
Findings of the Association for Computational Linguistics: ACL 2025, pages 9959–9988
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Beyond Numeric Rewards: In-Context Dueling Bandits with LLM Agents

Fanzeng Xia1, Hao Liu2, Yisong Yue2, Tongxin Li1,
1The Chinese University of Hong Kong, Shenzhen

2California Institute of Technology, Pasadena
fanzengxia@link.cuhk.edu.cn, litongxin@cuhk.edu.cn

{hliu3, yyue}@caltech.edu

Abstract

In-Context Reinforcement Learning (ICRL) is
a frontier paradigm to solve Reinforcement
Learning (RL) problems in the foundation
model era. While ICRL capabilities have been
demonstrated in transformers through task-
specific training, the potential of Large Lan-
guage Models (LLMs) out-of-the-box remains
largely unexplored. This paper investigates
whether LLMs can generalize cross-domain to
perform ICRL under the problem of Dueling
Bandits (DB), a stateless preference-based RL
setting. We find that the top-performing LLMs
exhibit a notable zero-shot capacity for relative
decision-making, which translates to low short-
term weak regret across all DB environment
instances by quickly including the best arm
in duels. However, an optimality gap still ex-
ists between LLMs and classic DB algorithms
in terms of strong regret. LLMs struggle to
converge and consistently exploit even when
explicitly prompted to do so, and are sensi-
tive to prompt variations. To bridge this gap,
we propose an agentic flow framework: LLM
with Enhanced Algorithmic Dueling (LEAD),
which integrates off-the-shelf DB algorithm
support with LLM agents through fine-grained
adaptive interplay. We show that LEAD has
theoretical guarantees inherited from classic
DB algorithms on both weak and strong re-
gret. We validate its efficacy and robustness
even with noisy and adversarial prompts. The
design of such an agentic framework sheds
light on how to enhance the trustworthiness
of general-purpose LLMs generalized to in-
context decision-making tasks.

1 Introduction

Transformers pretrained with interactive datasets
have led to the emergence of In-Context Rein-
forcement Learning (ICRL) (Laskin et al.; Lee
et al., 2024), where models can infer Reinforce-
ment Learning (RL) tasks from interaction his-

( ,  )𝖠𝗋𝗆1(t) 𝖠𝗋𝗆2(t)

The reward is  𝗋(t)

……

  or  ?!"#1(t) !"#2(t)

I prefer  !"#1(t)

 
 

Env

Incorrect !

Preference Feedback

Numeric Awards 

 13.11 > 13.8

LLM Agent

LLM Agent

Multi-Armed Bandit

Dueling Bandit

 13.11 > 13.8

  or  ?!"#1(t) !"#2(t)

I prefer  !"#1(t)

 
 

Env

Incorrect !

Preference Feedback

Numeric Awards 

 13.11 > 13.8

LLM Agent

LLM Agent

Multi-Armed Bandit

Dueling Bandit

I prefer  𝖠𝗋𝗆1(t)

Preference FeedbackNumeric Rewards 

LLM Agent

 𝖠𝗋𝗆1(t)

DB EnvMAB Env

Figure 1: In-context reinforcement learning of an LLM
agent in a Multi-Armed Bandit (MAB) environment
and a Dueling Bandit (DB) environment.

tories as context and make effective decisions
without parameter updates. Through trial and
error, these models can self-improve their poli-
cies purely in-context. Recent investigations into
LLMs’ ICRL capabilities in environments with nu-
meric rewards have reported notable failure cases,
e.g., LLM agents being vulnerable to adversarial
loss functions and suffering from high regret com-
pared to classic algorithms such as Follow-The-
Regularized-Leader (FTRL) (Park et al.), and ex-
hibiting failures in exploration within Multi-Armed
Bandit (MAB) problems (Krishnamurthy et al.).
Even with inference-time algorithm guidance, an
optimality gap persists between LLMs and classic
MAB algorithms (Nie et al., 2024). These results
highlight the need for further research in non-trivial
algorithmic interventions to elicit desirable ICRL
behavior in LLM agents.

The failure cases encountered by LLMs may be
attributed to intrinsic difficulties in processing nu-
meric rewards, especially in tasks where patterns
are difficult to express in natural language. Re-
cent findings have pointed out that LLMs often
struggle with simple numerical comparisons (e.g.,
incorrectly judging 13.11 to be larger than 13.8),
and there has been a notable lack of emphasis on
evaluating the relative comparisons among the deci-
sions they generate. Figure 1 shows a toy example
illustrating the in-context interaction between an
LLM agent and different environment settings. To
disentangle the complexities introduced by numer-
ical rewards, this paper focuses on the problem

9959



of Dueling Bandits (DB) (Yue et al., 2012; Zoghi
et al., 2014b), a stateless preference-based rein-
forcement learning setting (Wirth et al., 2017; Saha
et al., 2023) that extends the classic MAB model
by querying for preference feedback between se-
lected pairs of arms to identify the best one. In DB,
the agent learns through binary outcome (win or
lose) of a noisy comparison between the two se-
lected arms. This setup is particularly useful when
eliciting explicit feedback is challenging or when
the feedback is inherently comparative, such as the
taste of food and product attractiveness (Yue et al.,
2012). DB has attracted significant attention due to
its applicability in information retrieval (Yue and
Joachims, 2009), recommendation systems (Sui
et al., 2017), and online ranker evaluation (Zoghi
et al., 2014b). We frame our investigation with the
following question:

Are LLMs effective in-context agents for solving
the problem of dueling bandits?

The DB problem poses distinctive challenges as
a relative decision-making instance, particularly
due to the sparse nature of the relative rewards.
This sparsity complicates the in-context decision-
making process, as it restricts the feedback ob-
tained from interactions, introducing a level of
difficulty not typically seen in conventional ban-
dit problems. Even though reduction from DB
to standard MAB exists (Ailon et al., 2014; Saha
and Gaillard, 2022), it remains unclear how LLMs
would perform in DB with preference feedback
rather than numeric rewards. There are conceptual
differences between them, similar to those between
Reinforcement Learning from Human Feedback
(RLHF) (Stiennon et al., 2020) and standard RL,
where impossibility results can be found in (Wang
et al., 2024b).

While task-specific training of large sequence mod-
els can yield promising ICRL results, it is often
impractical due to the substantial computational
resources required. Similar to the settings in (Kr-
ishnamurthy et al.; Nie et al., 2024; Mirchandani
et al., 2023; Chen et al., 2024), we evaluate the
emergent zero-shot abilities (Wei et al.) of ICRL
in general-purpose LLMs under the dueling bandit
problem, without re-training or fine-tuning. We
summarize our main results below.

Evaluation of LLMs’ emergent zero-shot abili-
ties of in-context DB. We go beyond numeric re-
wards to evaluate the performance of LLM agents

in terms of both strong and weak regret for mak-
ing decisions in DB by comparing against various
baseline DB algorithms via a case study. We found
that our top-performing LLM has the zero-shot rel-
ative decision-making ability sufficient to achieve
low weak regret in DB, which significantly dif-
fers from that in classic MAB settings (Krishna-
murthy et al.). Notably, GPT-4 TURBO can serve
as an effective decision-maker for dueling bandits
in terms of weak regret, quickly selecting the best
arm in duels with low variance across a range of
instances. However, consistent with (Nie et al.,
2024), we found that an optimality gap exists be-
tween LLMs and classic DB algorithms in terms of
strong regret. LLMs’ performance is hindered by
over-estimation bias in the exploration stage and
lack of convergence criterion in the exploitation
stage. This highlights the need for non-trivial al-
gorithmic interventions to achieve cross-domain
generalization.

Effective and robust agentic flow framework
for in-context DB. To address the identified op-
timality gap and enhance the trustworthiness of
in-context LLM agents in DB tasks, in Section 4.1,
we propose an agentic flow framework, LLM with
Enhanced Algorithmic Dueling (LEAD) that inte-
grates off-the-shelf Explore-then-Exploit DB algo-
rithms with LLM agents. This framework enables
the fine-grained adaptive interplay between DB al-
gorithms and in-context LLM agents, pushing for-
ward from the naive algorithm-guided support used
in (Nie et al., 2024). As an illustrative example,
we demonstrate how the Interleaved Filter2 (IF2)
algorithm can be incorporated with LLM agents in
this framework. We show that LEAD has theoreti-
cal guarantees, with experiments demonstrating its
efficacy and robustness across various prompting
scenarios.

2 Preliminaries

In this section, we briefly introduce the problem of
dueling bandits (DB) and establish the necessary
notation for this paper. Additional useful defini-
tions can be found in Appendix B.3.1.

Dueling bandits. In a fundamental context-free
K-armed dueling bandit problem setting (Yue et al.,
2012), a learner interacts with the environment by
selecting two arms Arm1(t) and Arm2(t) from a
set of K arms {b1, . . . ,bK} for a noisy comparison

9960



(a duel), at each round t ∈ {1, . . . ,T} as Figure 1 il-
lustrates. The outcome of a duel between two arms
(i, j) is probabilistic. More precisely, the event that
an arm bi wins against b j is a Bernoulli random
variable with a parameter denoted by Pr(bi ≻ b j).
For notational convenience, we normalize Pr(bi ≻
b j) such that Pr(bi ≻ b j) = ε(bi,b j)+1/2, where
εi j :− ε(bi,b j) ∈ (−1/2,1/2) is a measure of the
distinguishability between arms bi and b j, which
is stationary over time and is symmetric such that
εi j = −ε ji for all i, j ∈ [K] :− {1, . . . ,K}. Finally,
for notational convenience, we define a preference
matrix P = [εi j]i, j∈[K].

In-context LLM agents for dueling bandits. We
consider an LLM agent with policy π interacting
with a K-armed dueling bandit environment in-
context. At each round t ∈ {1, . . . ,T}, the LLM
agent selects a pair of arms (Arm1(t),Arm2(t))
from the set {b1, . . . ,bK} based on a natural lan-
guage instruction Prompt(P,Ht ,R) (see Figure 7),
consisting of three parts:

• Problem Description P: a natural language de-
scription of the DB problem, including the num-
ber of arms K, the time horizon T , and the task
objective.

• History Ht : an externally summarized interac-
tion history (Krishnamurthy et al.) up to round t,
which includes a sequence of pairwise dueling
results and the empirical probabilities.

• Reasoning R: the zero-shot chain-of-thought
(CoT) reasoning (Kojima et al., 2022) that en-
courages the LLM agent to reason about the
problem in a structured manner.

The LLM agent’s policy can be represented as:

(Arm1(t),Arm2(t)) = π (Prompt(P,Ht ,R)) . (1)

The goal is to maximize the cumulative reward
over some time horizon T , where the reward is
the sum of the unknown probabilities of the two
chosen arms beating the best arm (Condorcet win-
ner). We can quantify performance as minimizing
the cumulative regret, either in the strong or weak
sense (see Eq.(3) and Eq.(4)).

Strong and weak regret. Throughout this paper,
we assume the standard setting that a Condorcet
winner (CW) exists (Sui et al., 2017; Wu and Liu,
2016; Zoghi et al., 2014b; Yue et al., 2012). The
CW denoted as b∗ is an arm that is preferred over
all the other arms, i.e., b∗ = bi if εi j > 1/2 for all

j ∈ [K]\{i}. We consider two performance metrics:
(i) strong regret (SR), which evaluates the total
preference gap between b∗ and both selected arms;
(ii) weak regret (WR), which compares b∗ only
with the better of the two arms. Detailed definitions
and settings are provided in Appendix B.3.1.

Related works. Our work contributes to the grow-
ing community of intersection between LLMs and
decision-making. We summarize the detailed re-
lated works about dueling bandits, LLM agents for
bandits, and LLMs for in-context decision-making
in the Appendix A.

