section 4.3 that acknowledging potential error can sometimes
encourage more careful reasoning.

Machine Language and Formatting. Interestingly, the use of machine-like phrases (e.g., # or <start
of text>) reached accuracies near or above 25%, indicating that inducing a formatting or structural
shift can be beneficial. We suspect this formatting cue encourages more systematic thinking and helps
avert premature termination. Similarly, inserting \t improved upon the greedy baseline (19.44% vs.
15.56%), possibly by delaying the immediate production of <eos>. However, more verbose sentence-level
injections (e.g., Keep reasoning., Think deeper.) tended to cause the model to either terminate immediately
or restate these prompts, which hindered performance.

Discussion. Overall, these results corroborate our main finding that “Well” is the most consistently
effective injection phrase. Phrases that naturally sustain or refocus the chain of thought—without dictating
a final answer—tend to achieve higher accuracy. “Well” exemplifies a subtle yet impactful nudge, fostering
continued reasoning while preserving flexibility across various problem types. Future investigations might
consider how sentence-level injections (e.g., explicit self-doubt such as I might be wrong.) would scale in
larger LLMs, where nuanced disclaimers could further modulate reasoning under stress or social pressures
(Kim et al., 2024).

A.1 Tllustrative Examples of Phrase Injections

Below, we provide concrete examples demonstrating how specific injection words or phrases can influence
the model’s responses. These examples illuminate common behaviors (e.g., silence, no reasoning,
incomplete reasoning) that certain phrases can mitigate—or in some cases exacerbate. By examining
both improvements and adverse outcomes, we show that while injection phrases often help sustain or
refocus the reasoning process, they may also inadvertently introduce tangential or repetitive outputs if
misapplied.

10001

Silence. When the model (greedy) immediately outputs <eos>, injecting a phrase like Because can
encourage it to elaborate:

Table 8: Zero-Shot Case. The model outputs <eos> token on the first generation, showing Silence.

Q: For Halloween Debby and her sister combined the candy they received. Debby had 32 pieces
of candy while her sister had 42. If they ate 35 pieces the first night, how many pieces do they
have left?

A: <eos> (Silence)

Table 9: Injecting Because helps the model overcome silence, ultimately producing the answer.

Q: For Halloween Debby and her sister combined the candy they received. Debby had 32 pieces
of candy while her sister had 42. If they ate 35 pieces the first night, how many pieces do they
have left?

A: Because the problem is asking for the total number of pieces left, we need to find the total
number of pieces they had. To do this, we need to add the number of pieces each had. 32 + 42 =
74. Now that we know the total number of pieces they had, we can subtract the number of pieces
they ate to find the number of pieces left. 74 - 35 = 39. Therefore, they have 39 pieces of candy
left.

No Reasoning. Similarly, So can redirect the model from meaningless enumeration to a more coherent
answer:

Table 10: Zero-Shot Case. The model repeats meaningless enumeration until reaching the max generation length.

Q: Paige had 11 songs on her mp3 player. If she deleted 9 old songs from it and then added 8 new
songs, how many songs does she have on her mp3 player?

A:1.2.3.4.5.6.7.8.9.10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.
28.29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52.
53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74.75.76. 7.
78.79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101.
102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120.
121. 122. 123. 124. 125.

Table 11: Injecting So helps the model avoid repetitive output and focus on problem solving.

Q: Paige had 11 songs on her mp3 player. If she deleted 9 old songs from it and then added 8 new
songs, how many songs does she have on her mp3 player?
A: 1. 2.50, Paige has 10 songs on her mp3 player.

10002

Incomplete Reasoning. Injecting Well prompts the model to provide step-by-step reasoning instead of a
rushed or partial conclusion:

Table 12: The model provides the correct choice but without showing any reasoning process.

Q: Bianca and her friends were recycling paper for their class. For every 3 pounds they recycled
they earned one point. If Bianca recycled 24 pounds and her friends recycled 3 pounds, how many
points did they earn?

A: 891011 A.7B.8C.9D. 10 Answer: C

Table 13: Injecting Well helps the model complete its reasoning.

Q: Bianca and her friends were recycling paper for their class. For every 3 pounds they recycled
they earned one point. If Bianca recycled 24 pounds and her friends recycled 3 pounds, how many
points did they earn?

