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Abstract

Automatic Term Extraction (ATE) identifies
domain-specific expressions that are crucial for
downstream tasks such as machine translation
and information retrieval. Although large lan-
guage models (LLMs) have significantly ad-
vanced various NLP tasks, their potential for
ATE has scarcely been examined. We propose
a retrieval-based prompting strategy that, in the
few-shot setting, selects demonstrations accord-
ing to syntactic rather than semantic similar-
ity. This syntactic retrieval method is domain-
agnostic and provides more reliable guidance
for capturing term boundaries. We evaluate the
approach in both in-domain and cross-domain
settings, analyzing how lexical overlap between
the query sentence and its retrieved examples
affects performance. Experiments on three spe-
cialized ATE benchmarks show that syntac-
tic retrieval improves F1-score. These find-
ings highlight the importance of syntactic cues
when adapting LLMs to terminology-extraction
tasks.

1 Introduction

Automatic Term Extraction (ATE) identifies
domain-specific terms essential for tasks such
as machine translation, information retrieval, and
content curation (Tran et al., 2023). Despite its
importance, ATE remains underexplored com-
pared to other information extraction (IE) tasks,
particularly in low-resource and specialized do-
mains (Rigouts Terryn et al., 2020).

Large Language Models (LLMs) offer new pos-
sibilities for IE through in-context learning, yet
prior studies (Ma et al., 2023b; Zhang et al., 2023;
Wadhwa et al., 2023; Wan et al., 2023; Xu et al.,
2024) show they often underperform compared to
task-specific pretrained language models (PLMs),
struggling with domain precision and boundary de-
tection. While strategies like prompt engineering
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and retrieval-based demonstrations have improved
IE in general, their application to ATE remains
largely unexplored.

We address two key challenges in applying
LLMs to ATE: (1) Dataset scarcity and domain
diversity—ATE lacks diverse datasets beyond the
biomedical field (Tran et al., 2023; Rigouts Ter-
ryn et al., 2020), limiting cross-domain effective-
ness. We propose a retrieval method that gen-
eralizes across domains. (2) Boundary identifi-
cation—LLMs struggle to extract precise term
spans (Ma et al., 2023b; Wang et al., 2023a), a
critical issue given the annotation-intensive nature
of ATE (qas, 2016).

To address this, we propose a syntactic retrieval
method that selects structurally aligned demonstra-
tions. In both in-domain and cross-domain settings,
this approach consistently improves ATE perfor-
mance by enhancing annotation consistency and
extraction accuracy.

2 Related Work

2.1 Automatic Term Extraction

Automatic Term Extraction (ATE) is the task of
identifying and ranking domain-specific words or
multi-word expressions that represent key concepts
within a corpus.

Early days of ATE were focused around utiliz-
ing statistical methods such as TF-IDF (Salton
et al., 1975), termhood (Vintar, 2010), and unit-
hood (Daille et al., 1994; Vu et al., 2008). With the
shift towards deep learning, particularly with the
emergence of Transformer architectures (Vaswani
et al., 2017) like BERT (Devlin et al., 2019), en-
hanced ATE by enabling automatic feature learning
and boosting performance across multilingual and
cross-domain tasks (Lang et al., 2021; Tran et al.,
2022; Hazem et al., 2022, 2020).

While PLMs have achieved substantial success
in ATE tasks, the application of LLMs to this area
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Figure 1: Illustration of the syntactic retrieval process. The example showcases a cross-domain setting in which the
domains of the demonstration corpus and the query corpus differ.

has remained relatively underexplored. To address
these gaps, our study provides attention to LLMs
in the context of ATE.

2.2 Information Extraction with Large
Language Models

LLMs have expanded the possibilities of IE through
their generative capabilities and vast knowledge
base. However, they often underperform compared
to task-specific PLMs due to challenges like hal-
lucination and imprecise span boundary identifica-
tion (Ma et al., 2023b; Wang et al., 2023a; Wadhwa
et al., 2023; Sainz et al., 2024).

To address these limitations, researchers have
explored several strategies: (1) Task reformula-
tion, framing extraction as question-answering or
structured prediction (Wei et al., 2023; Zhang
et al., 2023; Ma et al., 2023b); (2) Instruction
tuning, fine-tuning LLMs with targeted instruc-
tions to compensate for limited IE-specific train-
ing data (Wang et al., 2023b; Wadhwa et al.,
2023); and (3) In-context learning (ICL), optimiz-
ing prompt structures and demonstrations to guide
extraction (Blevins et al., 2023; Bian et al., 2023;
Ma et al., 2023a; Li et al., 2024b).

