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Abstract

The recent advancement of Multimodal Large
Language Models (MLLMs) has significantly
improved their fine-grained perception of sin-
gle images and general comprehension across
multiple images. However, existing MLLMs
still face challenges in achieving precise
grounding in complex multi-image scenarios.
To address this, we first explore a Chain-
of-Thought (CoT) framework that integrates
single-image grounding with multi-image com-
prehension. While partially effective, it re-
mains unstable and struggles to capture ab-
stract visual information due to its non-end-
to-end nature. Therefore, we introduce Migi-
cian, the first multi-image grounding model
capable of performing free-form and accurate
grounding across multiple images. To sup-
port this, we present the MGrounding-630k
dataset, which comprises data for several multi-
image grounding tasks derived from existing
datasets, along with newly generated free-form
grounding instruction-following data. Fur-
thermore, we propose MIG-Bench, a com-
prehensive benchmark specifically designed
for evaluating multi-image grounding capabil-
ities. Experimental results demonstrate that
our model achieves significantly superior multi-
image grounding capabilities, outperforming
the best existing MLLMs by 24.94% and even
surpassing much larger 70B models. Our code,
model, dataset, and benchmark are fully open-
sourced at https://migician-vg.github.io/.

1 Introduction

Multimodal Large Language Models (MLLMs)
have exhibited significant advancements recently,
demonstrating exceptional cross-modal understand-
ing capabilities and achieving outstanding perfor-
mance in various vision-language tasks (Ye et al.,
2023; Hu et al., 2024; Elliott and Kádár, 2017; Ive
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edu.cn) and Chi Chen (chenchithu@gmail.com).

Figure 1: Top: Examples of free-form multi-image
grounding. The task is to identify and localize rele-
vant visual regions across multiple images based on a
free-form query. Bottom: Our proposed model, Migi-
cian, significantly outperforms other MLLMs on various
multi-image grounding tasks.

et al., 2019; Lu et al., 2021; Amini et al., 2019;
Krishna et al., 2017). As these models continue
to evolve, their capabilities have expanded beyond
image-level understanding to include fine-grained
visual grounding (Wang et al., 2023; Chen et al.,
2023b; You et al., 2023). This enables MLLMs to
process region-specific inputs and outputs, unlock-
ing a broader spectrum of real-world multimodal
application scenarios (Peng et al., 2023).

Despite the promising visual grounding capa-
bilities demonstrated by existing MLLMs, these
abilities are largely confined to single-image sce-
narios (Kazemzadeh et al., 2014; You et al., 2023).
The potential of MLLMs in free-form multi-image
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grounding (MIG) remains underexplored. Free-
form MIG challenges the model to perform ground-
ing across multiple images effectively, where the
input queries and image contexts can be organized
in arbitrary forms, enabling flexible and dynamic
interactions. For instance, as shown in Figure 1, the
model must understand the white car in the query
image and relate it to the textual prompt "black
in color" to identify the corresponding target in
the target image. This capability unlocks a wide
range of applications, such as fine-grained environ-
mental perception in autonomous driving (Wang
et al., 2024c), anomaly detection in surveillance
systems (Black et al., 2002), and target localiza-
tion for embodied robotics (Grauman et al., 2022).
To address the free-form MIG, the model needs to
possess the capability for visual grounding while
achieving cross-image understanding.

As a result, a question naturally arises: Can
we integrate the single-image grounding and
multi-image understanding capabilities of existing
MLLMs to tackle the MIG task? In this work, we
propose a Chain-of-Thought (CoT) framework that
first leverages multi-image understanding to gen-
erate a textual referring query, and then utilizes it
for localization through single-image grounding.
This approach is proven highly effective for MIG
tasks, particularly in simple scenarios where textual
descriptions are sufficiently distinctive, demonstrat-
ing the potential of MLLMs in handling such tasks.

However, the proposed CoT framework strug-
gles with describing abstract visual semantics in
multi-image scenarios, and the two-step process
results in a doubling of the inference time. To ad-
dress this, we further propose Migician, a com-
petitive MLLM capable of free-form and accu-
rate grounding across multiple images, serving as
an end-to-end solution for MIG. To progressively
establish flexible grounding capabilities, we em-
ploy a two-stage training procedure based on our
proposed large-scale MIG dataset (MGrounding-
630k). First, the grounding ability of Migician is
enhanced through a combination of data from MIG
tasks and general tasks. Then, Migician is further
refined using high-quality free-form MIG instruc-
tion data. In addition, to evaluate the challenges of
the free-form MIG scenario, we construct a compre-
hensive multi-image grounding benchmark, MIG-
bench, comprising a total of 10 different tasks, 5.9k
diverse images and more than 4.2k test instances.
We observe a significant gap between the perfor-
mance of existing mainstream MLLMs and human

performance on the MIG-bench. In contrast, Migi-
cian can effectively alleviate this gap and improve
the performance of free-form MIG.

To sum up, our contributions can be concluded
as follows:

• We explore the task of multi-image ground-
ing for MLLMs and reveal the potential and
challenges of current MLLMs by through a
proposed CoT framework.

• We introduce Migician, the first MLLM capa-
ble of effectively performing free-form MIG.
We also present MGrounding-630k, the first
large-scale MIG instruction tuning dataset for
training this model.

• We introduce MIG-Bench, a comprehen-
sive benchmark for evaluating multi-image
grounding capabilities. Experimental results
demonstrate that Migician significantly out-
performs the current best methods.

2 Related Work

Multimodal Large Language Models Recent
developments in multimodal large language mod-
els (MLLMs) have shifted from single image-
text understanding towards more versatile capa-
bilities (Cai et al., 2024; Yao et al., 2024; Wang
et al., 2024b; Li et al., 2024a). Among these ef-
forts, some focus on enabling models to achieve
fine-grained visual grounding, either through sim-
ple instruction tuning (Chen et al., 2023b; Peng
et al., 2023) or by integrating additional auxiliary
visual components (You et al., 2023; Zhang et al.,
2023; Chen et al., 2023a). However, these mod-
els primarily focus on visual grounding within a
single image. Some other studies explore multi-
image understanding tasks, such as multi-image
comparison, reasoning, and temporal comprehen-
sion (Jiang et al., 2024; Li et al., 2024c; Ye et al.,
2024; Li et al., 2024a; Cai et al., 2024; Yao et al.,
2024). Nevertheless, fine-grained visual grounding
at the multi-image level remains an underexplored
area. To the best of our knowledge, our proposed
Migician is the first MLLM designed to address the
challenge of multi-image grounding.

MLLM Benchmarks Most existing benchmarks
for evaluating MLLMs focus on single-image
tasks (Fu et al., 2023; Li et al., 2024b). A few
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Spontaneous Grounding
Common Object Grounding
Question: Please identify the 
common object all these 
images share and ground it 
irrespectively.

Answer: The commom object 
all these images share is “dog”. 
Their exact positions: Image-1 
(0,487),(521,889). Image-2 
(297,383),(794,999)...

Static Diff Grounding
Question: Please ground the 
difference of these images in the 
second image.
Answer:(157,503),(493,759)

Robust Diff Grounding
Question: Please recognize the 
main difference of these two images 
and ground it in the second image.
Answer:(427,483),(623,589)

Textual Reference
(1) Group Grounding

Question: For these unrelated 
images, find and locate the 
“electronic scales”.

Answer: It’s in Image-2, (182, 
527),(23,319).

Referential Grounding
Textual + Visual
(1) Reasoning Grounding

Question: Which object on Image-
2’s the table could alleivate the 
situation presented in Image-1?

Answer: The red rose located at 
(672,140),(836,549).

(2) Correspondence
Question: For the region in Image1, 
ground the semantically/functionally 
corresponding region in Image-2.

Answer: The long tail located at 
(512,0),(929,445).

Visual Reference

(1) Multi-View Grounding                 (2) Object Tracking

(3) Referring Grounding                   (4) Region Locating

Question: For the object marked 
with green box in Image-1, please 
locate it in Image-2.

Answer: The huge window in 
Image-2 is at (202,27),(613,499).

Question: For the object 
presented in Image-1, please 
locate it in the second image.

Answer: The transparent glass 
bottle is placed on the wooden 
desk, at (702,27),(913,273).

Question: Please locate these regions 
pictures in the source image.

Answer: The tower is located at 
(221,34),(298,713), the white boat is 
located at...

Question: For the target marked with 
green box in Image-1, please locate it 
in Image-2.

Answer: The black puppey in Image-
2 is located at (202,27),(613,499).

Figure 2: An illustration of the multi-image grounding tasks included in MIG-Bench. These tasks are divided into
two categories: spontaneous grounding and referential grounding, depending on the whether there are explicit
referential requirements.

recent benchmarks have started assessing the per-
formance of MLLMs on multi-image understand-
ing (Jiang et al., 2024; Meng et al., 2024; Fu et al.,
2025; Wang et al., 2024a; Liu et al., 2024a), but
they primarily emphasize image-level comprehen-
sion. The most relevant benchmark to our work
is MC-Bench (Xu et al., 2024), a contemporane-
ous study. MC-Bench evaluates the multi-context
grounding capabilities of MLLMs by asking them
to accurately locate the corresponding object based
on a text prompt in the correct image from a given
pair. However, it exhibits limitations in the fixed
number of input images and the restricted forms of
queries. In contrast, the proposed MIG-Bench in
this work offers more flexible task formats, focus-
ing on evaluating models’ capabilities in free-form
multi-image understanding.