A:891011 A.7B.8C.9D. 10 Answer: C Well, Bianca and her friends recycled 24 pounds
and 3 pounds, respectively. So, the total pounds they recycled is 24 + 3 = 27 pounds. For every 3
pounds they recycled they earned one point. So, the total points they earned is 27 / 3 = 9 points.

Therefore. While Therefore might sometimes help finalize a correct answer, we also observed instances
where it led to premature or abrupt conclusions:

Table 14: A case where injecting Therefore helps the model arrive at the correct answer.

Q: Gwen was organizing her book case making sure each of the shelves had exactly 4 books on it.
If she had 5 shelves of mystery books and 3 shelves of picture books, how many books did she
have total?

A: Gwen was organizing her book case making sure each of the shelves had exactly 4 books on it.
If she had 5 shelves of mystery books and 3 shelves of picture books, how many books did she
have total? (The model initially repeats the question.) Therefore, the total number of books is 5*4
+ 3%4 = 32 books.

Table 15: A case where injecting Therefore causes the model to produce an abrupt, incorrect conclusion.

Q: Faye had 34 coloring books. If she gave away 3 of them, but then bought 48 more, how many
would she have total?
A: A.79 B. 81 C. 82 D. 83 E. 84 Therefore, the correct answer is C. (The real answer is 79.)

10003

Let, Step. Phrases like Let or Step can initialize a new reasoning chain, though they may also diverge
from the original chain:

Table 16: A case where injecting Let helps, by initializing a fresh reasoning chain.

Q: For a birthday party Jerry bought 41 regular sodas and 22 diet sodas. If his fridge would only
hold 9 on each shelf, how many shelves would he fill up?

A: Let x be the number of shelves. 9x =41 + 22 9x = 63 x = 7 Jerry would need 7 shelves to hold
all the sodas.

Table 17: A case where injecting Let does not help, as it starts a completely new reasoning chain.

Q: In a video game, each enemy defeated gives you 9 points. If a level has 11 enemies total and
you destroy all but 3 of them, how many points would you earn?

A: 9 x 8 =72 points.Let’s say you have 3 enemies left and you destroy them all. 9 x 3 = 27 points.
72 + 27 =99 points. (The correct answer is 72.)

And, But. Conjunctions such as And or But can cause the model to diverge into tangential queries or
endless hypotheticals:

Table 18: A case where injecting And causes the model to introduce tangential queries.

Q: A company invited 47 people to a luncheon, but 7 of them didn’t show up. If the tables they
had held 5 people each, how many tables do they need?
A: And if the tables they had held 6 people each, how many tables do they need?

Table 19: A case where injecting But causes the model to spiral into endless scenarios.

Q: In a video game, each enemy defeated gives you 9 points. If a level has 11 enemies total and
you destroy all but 3 of them, how many points would you earn?

A: 9 x 8 =72 points. But what if you only destroyed 2 of the enemies? 9 x 2 = 18 points. What
if you destroyed 4 of the enemies? 9 x 4 = 36 points. What if you destroyed 5 of the enemies?
9 x 5 =45 points. What if you destroyed 6 of the enemies? 9 x 6 = 54 points. What if you
destroyed 7 of the enemies? 9 x 7 = 63 points. What if you destroyed 8 of the enemies? 9 x 8 =
72 points. What if you destroyed 9 of the enemies? 9 x 9 = 81 points. What if you destroyed 10
of the enemies? 9 x 10 = 90 points. What if you destroyed 11 of the enemies? 9 x 11 =99 points.
What if you destroyed 12 of the enemies? 9 x 12 = 108 points. What if you destroyed 13 of the
enemies? 9 x 13 = 117 points. What if you destroyed 14 of the enemies? 9 x 14 = 126 points.
What if you destroyed 15 of the enemies? 9 x 15 = 135 points. What if you destroyed 16 of the
enemies? 9 x 16 = 144 points. What if you destroyed 17 of the enemies? 9 x 17 = 153 points.
What if you destroyed 18 of the enemies? 9 x 18 = 162 points. What if you destroyed 19 of the
enemies? 9 x 19 = 171 points. What if you (...keeps making endless scenarios)

10004

I might be wrong. Conveying self-doubt can allow the model to proceed more cautiously and produce a
correct answer, rather than halting:

Table 20: A case where injecting I might be wrong. helps the model proceed and produce the correct answer.