3 LLMs as Standalone In-Context
Decision-Makers

To evaluate the LLMs’ efficacy for solving DB
problems in-context, in this section, we use LLMs
as standalone decision-making agents and compare
them with classic DB algorithms. Our evaluation
is two-fold: First, in Figures 2 and 9, we compare
the performance of LLMs and classic algorithms
in terms of the strong and weak regret (see Eq.(3)
and Eq.(4), with standard deviation). Second, we
delve into the experimental results and analyze the
success and failure modes of LLM agents.

3.1 Experimental results

Implementation details of experiments. In Ap-
pendix C, we provide the following implemen-
tation details: (i) The LLM configurations and
prompting templates; (ii) The baseline algorithms
used for comparison; (iii) The DB environments,
including transitive and intransitive cases; (iv) The
scale setup of our experiments.

For brevity, we present our initial analysis fo-
cused on the Transitive-Easy instance (Fig-
ure 2). The analysis is qualitatively similar for
the Transitive-Hard instance (see Figure 9 in
Appendix). We analyze the results in terms of
the strong and weak regret defined in Section 2.
In the following sections, we will mainly focus on
GPT-4 TURBO, which is our top-performing LLM,
highlighting its success and failure modes.

Emergence of in-context DB abilities. While
GPT-3.5 TURBO and GPT-4 fail to solve the DB
problem, GPT-4 TURBO consistently outperforms
state-of-the-art DB baselines in weak regret on the
Transitive Case (see Figures 2 and 9). This reveals

9961



0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Steps (t)

0

100

200

300

400

500

600

700

800

C
um

ul
at

iv
e 

S
tro

ng
 R

eg
re

t (
Tr

an
si

tiv
e-

E
as

y)

BTM
SAVAGE
IF
RMED
RCS
RUCB
VDB

SelfSparring
DTS
GPT-3.5-Turbo
GPT-4
GPT-4-Turbo
Llama3.1(8B)
o1-preview

0 50 100
0

20

40

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Steps (t)

0

50

100

150

200

250

300

C
um

ul
at

iv
e 

W
ea

k 
R

eg
re

t (
Tr

an
si

tiv
e-

E
as

y)

BTM
SAVAGE
IF
RMED
RCS
RUCB
VDB

SelfSparring
DTS
GPT-3.5-Turbo
GPT-4
GPT-4-Turbo
Llama3.1(8B)
o1-preview

0 50 100
0

10

20

Figure 2: Comparisons between LLM agents and DB algorithms. Left and Right: strong and weak regret for the
Transitive-Easy instance. Results for Transitive-Hard are in Figure 9.

that the in-context DB abilities emerge as the gen-
eral capabilities grow in general-purpose LLMs.
Figure 13 (Left) illustrates the fraction of duels
including the best arm across different time inter-
vals. GPT-4 TURBO outperforms other LLMs and
the DB baselines throughout the entire timeline.
These findings suggest that GPT-4 TURBO can ef-
fectively process the preference feedback obtained
from duels and make informed decisions to quickly
identify and include the best arm in its duels.

Stable performance across different instances.
GPT-4 TURBO demonstrates low variance com-
pared to other LLMs and DB baselines across vary-
ing levels of difficulty. As shown in Figure 14,
GPT-4 TURBO exhibits the lowest average gener-
alized variance of strong and weak regret in both
instances. This highlights its ability to maintain a
stable decision-making process in DB.

Best Arm Identification: LLMs’ in-context
dueling bandit abilities emerge as the general
capabilities grow. The Condorcet Winner is con-
sistently selected in duels via GPT-4 TURBO,
leading to exceptional weak regret performance
with minimal variance on the Transitive Case.

Exploration vulnerability. In the exploration
stage, we observe that GPT-4 TURBO tends to
quickly narrow down to a small subset of arms (al-
though usually containing the Condorcet Winner)
and repeatedly compare these arms. In contrast, the
baselines exhibit more diverse and explicit explo-
ration patterns. This behavior suggests that GPT-
4 TURBO may overestimate the quality of arms
that win their initial comparisons based on lim-
ited historical data. Based on these observations,
we hypothesize that if GPT-4 TURBO happens to
sample a sequence of comparisons that favors sub-

optimal arms early on, it can get stuck comparing
these arms indefinitely. To test this hypothesis, we
conducted experiments using noisy prompts with
biased history. Our results in Figure 16 confirm
that GPT-4 TURBO’s exploration strategy is in-
deed vulnerable to biased history initialization and
can converge to local optima.

Exploitation inability. Despite GPT-4 TURBO’s
outstanding weak regret performance, it fails to
consistently converge to a single best arm to duel
against itself, even when the prompt setting ex-
plicitly calls for it. Unlike baselines with explicit
stopping conditions, GPT-4 TURBO relies on its
inherent language modeling capabilities to deter-
mine when to stop exploring. Consequently, in
the later exploitation stage, GPT-4 TURBO keeps
comparing the same top arms without committing
to a single winner (see Figure 3). This suggests
that the language modeling objective alone may
not be sufficient for LLMs to generalize effectively
in complex decision-making tasks like DB.

Lack of Robust Strategy: LLMs’ perfor-
mance can be hindered by noisy and adversarial
prompts due to overestimation bias in the explo-
ration stage and the lack of convergence criteria
in the exploitation stage.

Biased understanding of DB problem during
pretraining. Our two best-performing LLMs,
GPT-4 TURBO and O1-PREVIEW, exhibit system-
atic biases regarding the DB problem, likely due
to a lack of exposure to similar tasks during pre-
training. Specifically, they incorrectly assume that
an arm cannot duel with itself (the convergence
case), even when explicitly prompted to do so (see
examples in Appendix C.2.3). This misunderstand-
ing makes the DB problem an out-of-distribution

9962



1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Ea
sy

H
ar
d

GPT-4-Turbo Self-Sparring DTS

Figure 3: Comparison of duel selection trajectories among GPT-4 TURBO, SELF-SPARRING, and DTS on the
Transitive-Easy (Top Row) and Transitive-Hard (Bottom Row) instances. The decision trajectories of GPT-4
TURBO exhibit a clear pattern of continuous exploration without converging to the best arm. In contrast, SELF-
SPARRING and DTS demonstrate structured exploration patterns and convergence properties.

(OOD) task for LLMs, and in-context instructions
fail to fully override this internal bias. Conse-
quently, LLM agents cannot completely align with
problem descriptions due to the inherent limita-
tions of in-context learning, which cannot really
generalize to OOD tasks (Wang et al., 2024a). Fig-
ure 13 supports these observations: O1-PREVIEW

demonstrates better reasoning capabilities by tran-
sitioning from exploration to exploitation effec-
tively and achieving lower strong regret than GPT-
4 TURBO. However, its inference-time CoT mecha-
nism reinforces its internal biased understanding of
DB, resulting in bad weak regret performance due
to the selection of two suboptimal arms in duels.

Systematic Biases: LLMs out-of-the-box lack
a fundamental understanding of the DB problem
and instead intuitively choose the next pair of
arms to compare based on dueling history.

Scalability. To evaluate whether LLMs can gen-
eralize their exceptional weak regret performance,
we conduct experiments from two perspectives:
(i) Removing transitivity in preference structures:
we change from transitive cases to intransitive
cases that violate SST and STI (see Figures 10
and 11). The analysis of Intransitive-Easy
and Intransitive-Hard is qualitatively similar:
LLMs fail to replicate their long-term weak regret
performance in transitive cases when faced with
intransitive instances. However, their short-term
weak regret performance remains exceptional; (ii)
Increasing the number of arms: as illustrated in Fig-
ure 12, from K = 5 to K = 10, GPT-4 TURBO’s
performance exhibits a noticeable long-term de-
cline with the increase in K. While LLMs still beat
all the DB baselines in the initial steps, they strug-
gle to effectively infer the relative strengths among
a larger number of arms in the long run. These

findings suggest that while LLMs exhibit emer-
gent abilities for relative decision-making rooted
in linguistic knowledge, their effectiveness only
generalizes to short-term scenarios. The long-term
performance is hindered by a larger number of
arms and LLMs’ lack of fundamental understand-
ing of intransitive cyclic structures.

Success of short-term generalization: Al-
though LLMs’ long-term strong and weak regret
performance degrades when introducing intran-
sitive preference structures or a large number of
arms, their short-term weak regret performance
remains surprisingly exceptional across all in-
stances (see subfigures in 2, 9, 10, 11, 12).

As a summary, in-context LLM agents’ linguistic
prior allows them to quickly identify the Condorcet
Winner from the dueling history in the short term
(for both Transitive Case and Intransitive Case),
but it is vulnerable. To further investigate the algo-
rithmic behavior of LLMs and develop more robust
and effective in-context decision-making strategies,
we seek to answer the following questions:

[Q1] Can we develop an Algorithm-Enhanced in-
context DB agent with a theoretical guarantee?

[Q2] How does it perform compared to standalone
LLM agents and classic DB algorithms?

4 Algorithm-Enhanced LLMs for
Dueling Bandits

Classic DB algorithms based on the Explore-then-
Exploit framework, such as Interleaved Filter 2
(IF2) (Yue et al., 2012), are known to be near-
optimal, with matching regret upper and lower
bounds up to multiplicative constants. To ad-
dress the challenges identified in Section 3.1 of
using standalone LLM agents for DB, we pro-

9963



pose an algorithm-enhanced approach: LLM
with Enhanced Algorithmic Dueling (LEAD) to
demonstrate the possibility of integrating off-the-
shelf DB algorithm support with LLM agents
through fine-grained adaptive interplay. Our frame-
work, LEAD, enjoys both a regret guarantee and
strong empirical performance.

4.1 Algorithmic Design of LEAD

In this section, we present the design intuitions of
LEAD. We begin by discussing the desirable prop-
erties for an effective Algorithm-Enhanced LLM
framework. Based on these considerations, we pro-
pose an agentic framework design LEAD, where
we can incorporate any Explore-then-Exploit DB
algorithm (Zoghi et al., 2014b) during inference.
As an illustrative example, we use IF2 (Yue et al.,
2012) to demonstrate how off-the-shelf algorithms
can be integrated within LEAD and provide a de-
tailed description.

Desirable properties for LLM augmentation. To
address [Q1], we seek an algorithmic framework
with the following properties: (i) A clear, sym-
bolic logical structure that allows for easy integra-
tion with LLM & Algorithm suggestions; (ii) A
well-defined exploration-exploitation trade-off that
leverages the LLMs’ exploration behavior while
ensuring convergence; (iii) Strong theoretical guar-
antees to maintain robustness with various prompt-
ing scenarios.

Therefore, the Explore-Then-Exploit structure
is particularly well-suited for LLMs (see Ap-
pendix B.1 for a detailed illustration). By selecting
an Explore-Then-Exploit DB algorithm for LEAD,
we address [Q1]. As an example, we use IF2 (Yue
et al., 2012) as a base algorithm to illustrate the
theoretical guarantee and empirical performance.
This approach can be applied similarly to other
algorithms in the Explore-Then-Exploit family.

Algorithmic framework. The procedures of the
LEAD are illustrated in Figure 4 and presented in
Algorithm 1 (see more details in Appendix B.2).
LEAD (IF2 base) maintains a confidence parame-
ter δ and a threshold parameter ε that control the
algorithm’s confidence of matches between arms.
The key components of LEAD (IF2 base) are:

• Phase 1 (LLM Phase): Utilization of LLM recom-
mended arms. The agentic framework maintains
a set of candidate arms B. Given two arms sug-

gested by an LLM agent, the framework begins
with finding a winner between them, denoted by
bLLM. The winning arm bLLM is then matched with
each remaining arm b ∈ B. This phase continues
until bLLM is defeated or all arms in B have been
matched. The variable TrustLLM controls the exe-
cution of the LLM phase, and is set to False when
bLLM is defeated by another arm, indicating the
LLM’s suggestions are no longer trusted.