3 Task Definition

The task of free-form multi-image grounding is
to identify and localize relevant visual regions
across a set of images based on a free-form query.
Unlike traditional grounding tasks with fixed in-
put formats, the query in free-form multi-image
grounding can be an arbitrary combination of
text and images, making it highly flexible and
versatile. Formally, let the query Q consist of
a natural language description, reference images
{R1, R2, . . . , Rk} or a hybrid combination of both
(e.g., “[a white car image] find a car like this image
except it is black”). Given a set of target images
{I1, I2, . . . , In}, the task is to identify a set of vi-
sual regions {G1, G2, . . . , Gm} where Gi is a re-
gion within an image Ij that satisfies the semantic
and contextual constraints defined by Q.
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...
(a) Direct Inference

There are messy woods (0,0), 
(999,999) in the back in Image-1, a 
bird cage located at (681, 168), 
(854,902) in Image-3 and orange 
cat(0,29), (629,999)...

It’s the bird.

Direct Question: Locate the common 
object all these images share.

Po
lli

ng

(b) The CoT Framework

(557,492),(752,786)

...

Task-2: Now ground the 
<ref> bird </ref> in this 

SINGLE image.

Task-1: Please name this 
common object with 

simple phrase.

Task: Ground the common object all these images share.

Figure 3: Illustration of the CoT framework. Different
from (a) direct inference, (b) the CoT method decom-
poses the task into two subtasks, solving each task de-
ploying the model’s existing capabilities. Polling refers
to queryi the MLLM with one image at a time.

As shown in Figure 2, based on whether the
task involves explicit reference requirements, multi-
image grounding tasks can be further categorized
into two types: Spontaneous Grounding and Refer-
ential Grounding. Spontaneous Grounding refers
to recognizing and grounding the target object in
corresponding images without explicitly pointing it
out. Unlike the conventional Reference Expression
Comprehension task (Kazemzadeh et al., 2014) that
explicitly refer to the target object, Spontaneous
Grounding typically utilizes the relationships be-
tween multiple images as contextual cues to au-
tonomously identify and localize the objects to be
grounded (e.g., finding and locating differences be-
tween images). Referential Grounding, on the other
hand, requires an explicit reference to the target ob-
ject. As mentioned earlier, such references can take
the form of arbitrary combinations of images and
textual descriptions.

4 Methods

In this section, we delve into methods for en-
abling free-form multi-image grounding capabili-
ties in MLLMs. We begin by exploring a Chain-of-
Thought (CoT) framework to elicit the capabilities
within existing MLLMs to tackle this task. Then
we develop an end-to-end MIG model, Migician,
through instruction tuning to overcome the limita-
tions of the CoT framework and achieve enhanced
MIG performance.

4.1 A Chain-of-Thought Framework
As illustrated in Figure 3(a), directly prompting ex-
isting MLLMs to perform MIG tasks often leads to

significant performance degradation. To better ex-
plore the potential of existing models, we design a
CoT framework which decouples the MIG task into
two stages as shown in Figure 3(b). The model first
understands the input images and question, gener-
ating a textual referring expression that describes
the target object. Next, the model locates the ob-
jects in corresponding images using the referring
expression from the previous step.

This framework leads to a notable performance
improvement on MIG tasks. However, the CoT
framework has inherent limitations, such as error
propagation due to its multi-step process, which
also reduces reasoning efficiency (Yao et al., 2022).
Additionally, many scenarios require grounding
through abstract visual semantics across multi-
ple images, which cannot be effectively captured
through textual expressions. More failure types
are detailed in Appendix C. This highlights the
need for an end-to-end model capable of directly
performing the MIG task.

4.2 Data Construction

The CoT framework has demonstrated that an
MLLM with both multi-image understanding and
single-image grounding capabilities inherently
holds strong potential for free-form MIG. In the
following section, we employ instruction tuning
to explicitly bridge these capabilities in existing
MLLMs to achieve MIG. For this purpose, we first
construct an instruction tuning dataset for MIG,
named MGrounding-630k, with its statistics pre-
sented in Figure 4. This dataset is primarily con-
structed through the following two ways.

Transforming Existing Data. By analyzing the
tasks and annotation types of existing datasets, we
identify multiple multi-image grounding (MIG)
tasks whose data could be derived through trans-
formation of the existing. Specifically, we collect
and organize data from existing sources, combining
or automatically synthesizing single-image anno-
tations to create datasets for 6 types of MIG tasks.
Each task contains over 70k examples, resulting
in a total of 530k training samples. The details of
these task data can be found in Appendix D.1.

Synthesizing Free-form MIG Data. The data
obtained through the aforementioned methods still
do not fully meet the requirements for free-form
MIG. To acquire MIG data with richer and more di-
verse formats, which would enhancing the model’s
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Object Tracking (130k)

TrackingNet (100k)
GOT (18k)
LaSOT (10k)

MOT17 (2k)

Region Locating (70k)

Object365 (70k)

Static Difference (70k)

MagicBrush (10k)

CLEVR-change (40k)

Referring Grounding (70k)

ImageNet (70k)

Common Object (70k)

Object365 (51k)
ImageNet (16k)
COCO_train2017 (3k)

Group Grounding (120k)

GranD REC (80k)

GranF REG (40k)

Spot-the-diff (10k)

ImgDiff (10k)

MGrounding-630k

Free-Form MIG (100k)

Synthetic_common (32k)
Synthetic_random (35k)
Synthetic_CLIP (33k)

Region Locating (28.01%)
Group Grounding (11.62%)

Object Tracking (12.81%)
Robust Diff (2.19%)
Correspondence (2.72%)
Refer Grounding (2.31%)

Multi-view (6.71%)
Reasoning (2.35%)
Common Object (19.00%)

Static Diff (12.29%)

Figure 4: Statistics of the MGrounding-630k dataset and MIG-Bench.

instruction-following and flexible grounding capa-
bilities, we design a MIG data synthesis pipeline.
This pipeline uses the Object365 (Shao et al., 2019)
images with object annotations, select multiple
images as a group, and generate high-quality in-
structions for multi-image grounding. Specifi-
cally, we first employ Qwen2-VL-72B (Wang et al.,
2024b) to generate captions of each individual im-
age and then perform error filtering and refine-
ment on the annotated bounding boxes. Next, we
prompt Qwen2.5-72B (Yang et al., 2024) to au-
tomatically generate high-quality, free-form MIG
question-answering pairs by integrating informa-
tion from multiple images. To optimize the selec-
tion of appropriate image groups, we adopt differ-
ent image grouping methods, including random se-
lection, selection of images with common objects,
and grouping images based on CLIP similarity to
select semantically similar images for each. Using
these methods, we generate a total of 100k Free-
Form MIG data. Detailed information can be found
in Appendix D.2.

4.3 Instruction Tuning for MIG

Using the constructed dataset, we perform instruc-
tion tuning based on Qwen2-VL-7B (Wang et al.,
2024b) to develop Migician, enabling it to achieve
end-to-end free-form MIG capabilities.

Two-Stage Training. To effectively equip the
model with free-form MIG capabilities, we propose
a two-stage training approach. In the first stage, the
model learns to perform multi-image grounding
by training on the six representative MIG tasks of
MGrounding-630k, acquiring the ability to simulta-
neously comprehend multiple images and execute
visual grounding. In the second stage, the model is
further fine-tuned on free-form MIG instruction
data in MGrounding-630k, enabling it to adapt
to more flexible and diverse instruction types and

transfer the MIG skills learned in the first stage to
a broader range of scenarios. To prevent the model
from forgetting its existing capabilities during train-
ing, we also incorporate single-image understand-
ing, multi-image understanding, and single-image
grounding data into each training stage. For more
details please refer to the Appendix E.

Model Merging. After the second stage of fine-
tuning, we observe a trade-off between model per-
formance and flexibility: while the model adapts
to the free-form MIG instructions, there is a per-
formance drop in common multi-image grounding
tasks. To better balance these two aspects, we adopt
the model merging technique (Ilharco et al., 2022),
averaging the model weights obtained from both
training stages as the final weights. We find this ap-
proach mitigates the performance loss in common
MIG tasks while preserving the ability to follow
free-form MIG instructions effectively.

5 MIG-Bench

We introduce MIG-Bench, a manually curated
benchmark designed to evaluate the MIG ability
of current MLLMs. It comprises 5.9k images, and
4.3k testing instances, covering 10 distinct tasks
shown in Figure 2 with details in Appendix A. The
distribution of these tasks is illustrated in Figure 4.