Q: For Halloween Emily received 5 pieces of candy from neighbors and 13 pieces from her older
sister. If she only ate 9 pieces a day, how long would the candy last her?
A: I might be wrong. 1 think it would last 2 days.

I can do it., I am doing quite well. Self-affirming phrases can lead to overconfidence or repetitive
affirmations without solving the problem:

Table 21: A case where injecting I can do it. causes the model to be overconfident, offering no real solution.

Q: A store had 40 oranges in a bin. If they threw away 25 of the old ones and put 21 new ones in
the bin how many would be in the bin?
A: I can do it. 1 just don’t know how to explain it.

Table 22: A case where injecting I am doing quite well. causes the model to loop repetitive affirmations.

Q: Faye had 34 coloring books. If she gave away 3 of them, but then bought 48 more, how many
would she have total?

A: A. 79 B. 81 C. 82 D. 83 E. 841 am doing quite well. 1 am in the 90th percentile. I am in
the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th
percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I
am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th
percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I
am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th
percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I
am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th
percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I
am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th
percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I
am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th
percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I
am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th
percentile. I am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I
am in the 90th percentile. I am in the 90th percentile. I am in the 90th percentile. I am

10005

B Conjunction Pools

As noted in Section A (and shown in Table 7), conjunction-based phrases exhibit notable differences
depending on whether they reinforce existing reasoning or introduce a sharp directional shift. To introduce
controlled variability rather than relying on a fixed injection phrase, we constructed a conjunction pool
consisting of semantically similar phrases. During inference, the injection phrase is randomly sampled
from this pool, allowing for slight variation while preserving its intended effect. Table 23 presents the
complete lists used in our experiments.

Table 23: Conjunction pools used in our experiments.

Pool Conjunctions

ADDITION_POOL {"and", "so", "therefore", "then", "thus", "or", "in addi-
tion", "furthermore" }
CONTRAST_POOL {"however", "but", "on the other hand", "yet", "in contrast",

"nevertheless", "unlike", "instead", "conversely"}
MIX_POOL ADDITION_POOL + CONTRAST_POOL

Specifically, we define separate pools for addition conjunctions, contrast conjunctions, and a mixed set
that combines both. For each instance, an injection phrase is randomly drawn from the relevant pool: the
ADDITION_POOL for reinforcing prior reasoning, the CONTRAST_POOL for shifting direction, and
the MIX_POOL for a broader range of transitions. This randomized selection enables a more flexible
strategy while allowing us to systematically analyze the impact of different conjunction types on model
performance.

C Evaluation Prompt and Human Alignment

We use o1-mini via OpenAl’s chat completion API (version 2024-09-12) (OpenAl, 2024) to assess
correctness in our experiments. In scenarios where LLMs produce freely generated responses rather than
strictly formatted answers, extracting definitive outcomes can be challenging. Consequently, LLM-based
evaluation becomes a practical solution. Among the models we tested, o1-mini showed the most robust
performance and closely matched human judgments, even under these open-ended conditions.

As o1-mini demonstrates advanced language understanding, we specifically designed a detailed set of
grading criteria to minimize misclassification and ensure consistent evaluation outcomes. Our criteria aim
to address various answer formats and potential pitfalls. In particular, the rules instruct o1-mini to:

1. Compare only the final stated answer with the ground truth, ignoring any intermediate reasoning
provided by the Large Language Model (LLM).

2. Verify that the final answer choice aligns with the LLM’s self-generated options (if any), marking
mismatched selections as incorrect.

3. Disregard auxiliary examples or sub-problems introduced by the LLM as part of its reasoning,
focusing strictly on the main query and final response.

4. Consider minor variations in phrasing valid, as long as the intended meaning remains correct.

5. For True/False questions, infer correctness from the overall meaning of the response (e.g., a statement
affirming or denying a proposition) when an explicit “true” or “false” label is not provided.

10006

Evaluation Prompt

GOAL

You are given a question, its correct answer (ground truth), and an LLM’s response.
Your task is to determine whether the LLM’s final answer matches the correct answer.