This work focuses on ICL due to its efficiency,
adaptability, and minimal reliance on task-specific
annotation. We extend existing ICL approaches for
IE and introduce a retrieval-based method tailored
to ATE.

3 Motivation and Methodology

In this section, we formulate ATE within the exist-
ing in-context learning framework for LLM-based
information extraction (Xu et al., 2024), and intro-
duce our proposed methodology.

3.1 Adapting the LLM-Based Information
Extraction Framework for ATE

Given a frozen LLM with parameters θ, a fixed
instruction I , a query corpus Cq = {qi}Nq

i=1, and a
demonstration corpus Cd = {(sj , T d

j )}Nd
j=1, where

each sj is a sentence and T d
j ⊂ sj is its associated

term set, the goal of ATE is to output a term set
Ti ⊂ qi for each query sentence qi.

We begin by retrieving the top K most relevant
demonstration pairs for qi using a retrieval function
f : Cq × Cd → R. The retrieved demonstration set
Di is defined as:

Ii = argTopK
j∈[1,Nd]

f
(
qi, (sj , T

d
j )

)
,

Di =
{
(sj , T

d
j ) | j ∈ Ii

}
.

We then construct a prompt as follows:

prompti = I ⊕ Di ⊕ qi, (1)

where ⊕ denotes string concatenation.
Our objective is to discover a retrieval method

f̂ that maximizes the probability of generating the
correct term set:

f̂ = argmax
f

Nq∏

i=1

∏

t∈Ti

p
(
t
∣∣ prompti; θ

)
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Dataset Retrieval Method Llama-3.1-8B-IT Gemma-2-9B-IT Mistral-Nemo
P R F1 P R F1 P R F1

Cross-domain

ACTER

BGE-large-en 65.2 ±1.3 51.8 ±1.1 57.7 ±1.0 61.5 ±1.2 56.1 ±1.1
∗58.8 ±1.0 64.9 ±1.4 44.9 ±1.1 52.8 ±1.0

BGE-en-ICL 66.5 ±1.3 46.4 ±1.1
∗54.7 ±1.1 63.2 ±1.2 51.0 ±1.2

∗56.5 ±1.2 65.0 ±1.5 40.0 ±1.1
∗49.5 ±1.1

BM25 66.9 ±1.3 49.4 ±1.1
∗56.8 ±1.0 61.4 ±1.1 53.0 ±1.2

∗56.8 ±1.1 65.8 ±1.3 43.0 ±1.1
∗52.0 ±1.1

Random 66.4 ±1.5 51.3 ±1.3 57.9 ±1.0 62.9 ±2.1 55.2 ±2.1
∗58.8 ±2.1 66.1 ±1.9 44.1 ±1.2 52.6 ±1.1

FastKASSIM 64.3 ±1.3 53.0 ±1.0 58.0 ±1.1 64.3 ±1.1 56.6 ±1.1 60.2 ±1.0 66.7 ±1.4 44.0 ±1.2 53.0 ±1.1

In-domain

ACLR2

BGE-large-en 75.9 ±3.3 78.3 ±2.6 77.1 ±2.6 77.5 ±3.3 83.5 ±2.3 80.4 ±2.4 72.5 ±3.2 73.0 ±3.0 72.8 ±2.8

BGE-en-ICL 71.9 ±3.1 74.0 ±2.7
∗72.9 ±2.7 74.9 ±3.4 83.2 ±2.4 78.8 ±2.5 71.2 ±3.1 71.7 ±3.1 71.4 ±2.8

BM25 77.3 ±3.2 78.3 ±2.6 77.7 ±2.6 77.3 ±3.0 84.4 ±2.2 80.7 ±2.2 74.5 ±3.2 75.2 ±2.9 74.8 ±2.7

Random 75.8 ±3.4 75.2 ±3.6
∗75.4 ±3.2 77.3 ±3.6 79.4 ±3.5 78.3 ±2.5 72.5 ±3.6 70.0 ±3.5

∗71.2 ±2.9

FastKASSIM 77.4 ±2.9 78.7 ±2.4 78.1 ±2.4 75.9 ±3.2 82.2 ±2.5 78.8 ±2.5 73.1 ±3.1 73.1 ±3.0 73.1 ±2.6