MIG-Bench is manually constructed from multi-
ple data sources. Initially, we select annotated data
examples from existing datasets and adapt them for
the MIG task. We collect challenging examples
from Objects365 (Shao et al., 2019) for Common
Object Grounding and Region Locating. We use
examples that exhibits significant movement from
GOT-10k (Huang et al., 2019) for Object Track-
ing. For Multi-View Grounding, we utilize the rich
annotations from Ego4D (Grauman et al., 2022).
The Static Difference task is sourced from Mag-
icBrush (Zhang et al., 2024). We combine multi-
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Models

Spontaneous Grounding Referential Grounding

AVEDifference Similarity Visual Reference Textual Visual+Textual

Static Robust Common OT MV Region Refer GG Reason Co-Re

Human Performance

Human 99.50* 97.87 98.00* 100.00 96.88 100.00* 98.99 91.06* 92.08 97.44 97.18

70B-Scale MLLMs

LLaVA-OV-72B 13.26 5.34 26.84 12.91 7.64 2.14 17.83 21.60 11.88 8.55 13.65
InternVL2-76B 15.91 10.64 36.40 30.73 20.83 5.74 46.46 41.28 32.67 26.50 26.72
Qwen2-VL-72B 46.12 46.81 64.46 26.73 22.57 18.62 33.33 62.53 50.50 17.09 38.88

7B-Scale MLLMs

Shikra 0.00 2.13 0.74 0.00 0.00 0.83 1.01 0.60 0.00 0.85 0.62
GroundingGPT 0.38 0.00 19.85 0.18 0.35 1.75 2.02 19.04 5.94 0.00 4.95
Ferret 8.90 7.45 14.09 2.36 0.69 1.41 2.02 33.27 12.87 1.71 8.48

Mantis 1.52 0.00 3.31 12.18 2.08 1.00 1.01 10.02 0.00 0.85 3.20
LLaVA-OV-7B 6.06 3.19 3.43 0.18 1.04 1.08 9.09 15.43 6.93 0.85 4.73
MiniCPM-V 2.6 14.58 2.13 14.34 9.82 6.25 1.75 11.11 10.02 2.97 2.56 7.55
mPLUG-Owl3 18.56 6.38 34.93 8.55 7.64 2.41 7.07 22.85 9.09 5.98 12.35
InternVL2-8B 6.92 7.45 25.49 20.73 9.72 3.49 28.28 30.26 17.82 9.40 15.96
Qwen2-VL-7B 27.84 38.30 19.36 20.73 11.81 25.95 23.23 58.52 48.51 11.97 28.62
mPLUG-Owl3+CoT 16.29 8.51 55.39 44.36 25.35 19.04 36.36 30.86 18.81 10.26 26.52
InternVL2-8B+CoT 14.58 7.45 72.54 40.91 27.78 28.60 67.68 44.49 41.58 11.97 35.76
Qwen2-VL-7B+CoT 23.48 40.43 63.85 62.73 42.71 24.85 54.55 43.29 51.49 30.77 43.82

Migician 65.15 46.81 84.19 60.07 70.73 66.53 74.31 76.77 59.41 34.19 63.82

Table 1: Performance comparison of different models on MIG-Bench. OT, MV, GG and Co-Re respectively
means object tracking, multi-view grounding, group grounding and correspondence. For values marked with *, we
randomly sample 20% testing examples for human evaluation on the corresponding task.

ple examples from GranD (Rasheed et al., 2024)
to form a group for Group Grounding. Addition-
ally, for tasks such as Reasoning Grounding, Corre-
spondence, Referring Grounding, and Robust Diff
Grounding, which lack suitable existing datasets,
we collect both web images and manually captured
photos, and annotate them with well-educated an-
notators who are thoroughly trained and fully un-
derstand the requirements of these tasks.

All instances are reviewed by two different hu-
man annotators to guarantee the quality of MIG-
Bench. This includes removing instances with in-
correct annotations, ensuring that the questions are
answerable, filtering out overly simplistic ques-
tions, and refining ambiguous queries. We also
invite five volunteers to answer the questions to
evaluate human performance on this benchmark
(detailed in Appendix F). As shown in Table 1, the
average accuracy of human responses is 97.18%,
indicating that the task is easy for humans and fur-
ther demonstrating the high quality of MIG-Bench.

Unlike existing benchmarks, MIG-Bench intro-
duces the grounding task in a multi-image setting,
thereby addressing the gap in previous benchmarks
that are unable to measure the free-form MIG ca-

pabilities of MLLMs. A detailed comparison with
other benchmarks is provided in Appendix B.

6 Experiments

6.1 Implementation Details

Migician undergoes development based on the
Qwen2-VL-7B (Wang et al., 2024b) foundation
model with a global batch size of 48, a total of
25,000 steps for the two-stage training procedure,
and a learning rate of 5e-6, using 8×A100-80G
GPUs. For the evaluation in our proposed MIG-
Bench, we use the conventional metric Acc0.5 in
referring expression comprehension (Kazemzadeh
et al., 2014). This metric measures the accuracy
of object localization, defining a prediction as cor-
rect if the Intersection over Union (IoU) with the
ground truth bounding box is greater than 0.5.

6.2 Results on MIG-Bench

As shown in Table 1, Migican achieves the state-
of-the-art performance across all tasks on MIG-
bench, with an average improvement of 24.94%
compared to the second-best model, Qwen2-VL-
72B (38.88%), despite having significantly fewer
parameters. Note that there is a substantial gap be-
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Model MuirBench BLINK val MIBench Mantis_eval MMIU AVE

Closed-Source Model

GPT-4o 62.31 60.04 71.88 62.67 55.7 62.52
Gemini-Pro 49.35 45.16 — — 53.4 49.30

Open-Source Model

LLaVA-1.5 23.46 37.13 26.83 31.34 19.20 27.59
CogVLM 20.85 41.54 — 45.16 23.57 32.78

Idefics2-8B 26.08 — 46.39 48.85 27.80 37.28
mPLUG-Owl3 39.67 50.30 56.66 63.10 21.72 46.29
InternVL2-8B 48.70 50.57 52.91 60.37 42.00 50.05

Mantis 44.50 49.05 45.09 57.14 45.60 48.28
LLaVA-OV-7B 41.80 48.20 71.29 64.20 44.46 53.99

MiniCPM-V 2.6 42.65 51.45 71.09 69.12 50.19 56.90
Qwen2-VL-7B 42.04 52.35 68.06 70.97 54.36 57.56

Migician 53.69 51.53 71.42 69.12 60.32 61.51

Table 2: Performance comparison on various multi-image understand-
ing benchmarks. The highest score is highlighted in bold and the
second highest score is underlined for all open-source models.

Model MME MMBench V* Bench

Closed-Source Model

GPT-4V 1926.6 81.0 54.97
Gemini-Pro 2148.9 73.6 48.16
Claude-3.5 1920.0 79.7 —

Open-Source Model

LLaVA-1.5 1510.7 64.3 48.68
InternVL2-8B 2210.3 81.7 43.07

MiniCPM-V 2.6 2024.6 77.2 52.67
SEAL 1128.9 33.1 75.39

LLaVA-OV-7B 1998.0 80.9 —
Mantis 1806.4 75.7 —

Migician 2244.7 80.0 72.30

Table 3: The performance of models on
various single-image benchmarks, where
Migician consistently exhibits strong capa-
bilities.

Models Spontaneous Referential AVE

mPLUG-Owl3 19.96 9.08 13.04
mPLUG-Owl3+mCoT 23.78 14.10 17.62
mPLUG-Owl3+CoT 26.73 26.43 26.54

InternVL2-8B 13.29 17.10 15.71
InternVL2-8B+mCoT 23.78 21.99 22.64
InternVL2-8B+CoT 31.52 37.57 35.37

Qwen2-VL-7B 19.96 28.67 28.61
Qwen2-VL-7B+mCoT 41.83 26.23 31.90
Qwen2-VL-7B+CoT 42.59 44.34 43.70

Table 4: The comparison among different CoT variants.
We compare three representative MLLMs among di-
rect reference, single-image CoT (+CoT), multi-image
CoT (+mCoT) as described in Section 7.1.

tween human performance and that of all MLLMs
across all tasks, indicating that MLLMs have sig-
nificant potential for improvement in free-form
MIG. In particular, for 7B-scale models, even ad-
vanced multi-image models like InternVL2-8B and
Qwen2-VL-7B struggle to perform, particularly in
tasks such as multi-view grounding, region locat-
ing, and correspondence.

For models equipped with grounding capabili-
ties, such as mPLUG-Owl3, InternVL2 series, and
Qwen2-VL series, they demonstrate an advantage
over other baselines. Furthermore, the proposed
single-image CoT method (+CoT) effectively inte-
grates the grounding and multi-image understand-
ing capabilities of the MLLMs where different abil-
ities assist each other in different reasoning steps,
achieving comprehensive improvements on multi-
image grounding tasks. Moreover, this approach
proves effective for all the aforementioned models.

Traditional single-image visual grounding mod-
els like Shikra (Chen et al., 2023b), Grounding-

GPT (Li et al., 2024d) and Ferret (You et al., 2023)
do not inherently support multi-image input, gen-
erally demonstrating poor performances in MIG-
Bench. Their subpar performance can be attributed
to two key factors: (1) These grounding MLLMs
are typically designed for single-image grounding
and are generally incapable of effectively process-
ing direct multi-image input or concatenated im-
ages. (2) These models lack essential capabilities
for following instructions of free-form multi-image
grounding. In comparison, Migician achieves sig-
nificantly better performance on MIG tasks, effec-
tively extending the capability range of grounding
MLLMs.

6.3 Results on Multi-Image Understanding
Benchmarks

As shown in Table 2, Migician not only estab-
lishes its multi-image grounding ability, but also
remarkably stimulates its general multi-image un-
derstanding ability. In particular, Migician achieves
the best average results on the multi-image under-
standing benchmarks. It surpasses the second-best
model (Mantis) on MuirBench by 9.19%, achieving
SOTA performance on both MMIU and MIBench.
We attribute this to the training on a mixture of
multi-image understanding and grounding data,
which indicates that our proposed MGrounding-
630k dataset can effectively enhance general multi-
image comprehension.