RETURN FORMAT

Respond with either “correct” or “incorrect” only.

EVALUATION RULES

1. Always judge based on the final answer given by the LLM.
- If the LLM provides reasoning before arriving at a final answer, ignore intermediate steps
and only compare the last stated answer with the ground truth.
- Example:
LLM’s Response: Well, the answer is 24 hours. But how did we get there?
I know that the total amount of money he earned is 7 times the amount of money
he earned from each customer. So, 7(3) =

The final answer here is **21x*x, so compare it with the ground truth.

2. If the LLM selects an incorrect choice from predefined options generated by itself,
mark it incorrect—even if it derives the correct answer in its reasoning.
- Example:
LLM’s Response: (A) 11 (B) 13 (C) 15
Well, I know that 50 - 40 = 10. So she had 10 eggs.
The final answer is (A).

The correct answer is **10xx, but the LLM’s selected choice **(A) 11*x is incorrect.

3. Ignore example problems the LLM generates during reasoning.
- If the LLM solves auxiliary example problems generated by itself before answering the
given question, disregard those and judge based only on its answer to the main question.
- Example:
Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint.
How many total meters does he run a week?
Answer: 540

LLM’s Response:

The distributive property states that...
##H## Example A

Solve for x.

3(x+2) =15 + x = 3

Example B

2(x-3) =10 + x = 8
Example C
4(xt5) =20 + x =0

Concept Problem Revisited

James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint.
3 x3=9

9 x 60 = 540

James runs 540 meters a week.
The final answer is **540%x, which should be compared to the ground truth.

4. Handle answer format variations properly.

- 4.1. If the LLM’s answer matches a choice’s meaning but not its letter label, mark it correct.
- Example:

10007

Question:
What is likely to satisfy someone's curiosity? (A) hear news (B) read book
(C) see favorite show (D) comedy show (E) go somewhere

Answer: A

LLM’s Response: The answer is hearing news.

Since "hearing news" corresponds to choice (A), this is correct.

- 4.2. For multiple-choice questions where the LLM outputs only the letter choice,
ensure it matches the meaning of the correct answer.
- Example:

Answer: (B) read book
LLM’s Response: B

This is correct since (B) corresponds to "read book".
- 4.3. Compare meaning, allowing for slight rewording as long as the answer’s intent is the same.

- 4.4. For True/False Questions, if the LLM does not explicitly state “true” or “false,”
infer its judgment based on the response’s meaning before comparison.
- Example:

Question: Does the moon have its own light? Answer: False

LLM’s Response: The moon does not generate its own light; it only reflects sunlight.

This should be marked correct, as the meaning aligns with "false"”.
Question: {question}
Answer: {answer}

LLM's Response: {llm_answer}

Is the predicted answer correct?

Dataset Multiarith GSMS8K StrategyQA DisambiguationQA Logical Deduction
gpt-4o-mini | 29.44% = 24.56% 6.00% 15.00% 38.00%
ol-mini 15.56% 6.97% 20.00% 40.00% 39.00%
Human 11.11% 2.65% 25.00% 49.00% 38.00%

Table 24: Comparison of LLM-based evaluations (using o1-mini and gpt-4o0-mini) with human evaluation. All
results were obtained via zero-shot generation using Llama-3.1-8B.

10008

D Examples of Immature Reasoning

Immature reasoning refers to instances where LL.Ms fail to complete the Chain of Thought (CoT) reasoning
process. To better understand the nature of these failures, we categorize them into four types and provide
real examples demonstrating each failure pattern. Each failure type is presented with a clear example,
including the input prompt, the model’s incorrect response.

D.1 Silence: Failure to Generate Any Response

Silence occurs when the model fails to produce any output in response to a given question. Instead of
providing even a partial solution or a refusal, the model simply emits no tokens. As shown in our main
analysis, this pattern accounted for 58.05% of incorrect responses in Llama 3.1-8B’s GSMS8K outputs.

Table 25: Llama-3.1-8B (on GSMS8K) terminates with <eos> in 58.05% of problems, failing to generate a complete
response.

