
Findings of the Association for Computational Linguistics: ACL 2025, pages 9868–9880
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

SIKeD: Self-guided Iterative Knowledge Distillation
for Mathematical Reasoning

Shivam Adarsh∗
University of Copenhagen

shad@di.ku.dk

Kumar Shridhar∗
ETH Zurich

shkumar@ethz.ch

Caglar Gulcehre
CLAIRE, EPFL

Nicholas Monath
Google DeepMind

Mrinmaya Sachan
ETH Zurich

Abstract

Large Language Models (LLMs) can trans-
fer their reasoning skills to smaller models
by teaching them to generate the intermedi-
ate reasoning process required to solve mul-
tistep reasoning tasks. While LLMs can accu-
rately solve reasoning tasks through various
strategies, even without fine-tuning, smaller
models are not expressive enough to fit the
LLMs distribution on all strategies when dis-
tilled and tend to prioritize one strategy over
the others. This reliance on one strategy poses
a challenge for smaller models when attempt-
ing to solve reasoning tasks that may be diffi-
cult with their preferred strategy. To address
this, we propose a distillation method SIKeD:
Self-guided Iterative Knowledge Distillation,
where the LLM teaches the smaller model to ap-
proach a task using different strategies and the
smaller model uses its self-generated on-policy
outputs to choose the most suitable strategy
for the given task. The training continues in
a self-guided iterative manner, where for each
training iteration, a decision is made on how to
combine the LLM data with the self-generated
outputs. Unlike traditional distillation methods,
SIKeD allows the smaller model to learn which
strategy is suitable for a given task while contin-
uously learning to solve a task using different
strategies. Our experiments on various math-
ematical reasoning datasets show that SIKeD
significantly outperforms traditional distillation
techniques across smaller models of different
sizes1.

1 Introduction

Large language models (LLMs), with tens to hun-
dreds of billions of parameters, generally outper-
form smaller models (with billions of parameters
or fewer) in a variety of reasoning tasks (Touvron
et al., 2023; Achiam et al., 2023). One notable
strength of large models is their ability to reason

*Equal contribution
1Our code is available on Github

PoT CoT L2M
Strategy

0

200

400

600

800

1000

Nu
m

be
r o

f T
im

es
 S

tra
te

gy
 S

el
ec

te
d

285

442

273

70

828

102

LLM
Smaller Model

Figure 1: Histogram of strategy choices for the LLM
and the smaller model. LLM tends to select several
reasoning strategies, but the smaller model is biased
towards one strategy. The comparison was done on 1K
randomly sampled datapoints in the GSM8K train set.

and perform multistep reasoning tasks, often con-
sidered an important aspect of intelligence (Gómez-
Veiga et al., 2018). However, the significant size
and computational demands of these large models
present several challenges. For example, LLaMA3
models (Touvron et al., 2023) are trained using clus-
ters of 24,000 GPUs, limiting their accessibility to
many researchers and practitioners.
To bridge this gap, a key approach involves teach-
ing smaller models to replicate the knowledge of
a larger model, often referred to as knowledge dis-
tillation (Hinton et al., 2015). Typically, smaller
models can be taught to replicate the multistep rea-
soning capabilities of larger models by incorporat-
ing a set of intermediate sequences (Kim and Rush,
2016; Shridhar et al., 2023). However, these inter-
mediate steps can be derived from several different
strategies, such as Chain of Thought (CoT) (Wei
et al., 2022), Subquestion Decomposition (Shrid-
har et al., 2022; Zhou et al., 2023), and Program of
Thoughts (PoT) (Chen et al., 2023), among others.
A viable solution is to distill these reasoning capa-
bilities into smaller models either by distilling in-
dividual strategies (Magister et al., 2023; Shridhar
et al., 2023; Hsieh et al., 2023) or by incorporating

9868

https://github.com/kumar-shridhar/siked

multiple strategies simultaneously (Chenglin et al.,
2023; Zhu et al., 2024). Although smaller models
have demonstrated impressive performance when
distilled with a single strategy, they often strug-
gle to master multiple strategies equally well. An
example is presented in Figure 1 where a larger
model (LLaMA-3 70B) can use multiple strategies
to generate data but upon distilling, a smaller model
(Gemma 2B) tends to favor one over the others. We
used three-shot prompting on both the larger and
smaller model, showing the models one example
of each strategy. The goal for the model was then
to 1) select a strategy and 2) solve the reasoning
task using the selected strategy for a given problem.
The results displayed in Figure 1 confirm our hy-
pothesis. This happens because reasoning through
a variety of strategies tends to emerge as a result
of scaling language models, making it difficult for
smaller models to replicate this behavior (Lyu et al.,
2024).
On the other hand, learning to solve a task us-
ing multiple strategies can help smaller models
overcome the limitations of relying on a single ap-
proach. However, a key challenge arises when,
despite being trained on a fixed dataset containing
various strategies, a distribution mismatch occurs
between the data generated by the LLM and the
outputs produced by the smaller model during in-
ference. This mismatch can hinder the ability of
the smaller model to generalize across different
reasoning strategies. This issue, often discussed
in imitation learning (Pomerleau, 1991; Ross and
Bagnell, 2010), results in the student model consis-
tently choosing one strategy, even when a different
approach would be more appropriate. As a result,
the student generates outputs with strategy choices
that are highly unlikely to match those produced
by the teacher.
To address this challenge, we introduce our distil-
lation methodology, SIKeD: Self-guided Iterative
Knowledge Distillation. The process begins with
the LLM teaching the smaller model to approach
tasks using a variety of reasoning strategies, pro-
viding a strong foundation for the smaller model to
understand different problem-solving approaches.
However, due to inherent biases and its limited
capacity, the smaller model may still struggle to
match the LLM’s distribution of strategy choices
effectively. To resolve this, we take inspiration
from constructivist learning theory (Narayan et al.,
2013), where the learner builds knowledge during
the “assimilation phase” and refines their under-