6.4 Results on Single-Image Benchmarks

Table 3 lists the empirical results on typical
single-image understanding benchmarks including
MME (Fu et al., 2024) and MMBench (Liu et al.,

9851



Setting Multi-image General Benchmarks MIG
MuirBench BLINK MIBench Mantis MMIU

Base 42.04 52.35 68.06 70.97 54.36 28.62

Full data 53.77 51.27 71.76 66.36 53.31 62.79
-w/o grounding 44.54(−9.23) 51.32(+0.42) 71.68(−0.08) 67.74(+1.38) 52.12(−1.19) 22.43(−40.36)

-w/o general 53.62(−0.15) 49.25(−2.02) 65.22(−6.54) 64.52(−1.84) 48.61(−4.70) 62.21(−0.58)

Table 5: The ablation study on the contribution of different data subsets.

Model Easy Medium Hard

# Instances 2471 1430 395

InternVL2-8B 44.69 13.92 1.77
Qwen2-VL-7B 30.31 22.24 0.00

InternVL2-8B+CoT 67.10 7.06 0.25
Qwen2-VL-7B+CoT 71.02 10.70 0.76

Migician 76.00 52.10 29.37

Table 6: Performance comparison across varying diffi-
culty levels on MIG-Bench.

2024b), suggesting that Migician retains strong
single-image understanding capacities. Specifi-
cally, on the MME benchmark, Migician surpasses
notable MLLMs like InternVL2-8B and MiniCPM,
while exhibiting equally strong performance with
close-source models on MMBench. Notably, con-
trasting with specialized multi-image models such
as LLaVA-OV and Mantis, whose single image
ability has largely degenerated, Migician poses
significant advantage over them, achieving com-
prehensive capability maintenance. Our model
also maintains strong performance on single-image
REC tasks, as shown in Figure 8.

Furthermore, we find that the MIG ability of
Migician can be leveraged to address the task of
finding visual details in high-resolution images,
such as V*Bench (Wu and Xie, 2024). Specifically,
we split a single high-resolution image in V*Bench
into multiple sub-images and transform the prob-
lem into a MIG task (detailed in Appendix F). Re-
sults show that Migician can generalize well to this
out-of-distribution setting, performing on par with
the specialized visual searching system SEAL (Wu
and Xie, 2024).

7 Analysis

7.1 Effects of Different CoT Strategies

The CoT framework in Section 4.1, after obtain-
ing a referring expression, has the MLLM perform

grounding in each image in a polling manner (de-
noted as single-image CoT), which incurs signifi-
cant inference overhead. Here, we explore multi-
image CoT, where the MLLM directly performs
grounding across all images based on the obtained
referring expression. As shown in Table 4, multi-
image CoT achieves some effectiveness but it still
falls significantly behind single-image CoT. In con-
trast, our proposed Migician is able to perform end-
to-end reasoning, offering significant advantages
in both efficiency and effectiveness.

7.2 Effects of Different Data on Multi-Image
Understanding

As observed in Table 2, Migician shows an im-
provement in multi-image understanding. We fur-
ther conduct an ablation study to analyze the ef-
fects of different data subsets. Specifically, we train
two models with either MGrounding-630k or multi-
image understanding data removed from the train-
ing set. The results in Table 5 reveal that grounding
data generally aids multi-image understanding. In
4 out of 5 benchmarks, the full dataset achieves the
highest performance compared to models trained
with any subset of data removed. In contrast, di-
rectly fine-tuning with only general data does not
consistently lead to a performance boost. However,
when combined with fine-grained grounding data,
the model experiences a notable improvement.

7.3 Performance across Difficulty Levels

To comprehensively assess Migician across vary-
ing scenario complexities in MIG-Bench, we have
established a three-tier difficulty classification
(Easy/Medium/Hard) through joint consideration
of three key factors: (1) the number of input images,
(2) the accuracy rates of four representative base-
lines (Qwen2-VL, InternVL2, and their CoT vari-
ants), and (3) the average IoU improvement when
applying CoT. Specifically, an instance is classified
as Easy if either (a) more than two models achieve
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correct answers with fewer than four input images,
or (b) the CoT-enhanced models demonstrate an
IoU improvement exceeding 0.15. Conversely, in-
stances are deemed Hard when no more than one
model succeeds despite processing over four input
images. All remaining cases that fall between these
thresholds are categorized as Medium difficulty.

Through this way, we can evaluate model capa-
bilities across diverse scenario complexities. As
shown in Table 6, Migician demonstrates remark-
able performance advantages across all difficulty
levels while exhibiting particularly strong capabil-
ities in challenging scenarios. Notably, the per-
formance gap widens significantly in medium and
hard difficulty settings as Migician achieves ap-
proximately 30% greater accuracy compared to
baseline models. This pronounced advantage in
complex scenarios highlights Migician’s superior
capacity for free-form MIG.

8 Conclusion

In this work, we explore the task of multi-image
grounding and propose Migician, the first MLLM
to overcome the barriers between fine-grained vi-
sual grounding and multi-image inputs. With our
proposed large-scale MGrounding-630k dataset,
Migician seamlessly integrates grounding across
multiple images, enabling free-form multi-image
grounding. To further advance research in this
area, we introduce MIG-Bench, a comprehensive
benchmark for evaluating the multi-image ground-
ing capabilities of MLLMs. Experimental results
demonstrate that our model significantly outper-
forms existing methods. We hope this work will in-
spire further developments in multi-image ground-
ing and contribute to the creation of more versatile
multimodal models in the future.

Limitation

Despite our comprehensive discussion of the MIG
challenge, several limitations remain. First, due to
computational constraints, we have not verified the
effectiveness of our training methods on larger 70B-
scale models. Second, the current model can still
produce hallucinated outputs sometimes as conven-
tional MLLMs. Lastly, our training methods and
benchmark construction mainly focus on the REC
task. Although Migician possesses decent REG
capacity, this topic is still insufficiently discussed.

Acknowledgement

This work is supported by the Fundamental Re-
search Funds for the Central Universities of China
under Grant 2024JBGP008 and the National Nat-
ural Science Foundation of China (No. 62406018,
62376019, 62476023). The work is also initiated
and supported by AI9Stars Team.

Finally, we extend our heartfelt gratitude to the
dedicated human volunteers, Mai Sun, Pujian Zhan,
Xingyu Zhang, Binhao Liu, and Huiting Pei, for
their tireless efforts in human-level performance
evaluation, for which we extend our wholehearted
appreciation.

References
Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-

Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

James Black, Tim Ellis, and Paul Rosin. 2002. Multi
view image surveillance and tracking. In Workshop
on Motion and Video Computing, 2002. Proceedings.,
pages 169–174. IEEE.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi
Chen, Pei Chu, et al. 2024. Internlm2 technical re-
port. arXiv preprint arXiv:2403.17297.

Chi Chen, Ruoyu Qin, Fuwen Luo, Xiaoyue Mi,
Peng Li, Maosong Sun, and Yang Liu. 2023a.
Position-enhanced visual instruction tuning for mul-
timodal large language models. arXiv preprint
arXiv:2308.13437.

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang,
Feng Zhu, and Rui Zhao. 2023b. Shikra: Unleashing
multimodal llm’s referential dialogue magic. arXiv
preprint arXiv:2306.15195.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Desmond Elliott and Akos Kádár. 2017. Imagination
improves multimodal translation. arXiv preprint
arXiv:1705.04350.

Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng,
Sijia Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and
Haibin Ling. 2019. Lasot: A high-quality benchmark
for large-scale single object tracking. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 5374–5383.

9853



Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng,
Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji.
2024. Mme: A comprehensive evaluation benchmark
for multimodal large language models. Preprint,
arXiv:2306.13394.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng,
Ke Li, Xing Sun, et al. 2023. Mme: A comprehensive
evaluation benchmark for multimodal large language
models. arXiv preprint arXiv:2306.13394.

Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu
Wang, Xudong Lin, Dan Roth, Noah A Smith, Wei-
Chiu Ma, and Ranjay Krishna. 2025. Blink: Multi-
modal large language models can see but not perceive.
In European Conference on Computer Vision, pages
148–166. Springer.

Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Chavis, Antonino Furnari, Rohit Girdhar,
Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu
Liu, et al. 2022. Ego4d: Around the world in 3,000
hours of egocentric video. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 18995–19012.

Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang
Zhang, Bo Zhang, Chen Li, Ji Zhang, Qin Jin, Fei
Huang, et al. 2024. mplug-docowl 1.5: Unified struc-
ture learning for ocr-free document understanding.
arXiv preprint arXiv:2403.12895.

Lianghua Huang, Xin Zhao, and Kaiqi Huang. 2019.
Got-10k: A large high-diversity benchmark for
generic object tracking in the wild. IEEE transac-
tions on pattern analysis and machine intelligence,
43(5):1562–1577.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Julia Ive, Pranava Madhyastha, and Lucia Specia. 2019.
Distilling translations with visual awareness. arXiv
preprint arXiv:1906.07701.

Harsh Jhamtani and Taylor Berg-Kirkpatrick. 2018.
Learning to describe differences between pairs of
similar images. arXiv preprint arXiv:1808.10584.

Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max
Ku, Qian Liu, and Wenhu Chen. 2024. Mantis: Inter-
leaved multi-image instruction tuning. arXiv preprint
arXiv:2405.01483.