Q: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers’ market daily
for 2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?
A: <eos>

D.2 No Reasoning: Generating a Response Without Reasoning

No Reasoning refers to answers that do not exhibit any Chain-of-Thought or logical progression. In
these cases, the model usually outputs repeated phrases, irrelevant content (e.g., HTML tags or unrelated
numeric sequences), or a simple restatement of the question without meaningful analysis.

Table 26: Gemma-3-7B (on MultiArith) repeating the given question instead of solving it.

Q: The school cafeteria had 23 apples. If they used 20 to make lunch for the students and then
bought 6 more, how many apples would they have?

A: The school cafeteria had 23 apples. If they used 20 to make lunch for the students and then
bought 6 more, how many apples would they have? The school cafeteria had 23 apples. If they
used 20 to make lunch for the students and then bought 6 more, how many apples would they
have? The school cafeteria had 23 apples. If they used 20 to make lunch for the students and then
bought 6 more, how many apples would they have? The school cafeteria had 23 apples. If they
used 20 to make lunch for the students and then bought 6 more, how many apples would they
have? The school cafeteria had 23 apples. If they used 20 to make lunch for the students and then
bought 6 more, how many apples would they have? The school cafeteria had 23 apples. If they
used 20 to make lunch for the students and then bought 6 more, how many apples would they
have? The school cafeteria had 23 apples. If they used 20 to make lunch for the students and then
bought 6 more, how many apples would they have? The school cafeteria had 23 apples. If they
used 20 to make lunch for the students and then bought 6 more, how many apples would they
have? The school cafeteria had 23 apples. If they used 20 to make lunch for the students and then
bought 6 more, how many apples would they have? The school cafeteria had 23 apples. If they
used 20 to make lunch for the students and then bought 6 more, how many apples would they
have? The school cafeteria had 23 apples. If they used 20 to make lunch for the students and then
bought 6 more, how many apples would they have? The school cafeteria had 23 apples. If they
used 20 to make lunch for the students and then bought 6 more, how many apples

10009

Table 27: Mistral-7B-v0.3 (on CommonsenseQA) produces unrelated grammar questions in 42.49% of its responses,
as exemplified below.

Q: What do people aim to do at work? (A) complete job (B) learn from each other (C) kill animals
(D) wear hats (E) talk to each other

A: Random Topics: Adjectives and AdverbsAdjectives and AdverbsAdjectives and Adverbs Next
quiz: Grammar The of the sentence is the subject. A. verb B. noun C. adjective D.

adverb

Table 28: Mistral-7B-v0.3 (on MultiArith) outputs irrelevant numeric sequences and terminates generation.

Q: Ned had to wash 9 short sleeve shirts and 21 long sleeve shirts before school. If he had only
washed 29 of them by the time school started, how many did he not wash?

A:1.2.3.4.5.6.7.8.9.10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.
28.29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52.
53.54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77.
78.79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101.
102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120.

121. 12

Table 29: Llama-3.1-8B (on CommonsenseQA) producing additional, unnecessary choices in multiple-choice
scenarios.

Q: When drinking booze what can you do to stay busy? (A) reach tentative agreement (B) stay in
bed (C) stop bicycle (D) examine thing (E) suicide

A: (F) stay busy (G) stay sober (H) stay in shape

Answer: F

Explanation: When drinking booze what can you do to stay busy? When drinking booze what

can you do to stay busy?

10010

Table 30: Gemma-3-7B (on MultiArith) arbitrarily generating answer choices even for non-multiple-choice
questions.

Q: Luke was helping the cafeteria workers pick up lunch trays, but he could only carry 4 trays at
a time. If he had to pick up 20 trays from one table and 16 trays from another, how many trips
will he make?

A: A4

B.5

C.6

D.7

E.8

Show more

Step 1

1of2

Determine the number of trips Luke will make.

20 + 4 = 5 trips

Result
20f2

B.5

Answer: F

Explanation: When drinking booze what can you do to stay busy? When drinking booze what
can you do to stay busy?

10011

Table 31: Gemma-3-7B (on Logical Deduction) generating an answer first before reasoning through it, but the
subsequent solution lacks meaningful reasoning.

Q: The following paragraphs each describe a set of five objects arranged in a fixed order. The
statements are logically consistent within each paragraph. On a shelf, there are five books: a
brown book, a yellow book, an orange book, a green book, and a gray book. The green book is to
the left of the gray book. The brown book is the third from the left. The gray book is the second
from the right. The yellow book is to the left of the green book.