standing during the “accommodation phase” to
incorporate new insights. We propose generat-
ing outputs using the smaller model in an on-
policy setup and selecting the best strategies for
the task. By mixing the LLM-generated data with
self-generated outputs, we leverage the strengths of
both datasets. We iteratively fine-tune the smaller
model allowing it to recognize strategies that it
learned from the LLM but did not initially apply.
With this approach, we align the smaller model
with its own learned knowledge rather than forcing
its distribution to mirror that of the LLM’s.
Our proposed method extends beyond traditional
one-step distillation, as each iteration of SIKeD
leads to an updated policy that better grasps new in-
formation. We repeat multiple iterations of SIKeD
based on the accuracy-cost tradeoff (does the im-
provement justify the cost of another iteration),
allowing for continuous refinement and improve-
ment of the model’s reasoning capabilities. We
demonstrate the effectiveness of SIKeD on sev-
eral mathematical reasoning tasks using models
with 7 billion parameters or less.2 On four math-
ematical datasets—GSM8K (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), ASDiv (Miao et al.,
2020), and MultiArith (Roy and Roth, 2015)—our
approach achieves improvements of up to +5 points
over traditional distillation strategies. Additionally,
we show that multiple rounds of SIKeD allow the
model to select the appropriate strategy for a given
problem, while traditional distillation using LLM’s
data tends to leave it biased.

2 Preliminaries: LLM based Distillation

Problem Setup We consider the standard setup
for LLM-based distillation (also referred to as
knowledge distillation), where distillation data is
sampled from a larger model with intermediate
reasoning steps and a smaller distilled model is
fine-tuned on the data (Shridhar et al., 2023; Mag-
ister et al., 2023). Two auto-regressive sequence
models are involved in the process: a larger model
or the LLM denoted as pL and a smaller model to
be distilled as pθsm (with learnable parameters θ).
In this work, we consider a reasoning distillation
setup where the distillation dataset D consists of
pairs of math questions qi and their numerical an-
swers ai, i ∈ {1, . . . , n}. Our work focuses on

2We acknowledge that “smaller model” is a relative term,
and we consider models with 7 billion parameters or less to
be smaller models.

9869

improving reasoning in smaller models by teach-
ing them to utilize a variety of reasoning strate-
gies. We consider three reasoning strategies in
this work: Chain-of-Thought (CoT), Least-to-Most
(L2M), and Program-of-Thought (PoT). For each
question qi and a specific reasoning strategy, de-
noted as s ∈ S, we generate the reasoning chain
(or rationale), denoted as ri leading to the final
answer: ri ∼ pL(. | prs, qi), where, prs represents
the strategy-specific prompt. The prompts used for
the generation of reasoning chains are provided in
Appendix A.

2.1 LLM based Distillation
We begin by creating an initial training dataset DLLM

consisting of a quadruple of {qi, ai, s, ri} for each
data point. We perform a data filtering by extracting
the final answer âi from the generated rationale ri
and comparing it with the ground truth answer ai.
We discard all samples that do not match, i.e., we
keep samples where âi = ai. This filtering process
eliminates incorrect rationales, ensuring that only
high-quality data is used for distilling the smaller
models.
We start the distillation process by training the
smaller model with the created dataset DLLM. The
question qi is provided as input, and the smaller
model pθsm (with learnable parameters θ) is first in-
structed to generate the strategy s, followed by the
rationale ri that leads to the final answer ai. The
loss LL(θ) is defined as:

LL(θ) =− E(qi,s,ri)∼DLLM

[
log pθsm (s | qi, I)

+

M∑

t=1

log pθsm (ri,t | ri,<t, s, qi, I)

]

where M represents the number of tokens decoded
over time t in an autoregressive manner, and I is the
instruction used during fine-tuning. Note that this
is analogous to traditional knowledge distillation
from LLMs except that we make a strategy choice
before generating rationales.

Limitations of this standard distillation setup
Training solely on LLM-generated data DLLM can
lead to a distribution mismatch between the train-
ing data and the smaller model’s output distri-
bution. Specifically, the larger model due to its
larger capacity, may produce correct reasoning
across multiple strategies that the smaller model
can find difficult to replicate directly (Agarwal

et al., 2024). A comparison of the strategy selected
by the LLM and the smaller model on 1K samples
is presented in Figure 1. The smaller model per-
forms poorly when generating outputs on its own,
as the training data distribution Ptrain(x) is differ-
ent from the model’s output distribution P θ

sm(x) as
P

(1)
train(x) = PLLM(x), where x represents the sam-

ples (qi, s, ri), and PLLM(x) is the distribution of
the data generated by the LLM pL.

Proposed Solution To mitigate the distributional
shift in strategy choice between the LLM and
the smaller model, we propose to incorporate the
smaller model’s correct outputs into the training
data. This self-guided training with data mixing
aligns the training data distribution more closely
with the smaller model’s output distribution, mak-
ing learning more effective. A visualization of
the data mixing approach is presented in Figure 2
that demonstrates that data mixing reduces the dis-
tribution shift, bringing the LLM and the smaller
model’s output distribution closer. This allows the
smaller model to choose the right strategy for a
given task, much like the LLM.

3 SIKeD: Self-guided Iterative Knowledge
Distillation

We propose SIKeD, an iterative training procedure
where smaller models can take advantage of their
own generations to refine their strategy choices for
a given task. In a nutshell, we generate data from
the smaller model, filter out the correct samples
based on whether the generated solutions are cor-
rect, and mix this data with the LLM-generated
data to adjust its strategy preferences. The smaller
distilled model is used to iteratively generate data
in an on-policy setting where it updates itself by
leveraging both the LLM data and its own gener-
ations. This iterative process allows the smaller
model to improve its reasoning abilities and strat-
egy selection over time by leveraging the LLM’s
knowledge and prior learning. The following para-
graphs discuss the steps involved in our proposed
iterative distillation methodology and the training
objective.