BCGM

BGE-large-en 40.7 ±1.2 55.2 ±1.2
∗46.9 ±1.1 33.8 ±1.1 52.6 ±1.2

∗41.1 ±1.1 43.4 ±1.2 52.8 ±1.1
∗47.6 ±1.1

BGE-en-ICL 39.0 ±1.2 54.0 ±1.2
∗45.3 ±1.2 31.6 ±1.1 52.0 ±1.2

∗39.3 ±1.1 37.1 ±1.3 48.1 ±1.2
∗41.9 ±1.2

BM25 38.8 ±1.2 54.6 ±1.1
∗45.4 ±1.1 33.5 ±1.1 54.6 ±1.2

∗41.5 ±1.2 40.1 ±1.3 50.9 ±1.2
∗44.8 ±1.2

Random 43.1 ±5.5 53.2 ±2.4
∗47.1 ±3.3 40.9 ±3.9 56.8 ±1.9

∗47.3 ±3.0 48.5 ±6.8 52.0 ±2.7
∗50.2 ±4.5

FastKASSIM 43.8 ±1.2 56.6 ±1.2 49.4 ±1.1 44.1 ±1.1 60.8 ±1.2 51.1 ±1.1 50.8 ±1.4 57.2 ±1.2 53.8 ±1.1

Table 1: Performance comparison of the evaluated LLMs across different similarity metrics. P, R, and F1 refer to
precision, recall, and F1-score, respectively. The number of shots used in the experiment is fixed to 10. The highest
score along each metric for each dataset is indicated in bold. p-value with less than 0.05 is marked with ∗.

3.2 Limitations of Semantic Retrieval in ATE
Existing LLM-based information extraction ap-
proaches typically retrieve semantically similar sen-
tences using cosine similarity between sentence em-
beddings or entity embeddings (Kim et al., 2024;
Wang et al., 2023a; Wan et al., 2023). These meth-
ods aim to retrieve examples that contain the cor-
rect answer, increasing the likelihood of generat-
ing the correct terms. However, this approach has
limitations in ATE, especially when the retrieved
demonstrations do not overlap with the gold term
set, i.e, |{T d

j | j ∈ Ii}
⋂
Ti| = 0, as in low-

resource or cross-domain scenarios. In such cases,
retrieving semantically similar sentences may not
provide useful guidance, as the retrieved examples
may come from a different domain and fail to in-
form the term extraction process. This limitation is
particularly problematic for ATE, where datasets
covering diverse domains are scarce (Rigouts Ter-
ryn et al., 2020; Tran et al., 2023).

3.3 Syntactic Retrieval for ATE
Rather than retrieving examples that directly over-
lap with the target term set T , we guide the LLM
using syntactic patterns to improve term bound-
ary identification. For instance, consider the query
sentence qi: "The blood pressure measurement
is recorded daily."—a medical domain sentence
where possible annotations include "blood pres-
sure" or "blood pressure measurement." By retriev-
ing a syntactically similar sentence such as "The
rotor speed reading is logged every minute." from

the wind energy domain, with the annotated term
"rotor speed", we provide structural guidance for
consistent annotation.

To implement syntactic retrieval, we first gener-
ate constituency parse trees for the query sentence
qi and each sentence in the demonstration corpus
{sd

1, . . . s
d
Nd

}. We then compute syntactic similarity
using FastKASSIM (Chen et al., 2023), an efficient
algorithm that leverages a Label-based Tree Ker-
nel to compare parse trees. See Appendix A.5 for
further details on FastKASSIM.

After retrieving structurally similar examples,
we construct prompts as defined in Equation 1 and
pass them to the LLM. The overall process is illus-
trated in Figure 1.

3.4 Term Overlap Ratio

To analyze the explicit advantage of our retrieval
method, we introduce Term Overlap Ratio (TOR),
which evaluates the applicability of our method
when there is minimal overlap between the terms
to be extracted from the query sentence and those in
the demonstration set. We define TOR as follows:

TOR =
1

Nq

Nq∑

i=1

|{T d
j | j ∈ Ii}

⋂
Ti|

|Ti|
(2)

This metric measures the proportion of Ti that
also appear in the retrieved demonstrations. Addi-
tionally, we examine the correlation between TOR
and micro F1-score to assess how the degree of
term overlap impacts overall performance.
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Domain Retrieval Method Correlation TOR

Cross-
domain

BGE-large-en -2.48 0.22
BGE-en-icl 0.88 0.01

BM25 1.14 0.21
Random 1.35 0.01

FastKASSIM 0 0

In-
domain

BGE-large-en 15.44 20.51
BGE-en-icl 9.61 17.38

BM25 14.62 20.31
Random 2.47 0.78

FastKASSIM 5.69 0.98

Table 2: Term Overlap Ratio (TOR) and its correlation
with micro F1-score across domains. The number of
shots is fixed at 5, and results are averaged across all
datasets and models.