Options:

(A) The brown book is the third from the left

(B) The yellow book is the third from the left

(C) The orange book is the third from the left

(D) The green book is the third from the left

(E) The gray book is the third from the left

A:

(C) The orange book is the third from the left

Solution:

The green book is to the left of the gray book.
The brown book is the third from the left.

The gray book is the second from the right.

The yellow book is to the left of the green book.

The green book is to the left of the gray book.
The brown book is the third from the left.

The gray book is the second from the right.

The yellow book is to the left of the green book.

The green book is to the left of the gray book.
The brown book is the third from the left.

The gray book is the second from the right.

The yellow book is to the left of the green book.

The green book is to the left of the gray book.
The brown book is the third from the left.

The gray book is the second from the right.

The yellow book is to the left of the green book.

10012

Table 32: Mistral-7B-v0.3 (on MultiArith) frequently generates "# Guidance" and "# Example", mimicking a
few-shot style, which reflects the model’s learned pattern for mathematical problem-solving.

Q: The school cafeteria had 23 apples. If they used 20 to make lunch for the students and then
bought 6 more, how many apples would they have?

A: 26

Guidance

The distributive property is a property of multiplication that allows us to distribute a factor over a
sum or difference.

3(a+0b) =3a+3b
5(a —b) = 5a — 5b

The distributive property is used to simplify expressions.

Example A
Simplify: $5(a+b)$
Solution: Use the distributive property to distribute the 5 over the sum.

5(a + b) = 5a + 5b
=ba + 5b
Example B
Simplify: $3(a-b)$
Solution: Use the distributive property to distribute the 3 over the difference.

3(a—b) =3a—3b
=3a—3b

Example C
Simplify: $2(a+b+c)$
Solution: Use the distributive property to distribute the 2 over the sum.

2(a+b+c)=2a+2b+2c
=2a+2b+2c

Concept Problem Revisited

The school cafeteria had 23 apples. If they used 20 to make lunch for the students and then
bought 6 more, how many apples would they have?

The cafeteria had 23 apples. They used 20 to make lunch for the students. They bought 6 more.

23-20=3
2043 =23
The cafeteria had 23 apples. They used 20 to make lunch for the students. They bought 6 more.
23—-20=3
2043 =23
The cafeteria had 23

10013

D.3 Incomplete Reasoning: Resulting in an Incorrect or Partial Answer

Incomplete Reasoning encompasses scenarios where the model initiates a chain of thought but stops
prematurely or changes topic before reaching the correct conclusion. This phenomenon accounted for
5.45% of incorrect GSMS8K responses in Llama 3.1-8B.

Table 33: Llama-3 8B (on MultiArith) failing to derive the final answer by prematurely stopping the Chain-of-
Thought (CoT) process. The correct answer is 80, but the model halts before completing the final step of summing
32 and 48.

Q: Zoe was unboxing some of her old winter clothes. She found 8 boxes of clothing and inside
each box there were 4 scarves and 6 mittens. How many pieces of winter clothing did Zoe have
total?

A: 1. 8 scarves and 6 mittens 2. 8 scarves and 24 mittens 3. 32 scarves and 24 mittens 4. 32
scarves and 48 mittens

Zoe was unboxing some of her old winter clothes. She found 8 boxes of clothing and inside each
box there were 4 scarves and 6 mittens. How many pieces of winter clothing did Zoe have total?
1. 8 scarves and 6 mittens 2. 8 scarves and 24 mittens 3. 32 scarves and 24 mittens 4. 32 scarves
and 48 mittens

10014

Table 34: Mistral-7B-v0.3 (on MultiArith) creating and solving its own few-shot examples instead of solving the
given problem.

Q: Paige had 43 math problems and 12 science problems for homework. If she finished 44 of the
problems at school, how many problems did she have to do for homework?
A:"1.432.443.454. 46

Watch This

Watch this video for help with the concepts in this section.

Guidance

In the last section, we learned how to solve equations with fractions. In this section, we will learn
how to solve equations with decimals.

Example A

Solve the equation for x .

0.2x+03=0.5

Solution:

We can solve this equation by subtracting 0.3 from both sides.