• Phase 2 (DB Phase): Roll back to IF2. If bLLM
is defeated, the framework switches to implement
one round of IF2 with an incumbent arm bIF2 se-
lected from an estimated preference matrix P̂.

After Phase 2, the algorithm-enhanced agent re-
peats Phase 1 until B only contains the best arm.
Algorithm 1 and Figure 4 summarize the phases
above, with details delegated to Appendix B.2.

4.2 Theoretical Guarantees for LEAD

In this section, we begin by identifying the vulner-
ability of using standalone LLM agents for dueling
bandits in Theorem 4.1. Then we provide the the-
oretical guarantees of LEAD in Theorem 4.2 and
4.3, demonstrating its efficacy and convergence.

Theorem 4.1 (Vulnerability). For the dueling ban-
dits problem with K arms and time horizon T , there
exists a preference structure and an attacker strat-
egy with budget Φ(T ), such that any standalone
LLM agent, whose policy is represented by Eq.(1)
and whose worst-case behavior under the origi-
nal prompt satisfying Assumption 4, will suffer an
expected regret of Ω(min{Φ(T ),T/K}).
The proof of Theorem 4.1 is provided in Ap-
pendix B.3.2. This vulnerability highlights the
need for a more robust approach to use in-context
LLM agents while offering theoretical guarantees
under diverse prompting scenarios.

Regret Bounds. Following the algorithmic de-
sign of LEAD in Section 4.1, LEAD (IF2 base)
inherits the theoretical guarantees of IF2 (see Ap-
pendix B.3.1), while nontrivially leveraging the
benefits of LLMs’ exceptional weak regret perfor-
mance for exploration across a range of instances.
Specifically, LEAD (IF2 base) has the following
theoretical guarantee:

Theorem 4.2 (Expected Regret). Suppose for t ≥
TLLM, the arms recommended by an LLM agent
contain the best arm b∗. Under Assumptions 1-3,
the expected strong regret of LEAD (IF2 base)

9964



           LLM Phase

DB Phase

(bLLM, b), b ∈ B

Updated  B

(bALG, b), b ∈ B

(bLLM1, bLLM2)
Match Arms

bLLM

Estimated Best Arm  b̂

Dueling history Wins every matchLoses any match

            DB Algorithm
Explore-then-Exploit 

Procedure
If  |B | ≥ 1

If  |B | = 0

Match Arms
Env

Candidate Arms  B = {b1, …, bk}

LLM Agent

Figure 4: Main components of the proposed LEAD agent in Algorithm 1 are illustrated: (i) The blue-colored part
represents the LLM phase. (ii) The grey-colored part indicates the DB phase. (iii) The Algorithmic Procedures are
detailed in Appendix B.2. (iv) The black arrows denote shared interactions between components. (v) The dotted
arrows represent the input and output.

satisfies E [SR(LEAD)]≤ Õ((K logT )/ε1,2) , and
the expected weak regret can be bounded by

E [WR(LEAD)]≤min
{

Õ
(

TLLM +
K logK

ε1,2

)
,

Õ
(

K logT
ε1,2

)}
. (2)

where Õ(·) hides poly-logarithmic factors of T .

Note that Theorem 4.2 is general such that we do
not assume any specific adversarial behaviors of
the LLM agent, including Assumption 4. The proof
of Theorem 4.2 is provided in Appendix B.3.2.
The required assumptions are precisely stated in
Appendix B.3.1. Theorem 4.2 establishes a best-
of-both-worlds result in terms of the efficacy and
robustness of LEAD.

Efficacy. As illustrated in Figures 2, 3, and
9, LEAD has the potential to identify the
best arm after a short exploration stage. This
results in strong and weak regret bounds of
Õ(TLLM +(K/ε1,2) logK) and O(TLLM), respec-
tively, that are independent of the horizon length
T , provided the LLM agent suggests a pair of arms
that includes the best arm b∗. Furthermore, when
the prompt contains extra textual context that can
infer the relative preferences between arms, TLLM
will become smaller, further enhancing the best-
case performance. We consider it an important
direction for future work within the Contextual
Dueling Bandit framework (Dudík et al., 2015).

Guaranteed convergence. Additionally, both
the strong and weak regret for LEAD are

guaranteed to satisfy a worst-case upper bound
of Õ((K/ε1,2) logT ), which is only worse
than the information-theoretic lower bound of
Ω((K/ε1,2) logT ) in (Yue et al., 2012) by a poly-
logarithmic factor of T . The worst-case upper
bounds on the strong and weak regret hold re-
gardless of the specific prompting scenario, en-
suring that LEAD maintains its theoretical guar-
antees even in the presence of noisy or adversarial
prompts, as considered in Theorem 4.1. This safety
guarantee is particularly important in practical ap-
plications, where the prompts provided to the LLM
agent may not always be optimal.

The following theorem indicates that the additional
term (K logK)/ε1,2 in (2) is almost tight. Its proof
is provided in Appendix B.3.2.

Theorem 4.3 (Converse). Given any algorithm
ALG for dueling bandits, there exists an LLM
agent recommending arms such that if ALG sat-
isfies E [WR(ALG)] ≤ TLLM (here, TLLM is de-
fined in Theorem 4.2.), then it must hold that
E [SR(ALG)]≥ E [WR(ALG)] = Ω(T ).

4.3 Empirical Evaluation of LEAD

Regarding [Q2], we design a two-fold evaluation
to assess efficacy and robustness. The evaluation
is conducted on the Transitive-Easy instance,
which provides higher distinguishability, allowing
us to observe convergence and regret differences
within a practical number of steps. First, we com-
pare the strong and weak regret of LEAD against

9965



0 50 100 150 200 250 300
Time Steps (t)

0

20

40

60

80

100
C

um
ul

at
iv

e 
S

tro
ng

 R
eg

re
t

IF2
GPT-4-Turbo
SelfSparring
DTS
LEAD (IF2 base with delta = 0.1)
LEAD (IF2 base with delta = 0.2)
LEAD (IF2 base with delta = 0.4)

0 50 100 150 200 250 300
Time Steps (t)

0

5

10

15

20

25

30

35

C
um

ul
at

iv
e 

W
ea

k 
R

eg
re

t

IF2
GPT-4-Turbo
SelfSparring
DTS
LEAD (IF2 base with delta = 0.1)
LEAD (IF2 base with delta = 0.2)
LEAD (IF2 base with delta = 0.4)

Original Biased History Reversed Goal
Prompt Perturbations

200

400

600

800

1000

1200

1400

1600

1800

C
um

ul
at

iv
e 

S
tro

ng
 R

eg
re

t

GPT-4-Turbo (3000 Steps)
GPT-4-Turbo (2000 Steps)
LEAD (IF2 base, Converged)
IF2 (Converged)

Figure 5: Comparisons between LEAD, GPT-4 TURBO, and baseline algorithms (IF2, SELF-SPARRING and
DTS). Left and Middle: strong and weak regret on the Transitive-Easy instance. Right: robustness evaluation
under prompt perturbations (prompts are in Appendix C.2.2).

state-of-the-art baseline algorithms to validate its
efficacy. Second, we investigate the robustness of
LEAD with noisy and adversarial prompts.

4.3.1 Efficacy Evaluation: Strong Regret and
Weak Regret

Hyperparameters. In our implementation of
LEAD (see Algorithm 1), there are two hyper-
parameters: the threshold parameter t, which con-
trols the maximum number of comparisons be-
tween arms, and the confidence parameter δ , which
determines the confidence level for pruning sub-
optimal arms. For the threshold parameter t, we
considered values from the set {50,100,200}, and
for the confidence parameter δ , we explored values
from {0.1,0.2,0.4}. After fine-tuning, we found
that setting t = 50 and δ = 0.4 provided the best
performance in terms of cumulative regret.

We evaluate the cumulative strong and weak regret
performance of the proposed LEAD with different
confidence parameter settings (δ = 0.1,0.2,0.4)
and t = 50: Figure 5 (Left and Middle) demon-
strates that LEAD exhibits competitive perfor-
mance across different δ values. For strong regret,
δ = 0.1 results in more conservative exploration,
leading to slightly higher regret compared to base-
lines. As δ increases (δ = 0.2 or 0.4), LEAD
achieves lower cumulative strong regret, outper-
forming all the baselines at δ = 0.4 due to more
aggressive exploration to identify the optimal arm
sooner. Similarly, for weak regret, LEAD con-
sistently achieves superior performance. When
δ = 0.2 and δ = 0.4, LEAD effectively identi-
fies and includes the optimal arm in comparisons.
These hyper-parameter values strike a balance be-
tween the number of comparisons required to iden-
tify the best arm and the confidence level for prun-
ing suboptimal arms, enabling LEAD to efficiently
explore and exploit the available arms in-context

for the dueling bandits setting.

4.3.2 Robustness Evaluation: Noisy and
Adversarial Prompts

IF-Enhanced LLMGPT-4-Turbo 
O

rig
in

al
 

Pr
om

pt
B

ia
se

d 
H

is
to

ry
R

ev
er

se
d 

G
oa

l

LEAD (IF2 base)

Figure 6: Duel selection trajectory comparison between
GPT-4 TURBO and LEAD under different prompt set-
tings (see Figures 7 and 8). (i) Top Row: With the
original prompt, LEAD leverages GPT-4 TURBO’s ex-
ploration ability and guarantees convergence through
the IF2 phase. (ii) Middle Row: With a noisy prompt
(biased history), LEAD overcomes the limitation of
standalone GPT-4 TURBO getting trapped in local op-
tima by employing uniform comparisons in the IF2
phase. (iii) Bottom Row: With an adversarial prompt
(reversed goal), LEAD maintains robust behavior de-
spite the adversarial modification. Across all scenarios,
LEAD demonstrates superior performance and robust-
ness compared to standalone GPT-4 TURBO.

Recent studies (Loya et al., 2023; Krishnamurthy
et al.) have emphasized the importance of varying
prompts to elicit the desired behavior from LLMs
in decision-making tasks, highlighting the poten-
tial limitations of prompt quality. Results obtained
from a single prompt template may lead to unre-
liable conclusions that cannot be generalized to
real-world situations where optimal prompts are
often unavailable. Thus, we evaluate the robust-
ness of LEAD by employing two types of prompt

9966



perturbations (see Figure 8) along with the original
prompt (see Figure 7). Across all scenarios, LEAD
demonstrates superior performance and robustness
compared to standalone GPT-4 TURBO.

Original prompt. Under the initial prompt,
LEAD leverages the LLM’s ability to quickly iden-
tify the best arm through exploration. As shown
in Figure 6 (Top Row), we observe that LEAD
benefits from the LLM’s exploration ability by
initializing with the best arm as the incumbent
when entering the DB phase. Compared to GPT-4
TURBO, convergence to the Condorcet winner is
guaranteed for LEAD with high probability.

Biased history. We inject an incorrect history into
the prompt, where each non-optimal arm initially
wins against the best arm 10 times, while keeping
the underlying preference matrix unchanged. LLM
agents are observed to get trapped in local optima,
where LEAD overcomes this by employing uni-
form comparisons in the DB phase to escape such
suboptimal exploration modes.

Reversed goal. When the prompt is adversarially
modified from maximizing reward to minimizing,
the LLM consistently recommends non-optimal
arms after its exploration stage. Even with adver-
sarial prompts, LEAD still achieves near-optimal
cumulative strong regret. Since the LLM’s explo-
ration capability is used within the bounded length
of the MATCH ARMS procedure, the impact of this
adversarial attack is mitigated.

Figure 5 (right) presents the cumulative strong re-
gret results comparing LEAD against standalone
LLM agents and the IF2 algorithm across three
prompt designs. It is worth noting that LEAD
with δ = 1/(T K2) (consistent with IF2) achieves
near-optimal cumulative regret with low variance
even with noisy and adversarial prompts, validat-
ing the regret guarantee in Theorem 4.2. LEAD
and IF2 converge to the best arm within 2000 steps,
while GPT-4 TURBO’s cumulative expected regret
continues to increase, revealing the instability of
standalone in-context LLM agents.