Data generation For each question qi and its as-
sociated reasoning strategy s, we first generate K
rationales using the current smaller model pθsm as:
r
(k)
i ∼ pθsm(· | s, qi, I), for k = 1, . . . ,K. Note

that we generate multiple samples K as the like-
lihood of a correct answer being present in one

9870

PoT CoT L2M
Strategies

0.0

0.2

0.4

0.6

0.8

1.0

St
ra

te
gy

 S
el

ec
tio

n
Pr

ob
ab

ilit
y

Iteration 1 Alpha: 0.90
KL Divergence: 0.3135

PoT CoT L2M
Strategies

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 2 Alpha: 0.67
KL Divergence: 0.1792

PoT CoT L2M
Strategies

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 3 Alpha: 0.43
KL Divergence: 0.0800

PoT CoT L2M
Strategies

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 4 Alpha: 0.20
KL Divergence: 0.0184

LLM Distribution PL SM Distribution PSM Training Data P(t)
train

Figure 2: Alignment of the smaller model’s strategy distribution with the LLM over iterations. Each subplot
represents an iteration in the training process, showing the probability distributions over reasoning strategies: PoT,
L2M, and CoT. The blue bars depict the LLM’s distribution PL, while the orange bars represent the smaller model’s
distribution PSM , which is biased towards CoT. The green bars show the training data distribution P

(t)
train, a mixture

of PL and PSM weighted by the mixing rate α. As α decreases over iterations (from 0.90 to 0.20), P (t)
train shifts from

being similar to the LLM’s distribution towards the smaller model’s distribution. The KL divergence between the
training data and the smaller model distributions decreases accordingly, indicating increased similarity.

of the rationales increases significantly with addi-
tional generations for smaller models (Jain et al.,
2023; Wang et al., 2023).

Data Filtering Next, we extract the predicted
answer â(k)i from each rationale r

(k)
i and compare

it with the ground truth ai. We collect the cor-
rect samples, where â

(k)
i = ai, into a new dataset

Dself =
{
(qi, s, r

(k)
i)

∣∣∣ â(k)i = ai

}
.

Data mixing We combine the LLM-generated
dataset DLLM with the self-generated dataset Dself

to form the mixed dataset Dmix = DLLM ∪ Dself.
Note that, we do not always use all the data from
LLM in Dmix, and study two variations: All when
all LLM data is used in Dmix, and Adaptive when
only queries that have no correct generations in
Dself are taken from DLLM. Adaptive uses less gen-
erated data from the LLM, resulting in more com-
putationally efficient training.
The corresponding training data distribution
changes to a mixture of the LLM data distribution
and the smaller model’s output distribution with
correct samples:

P
(2)
train(x) = αPLLM(x) + (1− α)P θ

sm(x),

where α = |DLLM|
|DLLM|+|Dself| serves as a normalized

mixing rate between the two datasets.

Training objective By including Dself in the
training data, we reduce the divergence be-
tween P

(2)
train(x) and the model’s output distribution

P θ
sm(x), thus minimizing the distribution shift and

improving training effectiveness of choosing the
right strategy for a given task.
We continue training the smaller model on Dmix

using the following loss function:

Lmix(θ) =− E(qi,s,ri)∼Dmix

[
log pθsm (s | qi, I)

+
M∑

t=1

log pθsm (ri,t | ri,<t, s, qi, I)

]

The expected loss over the training data is:

Lmix(θ) = −E
x∼P (2)

train(x)

[
log pθsm(x)

]

where x = (qi, s, ri), and pθsm(x) denotes the prob-
ability assigned by the model to the sample x.

Analogous to minimizing the KL divergence
Mixing the data is analogous to minimizing the
Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951) between the training data distribu-
tion P

(2)
train(x) and the model’s output distribution

P θ
sm(x):

DKL(P
(2)
train(x) ∥ P θ

sm(x)) =
∑

x P
(2)
train(x) log

P
(2)
train(x)

P θ
sm(x)

As we include more self-generated data, (1 − α)

increases, and P
(2)
train(x) becomes closer to P θ

sm(x).
This reduces the KL divergence and aligns the train-
ing data distribution with the model output distri-
bution, leading to more effective learning. Figure 2
demonstrates that as the value of α decreases, the
distribution of the training data strategy choices

9871

aligns with the smaller model with correct solu-
tions, with a reduction in their KL value over it-
erations. This allows the smaller model to better
capture the strategy distribution of the larger model.

3.1 Iterative Self-Training of SIKeD
We repeat the data generation, filtering, mixing,
and training steps iteratively. In each iteration t,
the smaller model potentially generates new correct
rationales that are added to the training data. The
training data distribution at iteration t becomes:

P
(t)
train(x) = α(t)PLLM(x) + (1− α(t))P θ(t−1)

sm (x),

where θ(t−1) are the model parameters from the
previous iteration, and α(t) is updated based on
the sizes of DLLM and D(t)

self at iteration t. Note
that the generated samples from the smaller model
automatically govern the value of α(t) based on the
size of D(t)

self.
This iterative process continues until the model’s
performance converges or a predefined stopping cri-
terion is met. Over multiple iterations, the model’s
output distribution P θ(t)

sm (x) gradually improves,
and the training data distribution becomes increas-
ingly aligned with it. We present an end-to-end
training methodology in Algorithm 1.

4 Experimental Details

Dataset Our work demonstrates the effectiveness
of selecting an appropriate strategy for a given
task. We consider multi-step mathematical rea-
soning datasets in our work, as various strategies
can solve the task fairly well. We trained SIKeD
on the GSM8K training set (Cobbe et al., 2021),
which includes 7,473 samples, and tested it on the
corresponding test set of 1,319 samples. To as-
sess the domain transferability of our distillation
method, we also evaluated it on three additional
mathematical datasets: SVAMP (Patel et al., 2021)
with 1,000 samples, ASDiv (Miao et al., 2020) with
2,300 test samples, and MultiArith (Roy and Roth,
2015) with 180 samples. As the GSM8K training
set was used to train the smaller model, we classify
it as an in-distribution dataset. In contrast, no train-
ing data from SVAMP, ASDiv, or MultiArith was
used, as they were exclusively employed for testing
purposes and thus considered out-of-distribution.