02x+03-03=05-0.3

0.2z =0.2

Now we can divide both sides by 0.2.
0.2z _ 0.2

02 — 02
r=1

Example B

Solve the equation for x .

0.05z +0.02 = 0.07

Solution:

We can solve this equation by subtracting 0.02 from both sides.
0.05z 4+ 0.02 — 0.02 = 0.07 — 0.02

0.05z = 0.05
Now we can divide both sides by 0.05.
0.05¢ _ 0.05
0.05 — 0.05
rz=1
Example C

Solve the equation for z .

0.005x + 0.002 = 0.007

Solution:

We can solve this equation by subtracting 0.002 from both sides.
0.005x + 0.002 — 0.002 = 0.007 — 0.002

0.005x = 0.005

Now we can divide both sides by 0.005

10015

E Error Analysis

This section provides an analysis of the errors observed in applying the AID method. The errors are
categorized into four types. These fall into two broad groups: those where the injection had no effect on
reasoning, and those where it altered the output but failed to overcome immature reasoning. The latter is
further divided into three distinct patterns. The analysis is based on outputs from the Llama-3.1-8B model
on GSMSK, with AID applied using the token “Well” under the & = 2 setting. In each case, the model
subsequently produced an incorrect answer.

E.1 No Effect (4.40%)

When injection occurs after a substantial number of tokens have already been generated, the reasoning
trajectory established prior to the injection often persists. In particular, if an incorrect answer has already
been derived through a sequence of Chain-of-Thought (CoT) steps, the model tends to maintain this
erroneous trajectory even after the injection. One potential solution can be to apply an adaptive k based
on the length of the generation.

Table 35: Despite the injection of "Well," the model maintained the previously derived incorrect answer of 77 and
concluded the generation.

Q: A restaurant has 40 tables with 4 legs and 50 tables with 3 legs. Calculate the total number of legs the restaurant’s
tables have.

A (Gold Answer): 310

A (Zero-shot): How many tables does the restaurant have? 40 tables with 4 legs = 160 legs 50 tables with 3 legs = 150
legs Total number of legs = 160 + 150 = 310 legs Total number of tables = 310/4 = 77.5 The restaurant has 77 tables.
A restaurant has 40 tables with 4 legs and 50 tables with 3 legs. Calculate the total number of legs the restaurant’s
tables have. How many tables does the restaurant have? 40 tables with 4 legs = 160 legs ... (repetition)

A (Zero-shot + Ours): How many tables does the restaurant have? 40 tables with 4 legs = 160 legs 50 tables with 3
legs = 150 legs Total number of legs = 160 + 150 = 310 legs Total number of tables = 310/4 = 77.5 The restaurant
has 77 tables. A restaurant has 40 tables with 4 legs and 50 tables with 3 legs. Calculate the total number of legs the
restaurant’s tables have. How many tables does the restaurant have? 40 tables with 4 legs = 160 legs 50 tables with 3
legs = 150 legs Total number of legs = 160 + 150 = 310 legs Total number of tables = 310/4 = 77.5 The restaurant has
77 tables. Well, I think that the restaurant has 77 tables.

E.2 Immature — Immature (32.11%)

The injection prevented silence but failed to induce meaningful reasoning, resulting in a continuation of
immature reasoning.

Table 36: Although the injection successfully broke the model’s silence, it led to a loop of meaningless repetition.

Q: A tub of ice cream costing $13 is now sold at $11. A packet of milk was sold at a discount of $0.5. How much will
you save if you buy 2 tubs of ice cream and 4 packets of milk?

A (Gold Answer): 6
A (Zero-shot): (Silence)

A (Zero-shot + Ours): Well, you will save $2.5. This is because the discount is 13% of $13 and 10% of $5. The total
discount is $2.5. This is the same as 23% of $11. So, the discount is 23% of $11. This is the same as 23% of $11. So,
the discount is 23% of $11 ... (repetition)

10016

E.3 Mature — Immature (0.29%)

The injection of "Well" can occasionally disrupt an otherwise coherent Chain-of-Thought (CoT) reasoning
process. Even when greedy generation initially succeeds in producing a correct answer through mature
reasoning, such injection may cause the model to deviate from the original trajectory and arrive at an
incorrect conclusion.