5 Conclusion

This paper evaluates LLMs as in-context decision-
makers for context-free dueling bandits (DB) with
a Condorcet Winner, offering the first systematic
insights into their strengths and limitations. Our
findings reveal that LLMs’ decision-making in

DB, driven by linguistic priors, achieves excep-
tional weak regret performance across both tran-
sitive and intransitive environment instances in
the short-term. However, LLMs lack the neces-
sary criteria for convergence and long-term gen-
eralization to hard scenarios, leading to an opti-
mality gap between LLMs and classic DB algo-
rithms in terms of strong regret. To bridge this
gap, we propose LEAD, an agentic flow frame-
work that integrates off-the-shelf DB algorithms
with LLM agents through fine-grained adaptive in-
terplay. This framework provides theoretical guar-
antees and ensures robust performance even under
noisy and adversarial prompts. Moving beyond
the limitations of traditional numeric rewards, it
sheds light on how language-based reasoning can
be robustly generalized from words to actions.

6 Limitations

This work primarily focuses on the fundamental
context-free Dueling Bandit (DB) setting, explor-
ing the performance and generalization of Large
Language Models (LLMs) within this relative
decision-making framework. The scope of this
work is limited to this specific setting, and does not
address the complexities introduced by other types
of DB environments. The following limitations are
noteworthy: (i) The exploration of LLMs in con-
junction with other ongoing regret-minimization
algorithms is not considered here; (ii) The perfor-
mance of LLMs under alternative winner defini-
tions, such as Borda and Neumann winners is not
explored; (iii) The paper does not examine LLMs’
behavior in other DB settings, such as contextual
dueling bandits, multi-dueling bandits, and adver-
sarial dueling bandits. Expanding the scope to
solve these limitations is an important direction for
future work.

7 Acknowledgment

We would like to thank all the anonymous review-
ers for their helpful comments. Tongxin Li is
the corresponding author. This work was sup-
ported in part by the National Natural Science
Foundation of China (NSFC) under Grant No.
72301234; the Guangdong Basic and Applied Ba-
sic Research Foundation (No. 2025A1515011311);
the PengCheng Peacock Supporting Scientific Re-
search Fund; and the Guangdong Provincial Key
Laboratory of Mathematical Foundations for Arti-
ficial Intelligence (No. 2023B1212010001).

9967



References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Nir Ailon, Zohar Karnin, and Thorsten Joachims. 2014.
Reducing dueling bandits to cardinal bandits. In In-
ternational Conference on Machine Learning, pages
856–864. PMLR.

Ali Baheri and Cecilia Alm. 2023. Llms-augmented
contextual bandit. In NeurIPS 2023 Foundation Models
for Decision Making Workshop. NeurIPS 2023.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: I. the method of
paired comparisons. Biometrika, 39(3/4):324–345.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn,
Karol Hausman, Alexander Herzog, Daniel Ho, Julian
Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. 2023.
Do as i can, not as i say: Grounding language in robotic
affordances. In Conference on robot learning, pages
287–318. PMLR.

Dingyang Chen, Qi Zhang, and Yinglun Zhu. 2024. Ef-
ficient sequential decision making with large language
models. In Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing, pages
9157–9170.

Miroslav Dudík, Katja Hofmann, Robert E Schapire,
Aleksandrs Slivkins, and Masrour Zoghi. 2015. Con-
textual dueling bandits. In Conference on Learning
Theory, pages 563–587. PMLR.

Mohammad Hajiesmaili, Mohammad Sadegh Talebi,
John Lui, Wing Shing Wong, et al. 2020. Adversar-
ial bandits with corruptions: Regret lower bound and
no-regret algorithm. Advances in Neural Information
Processing Systems, 33:19943–19952.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang,
Daisy Zhe Wang, and Zhiting Hu. Reasoning with lan-
guage model is planning with world model. In NeurIPS
2023 Workshop on Generalization in Planning.

Wassily Hoeffding. 1994. Probability inequalities for
sums of bounded random variables. The collected
works of Wassily Hoeffding, pages 409–426.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, et al. 2023. Inner
monologue: Embodied reasoning through planning with
language models. In Conference on Robot Learning,
pages 1769–1782. PMLR.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in neu-
ral information processing systems, 35:22199–22213.

Junpei Komiyama, Junya Honda, Hisashi Kashima, and
Hiroshi Nakagawa. 2015. Regret lower bound and opti-
mal algorithm in dueling bandit problem. In Conference
on learning theory, pages 1141–1154. PMLR.

Akshay Krishnamurthy, Keegan Harris, Dylan J Fos-
ter, Cyril Zhang, and Aleksandrs Slivkins. Can large
language models explore in-context? In ICML 2024
Workshop on In-Context Learning.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio
Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Stenberg Hansen, Angelos Filos,
Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. In The Eleventh Interna-
tional Conference on Learning Representations.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chan-
dak, Chelsea Finn, Ofir Nachum, and Emma Brunskill.
2024. Supervised pretraining can learn in-context rein-
forcement learning. Advances in Neural Information
Processing Systems, 36.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and
Mihaela van der Schaar. Large language models to
enhance bayesian optimization. In The Twelfth Interna-
tional Conference on Learning Representations.

Manikanta Loya, Divya Sinha, and Richard Futrell.
2023. Exploring the sensitivity of llms’ decision-
making capabilities: Insights from prompt variations
and hyperparameters. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
3711–3716.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-
An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. 2023. Eureka:
Human-level reward design via coding large language
models. In 2nd Workshop on Language and Robot
Learning: Language as Grounding.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter,
Danny Driess, Montserrat Gonzalez Arenas, Kanishka
Rao, Dorsa Sadigh, and Andy Zeng. 2023. Large lan-
guage models as general pattern machines. In Confer-
ence on Robot Learning, pages 2498–2518. PMLR.

Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H
Chi, Quoc V Le, and Minmin Chen. 2024. Evolve:
Evaluating and optimizing llms for exploration. arXiv
preprint arXiv:2410.06238.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744.

Chanwoo Park, Xiangyu Liu, Asuman E Ozdaglar, and
Kaiqing Zhang. Do llm agents have regret? a case
study in online learning and games. In The Thirteenth
International Conference on Learning Representations.

9968



Robin L Plackett. 1975. The analysis of permutations.
Journal of the Royal Statistical Society Series C: Ap-
plied Statistics, 24(2):193–202.

Aadirupa Saha and Pierre Gaillard. 2022. Versatile du-
eling bandits: Best-of-both-world analyses for online
learning from preferences. In ICML 2022-39th Interna-
tional Conference on Machine Learning, pages 1–25.

Aadirupa Saha, Aldo Pacchiano, and Jonathan Lee.
2023. Dueling rl: Reinforcement learning with tra-
jectory preferences. In International conference on
artificial intelligence and statistics, pages 6263–6289.
PMLR.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario
Amodei, and Paul F Christiano. 2020. Learning to
summarize with human feedback. Advances in Neural
Information Processing Systems, 33:3008–3021.

Yanan Sui, Vincent Zhuang, Joel W Burdick, and
Yisong Yue. 2017. Multi-dueling bandits with depen-
dent arms. In UAI.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. 2023. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971.

Maegan Tucker, Ellen Novoseller, Claudia Kann, Yanan
Sui, Yisong Yue, Joel W Burdick, and Aaron D Ames.
2020. Preference-based learning for exoskeleton gait
optimization. In 2020 IEEE international conference
on robotics and automation (ICRA), pages 2351–2357.
IEEE.

Tanguy Urvoy, Fabrice Clerot, Raphael Féraud, and
Sami Naamane. 2013. Generic exploration and k-armed
voting bandits. In International conference on machine
learning, pages 91–99. PMLR.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent
with large language models. Transactions on Machine
Learning Research.

Qixun Wang, Yifei Wang, Yisen Wang, and Xianghua
Ying. 2024a. Can in-context learning really gener-
alize to out-of-distribution tasks? arXiv preprint
arXiv:2410.09695.

Yuanhao Wang, Qinghua Liu, and Chi Jin. 2024b. Is
rlhf more difficult than standard rl? a theoretical per-
spective. Advances in Neural Information Processing
Systems, 36.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Bar-
ret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten
Bosma, Denny Zhou, Donald Metzler, et al. Emergent
abilities of large language models. Transactions on
Machine Learning Research.

Christian Wirth, Riad Akrour, Gerhard Neumann, and
Johannes Fürnkranz. 2017. A survey of preference-
based reinforcement learning methods. Journal of Ma-
chine Learning Research, 18(136):1–46.

Huasen Wu and Xin Liu. 2016. Double thompson sam-
pling for dueling bandits. Advances in neural informa-
tion processing systems, 29.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom
Griffiths, Yuan Cao, and Karthik Narasimhan. 2024.
Tree of thoughts: Deliberate problem solving with large
language models. Advances in Neural Information Pro-
cessing Systems, 36.

Yisong Yue, Josef Broder, Robert Kleinberg, and
Thorsten Joachims. 2012. The k-armed dueling bandits
problem. Journal of Computer and System Sciences,
78(5):1538–1556.

Yisong Yue and Thorsten Joachims. 2009. Interactively
optimizing information retrieval systems as a dueling
bandits problem. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages
1201–1208.

Yisong Yue and Thorsten Joachims. 2011. Beat the
mean bandit. In Proceedings of the 28th international
conference on machine learning (ICML-11), pages 241–
248. Citeseer.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire
Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most
prompting enables complex reasoning in large language
models. In The Eleventh International Conference on
Learning Representations.

Masrour Zoghi, Shimon Whiteson, Remi Munos, and
Maarten Rijke. 2014a. Relative upper confidence bound
for the k-armed dueling bandit problem. In Interna-
tional conference on machine learning, pages 10–18.
PMLR.

Masrour Zoghi, Shimon A Whiteson, Maarten De Rijke,
and Remi Munos. 2014b. Relative confidence sampling
for efficient on-line ranker evaluation. In Proceedings
of the 7th ACM international conference on Web search
and data mining, pages 73–82.

9969



Appendix

This appendix provides supplementary information and additional experimental results to support the
main text. The content is organized into three main parts:

A. Related Works

B. Theoretical Part: Algorithm Design and Analysis of LEAD

• Appendix B.1 presents the algorithm design logic using Explore-then-Exploit methods.
• Appendix B.2 describes the LEAD algorithm stated in Section 4.1, detailing its key features and

implementation remarks.
• Appendix B.3.1 presents the necessary definitions, assumptions and lemmas for the theoretical

analysis of LEAD in Section 4.2.
• Appendix B.3.2 proves Theorem 4.1, 4.2, and 4.3, establishing LEAD’s regret bounds.

C. Experimental Part: Prompt Design and Supplementary Results

• Appendix C.1 illustrates the implementation details of our experiments.
• Appendix C.2.1 illustrates the transitive and intransitive environments construction.
• Appendix C.2.2 illustrates the prompt design and prompt perturbations logic.
• Appendix C.2.3 provides exemplars of GPT-4 TURBO to showcase their behavior.
• Appendix C.3 presents supplementary experimental results, providing further insights into the

performance and behavior of the algorithms in Sections 3 and 4.

A Related Works

We provide the detailed related works as follows.

Dueling bandits. The problem of dueling bandits was initially introduced in (Yue et al., 2012). Various
methods have been proposed to tackle the task since then. These methods can be broadly classified into
two categories as Explore-Then-Exploit methods and Ongoing Regret Minimization methods according
to (Zoghi et al., 2014b). Explore-Then-Exploit methods focus on identifying the best arm with high
confidence before exploiting it, such as Interleaved Filter (IF) (Yue et al., 2012) and Beat the Mean
(BTM) (Yue and Joachims, 2011), etc. In contrast, Ongoing Regret Minimization methods explicitly
target the objective of minimizing cumulative regret, including Relative Upper Confidence Bound
(RUCB) (Zoghi et al., 2014a) and Self-Sparring (Sui et al., 2017), etc. Dueling bandit problem and
preference feedback in general has a wide variety of applications, including recommendation systems
(Yue et al., 2012), robotics (Tucker et al., 2020), and most recently, the training algorithm of large
language models, such as Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022).