Implementation Details We used the Llama3
70B model (Dubey et al., 2024) as the large lan-
guage model (LLM) to generate the rationales. We

Algorithm 1 SIKeD: Self-guided Iterative
Knowledge Distillation
Input: D: Reasoning dataset with questions {qi}Ni=1 and answers

{ai}Ni=1, DLLM: Reasoning dataset generated using the LLM
with questions {qi}, answers {ai}, strategy {s}, rationales
{ri}, S: Set of reasoning strategies, I : instruction, pL: LLM

for rationale generation , pθ
(0)

sm : Smaller model with initial
parameters θ(0) , K: Number of samples per question and
strategy, T : Maximum number of iterations, Variation: All or
Adaptive,

// LLM-Based Distillation

Train pθ
(0)

sm on DLLM by minimizing LL(θ(0)) ((2.1))

// SIKeD: Self-guided Iterative Knowledge Distillation
for iteration t = 1 to T do

Initialize dataset D(t)
self ← ∅

for each question qi ∈ D do
for each strategy s ∈ S do

for k = 1 to K do
Generate rationale r

(k)
i using pθ

(t−1)

sm : r(k)i ∼
pθ

(t−1)

sm (· | s, qi, I)
Extract answer â(k)i from r

(k)
i

if â(k)i = ai then
Add (qi, s, r

(k)
i) to D(t)

self
end

end
end

end
if Variation is All then

Combine datasets: D(t)
mix = DLLM ∪ D(t)

self

else
Identify questions with no correct self-generated rationales:
I = {i | no correct r(k)i in D(t)

self}
Include corresponding LLM data: D(t)

LLM = {(qi, s, ri) ∈
DLLM | i ∈ I}
Combine datasets: D(t)

mix = D(t)
LLM ∪ D

(t)
self

end

Update α(t) =
|D(t)

LLM |
|D(t)

LLM |+|D(t)
self|

Retrain pθ
(t)

sm on D(t)
mix by minimizing L(t)mix(θ

(t)) ((3))

end
Output: Updated smaller model pθ

(T)

sm

performed distillation on different smaller mod-
els ranging from 0.5B to 7B parameters, including
Qwen2 0.5B (Bai et al., 2023), Qwen2 1.5B (Bai
et al., 2023), SmolLM 1.7B (Hugging Face, 2023),
Gemma 2B (Team et al., 2024), and Gemma 7B
(Team et al., 2024). All smaller models were fine-
tuned using LoRA (Hu et al., 2022) with a rank of
16, and alpha of 32. We used a learning rate of 3e-4
for Qwen models with a cyclic scheduler, while we
set 2e-4 as the learning rate for other models and
used a linear scheduler. We train all models for 3
epochs. We implemented all our experiments using
the Unsloth FastLanguageModel (Unslothai, 2023)
and used the VLLM library (Kwon et al., 2023) for
inference. We set the temperature t = 0 for data
generation from the LLM while t = 0.7 was used
for generating samples from the smaller model at

9872

Dataset Method Gemma 7B Gemma 2B SmolLM 1.7B Qwen 1.5B Qwen 0.5B

GSM8K

CoT 67.40 36.54 16.38 55.57 36.47
L2M 69.29 36.92 18.73 54.59 33.59
PoT 71.34 44.05 23.73 64.22 41.62
Combined 70.74 44.05 24.56 64.44 42.38
SIKeD(Adaptive) 73.84 (↑ +2.5) 47.23 (↑ +3.2) 27.98 (↑ +3.4) 64.97 (↑ +0.3) 43.14 (↑ +0.8)

SIKeD(All) 71.42 (↑ +0.1) 45.26 (↑ +1.2) 27.75 (↑ +3.2) 64.14 (↓ -0.3) 43.06 (↑ +0.7)

ASDiv

CoT 68.76 54.01 30.37 68.76 54.66
L2M 64.69 43.47 22.13 63.69 49.76
PoT 67.85 58.13 43.77 66.94 56.83
Combined 69.11 57.96 46.77 67.64 57.79
SIKeD(Adaptive) 70.59 (↑ +1.5) 59.05 (↑ +0.9) 47.20 (↑ +0.4) 68.98 (↑ +1.3) 58.44 (↑ +0.7)

SIKeD(All) 70.76 (↑ +1.6) 58.00 (↓ -0.1) 48.16 (↑ +1.4) 68.55 (↑ +0.9) 58.61 (↑ +0.8)

MultiArith

CoT 98.33 87.22 58.89 99.44 83.89
L2M 96.11 81.67 53.89 96.67 76.67
PoT 98.89 90.56 61.11 95.56 92.22
Combined 99.44 84.44 67.22 98.89 90.56
SIKeD(Adaptive) 99.44 (-) 91.11 (↑ +0.6) 72.22 (↑ +5.0) 99.44 (-) 93.33 (↑ +1.1)

SIKeD(All) 100.0 (↑ +0.6) 88.89 (↓ -1.6) 72.22 (↑ +5.0) 98.89 (↓ -0.5) 92.22 (-)

SVAMP

CoT 66.80 41.90 22.60 66.30 43.00
L2M 64.80 31.60 17.90 62.30 44.60
PoT 75.00 56.80 34.50 74.30 51.40
Combined 69.40 56.20 35.90 73.20 51.40
SIKeD(Adaptive) 72.90 (↓ -2.1) 58.60 (↑ +1.8) 37.80 (↑ +1.9) 75.40 (↑ +1.1) 51.70 (↑ +0.3)

SIKeD(All) 76.40 (↑ +1.4) 56.70 (↓ -0.1) 39.50 (↑ +3.6) 73.50 (↓ -0.8) 52.10 (↑ +0.7)

Table 1: Top-1 (maj@1) accuracy across four math datasets (rows) and five smaller models (columns). We report
the performance for four baseline methods: CoT, L2M, PoT, Combined and compare them with two SIKeDvariants
(Adaptive / All). Best performance in each row is in bold.

each iteration. We set the number of generated
samples or K to 10. We report Top-1 accuracy
(maj@1).
Often, distillation is performed using only a
single strategy such as Chain-of-Thought (CoT)
(Wei et al., 2022), Program-of-Thought (PoT)
(Chen et al., 2023), Least-to-Most (L2M) (Zhou
et al., 2023) or by combining different strategies
(Chenglin et al., 2023; Zhu et al., 2024). For this
reason, we treat single-strategy distillation (CoT,
PoT, L2M) and “Combined“ as baseline models in
our work as shown in Table 1.