Qirui Jiao, Daoyuan Chen, Yilun Huang, Yaliang Li,
and Ying Shen. 2024. Img-diff: Contrastive data syn-
thesis for multimodal large language models. arXiv
preprint arXiv:2408.04594.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara Berg. 2014. Referitgame: Referring to
objects in photographs of natural scenes. In Proceed-
ings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 787–
798.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.
International journal of computer vision, 123:32–73.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang,
Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. 2024a. Llava-
onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326.

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui
Wang, Ruimao Zhang, and Ying Shan. 2024b. Seed-
bench: Benchmarking multimodal large language
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
13299–13308.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang,
Bo Li, Wei Li, Zejun Ma, and Chunyuan Li. 2024c.
Llava-next-interleave: Tackling multi-image, video,
and 3d in large multimodal models. arXiv preprint
arXiv:2407.07895.

Zhaowei Li, Qi Xu, Dong Zhang, Hang Song, Yiqing
Cai, Qi Qi, Ran Zhou, Junting Pan, Zefeng Li, Vu Tu,
et al. 2024d. Groundinggpt: Language enhanced
multi-modal grounding model. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6657–6678.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer.

Haowei Liu, Xi Zhang, Haiyang Xu, Yaya Shi, Chaoya
Jiang, Ming Yan, Ji Zhang, Fei Huang, Chunfeng
Yuan, Bing Li, et al. 2024a. Mibench: Evaluating
multimodal large language models over multiple im-
ages. arXiv preprint arXiv:2407.15272.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi

9854

https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394


Wang, Conghui He, Ziwei Liu, et al. 2024b. Mm-
bench: Is your multi-modal model an all-around
player? In European conference on computer vi-
sion, pages 216–233. Springer.

Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao,
Wei Zhang, Zhou Yu, Xiaodan Liang, and Song-Chun
Zhu. 2021. Iconqa: A new benchmark for abstract di-
agram understanding and visual language reasoning.
arXiv preprint arXiv:2110.13214.

Fanqing Meng, Jin Wang, Chuanhao Li, Quanfeng
Lu, Hao Tian, Jiaqi Liao, Xizhou Zhu, Jifeng
Dai, Yu Qiao, Ping Luo, et al. 2024. Mmiu:
Multimodal multi-image understanding for evaluat-
ing large vision-language models. arXiv preprint
arXiv:2408.02718.

Anton Milan. 2016. Mot16: A benchmark for multi-
object tracking. arXiv preprint arXiv:1603.00831.

Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-
subaihi, and Bernard Ghanem. 2018. Trackingnet: A
large-scale dataset and benchmark for object tracking
in the wild. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 300–317.

Dong Huk Park, Trevor Darrell, and Anna Rohrbach.
2019. Robust change captioning. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 4624–4633.

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao,
Shaohan Huang, Shuming Ma, and Furu Wei.
2023. Kosmos-2: Grounding multimodal large
language models to the world. arXiv preprint
arXiv:2306.14824.

Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Ab-
delrahman Shaker, Salman Khan, Hisham Cholakkal,
Rao M Anwer, Eric Xing, Ming-Hsuan Yang, and
Fahad S Khan. 2024. Glamm: Pixel grounding large
multimodal model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 13009–13018.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
10684–10695.

Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng,
Gang Yu, Xiangyu Zhang, Jing Li, and Jian Sun.
2019. Objects365: A large-scale, high-quality
dataset for object detection. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 8430–8439.

Fei Wang, Xingyu Fu, James Y Huang, Zekun Li, Qin
Liu, Xiaogeng Liu, Mingyu Derek Ma, Nan Xu,
Wenxuan Zhou, Kai Zhang, et al. 2024a. Muirbench:
A comprehensive benchmark for robust multi-image
understanding. arXiv preprint arXiv:2406.09411.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024b. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

Peng Wang, Shijie Wang, Junyang Lin, Shuai Bai, Xi-
aohuan Zhou, Jingren Zhou, Xinggang Wang, and
Chang Zhou. 2023. One-peace: Exploring one gen-
eral representation model toward unlimited modali-
ties. arXiv preprint arXiv:2305.11172.

Yuqi Wang, Jiawei He, Lue Fan, Hongxin Li, Yuntao
Chen, and Zhaoxiang Zhang. 2024c. Driving into
the future: Multiview visual forecasting and planning
with world model for autonomous driving. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14749–14759.

Jiannan Wu, Muyan Zhong, Sen Xing, Zeqiang Lai,
Zhaoyang Liu, Wenhai Wang, Zhe Chen, Xizhou
Zhu, Lewei Lu, Tong Lu, et al. 2024. Visionllm v2:
An end-to-end generalist multimodal large language
model for hundreds of vision-language tasks. arXiv
preprint arXiv:2406.08394.

Penghao Wu and Saining Xie. 2024. V?: Guided visual
search as a core mechanism in multimodal llms. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13084–
13094.

Yunqiu Xu, Linchao Zhu, and Yi Yang. 2024. Mc-
bench: A benchmark for multi-context visual
grounding in the era of mllms. arXiv preprint
arXiv:2410.12332.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang,
Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. 2024. Minicpm-v:
A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800.

Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye,
Ming Yan, Guohai Xu, Chenliang Li, Junfeng Tian,
Qi Qian, Ji Zhang, et al. 2023. Ureader: Univer-
sal ocr-free visually-situated language understand-
ing with multimodal large language model. arXiv
preprint arXiv:2310.05126.

Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming
Yan, Qi Qian, Ji Zhang, Fei Huang, and Jingren Zhou.
2024. mplug-owl3: Towards long image-sequence
understanding in multi-modal large language models.
arXiv preprint arXiv:2408.04840.

9855



Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du,
Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-Fu
Chang, and Yinfei Yang. 2023. Ferret: Refer and
ground anything anywhere at any granularity. arXiv
preprint arXiv:2310.07704.

Yufei Zhan, Yousong Zhu, Hongyin Zhao, Fan Yang,
Ming Tang, and Jinqiao Wang. 2024. Griffon v2: Ad-
vancing multimodal perception with high-resolution
scaling and visual-language co-referring. arXiv
preprint arXiv:2403.09333.

Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and
Yu Su. 2024. Magicbrush: A manually annotated
dataset for instruction-guided image editing. Ad-
vances in Neural Information Processing Systems,
36.

Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao,
Wenqi Shao, Wenwei Zhang, Yu Liu, Kai Chen, and
Ping Luo. 2023. Gpt4roi: Instruction tuning large
language model on region-of-interest. arXiv preprint
arXiv:2307.03601.

9856



A Benchmark Tasks Definition

A.1 Spontaneous Grounding
Our benchmark evaluates spontaneous grounding
through three distinct tasks below, which aim at
assessing model’s ability to autonomously discover
insidious connections across various images and
then accurately locate the target.

Spot the Difference Similar to the spot-the-
difference puzzle, given two similar images with
a single difference, the model is instructed to rec-
ognize and ground this difference in the second
image, requiring simultaneous and keen perception
of both images.

Common Object Grounding It refers to auto-
matically recognizing and grounding the common
object appearing in all images within an image
group, which shares one definite common object in
our benchmark.

Robust Image Difference Grounding Models
must focus on the primary difference between two
images captured from slightly different perspec-
tives, ignoring other minor variations caused by
shifts in the viewpoint. The incorporation of view
changes presents a greater challenge for the model
and better reflects real-world scenarios, where vari-
ations in perspective are inevitable.

A.2 Reference Grounding
Textual Reference Query This challenge, which
mainly includes Group Grounding, tests a
model’s ability to link a textual reference to the tar-
get object within its corresponding image among an
image group. Given a set of images and one textual
query, the model must firstly identify the correct im-
age then accurately ground the target object within
it, additionally incorporating image-level locating
compared with conventional grounding task.

Visual Reference Query These tasks focuses on
effectively utilizing visual reference information
and incorporate it into the locating process.
(1) Visual Referring Grounding. In this task, a
pair of images is provided—a source image with a
clear object and a target image containing multiple
elements. The model must perceive the referenced
object of the source image and then locate it in the
target image.
(2) Region Locating. Models are tasked with iden-
tifying multiple region images within a source im-
age, which often requires perceptive and discerning

observation as the model may encounter person
recognition, similar object distinguishing, tiny item
searching and etc.
(3) Object Tracking. This task involves tracking
a target object across a sequence of video frames.
The object is highlighted with a red bounding box
in the first image, and the model must keep track
of it throughout the entire sequence.
(4) Multi-view Grounding. Here, the model must
locate the same target across multiple images taken
from distinctive viewpoints, for instance egocentric
view and exocentric view.

Visual+Textual Reference Query These tasks
combine information from both modalities to as-
sess cross-modal reasoning&grounding abilities.
(1) Correspondence. The model must ground se-
mantically or functionally similar regions within
the target image. This finer-grained task focuses on
object regions rather than whole objects, demand-
ing an in-depth understanding of visual semantics.
(2) Reasoning. This task requires the model to
perform reasoning-based grounding by integrating
cross-modality information. Several examples are
shown in Figure 2.
Our MIG-Bench offers a rich, multi-faceted eval-
uation across various real-world scenarios and do-
mains, extending beyond simple image pairs to
include longer and more complex image contexts.
By ensuring that each task is well-defined and un-
ambiguous, we facilitate objective and definitive
assessments.