4 Experiments

This section presents experimental results for vari-
ous retrieval methods across multiple datasets. De-
tails on the datasets, models, and baseline retrieval
methods are provided in Appendix A. The main
results are summarized in Table 1, and qualitative
examples of retrieved sentences from the ACTER
dataset are shown in Table 6.

4.1 Main Results
Cross-Domain Result FastKASSIM achieves
the highest F1-score across all tested models. How-
ever, for LLaMA-3.1 and Mistral-Nemo, the differ-
ences between FastKASSIM and both BGE-large-
en and random retrieval are not statistically signif-
icant (p-value > 0.05), indicating comparable per-
formance among these methods. We hypothesize
that the competitive performance of BGE-large-en
stems from prior findings that transformer-based
sentence embeddings capture not only semantic
but also partial syntactic information (Chi et al.,
2020; Pérez-Mayos et al., 2021; Nikolaev and Padó,
2023). In addition, the random retrieval method
ranks second for most models (except Mistral-
Nemo), performing better than expected. This sug-
gests that higher diversity among retrieved exam-
ples may enhance generalization, making random
retrieval a surprisingly effective and efficient alter-
native in low-resource or time-constrained scenar-
ios.

Nonetheless, FastKASSIM’s consistent top per-
formance in general suggests that explicitly disen-
tangling syntactic and semantic features and focus-
ing solely on syntactic structure is more beneficial.

In-Domain Result On the ACLR2 dataset,
FastKASSIM outperforms other methods for

LLaMA-3.1, while BM25 achieves the best per-
formance on the remaining models. The superior
results of semantic- and lexical-based methods over
syntactic-based retrieval in this setting are expected,
as in-domain sentences with high semantic or lexi-
cal similarity are more likely to contain gold terms.
As shown in Section 4.1.1, this is supported by
higher TOR values and a strong correlation be-
tween TOR and micro F1-score.

In contrast, on the BCGM dataset, FastKAS-
SIM consistently outperforms all baselines across
models. Together with its strong performance on
LLaMA-3.1 for ACLR2, these results suggest that
syntactic alignment remains a strong cue even
when semantic and lexical overlap is high, rein-
forcing the utility of syntactic retrieval as a reliable
annotation guide.

4.1.1 Analysis Through Term Overlap Ratio
Table 2 presents the TOR results and its correla-
tion with micro F1-score. Since the distributions
of TOR and micro F1-score are not normally dis-
tributed, we use Spearman’s rank correlation for
analysis.

In cross-domain settings, FastKASSIM has a
TOR of zero, meaning it does not look for sen-
tences that contain gold terms. As a result, micro
F1-score shows no correlation with term overlap.
In contrast, BGE-large-en exhibits a higher TOR
of 0.22, accompanied by a negative correlation.
This is possibly due to certain words functioning
as domain-specific terms in one field but remain
generic in others (e.g., "cough" is a medical term
but appears frequently in non-medical contexts).
This discrepancy may confuse LLMs, leading to
performance degradation as TOR increases.

In in-domain settings, TOR is generally high for
BGE-large-en, BGE-en-icl, and BM25, and their
performance is positively correlated with TOR. In
contrast, FastKASSIM and Random retrieval have
lower TOR and weaker correlation. This suggests
that while FastKASSIM does not explicitly retrieve
documents containing ground-truth terms, it still
achieves competitive performance, as shown in Ta-
ble 1.

5 Ablation Study

In this section, we conduct ablation studies to ex-
amine: (1) how the performance of each retrieval
method scales with the number of demonstrations,
and (2) how our in-context LLM approach com-
pares to strong PLM baselines across selected
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Figure 2: Comparison of retrieval methods for Llama-3.1-8B-IT on ACTER, ACLR2, and BCGM datasets. We
report micro F1-score. The 95% confidence interval is reported for random retrieval.