5 Results and Discussion

LLM Based Distillation We start by distilling
smaller models using the reasoning dataset gen-
erated using the LLM in two variations: using
data from a single strategy (CoT, PoT, or L2M),
and a combination of all three strategies (referred
to as “Combined”). Table 1 compares the accu-
racies of the approaches across four mathemati-
cal datasets. The “Combined” approach benefited
smaller models, yielding slight improvements for
the Qwen 0.5B, Qwen 1.5B, and SmolLM 1.7B
models. However, it showed little to no improve-
ment, and sometimes even worse performance, for
the larger Gemma 2B and 7B models. This indi-
cates that simply merging the distillation data for

each strategy is not sufficient for effective multi-
strategy distillation.

Consistent improvement across in-distribution
dataset Compared to the traditional LLM-based
distillation approaches, we observe consistent im-
provements with SIKeD across all models, ranging
from 0.5B to 7B parameters as shown in bold in
Table 1. On the in-distribution GSM8K dataset,
both Gemma 2B and 7B show significant gains
of +3.2 points and +2.5 points respectively (44.05
→ 47.23 and 71.34 → 73.84, respectively). Sim-
ilarly, SmolLM showed the largest improvement
of +3.4 points (24.56 → 27.98). Similarly, the
smaller Qwen models see gains of +0.5 points for
the larger variant (1.5B) and +0.8 points for the
smaller variant (0.5B).

SIKeD performs well on out-of-distribution
datasets For the out-of-distribution datasets,
there is a steady improvement on the ASDiv dataset,
with Gemma 7B gaining +1.6 points (69.11 →
70.76), +0.9 points for Gemma 2B (58.13 →
59.05), +1.4 points for SmolLM (46.77 → 48.16),
+1.3 points for Qwen 1.5B (67.64 → 68.98), and
+0.8 points for Qwen 0.5B (57.79 → 58.61). A sim-
ilar trend is seen for the MultiArith dataset, where
SmolLM shows the largest gain of +5 points. It
is followed by Qwen 0.5B with +1.1 points, while

9873

GSM
8K

ASD
iv

SV
AMP

Mult
iArith

GSM
8K

ASD
iv

SV
AMP

Mult
iArith

GSM
8K

ASD
iv

SV
AMP

Mult
iArith

35
40
45
50
55
60
65
70
75
80
85
90
95

100
Ac

cu
ra

cy
Baseline

CoT PoT L2M
SIKeD Biased
CoT Biased SIKeD
PoT Biased SIKeD
L2M Biased SIKeD

Figure 3: Accuracy comparison between single distillation strategies of CoT, PoT, and L2M with SIKeD biased
training using the same strategy using the Gemma 7B model.

other models outperform the baseline. In particular,
Gemma 7B achieves a perfect score of 100. The
results are similar for the SVAMP dataset, with
Qwen 0.5B, Qwen 1.5B, SmolLM 1.7B, Gemma
2B, and Gemma 7B gaining +0.7, +1.1, +3.6, +1.8
and +1.4 points, respectively.

Biasing SIKeD in favor of our strategy of choice
For some tasks, one strategy might be better than
the others due to its performance, lower cost, or
better suitability for some use cases (for example,
PoT is significantly better for SVAMP compared
to other strategies). In such cases, it would be
beneficial to bias the selection towards that strat-
egy3. This can be done by taking only the sample
from our choice of biased strategy when more than
one strategy is correct from the model-generated
samples. For example, if for a given data point, a
smaller model samples both CoT and PoT correctly,
and our biased strategy choice is PoT, we will ig-
nore the CoT output and take only the PoT. Figure 3
compares the individual distillation strategy with
the biased SIKeD. Using Gemma 7B as a smaller
model across all datasets, SIKeD outperforms in-
dividual distillation strategies by a margin of 2-4
points, highlighting the effectiveness of SIKeD over
other distillation approaches.

How many iterations to run for SIKeD With
each iteration of SIKeD, the model learns to solve
a task using different strategies and adjusts its strat-
egy choice for a given task. This allows for con-
tinuous training of SIKeD. Figure 4 illustrates the
accuracy improvements across iterations for the
Gemma 2B model on various datasets. The itera-

3Note that this differs from the already biased selection
of the smaller model, as our biased strategy may not be the
default biased choice of the smaller model.

tive training is stopped when accuracy shows only
marginal improvements or declines. In our experi-
ments, three iterations have consistently proven to
be the optimal balance across different models and
datasets.

How the strategy distribution changes over it-
erations Figure 5 illustrates the strategy distri-
bution across different iterations for the GSM8K
dataset using the SmolLM 1.7B model. Iteration 0
represents the baseline “combined” training from
Table 1, and as expected, the smaller model is ini-
tially biased towards one strategy (PoT in this case).
Iterations 1, 2, and 3 show the model’s progression
using SIKeD, where it learns to diversify and select
the suitable strategy for the given problem. No-
tably, while PoT remains the dominant strategy, the
model improves its usage of the other two strate-
gies—CoT and L2M—which were absent in the
biased baseline. This diversification of strategies
results in an overall gain of +3 points over the base-
line.

Training from the last checkpoint vs training
from pre-trained checkpoint In our work, we
iteratively train from the last checkpoint using on-
policy training as we expect continuous improve-
ments in the model performance with a newly
learned strategy. However, an alternative approach
uses off-policy training (training the pre-trained
model at each iteration) to achieve strong perfor-
mance (Gulcehre et al., 2023). We compared on-
policy training (our proposed approach) with off-
policy training (as in Gulcehre et al. (2023)), utiliz-
ing both LLM-generated and self-generated data,
and observed a notable decrease in the overall ac-
curacy with off-policy training. Note that we used
all of the LLM data at each iteration for off-policy

9874

0 1 2 3
Iteration

40

42

44

46

48

50

52
Ac

cu
ra

cy
 (%

)

44.05

45.19

47.23
46.72

45.11 45.26 45.02

GSM8K
Baseline
Adaptive
All

0 1 2 3
Iteration

52

54

56

58

60

62

56.20

57.30

58.60
57.70

56.00
56.70 56.70

SVAMP
Baseline
Adaptive
All

0 1 2 3
Iteration

54

56

58

60

62

64

57.96

58.96 58.83 59.05

57.39
58.00 57.95

ASDiv
Baseline
Adaptive
All

0 1 2 3
Iteration

80.0

82.5

85.0

87.5

90.0

92.5

95.0

84.44

91.11 91.11

89.44

86.80

88.90 88.80

MultiArith
Baseline
Adaptive
All

Figure 4: Iterative accuracy comparison for the Gemma 2B model across all datasets. The process is stopped when
the gains diminish or when it is no longer cost-effective to continue. Baseline represents the "Combined" results
from Table 1.