LLM agents for multi-armed bandits. Several recent works have explored evaluating the capabilities
of LLMs in bandit problems. For example, (Baheri and Alm, 2023) proposed an approach to enhance
contextual bandits by integrating LLMs as encoders. The LLMs’ ability to capture rich semantic and
syntactic information from textual contexts is leveraged to provide the algorithm with a more informative
representation of the context. The LLM-augmented algorithm transforms the raw context into a latent
space vector using the LLM’s encoding capabilities. This encoded context is then used to guide the
decision-making process. (Krishnamurthy et al.) investigates whether LLMs can engage in exploration in
simple MAB environments without additional training. They compared various prompt designs and found
that GPT-4 with zero-shot chain-of-thought (CoT) reasoning and an externally summarized interaction
history performed the best, while other configurations failed in exploration, either by never selecting the
best arm after initial rounds or by selecting all arms nearly equally often. Different from the previous

9970



results, in this work we go beyond the settings of numeric rewards and investigate the capabilities of
LLMs under preference feedback.

In-context LLMs for decision-making. Beyond bandit problems, LLM agents have demonstrated
strong capabilities in complex reasoning across a wide range of in-context reinforcement learning and
decision-making tasks (Laskin et al.; Lee et al., 2024; Zhou et al.; Yao et al., 2024). Various existing
works aim to understand LLM agents’ capabilities for in-context decision-making, with notable examples
including planning (Huang et al., 2023; Hao et al.). Additionally, LLM agents have been shown to
enhance embodied agents in robotic applications by providing advanced task planning abilities (Brohan
et al., 2023) and reward designing (Ma et al., 2023), further enabling the development of lifelong learning
agents (Wang et al.). Besides these empirical successes, the authors of (Park et al.) analyzed LLMs’
interactions in online learning and game theory settings through the lens of the regret metrics. They
identified simple cases where LLMs fail to be no-regret. Another line of research incorporates LLMs into
classic decision-making frameworks to create LLM-augmented online decision-makers. For instance,
Liu et al. (Liu et al.) utilized LLMs to enhance the components of warm starting, sampling candidates,
and surrogate modeling in Bayesian optimization. Our work contributes to this broad area by integrating
LLM agents with the classic Explore-then-Exploit DB algorithms to enhance the utilization of preference
feedback.

B Algorithm Design and Analysis of LEAD

In this section, we detail the design principles and implementation of the LEAD algorithm. First, we
present the algorithm design logic. Then, we provide a rigorous proof of Theorem 4.1, 4.2, and 4.3, estab-
lishing the theoretical guarantees of LEAD (IF2 base) under the assumptions outlined in Appendix B.3.1.

B.1 Algorithm Design Logic

Limitations of naive intervention. A straightforward approach to addressing the convergence instability
limitation of LLMs is to use a simple if-else condition that forces the LLMs to converge when they
first exploit two identical arms, which we call the Convergence-Triggered (CT) intervention strategy.
However, CT fails to guarantee the selection of the true Condorcet winner and can reinforce local optima
(see Figure 17 in Appendix C.3 for a failure example). This suggests that relying on the LLMs’ internal
convergence behavior to trigger the transition from exploration to exploitation is unreliable, as the LLMs
are largely driven by its inherent sampling noise rather than a structured exploration policy. Thus, handling
this limitation with theoretical guarantees remains challenging.

Explore-then-exploit algorithms as ideal candidates. Classic DB algorithms can be classified into
two categories: Explore-Then-Exploit methods and Ongoing Regret Minimization methods (Zoghi et al.,
2014b). Among these, Explore-Then-Exploit structure stands out as particularly well-suited for LLM
augmentation:

• The Explore-Then-Exploit structure naturally aligns with the LLMs’ tendency to keep exploring
without converging (see Figure 3), allowing for leveraging the LLMs’ exploration behavior while
mitigating their exploration vulnerability and convergence instability (see Section 3.1).

• Its symbolic representation of the algorithm’s logic enables clear integration of LLM suggestions
at specific points without disrupting the overall structure and theoretical guarantees. In contrast,
algorithms like Self-Sparring in (Sui et al., 2017) are less symbolic, making them less suitable for
direct LLM augmentation.

• Its strong theoretical guarantees, e.g., IF2 with an expected regret bound of O((K/εbad) logT ) matching
the DB problem’s lower bound of Ω((K/εbad) logT ) up to constants (see Appendix B.3.1), and its
empirical performance (see Figures 2 and 9) provide a robust foundation, ensuring convergence and
bounded regret.

9971



B.2 Detailed Procedure Description

Algorithm 1 Algorithm-Enhanced LLM Agent: LEAD (IF2 base)
Initialize :Time horizon length T , arms B = {b1, . . . ,bK}, incumbent arm bIF2

1 while |B| ≥ 1 do
2 TrustLLM← True /* LLM Phase in Figure 4 (Lines 2-10) */
3 while TrustLLM do
4 Prompt LLM to select (bLLM1 ,bLLM2) from B
5 bLLM←MATCH ARMS(bLLM1 ,bLLM2) (Procedure 1) /* Compare LLM arms */
6 for b ∈ B do
7 b′←MATCH ARMS(bLLM,b) (Procedure 1) /* Compare bLLM with others */
8 if b′ ̸= bLLM then TrustLLM← False, continue
9 end

10 end
11 StillTrust,B← VALIDATE(b′,B,TrustLLM) (Procedure 2)
12 bIF2,B←IF2(bIF2,B) (Procedure 3) /* IF2 Phase in Figure 4 (Lines 11-12) */

13 end
14 if StillTrust then return bLLM
15 else return bIF2

It is worth noting the following features of Algorithm 1 in its practical implementation.

Remark 1. The LLM Phase allows for flexible exploration design within the bounded length of the
MATCH ARMS procedure, not limiting the number of prompts and comparisons performed by the LLM to
identify an empirically best arm.

Remark 2. The bound length in the MATCH ARMS procedure can be adjusted based on empirical
requirements. Modifying the confidence parameter δ and the threshold ε will affect the regret bound and
the algorithm’s performance. These parameters can be tuned to balance exploration and exploitation,
depending on the specific application and desired level of confidence.

In Procedure 1 below, we describe the MATCH ARMS procedure used in LEAD (see Algorithm 1 and
Figure 4). It compares two given arms a and a′ with specified parameters δ and ε .

Procedure 1 MATCH ARMS (with a bounded number of comparisons)
Input: Two arms a,a′, confidence parameter δ ← 1/(K2 logT ), and threshold ε ← ε1,2
if a ̸= a′ and t ≤ (16/ε2) log(K logT ) then

while ∄ (b,b′) ∈ B such that P̂b,b′ > 1/2 and 1/2 /∈ Ĉb,b′ do
Compare a with a′ and update P̂a,a′ and Ĉa,a′ , t← t +1

end
return b

else return a

Similarly, the next VALIDATE procedure is used in LEAD. It validates if an incumbent arm b′ that wins
previous matches in LEAD can still be trusted.

9972



Procedure 2 VALIDATE

Input: Incumbent arm a, candidate arms B, TrustLLM, confidence parameter δ ← 1/(T K2), and
threshold ε ← ε1,2
if TrustLLM is True then

for b ∈ B do
if t ≤ (16/ε2) log(K logT ) then

while ∄ (b,b′) ∈ B such that P̂b,b′ > 1/2 and 1/2 /∈ Ĉb,b′ do
Compare a with b and update P̂a,b and Ĉa,b, t← t +1

end
if b ̸= a then return StillTrust← False,B← B\{a}

end
return StillTrust← True,B← /0

if TrustLLM is False then return StillTrust← False,B← B

We also reprise the IF2 procedure in (Yue et al., 2012) below to complement the presentation of LEAD.

Procedure 3 IF2 PROCEDURE

Input: Incumbent arm a, candidate arms B, confidence parameter δ ← 1/(T K2), t← 0
if t ≤ (16K/ε2

1,2) log(K logT ) then
for b ∈ B do

Compare a with b and update P̂a,b and Ĉa,b, t← t +1
end
a,B← ANNEAL(a,B)

return a,B

Procedure 4 ANNEAL

Input: Incumbent arm a, candidate arms B, confidence parameter δ ← 1/(T K2), matrices P̂ and Ĉ
while ∃ (b,b′) ∈ B such that P̂b,b′ > 1/2 and 1/2 /∈ Ĉb,b′ do

B← B\{b′}
end
if ∃ b′ ∈ B such that P̂a,b′ < 1/2 and 1/2 /∈ Ĉa,b′ then

while ∃b ∈ B such that P̂a,b > 1/2 do
B← B\{b} /* IF2 pruning */

end
a← b′, B← B\{b′}

return a,B

B.3 Theoretical Analysis

B.3.1 Useful Assumptions and Lemmas for Dueling Bandits

We introduce the useful definitions, assumptions and lemmas for Dueling Bandits that are necessary for
the theoretical analysis of our proposed algorithm.

Throughout this paper, we consider two important performance metrics. The first is the strong regret of a
given algorithm ALG, defined as

SR(ALG) :−
T

∑
t=1

(
ε (b∗,Arm1(t))+ ε (b∗,Arm2(t))

)
. (3)

where T is the time horizon. The second is the weak regret of ALG, defined as

9973



WR(ALG) :−
T

∑
t=1

min
(

ε (b∗,Arm1(t)) ,ε (b∗,Arm2(t))
)
. (4)

which only compares b∗ against the better of the two selected arms Arm1(t) and Arm2(t). It is worth
highlighting that LLM agents exhibit significantly different behaviors with respect to the two defined
notions of regret, as detailed in Section 3.1.

Assumption 1 (Total Ordering). The preference matrix P = (εi j) satisfies the Total Ordering (TO)
property such that for all i, j ∈ [K], i≻ j implies εi j > 1/2.

With the TO property satisfied, we assume the preference matrix P further satisfies the following two
standard properties (Yue and Joachims, 2009, 2011; Yue et al., 2012).

Assumption 2 (Strong Stochastic Transitivity). The preference matrix P = (εi j) satisfies the Strong
Stochastic Transitivity (SST) such that for any arms i, j,k ∈ [K] such that i≻ j ≻ k under the total order
≻, we have εik > max{εi j,ε jk}.
Assumption 3 (Stochastic Triangle Inequality). The preference matrix P = (εi j) satisfies the Stochastic
Triangle Inequality (STI) such that for any arms i≻ j ≻ k, we have εik ≤ εi j + ε jk.

Note that the Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952) used in our experiments C.1
satisfies Assumption 2 and 3. We restate the following theoretical guarantees for IF2 that is useful in the
proof of Theorem 4.2. Let εbad :−minb̸=b∗ ε(b,b∗).
Lemma 1 (Theorem 2 in (Yue et al., 2012)). Assuming the preference matrix P satisfies the SST and STI,
then IF2 has its expected regret (both weak and strong) bounded from above by

E[SR(IF2)]≤ O
(

K
εbad

logT
)
. (5)

The following expected regret bound achieved by IF2 is tight up to multiplicative constants, as indicated
by the lower bound (Theorem 4) in (Yue et al., 2012) such that any algorithm ALG for DB satisfies
E[SR(ALG)] = Ω((K/εbad) logT ).

B.3.2 Theoretical Guarantees of LEAD

Part I: Vulnerability of Standalone LLM Agents
Assumption 4 (Worst-Case Behavior). Under the original prompt (see Figure 7), the worst-case behavior
of an LLM agent in the dueling bandit setting is equivalent to a randomizer that selects action pairs
uniformly at random.