Dataset Model P R F1

Cross-domain

ACTER
RoBERTa-large 69.3 ±1.3 54.7 ±1.2 61.2 ±1.1

BART-large 66.1 ±1.2 48.2 ±1.2 55.8 ±1.2

Gemma-2 FASTKASSIM 64.3 ±1.1 56.6 ±1.1 60.2 ±1.0

In-domain

ACLR2
RoBERTa-large 85.8 ±2.5 88.9 ±2.1 87.4 ±2.1

BART-large 81.3 ±2.6 84.8 ±2.3 83.0 ±2.2

Gemma-2 BM25 77.3 ±3.0 84.4 ±2.2 80.7 ±2.2

BCGM
RoBERTa-large 88.0 ±0.8 89.0 ±0.8 88.5 ±0.8

BART-large 79.4 ±1.0 77.1 ±1.1 78.2 ±1.0

Mistral FASTKASSIM 50.8 ±1.4 57.2 ±1.2 53.8 ±1.1

Table 3: Performance of pretrained language mod-
els (PLMs) on the ACTER, ACLR2, and BCGM
datasets. For reference, the table also showcases the
best-performing LLM configuration and its retrieval
method (see Table 1) based on F1-score. The best score
along each metric for each dataset is bolded, and second
best score is underlined.

datasets. We also evaluate the impact of differ-
ent constituency parsers on our syntactic similar-
ity method; detailed results are provided in Ap-
pendix C.

5.1 Number of Demonstrations
Figure 2 shows how LLaMA-3.1 scales with the
number of demonstrations under the various re-
trieval strategies. On the ACTER and BCGM
datasets, FastKASSIM is consistently the top per-
former at every shot count. For ACLR2, however,
performance oscillates: BGE-large-en, BM25, and
FastKASSIM each take the lead at different points,
so no single method emerges as uniformly supe-
rior. These trends are similar to results discussed in
Section 4.1. The corresponding curves for the other
models are provided in Figure 3, which shows the
similar trend as LLaMA-3.1.

5.2 Comparison with Pretrained Language
Models

Earlier PLM works (Lang et al., 2021; Rigouts Ter-
ryn et al., 2020) employ non-sequential tagging

objective, which is out of step with recent advances
in ATE (Rigouts Terryn et al., 2021). For a fair
comparison, we therefore retrain each PLM using
the hyper-parameter settings of (Lang et al., 2021)
(batch size, gradient accumulation, learning rate),
altering only the tagging objective.

Table 3 presents the results. On ACTER, our
best configuration achieved with FastKASSIM on
Gemma-2, F1-score of 60.2, is comparable to the
PLM baselines. On ACLR2 and BCGM, however,
significant performance gap remains, where PLMs
outperform LLMs. Additionally, RoBERTa consis-
tently outperforms BART on all datasets, reflect-
ing the difficulties generation-based models face in
token-level classification.

In summary, LLMs can match PLM performance
in cross-domain scenarios, as the broader knowl-
edge base and flexibility of LLMs allow for better
adaptation. In in-domain settings, PLMs remain
superior—likely owing to task-specific fine-tuning.

6 Conclusion

We explored the use of LLMs for ATE and pro-
posed a syntactic retrieval method to address two
key challenges: dataset scarcity and term boundary
identification. Experiments on ACTER, ACLR2,
and BCGM showed that syntactic similarity-based
retrieval improves ATE performance across both
in-domain and cross-domain settings.

We also introduced the Term Overlap Ratio to
analyze how different retrieval strategies depend
on the presence of gold terms in the demonstration
corpus. Our results indicate that syntactic retrieval
relies less on such overlap compared to semantic
or lexical methods, highlighting its robustness in
low-resource scenarios.
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Limitations

While our study demonstrates the potential of
LLMs for ATE, several limitations remain. First,
although syntactic retrieval mostly outperforms se-
mantic retrieval, the absolute improvements in F1-
score are modest, suggesting inherent limitations
in in-context learning for ATE. Second, as shown
in Section 5.2, LLMs still underperform relative
to domain-tuned PLMs. This underscores the need
for further adaptation or fine-tuning strategies as
done in (Wang et al., 2023b; Wadhwa et al., 2024),
which we leave for future work.
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A Implementation Details

A.1 Dataset

We conduct our experiments on both cross-domain
and in-domain datasets. For the cross-domain set-
ting, we employ the Annotated Corpora for Term
Extraction Research (Rigouts Terryn et al., 2020),
while for in-domain setting, we use two widely
studied datasets: ACL RD-TEC 2.0(qas, 2016),
and BioCreAtIvE Task 1A: Gene Mention(Yeh
et al., 2005). Table 4 summarizes the dataset statis-
tics.