0 1 2 3
Iteration

0

250

500

750

1000

1250

Nu
m

be
r o

f S
am

pl
es

CoT
L2M
PoT

0 1 2 3
Iteration

0

5

10

15

20

25

30

Ac
cu

ra
cy

 (%
)

CoT
L2M
PoT

Figure 5: Strategy distribution over iterations for GSM8K dataset using SmolLM 1.7B model.

training as the training is done on the pre-trained
model. On the GSM8K dataset, our on-policy
approach outperformed off-policy training by +6
points (45.26 vs 38.90) using the Gemma 2B model.
A similar trend was observed on out-of-distribution
datasets, where SIKeD outperformed with a gain
of +4-7 points on both the SVAMP and ASDiv
datasets (58.6 vs 51.3 for SVAMP and 59.05 vs
55.44 for ASDiv) and a gain of +2 points on the
MultiArith dataset (91.11 vs 88.33).

1.00 0.50 0.30 0.15 0.00
Alpha Value

42

43

44

45

46

47

48

Ac
cu

ra
cy

 (%
)

Accuracy vs Alpha

Figure 6: Accuracy comparison with different data mix
controlled by α. α = 1 means all data is from the LLM
only, while α = 0 means only smaller model data is
used.

Is data mixing better than LLM-based distil-
lation or self-distillation Mixing data from the
smaller model with the LLM helps in bridging the
distributional gap between the LLM and the smaller
model. We explore the role of the data mixing rate
alpha (α) to validate our hypothesis regarding data
mixing. When α is set to 1, only LLM-generated
data is used, while at the other extreme, α = 0
means only data generated by the smaller model is
used. As shown in Figure 6, an α value between
0 and 1 performs better than either of the extreme
cases.

Qualitative analysis demonstrating that smaller
models learn to choose the right strategy over
iterations The increase in the performance of
smaller models can be attributed to the change in
the distribution of reasoning strategies as the model
becomes more aligned with its strategy choices.
Figure 10 shows that a model can solve a given
problem in the third iteration by switching the rea-
soning strategy that it initially struggled with. Fur-
thermore, Figure 11 shows an example of a model
correcting its reasoning chain over time due to its
improved reasoning capabilities.

9875

6 Related Work

Knowledge Distillation for Reasoning Tasks
Knowledge distillation (Buciluǎ et al., 2006; Hin-
ton et al., 2015) is a widely-used technique for
transferring knowledge from a large language
model (LLM) to a smaller model. Previous re-
search has focused on transferring intermediate rea-
soning steps to smaller models, either step-by-step
(Shridhar et al., 2023; Magister et al., 2023; Hsieh
et al., 2023) or by combining multiple strategies
simultaneously (Chenglin et al., 2023; Zhu et al.,
2024). These approaches can be viewed as aggre-
gating diverse data sources for distillation, similar
to the LLM data approach in our work. In contrast,
(Hahn and Choi, 2019) and (Xu et al., 2020) fo-
cus on self-distillation, where a model improves its
performance without external data or knowledge.
Specifically, (Hahn and Choi, 2019) leverages word
embeddings, while (Xu et al., 2020) uses tempo-
ral model checkpoints as a proxy for ground truth.
However, both approaches rely solely on data gen-
erated by the smaller model and exclude LLM data.
On the other extreme is iteratively updating the
teacher’s data based on student mistakes to distill
reasoning in smaller models iteratively (Jain et al.,
2025). Our method balances these two extremes
by using LLM data to learn multiple strategies and
self-generated data to optimize for the right strategy
choice.

Self-learning Previous studies, such as (He et al.,
2020; Sun et al., 2021; Gulcehre et al., 2023; Liu
et al., 2024), have shown the effectiveness of the
self-training paradigm in NLP tasks but are lim-
ited by the choice of tasks. While ReST (Gulcehre
et al., 2023) uses off-policy training, we find on-
policy training more suitable for our case regarding
data efficiency and performance. On-policy train-
ing also allows a better choice of learning strate-
gies, since the model can use its most recent learn-
ing. Agarwal et al. (2024) introduces Generalized
Knowledge Distillation (GKD), an on-policy train-
ing method that aligns the distributions of large
language models (LLMs) and smaller models by
incorporating output sequences sampled from the
student during training. However, the task was
limited to the distribution alignment and not to
aligning the strategy choices in a multi-strategy dis-
tillation. Simply applying GKD would not address
this issue, as it would force the smaller model to
learn all strategies, which is impractical given its
limited capacity.

Finally, we compare our distillation strategies with
LLM-based distillation using both individual strate-
gies (Shridhar et al., 2023; Magister et al., 2023;
Hsieh et al., 2023) and a combination of several
strategies at once (Chenglin et al., 2023; Zhu et al.,
2024).

7 Conclusion

We propose SIKeD: Self-guided Iterative
Knowledge Distillation, which addresses the
challenge of distilling multistep reasoning skills
from large language models (LLMs) to smaller
models. Unlike traditional methods, which
often leave smaller models biased towards a
single strategy, SIKeD uses iterative self-guided
training, combining LLM and self-generated
data to improve overall reasoning in smaller
models. We evaluate our approach across various
mathematical reasoning datasets and demonstrate
that SIKeD improves the ability of smaller models
to handle complex reasoning, achieving significant
performance gains.

Limitations

Although SIKeD shows consistent performance
gains across five models and four mathematical
datasets, we note that SIKeD is dependent on the
limitations of reasoning strategies. For instance,
mathematical questions whose reasoning chains
could not be framed in PoT, will most likely give
less substantial increments using SIKeD as it has
fewer strategies to utilize.

Ethical Considerations

Ethical considerations should be taken into account
when deploying language models in real-world ap-
plications. We do not foresee any additional con-
cerns emanating from this work or any potential
risks.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv
preprint.

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr
Stanczyk, Sabela Ramos Garea, Matthieu Geist, and
Olivier Bachem. 2024. On-policy distillation of lan-
guage models: Learning from self-generated mistakes.