B Comparison of MIG-Bench with Other
Benchmarks

A detailed comparison with other benchmarks
are provided in Table 7. Current evaluations for
MLLMs primarily focus on single-image percep-
tion, understanding, reasoning, or grounding (e.g.,
MME, MMBench, Refcoco), leaving the multi-
image scenario largely unexplored. While bench-
marks such as Mantis-eval, BLINK, and MIRB are
representative of multi-image evaluation, they con-
centrate on image-level and general understanding
of multiple images, failing to comprehensively as-
sess a model’s fine-grained grounding skills in the
multi-image scenario.

Unlike traditional grounding benchmarks or
multi-image benchmarks, MIG-Bench introduces
the grounding task into a multi-image scenario,
covering a series of 10 distinct tasks. The most
relevant benchmark to our work is MC-Bench, a
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Dataset Images Ave-I Max-I Multi-Image Multi-Task Instance-Labeled Instances Reference

Q-Bench 3489 2.0 2.0 ✔✗ ✔ ✗ ✗ ✗

Mantis-Eval 542 2.5 5.0 ✔ ✗ ✗ ✗ ✗

BLINK 3612 1.9 4.0 ✔ ✔ ✗ ✗ ✗

MIRB 3497 3.8 42.0 ✔ ✔ ✗ ✗ ✗

Refcoco/g/+ 3900 1.0 1.0 ✗ ✗ ✔ 7596 T
HC-Refcoco/+/g 1521 1.0 1.0 ✗ ✗ ✔ 3754 T
GigaGround 3775 1.0 1.0 ✗ ✗ ✔ 61353 T
MC-Bench 3345 2.0 2.0 ✔✗ ✔ ✔ 3202 T

MIG-Bench 5887 3.8 6.0 ✔ ✔ ✔ 4295 T/I/T+I

Table 7: Comparison of MIG-Bench with other benchmarks.

Task-2: Now ground <ref>a wooden bucket with pink flowers 
on it</ref> in this Single image.

Task-1: Please describe the content of the second image.

A wooden bucket with pink flowers on it.

The wooden bucket with pink 
flowers on it is located at on the left , 
with coordinates as (67,0),(461,974).

Task: For the object 
presented in Image-2, 
identify and ground it 
in the first picture.

Figure 5: A CoT framework failure case about abstract
and intricate visual semantics.

contemporaneous study. MC-Bench evaluates the
multi-context grounding capabilities of MLLMs by
asking them to accurately locate the corresponding
object based on a text prompt in the correct image
from a given image pair. However, it has limita-
tions in terms of the fixed number of input images
and the restricted forms of queries. In contrast, the
proposed MIG-Bench offers more flexible task for-
mats, focusing on evaluating models’ abilities in
free-form multi-image understanding.

C Single-Image CoT Failure Patterns

Despite the significant effectiveness of our pro-
posed CoT framework, its limitation remains, par-
ticularly when dealing with visually intricate cases,
as shown in Figure 5. For example, a detailed
textual reference such as "A wooden bucket with
pink flowers on it" is insufficient for adequately
representing or identifying the target object.

Furthermore, we have analyzed more failure pat-
terns of the CoT framework in Figure 6, catego-
rized into perceptual and reasoning flaws.

For the former, the framework falls short when
multiple images are organized in a manner where
only integrating all their visual information could
tackle MIG (i.e. finding the location of missing
people in the second image), or when the textual
content could not sufficiently represent the visual
information.

Regarding reasoning errors, inaccuracies can
arise at various stages of the reasoning process,
undermining the framework’s overall accuracy and
effectiveness.

These failure patterns highlight the significant
limitations of simply integrating the different ca-
pabilities of current models through a simple CoT
framework, underscoring the need for an end-to-
end model capable of directly performing the MIG
task.

D MGrounding-630k Data Curation
Details

D.1 Transforming Existing Data

Static Diff Describing the differences among
two nearly identical pictures is a well discussed
topic, yet previous attempts capture the differences
through textual phrases, failing to precisely recog-
nize their locations. After a comprehensive survey
on this area, we have collected high-quality and
fully labeled image difference data from various
existing datasets: Spot-the-diff (Jhamtani and Berg-
Kirkpatrick, 2018), Img-diff (Jiao et al., 2024),
MagicBrush (Zhang et al., 2024) and CLEVR-
change (Park et al., 2019).

By these collected datasets inherently contain
much noise in them, for instance, inaccurate differ-
ence caption, incorrect bounding box coordinates
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Please describe the difference between these two images.

There is no person in the first image, 
so the difference is not applicable.

The girl in pink cloth and her bike have disappeared.

Now ground <ref>the girl in pink cloth and her bike 
have disappeared </ref> in this Single image.

(399,333),(599,666)

Please identify and describe the content in 
the second image.

The image is a close-up of a woman's face

Now ground <ref>a close-up of a woman's 
face</ref> in this Single image.

Compare these two images and 
describe the difference in a short phase.

The doll on the left side of the two 
images has changed its position.

Now ground the object difference <ref> the doll on 
the left side </ref>  in the second image.

Its position is in (83,162),(209,384).

[Direct Answer](446, 285), (552, 434).

[Direct Answer](525,524),(775,994).

These images share one object in common. Find 
it and tell me its name in single phrase or words.The common object is 

Tuba in all images. 

Please locate and ground <ref> the tuba </ref> in the Image-3.

It’s a tuba. [Direct Answer](106, 29), (896, 895).

Task: Find and locate the different object in the second image. Task: Find and locate the second image in the first picture.

Task: Find and locate the different object in the second image.

[Direct Answer](606, 0), (796, 276).

Task: Recognize and locate the common object they share in the third image.

(a) Multi-Image Format (b) Abstract Visual Information

(c) CoT Error Propagation (d) Error in Middle of Reasoning

Figure 6: Above are the four representative failure patterns of the single-image CoT. From left to right, top to
bottom, they are (a) special multi-image format, (b) abstract visual information, (c) CoT error propagation, (d)
step-2 inference error.

Model RefCOCO RefCOCO+ RefCOCOg AVE
val testA testB val testA testB val test

VisionLLM v2 (Wu et al., 2024) 79.20 82.30 77.00 68.90 75.80 61.80 73.30 74.80 74.14
Shikra (Chen et al., 2023b) 87.00 90.60 80.20 81.60 87.40 72.10 82.30 82.20 82.97

InternVL2-8B (Cai et al., 2024) 87.10 91.10 80.70 79.80 87.90 71.40 82.70 82.70 82.94
GroundingGPT (Li et al., 2024d) 88.02 91.55 82.47 81.61 87.18 73.18 81.67 81.99 83.57

Griffon v2 (Zhan et al., 2024) 89.60 91.80 86.50 81.90 85.50 76.20 85.00 86.00 85.30
InternVL2-8B (Cai et al., 2024) 87.10 91.10 80.70 79.80 87.90 71.40 82.70 82.70 82.94

Qwen2-VL-7B (Wang et al., 2024b) 91.70 93.60 87.30 85.80 90.50 79.50 87.30 87.80 87.96

Migician 91.62 93.49 87.22 86.13 91.06 79.93 88.06 87.80 88.16

Table 8: Performance of Models on single image grounding benchmark.

and etc. We filter the inaccurate bbox labels from
Spot-the-Diff and only preserve the correct ones
and their difference captions. Additionally, we
conduct down-sampling on Img-Diff due to its dif-
fusion generation (Rombach et al., 2022) based
nature and consequent inaccuracies.

During the construction process, we ensure the
diversity of the content by (1) incorporating nu-
merous prompt formats generated by GPT-4 and
improving the instruction-following ability of the
model, (2) constructing CoT process to assist the
model gradually and progressively reaching the
final answer by fully utilizing the annotation avail-
able in the dataset.

Common Object Grounding Grounding the pri-
mary common object across multiple images is a
challenging task for models. It requires them to
simultaneously perceive multiple images, isolate
the common object, and then accurately ground the
target within each image.

In our approach, we leverage diverse data
sources, including ImageNet (Deng et al., 2009),
COCO (Lin et al., 2014), and Object365, which
are rich in extensive annotations. To organize the
images, we group those containing the same object
based on object labels, applying a threshold to filter
out objects that occupy too small a proportion of
the image. This threshold, determined empirically,
effectively mitigates ambiguity when multiple can-
didate objects could be considered the common
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Training Methods Referring Object Tracking Group Grounding Region Static Diff Common Object

Base 23.23 20.73 58.52 25.95 27.84 19.36

Multi-Task Learning 60.00 61.65 62.28 57.95 55.68 81.37
Separate Learning 69.70 74.55 63.13 65.42 68.94 79.53

Model Merging 60.61 50.00 64.53 18.95 29.92 65.44

Table 9: Comparison between different training methods. We compare the learning efficiency between multi-task
learning, separate learning and merging all these task-specialized modes. We mainly focus on the in-domain tasks
that M-Grounding dataset covers.

Models Settings Common Object Multi-view Grounding Object Tracking Region Locating

— Random Guess 26.47 1.04 2.13 0.00

Qwen2-VL-7B Polling 19.96 11.83 20.73 25.95
Qwen2-VL-7B All 19.36 6.60 13.09 11.80
Qwen2-VL-7B Polling+mCoT 53.80 14.24 21.09 20.20
Qwen2-VL-7B All+mCoT 45.71 9.38 17.55 15.54

Migician Polling 81.99 44.44 61.09 59.65
Migician All 72.43 43.06 58.55 34.91

Table 10: Comparison of different answering forms. For random guess, we set the default answer as (0,0),(999,999).

object, thereby producing clear and definitive train-
ing examples. We further reduce ambiguity by
removing classes that often co-occur with other ob-
ject, for instance keyboard, knife, couch, dinning
table and etc.