Vulnerability of standalone LLM agents. Inspired by the adversarial corruptions framework introduced
in (Hajiesmaili et al., 2020) for the classic MAB problem, we investigate the vulnerability of standalone
LLM agents in the DB setting under adversarial prompts. We consider an attacker with a budget Φ(T )
who employs the following strategy: whenever the LLM agent selects the optimal arm b∗ for comparison,
the attacker manipulates the input prompt to the LLM to eliminate b∗ from the duel with probability p
(where 0 < p ≤ 1 is a constant), subject to the constraint of performing at most Φ(T ) attacks over T
rounds. This adversarial strategy compels the LLM agent to select suboptimal arms, resulting in poor
performance, as formalized in the following theorem with Assumption 4.

Proof of Theorem 4.1. Consider the following DB instance with K ≥ 3 arms {b1, . . . ,bK} and preference
matrix P:

Pi, j =





0.5+ ε, if bi = b∗ and b j ̸= b∗,
0.5− ε, if bi ̸= b∗ and b j = b∗,
0.5, otherwise.

9974



where 0 < ε < 0.5 is a small constant. In this instance, arm b∗ is the unique Condorcet winner, and all
other arms are suboptimal with a gap of ε to b∗.

Now, consider an attacker strategy with budget Φ(T ): Whenever the LLM agent selects a duel containing
the optimal arm b∗, the attacker manipulates the input prompt to the LLM agent (as described in Eq. (1))
to eliminate b∗ from the comparison with probability p (where 0 < p≤ 1 is a constant), subject to the
constraint that the attacker can perform at most Φ(T ) attacks over the T rounds.

Let N(T ) be the number of rounds in which the LLM agent selects a duel containing the optimal arm b∗

up to round T . Due to the attacker’s manipulation of the input prompt, in each of these N(T ) rounds, b∗ is
eliminated from the comparison with probability p. However, because of the attacker’s budget constraint,
the actual number of attacked rounds is at most min{N(T ),Φ(T )}.
In the rounds where b∗ is eliminated from the comparison, the LLM agent can only select from the
suboptimal arms {bi | bi ̸= b∗, i ∈ [K]}. Let ∆i = Pb∗,bi − 0.5 denote the suboptimality gap of arm bi

with respect to b∗. Then, the expected regret incurred in each round where b∗ is eliminated from the
comparison is at least minbi ̸=b∗ ∆i = ε .

Thus, the expected cumulative regret of the LLM agent after T rounds is at least:

E[Regret(T )]≥ p ·E[min{N(T ),Φ(T )}] · ε ≥ p ·min{E[N(T )],Φ(T )} · ε,

where the first inequality follows from the regret incurred in rounds where b∗ is eliminated from the duel,
and the second inequality holds due to Jensen’s inequality and the linearity of expectation.

According to the Assumption 4, in the worst case, the LLM agent’s behavior is equivalent to randomly
selecting a duel in each round. For K arms, there are K(K−1)/2 possible duel combinations. Therefore,
the probability of selecting a duel containing b∗ in each round is (K − 1)/

(K
2

)
= 2

K , which yields
E[N(T )] = T · 2

K . The regret bound becomes:

E[Regret(T )]≥ p ·min
{

2T
K

,Φ(T )
}
· ε = Ω

(
min

{
T
K
,Φ(T )

})
.

Therefore, any standalone LLM agent whose policy is represented by Eq. (1) under the worst-case
assumption will suffer an expected regret of Ω

(
min

{
Φ(T ), T

K

})
. This lower bound demonstrates the

vulnerability of solely relying on LLM agents for DB in adversarial environments when the attacker can
manipulate the input prompts.

Part II: Expected Regret Bounds of LEAD (IF2 base)

Suppose at each step t ≤ T , aligning with the design of IF2 in (Yue et al., 2012), P̂t is estimated such
that each P̂i, j is the fraction of number of comparisons when bi was the winner out of all previous
t comparisons. Define a confidence interval Ĉt :− (P̂t − ct , P̂t + ct) where ct :−

√
log(1/δ )/t. Before

proceeding to prove Theorem 4.2, we first state a useful lemma from (Yue et al., 2012) as a result of the
Hoeffding’s inequality (Hoeffding, 1994).

Lemma 2 (Generalized Lemma 1 in (Yue et al., 2012)). Let δ = 1/(K logT )2 be a confidence parameter
with δ ∈ (0,1/2], a winner between two arms bi and b j is identified with probability at least 1−δ , using

at most
(

16/ε2
i, j

)
log(K logT ) number of comparisons.

Note that Lemma 2 can be directly implied by Lemma 1 in (Yue et al., 2012). Now, under Assumption 2
and 3 such that the preference matrix P satisfies the SST and STI properties, we prove Theorem 4.2.

Proof of Theorem 4.2. Suppose the arms suggested by LLM agent includes the best arm b∗ after explor-
ing TLLM steps. We prove the two bounds shown in Theorem 4.2 one-by-one.

Weak regret bound. The first TLLM steps induce accumulated weak regret of at most O(TLLM). According
to (Yue et al., 2012), IF2 plays O(K) matches (comparisons) in expectation. Thus, the expected

9975



number of rounds of calling IF2 PROCEDURE is O(logT/ log(K logT )). Applying Lemma 2, with
O
(
(1/ε2

1,2) log(K logT )
)

(by setting a hyper-parameter ε = ε1,2) comparisons between two arms, since
the best arm b∗ is always included in each comparison, the best arm b∗ is correctly identified with
probability at least 1−1/(K logT )2. This procedure leads to no weak regret since b∗ suggested by the
LLM agent is always included as the incumbent arm in future comparisons.

Moreover, the implementation of Procedure 3 induces at most O((K/ε2
1,2) log(K logT )) comparisons.

The validation procedure (Procedure 2) leads to no weak regret if bLLM is indeed the best arm and
the identification of bLLM = b∗ succeeds with a probability 1− 1/T . Denote by E1 and E2 two error
events when b∗ loses some of the matches in the LLM Phase. there exist comparisons (matches) fail
in the validation procedure (Procedure 2) or the IF2 Phase (Procedure 3). The union bound implies
with probability 1−1/(K logT ), b∗ will win all the matches such that P(E1)≤ 1/(K logT ). Similarly,
P(E2)≤ 1/T . Combining these events, regarding the total expected weak regret, the expected weak regret
induced by the steps after time TLLM can be bounded by

E[SR(LEAD after TLLM)]

≤
(

1− 1
K logT

− 1
T

)
O
(

K log(K logT )
ε1,2

)

︸ ︷︷ ︸
LLM Phase

+
1

K logT
O
(

K
ε1,2

logT
)

︸ ︷︷ ︸
IF2 Phase

+
1
T

O(T )︸ ︷︷ ︸
Failure Cases

= Õ
(

K logK
ε1,2

)

since there are at most K +1 matches.

Convergence guarantee. Furthermore, consider the adversarial selection of arms from the LLM agent.
According to Lemma 2, the IF2 procedure with an expected regret O((K/ε1,2) log(T )) is implemented
at most O(1) times with probability 1−1/(T K), provided with |B|= K. Therefore, the expected regret
(either strong or weak) induced by each implementation of Procedure 3 is at most O((K/ε1,2) log(T ))

since there are at most O
(
(K/ε2

1,2) log(K logT )
)

additional comparisons of pairs in the LLM phase.
Finally, applying the expected regret bound in Lemma 1 completes the proof.

Part III: Converse

In the following, we argue that for any algorithm ALG, achieving an upper bound E [WR(ALG)]≤ TLLM
for all TLLM is impossible.

Proof of Theorem 4.3. Suppose ALG is an algorithm that leads to a weak regret bound E [WR(ALG)]≤
TLLM for all TLLM, then it has to trust and include the recommended arm in all the comparisons immediately
after it is proposed by the LLM agent to ensure that future weak regret becomes zero. To see this, note
that one can always construct an adversarial TLLM that leads to a nonzero future weak regret. However,
the LLM agent can choose to provide an arm that is always not the best arm for all t ∈ {1, . . . ,T}. This
leads to E [SR(ALG)]≥ E [WR(ALG)]≥Ω(T ).

C Prompt Design and Supplementary Results

C.1 Implementation Details of Experiments

Prompts and configurations of LLMs. We employ an interactive zero-shot chain-of-thought (CoT)
prompt Prompt(P,Ht ,R), as defined in Section 2, which describes the problem setting P, externally
summarized interaction history Ht and reasoning instructions R. We adopt the prompting template and

9976



LLM configurations that lead to the best performance among all prompt variations explored in recent
studies (Krishnamurthy et al.; Nie et al., 2024) for MAB problem. The LLM agents interact with dueling
bandit environments in a round-based manner, with the prompt guiding their decision-making process.
We conduct experiments with five LLMs (Achiam et al., 2023; Touvron et al., 2023): GPT-3.5 TURBO,
GPT-4, GPT-4 TURBO, LLAMA 3.1 (8B), and O1-PREVIEW. Our use of these scientific artifacts is
in accordance with their respective licenses. Note that we skip the GPT-4O version which is primarily
developed for multimodal tasks and has the same intelligence as GPT-4 TURBO. The detailed prompt is
provided in Appendix C.2.2.

Baselines. We compare LLMs against nine well-established baseline algorithms to evaluate their efficacy.
The baselines include Interleaved Filter (IF2) (Yue et al., 2012), Beat the Mean (BTM) (Yue and
Joachims, 2011), Sensitivity Analysis of VAriables for Generic Exploration (SAVAGE) (Urvoy et al.,
2013), Relative Upper Confidence Bound (RUCB) (Zoghi et al., 2014a), Relative Confidence Sampling
(RCS) (Zoghi et al., 2014b), Relative Minimum Empirical Divergence (RMED) (Komiyama et al., 2015),
Versatile Dueling Bandits (VDB) (Saha and Gaillard, 2022), Self-Sparring (Sui et al., 2017), and Double
Thompson Sampling (DTS) (Wu and Liu, 2016). Each of these algorithms employs distinct strategies for
selecting arms and estimating preferences, with the ultimate goal of efficiently identifying the Condorcet
winner. We assess the performance of LLMs and baseline algorithms using strong regret and weak
regret metrics defined in Section 2. We use γ = 0.5 for BTM, f (K) = 0.3K1.01 for RMED, η = 1 for
Self-Sparring, and α = 0.51 for RUCB, RCS and DTS.

Environments. We evaluate the regret performance of LLMs and baselines across two types of stochastic
environments under the standard DB setting with a Condorcet winner (CW). The environments differ in
their stochastic transitivity properties and are divided into two cases, each with two levels of difficulty
instances (Easy and Hard) depending on the distinguishability of the CW in beating other arms: (i)
Transitive Case (SST∩STI): This case uses a Bradley-Terry-Luce (BTL) model (Bradley and Terry,
1952; Yue et al., 2012). The preference matrices generated in this way satisfy the Strong Stochastic
Transitivity (SST) and Stochastic Triangle Inequality (STI), which implies the existence of a CW; (ii)
Intransitive Case (CW \ (SST∪STI)): the preference matrices introduce cyclic preferences among
non-winning arms while ensuring the existence of a CW. The intransitive case is modeled using a custom
preference construction designed to violate SST and STI. The detailed constructions can be found in
Appendix C.2.1.

Random tests. The scale of our experiments is chosen to balance computational feasibility while
preserving the ability of obtaining meaningful conclusions. We set the time horizon to T = 2000 rounds,
providing the LLMs and baseline algorithms with sufficient opportunity to learn and adapt to the DB
environments. Each experiment is replicated N = 5 times for the LLMs and N = 20 times for the baseline
algorithms, enabling an understanding of their average behaviors and reliable performance estimates.