Dataset Name Subset Avg Words Avg Terms

ACTER
Train 19 2
Validation 17 3
Test 19 4

ACLR2
Train 23 3
Validation 23 4
Test 19 3

BCGM
Train 22 2
Validation 23 2
Test 23 2

Table 4: Average number of words and terms for each
dataset.

Annotated Corpora for Term Extraction Re-
search (ACTER) The ACTER dataset spans four
distinct domains: Wind Energy, Corruption, Dres-
sage, and Heart Failure. Wind Energy and Corrup-
tion consists train dataset, Corruption constructs
validation dataset, while Heart Failure constructs
test dataset. In addition, terms within ACTER are
categorized into four main groups: (1) Specific
Terms, which are understood primarily by domain
experts (e.g., "Cardiac cachexia" in the medical
field); (2) Common Terms, known to the general
public without requiring specialized domain knowl-
edge (e.g., "cough" in the medical domain); and
(3) Out-of-Domain Terms, which are familiar to ex-
perts in other domains (e.g., "p-value" in the medi-
cal domain). (4) Named Entities, name of real-word
objects such as person, locations, organizations, etc
(e.g "Johns Hopkins Hospital" in the medical do-
main).

In addition, ACTER is a mulitilingual dataset,
spanning English, French and Dutch. Since the
focus of our work lies in discovering the optimal
retrieval strategy for ATE, we limit our experiments
to the English subset of the ACTER.

Also, there have been debates over whether
Named Entities should be included as part of term
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extraction tasks. We decided to consider Named En-
tities as terms due to following reasons: (1) LLMs
have demonstrated reliable performance in infor-
mation extraction tasks, including Named Entity
Recognition (NER). (2) Recent researches around
ATE consider named entities as terms (Lang et al.,
2021; Tran et al., 2023).

ACL RD-TEC 2.0 (ACLR2) The ACLR2 dataset
was annotated by two experts in the field of compu-
tational linguistics, with multiple rounds of inter-
annotator agreement. However, due to inherent sub-
jectivity, the annotators were unable to reach full
agreement, resulting in two subsets of annotated
data. Unlike previous studies that evaluate each sub-
set separately, our work integrates identical terms
annotated by both experts to construct a single uni-
fied test set. The remaining data is split into training
and validation sets, with a ratio of 3:1.

BioCreAtIvE Task 1A: Gene Mention (BCGM)
The BCGM dataset, part of the BioCreAtIvE
challenge, focuses on gene-related terminology
in biomedical texts. It contains sentences from
Medline abstracts, with manually annotated terms.
These terms primarily include gene and protein
names, along with related biological entities such
as domains, motifs, and families.

A.2 Models
We evaluate ATE performance mainly on three
LLMs: Llama-3.1-8B-IT (Dubey et al., 2024),
Gemma-2-9B-IT(Team et al., 2024), and Mistral-
Nemo-Instruct-2407. Across all models, we adopt
greedy decoding strategy to ensure deterministic
output generation.

We also report performance of PLMs as base-
line, specifically RoBERTa-large(Liu et al., 2019)
and BART-large(Lewis et al., 2020), which have
reached SOTA performance in ATE task, as pro-
posed in (Lang et al., 2021; Tran et al., 2023).

Training and evaluation are conducted using the
HuggingFace1 and LlamaIndex2 libraries.

A.3 Baseline Retrieval Methods
We evaluate our syntactic-based retrieval method,
FastKASSIM against two semantic similarity mod-
els, BGE-large-en-v1.5(Xiao et al., 2023) and BGE-
en-icl(Li et al., 2024a)). Additionally, we include
a lexical-based approach, BM25 and a random re-
trieval baseline. For the random baseline, sentences

1https://huggingface.co/
2https://github.com/run-llama/llama_index

are selected uniformly at random using four differ-
ent random seeds, and results are averaged across
runs. Across all datasets, we use the training set
as the demonstration corpus and the test set as the
query corpus.

A.4 Evaluation Method

We report precision, recall, and F1-score to eval-
uate model performance. Specifically, we apply
bootstrapping with 10,000 resamples to compute
performance statistics and report 95% confidence
intervals. To assess statistical significance, we con-
duct hypothesis testing using p-values, comparing
the FastKASSIM-based method against baseline
retrieval strategies.

Following recently adopted sequence labeling
evaluation approach (Rigouts Terryn et al., 2021),
we directly compare the model-generated terms to
the gold annotations without additional normaliza-
tion.