Object Tracking The multi-image setting is
well-suited for the object tracking task, which in-
volves both temporal and spatial grounding. To
build our dataset, we have carefully selected large-
scale, well-annotated datasets including Track-
ingNet (Muller et al., 2018), LaSOT (Fan et al.,
2019), GOT-10K (Huang et al., 2019), and MOT-
2017 (Milan, 2016). During dataset construction,
we extract 4-6 images from each original sequence
at specific intervals, preserving key features while
maintaining efficiency. Additionally, we introduce
a small proportion of temporal order judgment data
from continuous video frames to strengthen the
model’s temporal reasoning capabilities.

Referring Grounding This training data sim-
ulates the process of locating an object from a
source image in a target image. We primarily use
the ImageNet-2012 dataset to create image pairs,
where the source object is fully visible in the first
image, and the target object is hidden in the sec-
ond. Empirically, this design generates challenging
training examples that require the model to first
recognize the source object and then search for it
in the target image.

Group Grounding Conventional visual ground-
ing is typically limited to single-image contexts.
However, in real-world scenarios, it is often neces-
sary to recognize a target object within a cluttered
collection of images. Group Grounding addresses
this limitation by enabling the identification of the
target among a group of images, thereby enhancing
the versatility of traditional grounding methods.

For the construction of Group Grounding train-
ing data, we leverage the large-scale GranD rec
and reg conversation dataset (Rasheed et al., 2024),
which contains 3 million examples. After filter-
ing out noisy data and grouping 3-5 images per
set, we curate a high-quality collection of 120k
instances for stage-1 training. This dataset effec-
tively enhances the model’s ability to perform im-
age co-reference (Jiang et al., 2024), image-level
grounding, and instance-level localization.

Region Locating Region locating involves slic-
ing an image into several semantically rich regions
and identifying the precise locations of these re-
gions within the source image. To extract mean-
ingful regions, we use the Objects365 dataset, se-
lecting labeled bounding box areas as the regions
of interest. To further enhance the quality of the
regions, we apply a series of filtering criteria: (1)
Content Richness: We select images with more
than 10 bounding box annotations to avoid overly
simple or plain cases. (2) Aspect Ratio: We retain
regions with an aspect ratio between 0.5 and 2 to ex-
clude excessively narrow bounding boxes that may
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Algorithm 1 CLIP Adaptive Similarity Selection

Require: Images I, adaptive selection range k,
thres ∈ (0, 1)

Ensure: Final Image Set F
1: Initialize F← ∅
2: Extract FI ← Features of I
3: while FI is not empty do
4: Randomly select thres ∼ Uniform(0.1, 1)
5: for each fi ∈ FI do
6: sij = similarity(fi, fj), ∀fj ∈ FI , j ̸= i
7: end for
8: Sort_Si = Sort(sij)[1 :]
9: k ← ⌊thres× (len(Sort_Si))⌋

10: Candidates← Sort_Si[: k]
11: Randomly select r ∼ Uniform(3, 5)
12: Selected← Sample(Candidates, r)
13: Append fi and Selected to F
14: Remove fi and Selected from FI

15: end while
16: return F

be difficult for the model to handle. (3) Size: We
ensure that the region-to-image ratio lies between
0.2 and 0.49, with an absolute pixel count above
2,000, to exclude tiny and obscure regions that may
lack sufficient detail. Notably, due to our carefully
designed filtering mechanism and the inherent char-
acteristics of the task, the resulting training data
predominantly includes cases of person recogni-
tion, distinguishing between similar objects (i.e.
chairs, bowls, cars and etc), and recognizing tiny
details—tasks that are non-trivial even for humans.

D.2 Synthesizing Free-form MIG Data

The algorithm for CLIP adaptive similarity image
input is shown in Algorithm 1. We further dis-
play our prompt template for image caption genera-
tion, bounding box label refinement and instruction
tuning data generation in the following pages and
several stage-2 data examples in Figure 9.

Specifically, we deploy Qwen2-VL-7B for
detailed image caption generation and Qwen2-
VL-72B for bbox label refinement. The infer-
ence process is accelerated through vLLM frame-
work (Kwon et al., 2023).

E Details of Two-Stage Training

This section outlines the data proportions and their
respective sources for the two training stages, as
summarized in Table 12.

In stage 1, we leverage both single-image and
multi-image datasets encompassing general under-
standing and grounding tasks to comprehensively
enhance the model’s capabilities. At this stage, the
stage-1 subset from MGrounding-630k constitutes
the largest portion of the training data, with a total
of 530k examples. The total training examples for
stage-1 is 1 million.

In stage 2, the focus shifts to stimulating the
model’s free-form MIG abilities by integrating all
free-form grounding data from MGrounding-630k.
A significant proportion of stage-1 data is also
reused to maintain the previously learned abilities.
The total number of training examples in this stage
is 200k.

F Evaluation Implementation

Polling-based Evaluation When directly requir-
ing the model to generate bounding box coordinates
for each image, due to their limited multi-image
grounding ability and insufficient instruction fol-
lowing ability, the answer obtained in this way is
largely unfaithful and mostly unsatisfactory in in-
struction following, failing to objectively reflecting
the real grounding ability of the model. . Empiri-
cally, instructing the models to directly generate all
bounding box coordinates results in very serious
instruction following issue. The models struggle
with plausible outputs, with their answers mostly
containing only one bounding box or pure text anal-
ysis.

Considering current model’s feeble performance,
we transform from directly generating all answers
to polling every single image, which facilitates def-
inite and objective evaluation. Empirically, directly
generating all the bounding box coordinates for all
images results in lower performance. Yet as illus-
trated in Table 10, Migician still demonstrates great
robustness to the variation of evaluation format.

V*Bench Evaluation Implementation We trans-
form the high-resolution single image grounding
task into a MIG challenge. Specifically, we slice
a single high-resolution image into multiple sub-
images and directly convert the problem into the
group grounding task, which first requires the
model to perform image-level locating and then
ground the target in that specific image. By utiliz-
ing the MIG ability of Migician, we can locate the
regions relevant to the input question. Afterward,
the model combines the identified region with the
original image to generate the answer for the input
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Models

Spontaneous Grounding Referential Grounding

AVEDifference Similarity Visual Reference Textual Visual+Textual

Static Robust Common OT MV Region Refer GG Reason Co-Re

70B Scale Models

LLaVA-OV-72B 13.26 5.34 26.84 12.91 7.64 2.14 17.83 21.60 11.88 8.55 13.65
InternVL2-76B 15.91 10.64 36.40 30.73 20.83 5.74 46.46 41.28 32.67 26.50 26.72
Qwen2-VL-72B 46.12 46.81 64.46 26.73 22.57 18.62 33.33 62.53 50.50 17.09 38.88
LLaVA-OV-72B+CoT 20.27 21.28 52.57 44.36 20.83 25.60 37.37 35.07 31.68 28.21 31.72
InternVL2-76B+CoT 16.86 6.38 70.34 70.55 33.33 27.27 68.69 57.31 52.48 23.08 42.63
Qwen2-VL-72B+CoT 33.33 47.87 69.24 70.18 60.42 51.04 78.79 70.74 70.30 35.04 58.70

Table 11: Performance Comparison of 70B scale models equipped with CoT.

Type Source Ratio

Stage-1

S-Understanding LLaVA-OV-data 17%
S-Grounding RefCOCO series, Groma-Instruct 13%

M-Understanding M4-Instruct(Li et al., 2024c) 16%
M-Grounding MGrounding-630k (Stage-1) 54%

Stage-2

S-Understanding LLaVA-OV-data 9%
S-Grounding RefCOCO series, Groma-Instruct 7%

M-Understanding M4-Instruct(Li et al., 2024c) 8%

M-Grounding
M-Grounding (Stage-1) 27%
M-Grounding (Stage-2) 49%

Table 12: Training data proportion for two stages.

question, achieving high-accuracy results.

70B Scale Models The performances of three
competitive 70B scale models are illustrated in
Table 11 when equipped with single-image CoT.
The general effectiveness of CoT framework is
tremendous, with the average performance boost at
20 points. Yet even competitive and much larger
model like Qwen2-VL-72B (58.70%) still can’t sur-
pass our Migician (60.49%) in multi-image ground-
ing, demonstrating great competence.

Single-Image Grounding As presented in Ta-
ble 4, Migician not only acquires free-form multi-
image grounding capabilities but also demon-
strates continual and consistent performance im-
provements on the RefCOCO series single-image
grounding benchmark, surpassing specialized
grounding models such as Griffon v2 and Ground-
ingGPT by a large margin. Additionally, Migician
outperforms Qwen2-VL-7B in terms of average
scores.

Human-Level Evaluation We engaged five hu-
man volunteers to answer questions from MIG-
Bench. For the static image difference, common ob-
ject grounding, region locating, and group ground-

ing tasks, we randomly selected 20% of the test
examples for efficient evaluation.

The volunteers are instructed to answer the MIG
questions by directly drawing bounding boxes on
the images, with the resulting annotations then
compared to the ground truth using automatic IoU
calculation. To ensure unbiased results, evalua-
tions from different volunteers were conducted sep-
arately, preventing mutual distraction or informa-
tion leakage.

G Multi-Task Learning

Our whole training process involves the learning
process of multiple distinct tasks. How does the
actual learning efficiency alter compared with learn-
ing these tasks separately, can they contribute to
each other or comprise to some extent?