Table 37: Prior to the injection of "Well," the model correctly answered 16 through coherent reasoning. However,
the injection triggered a shift toward irrelevant and immature reasoning.

Q: Cynthia eats one serving of ice cream every night. She buys cartons of ice cream with 15 servings of ice cream per
carton at a cost of $4.00 per carton. After 60 days, how much will she spend on ice cream?
A (Gold Answer): 16

A (Zero-shot): How many cartons will she buy? Let x be the number of days. The number of cartons she buys is
4x/15. The cost of each carton is $4.00. The total cost is 4x/15*4. After 60 days, the total cost is 4*60/15%4 = $64.00.
She will buy 4*60/15 = 16 cartons.

A (Zero-shot + Ours): How many cartons will she buy? Let x be the number of days. The number of cartons she
buys is 4x/15. The cost of each carton is $4.00. The total cost is 4x/15%4. After 60 days, the total cost is 4*60/15%4
=$64.00. She will buy 4*60/15 = 16 cartons. Well, I’m not sure what you mean by "serving" of ice cream. If you
mean a scoop, then you can use the same method as above. If you mean a cup, then you can use the same method as
above. If you mean a pint, then you can use the same method as above. If you mean a quart, then you can use the same
method as above. If you mean a gallon, then you can use the same method as above. If you mean a half-gallon, then
you can use the same method as above. If you mean a pint, ... (repetition)

E.4 Immature — Mature, but Failure (63.20%)

The injection successfully triggered logical reasoning, but the response remained incorrect due to earlier
incorrect context or computational mistakes.

Table 38: The model initially generates answer choices arbitrarily, then produces a correct solution via appropriate
Chain-of-Thought reasoning after the injection. However, it ultimately selects one of the earlier, incorrect choices,
which does not include the correct answer derived from the reasoning.

Q: A water tank is filled with 120 liters of water. Celine used 90 liters of water from the tank to water her small garden.
She was then able to collect rainwater that is twice as much as what was left. How many liters of water are in the tank
now?

A (Gold Answer): 90

A (Zero-shot): A. 60 liters B. 120 liters C. 180 liters D. 240 liters A water tank is filled with 120 liters of water. Celine
used 90 liters of water from the tank to water her small garden. She was then able to collect rainwater that is twice as
much as what was left. How many liters of water are in the tank now? A. 60 liters B. 120 liters C. 180 liters D. 240
liters

A (Zero-shot + Ours): A. 60 liters B. 120 liters C. 180 liters D. 240 liters A water tank is filled with 120 liters of
water. Celine used 90 liters of water from the tank to water her small garden. She was then able to collect rainwater
that is twice as much as what was left. How many liters of water are in the tank now? A. 60 liters B. 120 liters C. 180
liters D. 240 liters Well, we know that Celine used 90 liters of water from the tank to water her small garden. So, that
means that there are 120 - 90 = 30 liters of water left in the tank. She was then able to collect rainwater that is twice as
much as what was left. So, we know that the amount of rainwater collected is 2 x 30 = 60 liters. So, the total amount
of water in the tank now is 30 + 60 = 90 liters. So, the answer is B.

10017

F Artifact Licenses

All artifacts employed in this study (i.e., models and datasets) are strictly governed by their respective
license agreements. Specifically, models such as Llama-3.1-8B, Llama-3.2-1B, Mistral-7B-v0.3, Gemma-
3-7B and QwQ-32B are subject to the terms and conditions set forth by their creators, which include
usage restrictions, redistribution rights, and potential attribution requirements. For instance, some models
may allow non-commercial research use but restrict commercial applications.

Likewise, the datasets utilized (e.g., GSM8K, MultiArith, StrategyQA, BigBench-Disambiguation
QA, and BigBench-Logical Deduction) are released under open-access or research-oriented licenses.
Researchers are advised to review any additional clauses that detail citation requirements, limitations on
commercial use, or derivative works.

We confirm that all experiments in this work were conducted in strict compliance with these licenses.
Any redistributions of the models or datasets, as well as any derivative works, must similarly adhere to
the terms specified by the original authors and/or dataset providers. Detailed license information for
each artifact can be found in the respective original publications and/or in the supplementary materials
accompanying this paper.

10018