A.5 Syntactic Similarity Metrics

To date, the only metrics explicitly designed for
word-, sentence-, and document-level syntactic sim-
ilarity are the ConversAtion-level Syntax SImilar-
ity Metric (CASSIM) (Boghrati et al., 2018) and
its successor, the Fast Tree-Kernel-bAsed Syntac-
tic SIMilarity Metric (FastKASSIM) (Chen et al.,
2023).

CASSIM encodes each sentence as an unlexical-
ized constituency parse tree and compares docu-
ment pairs by computing length-normalized Edit
Distances (Wagner and Fischer, 1974) between all
cross-document sentence pairs. It then applies the
Hungarian algorithm to align the most similar sen-
tence pairs and aggregates their distances into a sin-
gle 0–1 similarity score. In crowdsourced dataset
evaluations, CASSIM successfully distinguished
syntactically similar from dissimilar sentence pairs,
outperforming Linguistic Style Matching and other
syntactic baselines.

FastKASSIM is built upon CASSIM, but replaces
the Edit Distance with a Label-based Tree Kernel
that counts shared subtree fragments. By caching
recursive computations, it avoids the tendency of
edit distance to overestimate similarity between
structurally dissimilar sentences and significantly
reduces computational complexity. On the Change-
MyView corpus, FastKASSIM achieves a 2.4–5.3×
speedup over CASSIM and demonstrates stronger
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correlation with human judgments of syntactic sim-
ilarity. Given its efficiency and improved alignment
with human perception, we adopt FastKASSIM as
the primary syntactic similarity metric in our work.

B Instruction Templates

This section outlines the instructions used in our
experiments. We define [DOMAIN_NAME] as the
domain from which terms are to be extracted, and
[DEMONSTRATIONS] as the retrieved examples.

B.1 Default Instruction:

From the given sentence, extract terms and named
entities relevant to the [DOMAIN_NAME] domain.
If no relevant terms or named entities are found,
return “No term”.

# Guidelines:

1. Extract only the terms and named entities
present in the sentence.

2. Focus solely on English terms.

3. Provide only the extracted terms and named
entities or “No term,” without additional com-
mentary.

4. Use commas to separate each term and named
entity.

5. Maintain the original case (e.g., lowercase, cap-
italized) of each term.

[DEMONSTRATIONS]
Given sentence from the [DOMAIN_NAME] do-
main:

B.2 Instruction Prompt for BGE-en-icl:

Given a sentence and a specific domain, retrieve sen-
tences from other domains that follow a similar struc-
ture while using domain-specific terminology. These
examples should help language models identify and
extract key terms related to the original domain from
the given sentence.
Domain: [DOMAIN_NAME] Sentence:

C Impact of Parse Tree Construction
Methods

This section examines how the choice of con-
stituency parser affects syntactic similarity under
the FastKASSIM framework. We compare two ma-
jor families of parsers: (1) probabilistic models
and (2) neural network (NN)-based models. For
the probabilistic model, we use the unlexicalized
PCFG parser (Klein and Manning, 2003) from

Dataset Metric Llama-3.1-8B-IT Gemma-2-9B-IT Mistral-Nemo

PCFG NN PCFG NN PCFG NN

ACTER
P 64.3 ±1.3 67.9 ±1.3 64.3 ±1.1 64.4 ±1.2 66.7 ±1.4 66.6 ±1.4

R 53.0 ±1.0 49.5 ±1.0 56.6 ±1.1 54.1 ±1.2 44.0 ±1.2 42.6 ±1.1

F1 58.0 ±1.1 57.3 ±1.0 60.2 ±1.0 58.8 ±1.1 53.0 ±1.1 52.0 ±1.1

ACLR2
P 77.4 ±2.9 75.0 ±3.3 75.9 ±1.2 76.3 ±3.2 73.1 ±3.1 73.5 ±3.3

R 78.7 ±2.4 74.4 ±2.7 82.2 ±2.5 81.3 ±2.4 73.1 ±3.0 71.5 ±3.1

F1 78.1 ±2.4 74.7 ±2.7 78.8 ±2.5 78.7 ±2.5 73.1 ±2.6 72.5 ±2.8

BCGM
P 43.8 ±1.2 42.9 ±8.3 44.1 ±1.1 42.7 ±8.0 50.8 ±1.4 47.0 ±9.2

R 56.6 ±1.2 59.3 ±7.7 60.8 ±1.2 64.3 ±8.1 57.2 ±1.2 57.8 ±8.1

F1 49.4 ±1.1 49.6 ±8.1 51.1 ±1.1 51.1 ±8.0 53.8 ±1.1 51.7 ±8.4

Table 5: Performance of two tree-parsing ap-
proaches—an unlexicalized PCFG (PCFG) and a neural
CRF + RoBERTa (NN) model. Columns P, R, and F1
denote precision, recall, and F1, respectively. For each
setting, the higher F1-score of the two approaches is
shown in bold.

the Stanford Parser3. For the NN-based model, we
adopt the CRF Parser + RoBERTa (Zhang et al.,
2020), implemented in the SuPar library4.