9876

https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=3zKtaqxLhW
https://openreview.net/forum?id=3zKtaqxLhW

In The Twelfth International Conference on Learning
Representations.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint.

Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
535–541, Philadelphia PA USA. ACM.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts prompt-
ing: Disentangling computation from reasoning for
numerical reasoning tasks. Transactions on Machine
Learning Research.

Li Chenglin, Chen Qianglong, Wang Caiyu, and Zhang
Yin. 2023. Mixed distillation helps smaller language
model better reasoning. arXiv preprint.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al.
2021. Training verifiers to solve math word problems.
arXiv preprint.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan,
Ksenia Konyushkova, Lotte Weerts, Abhishek Sharma,
Aditya Siddhant, Alex Ahern, Miaosen Wang, Chen-
jie Gu, et al. 2023. Reinforced self-training (rest) for
language modeling. arXiv preprint.

Isabel Gómez-Veiga, José O. Vila Chaves, Gonzalo
Duque, and Juan A. García Madruga. 2018. A new look
to a classic issue: Reasoning and academic achievement
at secondary school. Frontiers in Psychology, 9.

Sangchul Hahn and Heeyoul Choi. 2019. Self-
knowledge distillation in natural language processing.
In Proceedings of the International Conference on Re-
cent Advances in Natural Language Processing (RANLP
2019), pages 423–430.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020. Revisiting self-training for neural se-
quence generation. In International Conference on
Learning Representations.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alex Ratner, Ranjay
Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. Distill-
ing step-by-step! outperforming larger language models

with less training data and smaller model sizes. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 8003–8017. Association for Computa-
tional Linguistics.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large lan-
guage models. In International Conference on Learning
Representations.

Hugging Face. 2023. smol-llm: Train a small
llm from scratch. https://huggingface.co/blog/
smollm. Accessed: 2024-09-23.

Kushal Jain, Piyushi Goyal, and Kumar Shridhar. 2025.
Undo: Understanding distillation as optimization. arXiv
preprint.

Kushal Jain, Moritz Miller, Niket Tandon, and Ku-
mar Shridhar. 2023. First-step advantage: Importance
of starting right in multi-step math reasoning. ArXiv,
abs/2311.07945.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pages 1317–1327, Austin, Texas. Associa-
tion for Computational Linguistics.

Solomon Kullback and Richard A Leibler. 1951. On in-
formation and sufficiency. The annals of mathematical
statistics, 22(1):79–86.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving with
pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles.

Rongxing Liu, Kumar Shridhar, Manish Prajapat,
Patrick Xia, and Mrinmaya Sachan. 2024. Smart: Self-
learning meta-strategy agent for reasoning tasks. arXiv
preprint.

Qing Lyu, Kumar Shridhar, Chaitanya Malaviya,
Li Zhang, Yanai Elazar, Niket Tandon, Marianna Apid-
ianaki, Mrinmaya Sachan, and Chris Callison-Burch.
2024. Calibrating large language models with sample
consistency. arXiv preprint.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub
Adamek, Eric Malmi, and Aliaksei Severyn. 2023.
Teaching small language models to reason. In Pro-
ceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 1773–1781. Association for Computational
Linguistics.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 975–984. Association for
Computational Linguistics.

9877

https://arxiv.org/abs/2309.16609
https://doi.org/10.1145/1150402.1150464
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://arxiv.org/abs/2312.10730
https://arxiv.org/abs/2312.10730
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2308.08998
https://arxiv.org/abs/2308.08998
https://doi.org/10.3389/fpsyg.2018.00400
https://doi.org/10.3389/fpsyg.2018.00400
https://doi.org/10.3389/fpsyg.2018.00400
https://aclanthology.org/R19-1050
https://aclanthology.org/R19-1050
https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=SJgdnAVKDH
https://arxiv.org/abs/1503.02531
https://aclanthology.org/2023.findings-acl.507
https://aclanthology.org/2023.findings-acl.507
https://aclanthology.org/2023.findings-acl.507
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://huggingface.co/blog/smollm
https://huggingface.co/blog/smollm
https://arxiv.org/abs/2504.02521
https://arxiv.org/abs/2311.079455
https://arxiv.org/abs/2311.079455
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://dl.acm.org/doi/10.1145/3600006.3613165
https://dl.acm.org/doi/10.1145/3600006.3613165
https://dl.acm.org/doi/10.1145/3600006.3613165
https://arxiv.org/abs/2410.16128
https://arxiv.org/abs/2410.16128
https://arxiv.org/abs/2402.13904
https://arxiv.org/abs/2402.13904
https://aclanthology.org/2023.acl-short.151
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92

Ratna Narayan, Cynthia Rodriguez, Juan Araujo,
Ali Shaqlaih, and Glenda Moss. 2013. Construc-
tivism—constructivist learning theory. IAP Information
Age Publishing.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple math
word problems? In Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, pages 2080–2094. Association for Computational
Linguistics.

Dean A Pomerleau. 1991. Efficient training of artificial
neural networks for autonomous navigation. Neural
computation, 3(1):88–97.

Stephane Ross and Drew Bagnell. 2010. Efficient re-
ductions for imitation learning. In Proceedings of the
Thirteenth International Conference on Artificial In-
telligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pages 661–668. PMLR.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1743–1752. Association for Compu-
tational Linguistics.

Kumar Shridhar, Jakub Macina, Mennatallah El-Assady,
Tanmay Sinha, Manu Kapur, and Mrinmaya Sachan.
2022. Automatic generation of socratic subquestions
for teaching math word problems. In Proceedings of
the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 4136–4149. Association
for Computational Linguistics.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2023. Distilling reasoning capabilities into
smaller language models. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
7059–7073, Toronto, Canada. Association for Computa-
tional Linguistics.

Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama,
Eiichiro Sumita, and Tiejun Zhao. 2021. Self-training
for unsupervised neural machine translation in unbal-
anced training data scenarios. In Proceedings of the
2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, pages 3975–3981. Association for
Computational Linguistics.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Lau-
rent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juli-
ette Love, et al. 2024. Gemma: Open models based
on gemini research and technology. arXiv preprint
arXiv:2403.08295.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. 2023. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971.