C.2 LLM Experimental Results

In this section, we provide the detailed design of the prompts used in our experiments and provide
additional results to support our findings. We begin by presenting the original prompt used in the LLM-
Env interaction and introduce the perturbed prompts, which include both noisy and adversarial variations
to test the robustness of our approach. Finally, we provide four exemplars using the original prompt to to
showcase the behavior of both GPT-4 TURBO and O1-PREVIEW.

C.2.1 Environments

Transitive Case: SST∩STI

In transitive instances, the preference matrices are constructed using the Bradley-Terry-Luce (BTL)
model (Bradley and Terry, 1952; Yue et al., 2012), with a generalized form known as the Plackett-Luce
model (Plackett, 1975). In this model, each arm is associated with a utility parameter θ(i)> 0, where i

9977



represents the rank of the arm (i.e., θ(1) corresponds to the best arm, θ(2) corresponds to the second best
arm, and so on). For any pair of arms bi and b j, the probability of bi being preferred over b j is determined
by P(i≻ j) = θ(i)/(θ(i)+θ( j)). Setting the number of arms K = 5, we randomize the order of the
arms to prevent selection bias, resulting in the following arm ordering: b5 ≻ b3 ≻ b2 ≻ b1 ≻ b4. We use
two instances: Transitive-Easy and Transitive-Hard, with their respective θ parameters given by:

• Transitive-Easy instance: θ(1) = 1, θ(i) = 0.5− (i−1)/2K, ∀i ∈ [2,K].

• Transitive-Hard instance: θ(i) = 1− (i−1)/K, ∀i ∈ [K].

Note that the datasets generated in this way satisfy the Strong Stochastic Transitivity (SST) and Stochastic
Triangle Inequality (STI) properties (Yue et al., 2012) (see Appendix B.3.1 for more details). The settings
of the used BTL model also imply the existence of a Condorcet winner.

Intransitive Case: CW \ (SST∪STI)

In intransitive instances, the preference matrices are constructed to violate both the Strong Stochastic
Transitivity (SST) and Stochastic Triangle Inequality (STI) properties. This design creates cyclic prefer-
ences among the non-winning arms while preserving the existence of a Condorcet winner. Setting K = 5,
we still use the same shuffled arm ordering: b5 ≻ b3 ≻ b2 ≻ b1 ≻ b4 for intransitive instances.

• Intransitive-Easy instance: The Condorcet winner b5 has a strong preference over any other arm:

P(5≻ j) = 0.8, P( j ≻ 5) = 0.2, ∀ j ∈ {1, . . . ,4}.
Among the non-winning arms b1, . . . ,b4, cyclic preferences are introduced via:

P(i≻ j) = 0.8−0.2 · (( j− i−1) mod (K−1)) , ∀i, j ∈ {1, . . . ,4}, i ̸= j.

This configuration ensures a clear dominance by b5.

• Intransitive-Hard instance: The Condorcet winner’s preference is weaker, with:

P(5≻ j) = 0.6, P( j ≻ 5) = 0.4, ∀ j ∈ {1, . . . ,4}.
This setting makes it more challenging to identify b5 as the Condorcet winner.

Finally, in both instances, the symmetry condition is imposed for consistency:

P( j ≻ i) = 1−P(i≻ j), ∀i, j ∈ {1, . . . ,K}, i ̸= j.

Accordingly, as shown below, we create a cyclic pattern of preferences among the non-winning arms
while maintaining the Condorcet winner’s superiority.

Intransitive-Easy Instance (pw = 0.8)

P =




0.0 0.8 0.6 0.4 0.2
0.2 0.0 0.8 0.6 0.2
0.4 0.2 0.0 0.8 0.2
0.6 0.4 0.2 0.0 0.2
0.8 0.8 0.8 0.8 0.0




Intransitive-Hard Instance (pw = 0.6)

P =




0.0 0.8 0.6 0.4 0.4
0.2 0.0 0.8 0.6 0.4
0.4 0.2 0.0 0.8 0.4
0.6 0.4 0.2 0.0 0.4
0.6 0.6 0.6 0.6 0.0




9978



C.2.2 Design of Prompts

Original Prompt

Problem Description: 
You are a Dueling Bandit algorithm with 5 arms. Each pair of arms (i, j) has an 
unknown probability P(i > j) of arm i winning against arm j in a pairwise duel. There 
exists a best arm (Condorcet Winner) among the 5 arms, which has a greater than 
50% probability of winning against any other arm in a pairwise duel.  
 
At each time step, I will provide you with a summary that shows the past dueling 
results and empirical probabilities. Then you must choose 2 arms to duel against each 
other. The reward you receive is the sum of the unknown probabilities of the two 
chosen arms beating the best arm. The maximum reward in each time step is 
achieved if the best arm duels against itself. Your goal is to maximize the cumulative 
sum of rewards of the chosen two arms over a given time horizon T=1000. 

System Prompt

Summarized History: 
So far, you have conducted {t} duels with the following results: 
Arm 1 vs Arm 2: Arm 1 won 0 times, Arm 2 won 0 times, P(1 > 2) = 0.5, P(2 > 1) = 0.5 
Arm 1 vs Arm 3: Arm 1 won 0 times, Arm 3 won 0 times, P(1 > 3) = 0.5, P(3 > 1) = 0.5 
Arm 1 vs Arm 4: Arm 1 won 0 times, Arm 4 won 0 times, P(1 > 4) = 0.5, P(4 > 1) = 0.5 
…… 
Arm 4 vs Arm 5: Arm 4 won 0 times, Arm 5 won 0 times, P(4 > 5) = 0.5, P(5 > 4) = 0.5 

Chain-of-Thought  
Let's think step by step to choose the next pair of arms. 
Answer Format: 
1. Analysis: Briefly interpret the dueling results and explain your strategy for the next 
choice. 
2. Next Pair: (armA, armB).  

User Prompt

Figure 7: Original prompt for LLM-Env interaction in dueling bandit setting with temperature = 0 (except O1-
PREVIEW, which is in beta phase, its system prompt and user prompt are concatenated together with a fixed
temperature = 1), including context P, summarized history Ht , and zero-shot chain-of-thought (CoT) reasoning
instructions R (see Section 2).

9979



Summarized History: 
So far, you have conducted duels with 
the following results: 
Arm 1 vs Arm 5: Arm 1 won +10 times, 
Arm 2 vs Arm 5: Arm 2 won +10 times,  
Arm 3 vs Arm 5: Arm 3 won +10 times, 
Arm 4 vs Arm 5: Arm 4 won +10 times, 
……  
(All other text remains unchanged) 

Noisy User Prompt

Biased History

Problem Description: 
…… 
Your goal is to minimize the cumulative 
sum of rewards of the chosen two arms 
over a given time horizon T=2000. 
……  
(All other text remains unchanged)

Adversarial System Prompt

Reversed Goal

Figure 8: Perturbed prompts used to evaluate the robustness of LEAD. The Biased History prompt (Left) injects an
incorrect dueling history favoring non-optimal arms, while the Reversed Goal prompt (Right) adversarially modifies
the objective from maximizing to minimizing reward. Both prompts maintain the zero-shot chain-of-thought (CoT)
reasoning and temperature setting as before.

9980



C.2.3 Exemplars of GPT-4 TURBO and O1-PREVIEW

We present exemplars using the original prompt (see Figure 7) to illustrate the decision-making process
of both GPT-4 TURBO and O1-PREVIEW in the dueling bandits setting. These examples highlight how
each model interprets the available data, reasons about the relative strengths of the arms, and selects the
next pair of arms to duel. The exemplars show both successful convergence cases and the failures of each
model.

Systematic Biases

Biased Understanding of GPT-4 TURBO and O1-PREVIEW

System Prompt:
You are a Dueling Bandit algorithm with 5 arms. Each pair of arms (i, j) has an unknown
probability P(i > j) of arm i winning against arm j in a pairwise duel. There exists a best arm
(Condorcet Winner) among the 5 arms, which has a greater than 50% probability of winning
against any other arm in a pairwise duel. At each time step, I will provide you with a summary
that shows the past dueling results and empirical probabilities. Then you must choose 2 arms to
duel against each other. The reward you receive is the sum of the unknown probabilities of the two
chosen arms beating the best arm. The maximum reward in each time step is achieved if the best
arm duels against itself. Your goal is to maximize the cumulative sum of rewards of the chosen
two arms over a given time horizon T = 1000.
Question: Can an arm duel against itself?
Answer Exemplars:
Example 1: In a traditional dueling bandit problem, an arm dueling with itself doesn’t make
practical sense because the outcome is trivially known—it would always win. The typical setup
for dueling bandits is to choose two distinct arms to engage in a duel, which provides meaningful
information about their relative strengths.
Example 2: In the context of a dueling bandit problem, an arm dueling with itself typically doesn’t
make sense because the purpose of a duel is to compare two different arms. Dueling an arm
with itself wouldn’t provide any new information about the relative strengths of the arms, as the
outcome is trivially known: the arm would win against itself 100% of the time.
Example 3: In the context of a dueling bandit problem, an arm cannot duel with itself because the
concept of a duel inherently involves comparing two different entities. The purpose of a duel is to
establish which of the two arms is superior, or to collect comparative information. An arm dueling
itself would not generate any valuable information or result, as it would trivially win against itself.
Therefore, you need to choose two distinct arms for each duel in a dueling bandit problem.
Example 4: In the context of a dueling bandit problem, an arm cannot duel with itself because the
concept of a duel inherently involves comparing two different entities. The purpose of a duel is to
establish which of the two arms is superior, or to collect comparative information. An arm dueling
itself would not generate any valuable information or result, as it would trivially win against itself.
Therefore, you need to choose two distinct arms for each duel in a dueling bandit problem.

Comment: LLMs lack a fundamental understanding of the DB problem

9981



Success cases

Successful Convergence Case of GPT-4 TURBO

1. Analysis:
- Arm 5 appears to be the strongest contender, showing a high probability of winning against all
other arms except Arm 2, where it still maintains a majority win rate.
- Arm 3 has a strong win rate against Arm 4 and a reasonable rate against Arm 2, but significantly
loses to Arm 5.
- Arm 2 has a mixed performance, winning against Arm 1 and Arm 4 but losing to Arm 5 and Arm
3.
- Arm 1 and Arm 4 are the weakest, with Arm 1 losing to almost all arms and Arm 4 only winning
against Arm 1.
- Given the goal to maximize the cumulative sum of rewards, focusing on duels involving Arm 5
seems most beneficial, as it has the highest probability of winning against other arms, suggesting
it might be the Condorcet Winner.

2. Next Pair: (Arm 5, Arm 5).
- Dueling Arm 5 against itself maximizes the reward for this step, as it likely has the highest
unknown probability of beating the best arm (itself in this case). This strategy ensures the highest
possible reward in a single duel under the given conditions.

Comment: Successfully understand the problem and suggest a converged arm pair

Successful Convergence Case of O1-PREVIEW

1. Analysis:
Given the dueling results so far, we are tasked with maximizing the cumulative reward over the
remaining time horizon T = 2000 steps. The reward at each time step is the sum of the unknown
probabilities of the two chosen arms beating the best arm (the Condorcet winner).
To maximize our reward, we need to identify the arm that is most likely the best based on the
empirical data and choose it to duel against itself. This is because the maximum reward at each
time step is achieved when the best arm duels against itself.
Analyzing the empirical probabilities:
- Arm 5 has beaten all other arms with a probability greater than 50%:
- P(5 > 1) = 0.75
- P(5 > 2) = 0.75
- P(5 > 3) = 0.64
- P(5 > 4) = 1.00
This suggests that Arm 5 is the most likely Condorcet winner based on the data.
Therefore, to maximize the cumulative reward, we should choose Arm 5 to duel against itself, as
this maximizes the sum of probabilities 2×P(5 > BestArm).