We evaluate both parsers across our imple-
mented models and datasets. Table 5 presents the
results. Overall, the PCFG parser outperforms the
neural parser. We hypothesize that this is because
PCFGs rely solely on syntactic structure, whereas
neural parsers incorporate both syntactic and se-
mantic signals, potentially reducing syntactic align-
ment accuracy. This observation is consistent with
our findings in Section 4.1, which show that iso-
lating syntax from semantics improves retrieval
quality.

Based on these results, we adopt the unlexical-
ized PCFG parser for all experiments in this work.

3https://nlp.stanford.edu/software/lex-parser.
shtml

4https://github.com/yzhangcs/parser
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Query Sentence Domain Term

The analysis included a large study sample with more than 60,000 patients across 4372 hospitals. Heart Failure patients, hospitals

(a) Example of query sentence and extracted terms.

Similarity Metric Retrieved Sentence Domain Term

BGE-en-large

The author especially thanks his supervisor for his patience and trust during the
study.

Corruption No term

The contractor will be tasked to set up the network of 27 local research corre-
spondents and cover the coordination/logistic aspects.

Wind Energy contractor

Seven participants came to the public meeting. Corruption No term
The studies of this thesis can be surely used for further works. Wind Energy No term
This survey is conducted every two years. Corruption No term

BGE-en-icl

7,355 5,241 2,750 1,815 Wind Energy No term
52,534 21,238 55,501 86,160 Wind Energy No term
2 20 52 88 152 239 318 418 490 556 590 605 610 605 600 590 580 570 Wind Energy No term
82 4.8 Results. Wind Energy No term
Hence, by simply including all these power plants operating on the grid (excl. Corruption No term

BM25

Technical Wind Energy Potential (MW) 83.000 14.000 12.000 57.000 22.000
42.000 35.000 43.000 20.000

Wind Energy Technical Wind Energy
Potential, MW

Any regular income Members receive in respect of each item declared in ac-
cordance with the first subparagraph shall be placed in one of the following
categories: EUR 500 to EUR 1 000 a month; EUR 1 001 to EUR 5 000 a month;
EUR 5 001 to EUR 10 000 a month; more than EUR 10 000 a month.

Corruption income

Lastly sample blade design studies are given by specifying a set of input values. Wind Energy blade design
The Convention enjoys broad support: more than 100 member-countries have
ratified it, including Belgium.

Corruption Belgium

Studies on this concept concluded that it was more cost-effective to use multiple
turbines or larger turbines than to pay for the complex structure needed to
support.

Wind Energy turbines, turbines

FastKASSIM

The Commission conducted public consultations in 2010 on the audit policy
lessons from the financial crisis.

Corruption Commission, public, au-
dit, policy, financial cri-
sis

Belgium ratified this Convention in 2007. Corruption Belgium
Lessons learned from similar experiences in the past Corruption No term
I know that the leaders of a certain country cream something off payments for
the supply of commodities.

Corruption cream something off
payments

For example, a two-bladed rotor with a tail vane would yaw in a series of jerking
motions because at the instant the rotor was vertical it offered no centrifugal
force resistance to the horizontal movement of the tail vane in following changes
in wind direction.

Wind Energy two-bladed rotor, tail
vane, yaw, rotor, cen-
trifugal force, tail vane,
wind direction

(b) Retrieved sentences using different similarity metrics.

Table 6: Comparison of query sentence and terms with sentences retrieved in ACTER dataset using different
similarity metrics, including BGE-en-large, BGE-en-icl, BM25 and FastKASSIM. The terms extracted from each
retrieved sentence are listed alongside their respective domain.

Figure 3: Comparison of retrieval methods for Gemma-2 and Mistral-Nemo on ACTER, ACLR2, and BCGM
datasets. The 95% confidence interval is reported for random retrieval.
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