Unslothai. 2023. Unsloth. https://github.com/
unslothai/unsloth. GitHub repository.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain of
thought reasoning in language models. In The Eleventh
International Conference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models. In Advances
in Neural Information Processing Systems.

Yige Xu, Xipeng Qiu, Ligao Zhou, and Xuanjing Huang.
2020. Improving BERT Fine-Tuning via Self-Ensemble
and Self-Distillation. arXiv preprint.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire
Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. 2023.
Least-to-most prompting enables complex reasoning in
large language models. In The Eleventh International
Conference on Learning Representations.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weip-
ing Wang. 2024. Distilling mathematical reasoning
capabilities into small language models. arXiv preprint
arXiv:2401.11864.

A Appendix

9878

https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/2021.naacl-main.168
https://proceedings.mlr.press/v9/ross10a.html
https://proceedings.mlr.press/v9/ross10a.html
https://aclanthology.org/D15-1202
https://aclanthology.org/D15-1202
https://aclanthology.org/2022.emnlp-main.277
https://aclanthology.org/2022.emnlp-main.277
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/2023.findings-acl.441
https://aclanthology.org/2021.naacl-main.311
https://aclanthology.org/2021.naacl-main.311
https://aclanthology.org/2021.naacl-main.311
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://github.com/unslothai/unsloth
https://github.com/unslothai/unsloth
https://github.com/unslothai/unsloth
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.48550/ARXIV.2002.10345
https://doi.org/10.48550/ARXIV.2002.10345
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://arxiv.org/abs/2401.11864
https://arxiv.org/abs/2401.11864

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that
appropriately completes the request.

Instruction: Solve the given math problem step by step. Put your final answer after ’Final answer:’.

Input: John buys 3 dress shirts. They sell for $20 each. He also has to pay 10% tax on everything. How much did
he pay in total?

Response: The shirts cost 3*$20=$<<3*20=60>>60 before tax The tax cost $60*.1=$<<60*.1=6>>6 So in total
they paid $60+$6=$<<60+6=6>> 66 Final Answer: 66<eos>

[7 more examples randomly sampled from the training set]

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for a month (30 days). If he
continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Model generated response ..

Figure 7: 8-shot Chain of Thought demonstration.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that
appropriately completes the request.

Instruction: Solve the given math problem by decomposing it into smaller, manageable sub-questions. Put your final
answer after ’Final answer: ’.

Input: John buys 3 dress shirts. They sell for $20 each. He also has to pay 10% tax on everything. How much did
he pay in total?

Response: Sub-question 1: How much did John spend on shirts?
Answer to Sub-question 1: 3*$20=$<<3*20=60>>60
Sub-question 2: How much did John spend on tax?
Answer to Sub-question 2: $60*.1=$<<60*.1=6>>6
Sub-question 3: How much did John spend in total?
Answer to Sub-question 3: $60+$6=$<<60+6=66>>66
Final Answer: 66<eos>

[7 more examples randomly sampled from the training set]

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for a month (30 days). If he
continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Model generated response ..

Figure 8: 8-shot Least to Most demonstration.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that
appropriately completes the request.

Instruction: Solve the given math problem by writing a python program. Store your result as a variable named ’an-
swer’.

Input: John buys 3 dress shirts. They sell for $20 each. He also has to pay 10% tax on everything. How much did
he pay in total?

Response: total_shirts = 3
cost_of_one_shirt = 20
total_cost_shirts = total_shirts * cost_of_one_shirt
tax_rate = 0.1
tax_amount = tax_rate * total_cost_shirts
total_cost = total_cost_shirts + tax_amount
answer = total_cost <eos>

[7 more examples randomly sampled from the training set]

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for a month (30 days). If he
continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Model generated response ..

Figure 9: 8-shot Program of Thought demonstration.

9879

Question There are twice as many boys as girls at Dr. Wertz’s school. If there are 60 girls and 5 students to every teacher, how many teachers are
there?

Baseline
girls = 60
boys = 2 ∗ girls
teachers = girls/5
answer = teachers
Final Answer: 12 ✗

Iteration1
girls = 60
boys = 2 ∗ girls
teachers = girls/5
answer = teachers
Final Answer: 12 ✗

Iteration2
girls = 60
boys = 2 ∗ girls
total_students = girls + boys
teachers_per_student = 5
total_teachers = total_students * teach-
ers_per_student
answer = total_teachers
Final Answer: 900 ✗

Iteration3
Sub-question 1: How many boys are there?
Answer to Sub-question 1: 2 ∗ 60 =<< 2 ∗ 60 = 120 >> 120
Sub-question 2: How many students are there in total?
Answer to Sub-question 2: 60 + 120 =<< 60 + 120 = 180 >> 180
Sub-question 3: How many teachers are there?
Answer to Sub-question 3: 180/5 =<< 180/5 = 36 >> 36
Final Answer: 36 ✓

Figure 10: A qualitative example showing how Gemma 2B shifts its strategy selection over iterations.

Question In a dance class of 20 students, 20% enrolled in contemporary dance, 25% of the remaining enrolled in jazz dance, and
the rest enrolled in hip-hop dance. What percentage of the entire students enrolled in hip-hop dance?

Baseline
total_students = 20
percentage_enrolled_contemporary = 0.2
students_enrolled_contemporary = total_students ∗ percentage_enrolled_contemporary
remaining_students = total_students − students_enrolled_contemporary
percentage_enrolled_jazz = 0.25
students_enrolled_jazz = remaining_students ∗ percentage_enrolled_jazz
remaining_students = remaining_students - students_enrolled_jazz
percentage_enrolled_hip_hop = 1 − percentage_enrolled_contemporary − percentage_enrolled_jazz
answer = percentage_enrolled_hip_hop
Final Answer: 0.55 ✗

Iteration1
total_students = 20
contemporary_students = total_students ∗ 0.2
remaining_students = total_students − contemporary_students
jazz_students = remaining_students ∗ 0.25
hip_hop_students = remaining_students − jazz_students
percentage_hip_hop = hip_hop_students/total_students ∗ 100
answer = percentage_hip_hop
Final Answer: 60 ✓

Figure 11: Over iteration, Gemma 2B model learned to fix its mistake using the same strategy

9880