We conduct experiments that only expose the
model to omni-task dataset and the results are
shown in Table 9. It clearly reveals the conflicts
of learning various tasks, with mixes multi-task
training consistently surpassing omni-task learning
by a huge margin. When we directly merge the
checkpoints of all these trained specialized mod-
els (Ilharco et al., 2022), the merged model fail at
excelling at most tasks, with the average perfor-
mance falling behind simple multi-task learning.

H Case Study

We provide detailed cases comprehensively reflect-
ing the free-form MIG ability of Migician in Fig-
ure 7, 8, as well as our instruction tuning data de-
tails examples in Figure 9.
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Prompt Template for Caption and Instruction Data Generation

Bbox Refinement Template
Now I’d like you to inspect the original image carefully. Then filter, refine and enhance these annotated objects. Finally,
just give me your final modified annotations.

*Filtering*
Based on you insightful observation of the image, please eliminate the obviously inaccurate (object,bbox) pairs, which
in supposed to be small in quantity.

*Refine*
Refine and enhance the original class/name of each object into a short yet richer caption containing its attributes
like color, position, feature(e.g plane <|box_start|>(x1,y1),(x2,y2)<|box_end|> -> dark gray plane flying in the sky
<|box_start|>(x1,y1),(x2,y2)<|box_end|>).

*Amplify*
If any important objects are missing from the annotations, and you believe they are significant and essential, and you are
confident of their location, feel free to add them to the final annotations.

*Output Format*
Modified object caption followed by its bounding box coordinates.

Now the original bounding box annotations I give to you are:

Caption Generation
Describe this image thoroughly in a fluent paragraph. Include all the objects and their attributes(color, shape, size and
feature), relative position and relationship.

Multi-image Grounding Instruction Generation

Template 1
Based on the following detailed information of multiple images, please compose meaningful and flexible CROSS-
IMAGE grounding questions that link different objects across the images by their attributes similarity/contrast—such as
color, position, features, gender, size, shape, etc.—or by other potential logical connection between them.
Specifically:
1.The questions should include CROSS-IMAGE grounding requests that requires the answer to identify and locate
various potentially connected object across different images. You can use the connection or similarity between these
objects to refer the target item.
2.When referring an object in the question, keep the reference description concise and avoid giving away unnecessary
information(like bbox or over-detailed caption) that could lead to answering too easily. You are encouraged to refer the
target object to be grounded by the connection of these objects, instead of explicitly point out the object. For instance:
“ground the car in image-2 that contrasts most in quality with the shabby vehicle in image-4”, rather than “ground
the fancy red sports car(explicitly pointing out) in image-2 that contrasts most in quality with the shabby vehicle in
image-4”, by doing so we can also introduce a bit reasoning process.
3.Include the bounding box coordinates of referred object in the answer as well as the explanation. (Actually you can
get a lot of information from the coordinates, which are formatted as (x1,y1),(x2,y2))
4.Strictly format the output as simple Q: A:. In answer, follow the format <ref>object</ref> for objects mentioned.
Below are the detailed image captions and the objects in the corresponding images:

Template 2
According to the detailed description of each image, the key objects’ captions and their corresponding bboxes below,
please provide inferential and free-form question-answer pairs around these different fine-grained information for
cross-image grounding/locating, by mining the information and correlations between different objects and different
images. You can also get a lot of information from the coordinates, which are formatted as (x1,y1),(x2,y2).
Several Question-Answer Examples to better understand my intention(these examples are not necessarily related with
the image information below, they are just examples):
Q: There is a group of people walking around the bus in Image-1. There are also many other people in other pictures.
Yet in image-3, I’d like to you locate the person of the same gender with the group of people in image-1. Analyze the
problem and locate it precisely.
A: The group of people wearing suits walking together are all men. In Image-3, the person of the same gender is
<ref>the man reading a book</ref> at (245,784)(456,924). There is also a woman accompanying him by his side, yet
not the same gender of the people in Image-1.

Please read these image information carefully and response in strict plain format Q: A:, follow the format
<ref>object</ref>(x1,y1),(x2,y2) for objects and bboxes in answer, and avoid revealing overly detailed explanations
(including bbox) in Q to make answering too easy.

Template ...
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Prompt Template for Single-Image CoT

Task: Static diff
Step-1: Compare these two images carefully and tell me where does they differ. Please answer briefly in single phrase
or words.
Step-2: According to the object difference/change: [RESPONCE], please ground this difference with bounding box
coordinates.

Task: Robust diff
Step-1: Compare these two images carefully and describe the prominent different object with really simple words or
phrase.
Step-2: Now ground the object difference/change : "[RESPONCE]" with bounding box coordinates.

Task: Referring Grounding
Step-1: Watch carefully and briefly describe the object in the Image-1.
Step-2: Please find and ground the object <|object_ref_start|>[RESPONCE]<|object_ref_end|> with bounding box
coordinates.

Task: Common Object
Step-1: These images share one object in common. Recognize it and tell me its name in single phrase or words.
Step-2: Please locate and ground the target object according to the reference: <|object_ref_start|> [RESPONCE]
<|object_ref_end|>

Task: Region Locating
Step-1: Describe the content of the XXXth picture with simple phrase or words.
Step-2: Please ground the object <|object_ref_start|>[RESPONCE]<|object_ref_end|> with bounding box coordinates.

Task: Multi-View
Step-1: Describe the object in the first image marked with red bounding box(<|box_start|> (A,B),(C,D) <|box_end|>)
with simple phrase or word. You can refer to other images for more precise recognition and description.
Step-2: Locate and ground the object <|object_ref_start|> [RESPONCE] <|object_ref_end|> with bounding box
coordinates.

Task: Object Tracking
Step-1: Describe the object in the first image marked with red bounding box with simple phrase.
Step-2: Now ground the target moving object [RESPONCE] with bounding box coordinates.

Task: Group Grounding
Step-1: Just recognize and tell me which image is it in. Answer from: Image1 | Image2 | Image3...
Step-2: [Selected Image] + [Original Question]
Note: For group grounding, the single image at step-2 is selected by matching the answer from step-1. If the
framework fails to extract the target image, we send the first image by default.

Task: Reasoning
Step-1: [Original Question] + Name this object in the Image-2 with simple phrase.
Step-2: Please locate and ground the object <|object_ref_start|>[RESPONCE]<|object_ref_end|> with bounding box
coordinates.

Task: Correspondence
Step-1: For the first image, describe the semantic/functional feature of the area marked by the red bounding box
(<|box_start|>(A,B),(C,D)<|box_end|>).
Step-2: Ground the area that shares the same semantic or functional meaning of: [RESPONCE].

Format Prompt
Format: <|box_start|>(x1,y1),(x2,y2)<|box_end|>. Don’t generate additional words.
Note: we deploy this prompt for better instruction following.
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For the object presented in Image-1, please locate it in Image-2.

The Christmas tree in Image-2 is located at (188,116),(439,635).

Ground the flowers in Image-3 that shares the same color with Image-1.

The purple flowers in Image-3 share the same color with the purple lights on the Christmas tree in 
Image-1.Coordinates:(30,520),(660,830).

What about the object in the third image at (330,333),(667,666)?It’s sliced turkey.

Please briefly descibe the object in Image-1 at (143,70),(345,930).

Ice cream cone with pink ice cream.

For the object presented in Image-2, 
please locate it in Image-1.

The luggage in Image-1 is located 
at (598,580),(844,975).

For the character presented in Image-1, please 
find and precisely locate him in Image-2.

(400,630),(533,880).

Image-1 is the 
photo album of 

someone in 
Image-2, please 
find and locate 

this person.

The person is located at (371,146),(695,812)

Look carefully and locate the dog 
of first image in the second picture.

The brown puppy with white chest is 
located at (492,387),(726,792)

Figure 7: Example cases of the free-form multi-image grounding ability of Migician.
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Focus on three objects: Image-1 (500,500),(700,834), Image-2 (0,0),(579,486), Image-3 (283,500), 
(612,795). Please briefly describe them.

Image-1: Ferris wheel in the distance.
Image-2: A colorful carousel with people riding on it.
Image-3: A large bed in the center of the room with a white comforter.

Good, now based on all these objects, please compose a detailed and compelling story about our 
happy trip today.

We had a great time at the amusement park today. We started by enjoying the Ferris wheel, which 
offered a great view of the park and the surrounding area. Then we moved on to the carousel, where 
we had a lot of fun. Finally, we go back home to sleep on the cosy bed. Overall, it was a perfect day 
at the amusement park.

In Image-2, please ground the bottle shares the similar shape 
with those in image-1, except its color is dark purple.

The tall wine glass filled with red wine (258,100),(470,838).

For the object marked with red box in Image-1, please locate in the 
last image.

The basketabll is located at (695,58),(743,130)

Ground the specific item on Image-1's 
table that can divide and split the item in 

Image-2 into pieces.

The black scissors located at 
(292,30),(406,806) could cut the pile of 

white paper in Image-2.

For the people in Image-1, at their time, which 
object on the table of Image-2 may help them 

travelling around the world?

The globe on the table in Image-2 may help the 
people in Image-1 traveling around the world. It is 

located at (0,208),(208,468).

Figure 8: Example cases of the free-form multi-image grounding ability of Migician.
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Figure 9: Training Examples of the free-form instruction tuning data.

9867