2. Next Pair:
(Arm 5, Arm 5)

Comment: Successfully understand the problem and suggest a converged arm pair

9982



Failure cases

Convergence Instability Case of GPT-4 TURBO:

1. Analysis:
- Arm 5 appears to be a strong contender as it has a high winning probability against most other
arms, particularly against Arm 1, Arm 2, Arm 3, and Arm 4. Notably, it has a significant number
of duels against Arm 3, which provides a robust estimate of its strength relative to Arm 3.
- Arm 3 also shows strength, especially against Arm 4 and Arm 2, but it has a lower winning
probability against Arm 5.
- Arm 1 and Arm 4 seem to be weaker overall, with Arm 1 losing all duels against Arm 5 and Arm
4 having a low win rate against Arm 5.
- Arm 2 is somewhat in the middle, with a mixed record against the other arms.
Given the results, Arm 5 is likely the Condorcet Winner as it has a greater than 50% win rate
against all other arms. To maximize the reward, it would be beneficial to continue testing Arm 5
against other strong contenders to confirm its dominance and further understand the dynamics
between the other arms.

2. Next Pair:
- This pairing is chosen because while Arm 5 has shown strong performance against Arm 3,
the large number of duels suggests that further testing could provide additional insights and
confirm stability in the empirical probabilities. Additionally, dueling these two strong arms could
potentially yield a high reward if Arm 5 continues to dominate.
Choose: (Arm 5, Arm 3)

Comment: Keeps comparing the same top arms without committing to a single winner

9983



Biased Understanding Case of O1-PREVIEW:

1. Analysis:
From the given data, we can infer that Arm 5 is likely the best arm (Condorcet Winner) because it
has beaten all other arms with probabilities greater than 50
- P(5 > 1) = 0.75
- P(5 > 2) = 0.75
- P(5 > 3) = 0.66
- P(5 > 4) = 1.00

Our goal is to choose two arms (armA and armB) such that the sum P(armA > best arm) + P(armB
> best arm) is maximized.
From the empirical probabilities:
- P(3 > 5) = 0.34
- P(2 > 5) = 0.25
- P(1 > 5) = 0.25
- P(4 > 5) = 0.00
Arm 3 has the highest probability of beating Arm 5, followed by Arms 2 and 1. Arm 4 has a zero
probability and should not be selected.
Between Arms 1 and 2, Arm 2 has participated in more duels against Arm 5, providing a more
reliable estimate of its probability to beat the best arm. Additionally, Arm 2’s performance against
other arms suggests it may be slightly better than Arm 1.
Therefore, the best choice to maximize our expected reward is to select Arm 3 and Arm 2.

2. Next Pair:
(Arm 3, Arm 2)

Comment: Exhibits a biased understanding of the problem description: while successfully
identifying the Condorcet Winner, it still selects suboptimal arms in duel.

C.3 Supplementary Experiments

C.3.1 Comparisons with Different Metrics

We present supplementary results to complement our case studies. (i) Figure 9 shows the strong and weak
regret comparisons for the Hard instance. (ii) Figure 12 presents comparisons under different numbers of
arms K, illustrating the impact of the Relative Decision Window. (iii) Figure 13 introduces the Best Arm
Inclusion Ratio and the Converged Best Arm Ratio. (iv) Figure 14 examines the generalized variance of
the strong and weak regret for both instances.

9984



0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Steps (t)

0

100

200

300

400

500

600
C

um
ul

at
iv

e 
S

tro
ng

 R
eg

re
t (

Tr
an

si
tiv

e-
H

ar
d)

BTM
SAVAGE
IF
RMED
RCS
RUCB

VDB
SelfSparring
DTS
GPT-3.5-Turbo
GPT-4
GPT-4-Turbo

0 50 100
0

20

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Steps (t)

0

25

50

75

100

125

150

175

200

C
um

ul
at

iv
e 

W
ea

k 
R

eg
re

t (
Tr

an
si

tiv
e-

H
ar

d)

BTM
SAVAGE
IF
RMED
RCS
RUCB

VDB
SelfSparring
DTS
GPT-3.5-Turbo
GPT-4
GPT-4-Turbo

0 50 100
0

5

10

Figure 9: Comparisons between LLM agents and various classic DB algorithms. Left and Right: strong and weak
regret for the Transitive-Hard instance. Results for the Transitive-Easy instance is presented in Figure 2. We
evaluate only three LLMs on the Transitive-Hard instance due to our research goals and high API costs: (i) The
results for the Transitive-Hard instance are qualitatively similar to those for the Transitive-Easy instance; (ii)
Obviously, the Transitive-Easy instance offers higher distinguishability, allowing us to observe convergence and
regret differences within a feasible number of steps.

0 200 400 600 800 1000
Time Steps (t)

0

200

400

600

800

1000

C
um

ul
at

iv
e 

S
tro

ng
 R

eg
re

t (
In

tra
ns

iti
ve

-E
as

y)

BTM
SAVAGE
IF
RMED
RCS

RUCB
VDB
SelfSparring
DTS
GPT-4-Turbo

0 50 100
0

50

100

150

0 200 400 600 800 1000
Time Steps (t)

0

100

200

300

400

500

C
um

ul
at

iv
e 

W
ea

k 
R

eg
re

t (
In

tra
ns

iti
ve

-E
as

y)

BTM
SAVAGE
IF
RMED
RCS

RUCB
VDB
SelfSparring
DTS
GPT-4-Turbo

0 50 100

0

25

50

75

Figure 10: Comparisons between GPT-4 TURBO and various classic DB algorithms. Left and Right: strong
and weak regret for the Intransitive-Easy instance. Results for the Intransitive-Hard instance is presented
in Figure 11. We evaluate only our top-performing LLM on the Intransitive-Easy and Intransitive-Hard
instance to examine the scalability limitation.

0 200 400 600 800 1000
Time Steps (t)

0

200

400

600

800

1000

C
um

ul
at

iv
e 

S
tro

ng
 R

eg
re

t (
In

tra
ns

iti
ve

-H
ar

d)

BTM
SAVAGE
IF
RMED
RCS

RUCB
VDB
SelfSparring
DTS
GPT-4-Turbo

0 50 100
0

50

100

0 200 400 600 800 1000
Time Steps (t)

0

100

200

300

400

500

C
um

ul
at

iv
e 

W
ea

k 
R

eg
re

t (
In

tra
ns

iti
ve

-H
ar

d)

BTM
SAVAGE
IF
RMED
RCS

RUCB
VDB
SelfSparring
DTS
GPT-4-Turbo

0 50 100
0

20

40

Figure 11: Comparisons between GPT-4 TURBO and various classic DB algorithms. Left and Right: strong and
weak regret for the Intransitive-Hard instance.

9985



K 
= 

5
K 

= 
10

Number of arms 
increases

LLM long-term  
performance degradesRelative Decision Window: However, the short-term 

performance remains exceptional

Figure 12: Cumulative strong and weak regret comparisons between LLM agents and classic dueling bandit
algorithms on Transitive-Easy instance under different numbers of arms K. Top Left and Top Right: K=5,
where GPT-4-Turbo significantly outperforms other methods on weak regret. Bottom Left and Bottom Right:
K=10, where the performance of GPT-4-Turbo degrades as the number of arms increases.

9986



[0, 200] [200, 400] [400, 600] [600, 800] [800, 1000]
Time Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0
B

es
t A

rm
 In

cl
us

io
n 

R
at

io
 (E

as
y)

SelfSparring
DTS
GPT-3.5-Turbo
GPT-4
GPT-4-Turbo
o1-preview

[0, 200] [200, 400] [400, 600] [600, 800] [800, 1000]
Time Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

ve
rg

ed
 B

es
t A

rm
 R

at
io

 (E
as

y)

SelfSparring
DTS
GPT-3.5-Turbo
GPT-4
GPT-4-Turbo
o1-preview

[0, 200] [200, 400] [400, 600] [600, 800] [800, 1000]
Time Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

S
ub

op
tim

al
 D

ue
l R

at
io

 (T
ra

ns
iti

ve
-E

as
y) SelfSparring

DTS
GPT-3.5-Turbo
GPT-4
GPT-4-Turbo
o1-preview

Figure 13: Four LLMs (GPT-3.5 TURBO, GPT-4, GPT-4 TURBO, O1-PREVIEW) and two state-of-the-art baselines
(SELF-SPARRING and DTS) are compared against each other on the Transitive-Easy instance over different time
intervals. Left: the Best Arm Inclusion Ratio represents the fraction of duels that include the best arm (Condorcet
winner). Middle: the Converged Best Arm Ratio represents the proportion of duels where the best arm duels
against itself for exploitation. Right: the Suboptimal Duel Ratio represents the proportion of duels where both
arms selected in duel are suboptimal arms. We observed that while O1-PREVIEW can transit from exploration to
exploitation (high Converged Best Arm Ratio), it selects more optimal arms (high Suboptimal Duel Ratio) due to
the reinforced biased understanding as discussed in Section 3.1.

Methods

10
2

10
1

10
0

G
en

er
al

iz
ed

 V
ar

ia
nc

e 
(E

as
y)

BTM
SAVAGE
IF
RMED
RCS
RUCB

SelfSparring
DTS
GPT-3.5-Turbo
GPT-4
GPT-4-Turbo

Methods

10
2

10
1

10
0

G
en

er
al

iz
ed

 V
ar

ia
nc

e 
(H

ar
d)

BTM
SAVAGE
IF
RMED
RCS
RUCB

SelfSparring
DTS
GPT-3.5-Turbo
GPT-4
GPT-4-Turbo

Figure 14: Comparison of the generalized variance of strong and weak regret between three LLMs and baseline
algorithms on the Transitive-Easy (Left) and Transitive-Hard (Right) instances. In the Easy instance, GPT-4
TURBO exhibits the lowest average generalized variance. For the Transitive-Hard instance, GPT-4 TURBO
maintains a variance level comparable to state-of-the-art baseline algorithms (except BTM and SAVAGE, which are
in an early exploration stage).

9987



C.3.2 Duel Selection Trajectory

We visualize the duel selection trajectory in representative experiments to better understand the behavior
of LLM agents and baseline algorithms.

Duel Selection Trajectory Explanation: The reshuffled arm order is b5 ≻ b3 ≻ b2 ≻ b1 ≻ b4, with arm
indices from bottom to top: 5, 4, 3, 2, 1. Each filled black cell represents a selected arm at that time step.
For instance, black lines in arms 5 and 3 indicate the selection of the duel between (arm 5, arm 3) at that
particular time step.

GPT-4-Turbo

Ea
sy

o1-preview

Figure 15: Comparison of duel selection trajectories between GPT-4 TURBO (Left) and O1-PREVIEW (Right)
on the Transitive-Easy instance. GPT-4 TURBO achieves low weak regret by consistently selecting the best
arm, though it struggles to converge to a single best arm. In contrast, O1-PREVIEW shows better convergence
behavior, but its weak regret performance is worse than GPT-4 TURBO due to incomplete or biased understanding,
as illustrated by the O1-PREVIEW exemplar in Appendix C.2.3.

GPT-3.5-Turbo GPT-4 GPT-4-Turbo
1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

H
ar

d

Figure 16: Local optima trajectories of GPT-3.5 TURBO (Left), GPT-4 (Middle), and GPT-4 TURBO (Right,
with noisy prompt) on the Transitive-Hard instance. Less capable LLMs, such as GPT-3.5 TURBO and GPT-4,
could get stuck comparing suboptimal arms on hard preference structure. Even for GPT-4 TURBO, noisy prompts
with biased history (see Figure 8) can lead it to be trapped in bad tournaments.

FailureSuccess

H
ar
d

Figure 17: Comparison of success (Left) and failure (Right) cases for the Convergence-Triggered GPT-4 TURBO
intervention strategy discussed in Section 4.1. While it works for most cases due to GPT-4 TURBO’s strong capa-
bility (Left), sometimes this naive intervention can reinforce suboptimal choices (Right) on the Transitive-Hard
instance.

9988


