
Findings of the Association for Computational Linguistics: ACL 2025, pages 9804–9819
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Tree-of-Code: A Self-Growing Tree Framework for End-to-End Code
Generation and Execution in Complex Tasks

Ziyi Ni1,2,*†, Yifan Li4,*†, Ning Yang1, Dou Shen3, Pin Lv1,‡, Daxiang Dong3,‡,
1The Key Laboratory of Cognition and Decision Intelligence for Complex Systems,

Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Science

3Baidu, Inc. 4Global Innovation Exchange Institution, Tsinghua University
‡ Correspondence: dongdaxiang@baidu.com, pin.lv@ia.ac.cn

Abstract

Solving complex reasoning tasks is a key real-
world application of agents. Thanks to the pre-
training of Large Language Models (LLMs)
on code data, recent approaches like CodeAct
successfully use code as LLM agents’ action,
achieving good results. However, CodeAct
greedily generates the next action’s code block
by relying on fragmented thoughts, resulting
in inconsistency and accumulative hallucina-
tion. Moreover, CodeAct lacks action-related
ground-truth (GT), making its supervision sig-
nals and termination conditions questionable in
multi-turn interactions. To address these issues,
we propose Tree-of-Code (ToC), a self-growing
framework that generates nodes through self-
supervision, incorporating prompt and model
exploration in a GT-free setting. Each node em-
ploys CodeProgram, an end-to-end code gen-
eration paradigm that aligns executable code
logic with global reasoning. This approach
uses task-level execution success as both node
validity and stop-growing flags, bypassing pro-
cess supervision to enable online applications.
Experiments on two datasets with ten popular
zero-shot LLMs show that ToC boosts accuracy
by nearly 20% over CodeAct with fewer than
1/4 turns. To further investigate the trade-off
between efficacy and efficiency, ablation stud-
ies on different ToC tree sizes and exploration
mechanisms validate ToC’s superiority.

1 Introduction

Large language models (LLMs) significantly im-
prove agents’ ability to leverage external tools.
(Chen et al., 2023b; Hong et al., 2023; Paul, 2024).
Effectively and efficiently handling complex real-
world problems (Blount and Clarke, 1994), espe-
cially those requiring multiple tools and calls (Li
et al., 2023b; Wang et al., 2024), has become a key
focus across industry and academia. Currently, the

*These authors contributed equally to this work.
†This work was conducted at Qianfan AppBuilder Group

during the Baidu AI Cloud Summer Camp internship.

widely used paradigm, ReAct, (Yao et al., 2022),
combines reasoning with action strategies, allow-
ing for actions to be performed incrementally and
adjusted based on environmental feedback.

The application of code generation techniques
to complex task planning and execution has gar-
nered significant attention (Holt et al., 2024; Wen
et al., 2024a; Xu et al., 2024b), particularly with
the emergence of CodeAct (Wang et al., 2024) ap-
proaches. CodeAct moves the interaction unit from
ReAct’s individual tool calls to generating code
blocks with local reasoning while leveraging code
logic and libraries. Rather than JSON (Qin et al.,
2023) or text (Park et al., 2023), it treats code as
action, utilizing LLM’s pre-trained coding skills
for efficient handling of complex tasks.

However, CodeAct treats each turn as an individ-
ual action rather than addressing the entire program,
following a step-by-step generation process. While
this approach may seem explorative, it has four
critical limitations: (I). CodeAct assumes that the
ground truth (GT) is known and uses GT match-
ing as a termination criterion, which is unrealistic
and unfeasible. (II). Fragmented thinking is inef-
ficient. For simple problems, stalled thinking is
not only unnecessary but also disrupts the logical
chains in the code (Wang et al., 2023; Guo et al.,
2024). Moreover, as the number of turns increases,
repeatedly integrating prior thoughts causes con-
text overload, heightening model hallucinations (Ji
et al., 2023), increasing computational cost. (III).
CodeAct lacks exploration of diverse reasoning
paths. While it supports multi-turn interactions,
it follows a single reasoning process. In contrast,
solving complex problems often has multiple so-
lutions (Mialon et al., 2023), where different ap-
proaches can branch from different points, making
it difficult to set a standard answer for each turn.
(IV). Generated trajectory data is hard to reuse.
When using these trajectories for supervised fine-
tuning (SFT), they cannot be directly combined

9804

mailto:email@domain
mailto:email@domain

into a single program response (Wang et al., 2024).
Reinforcement learning is also challenging due to
the lack of process supervision (Zelikman et al.,
2024), leading to fundamental issues.

Since defining and obtaining supervision signals
for intermediate states is challenging, we propose
using task-level feedback directly, treating task
completion as a single step. We introduce CodePro-
gram, an end-to-end code reasoning and generation
paradigm, as a ‘turn,’ where the only environmen-
tal supervision is execution success. To incorporate
reflection and exploration, we design an outcome-
driven refinement framework, Tree-of-Code (ToC),
that enables multi-turn interactions with diverse
solutions exploring the model and prompt pools
as tree branches, where task-level CodePrograms
serve as the nodes. The final output is determined
by voting on the collected nodes, selected based on
their successful execution. It’s important to note
that, in this paper, a ‘turn’ refers to a single action
of code generation. For our CodeProgram, a turn
involves completing the entire program, rather than
just a single task step (as in CodeAct).

Although ToC’s name and structure are simi-
lar to "Tree-of-Thoughts" (ToT) (Yao et al., 2024),
their meanings fundamentally differ. Our concept
might be closer to a Code "Random Forest" (Rigatti,
2017). While ToT enhances "Chain-of-Thought"
(CoT) (Wei et al., 2022) by exploring different
thoughts within the same solution, ToC explores
multiple distinct program solutions. In other words,
each node in ToC represents a complete solution,
and the tree as a whole captures different iterative
optimizations (depth) across a variety of complete
solutions (breadth). The core contributions of this
paper are summarized as follows:

1. We propose a self-growing Tree-of-Code
(ToC) structure that automatically reflects and
explores diverse, complete solution nodes
without labeled data, facilitating complex
tasks in multi-tool online scenarios.

2. Each node in ToC, called a CodeProgram,
is generated end-to-end. We are the first to
define process-level supervision at the task-
outcome level using execution success.

3. Extensive experiments and ablation studies on
two multi-tool, complex task datasets with ten
models, demonstrate that ToC significantly
enhances problem-solving accuracy and effi-
ciency in real-world, zero-shot scenarios.

Tool Agent
1 st turn 2 nd turn

Try Different Actions Step-by-Step

...

... n-1 th turn

A Conceptual Task for Illustration: Draw a circular smiley face with two black round
eyes and a black wide and slightly arched curved line as the mouth on a green background.

🟰 ❓ 🟰 ❓ 🟰 ❓ 🟰 ❓

n th turn

Program Agent

...

Diverse Completed Programs

Explore and Filter Completed Programs

 Successfully Executed Final
Program

one process

done correctly : wrong : correct :

/ : an action : a completed task Program Filter: Next Action:

: successfully executed
but uncorrectlly execution failed:

Action:

Figure 1: Illustration of our design motivation.

2 Design Motivation

In industry, complex tasks requiring multiple tools
and function calls, are typically driven by open-
ended user queries. This creates two key chal-
lenges: (1) For zero-shot queries, it is unrealistic to
pre-obtain task-level ground-truth (GT), which is
required for SFT (Chung et al., 2024) or reinforced
fine-tuning (ReFT) (Luong et al., 2024). More-
over, without GT, the termination criteria become
unclear. (2) Multi-turn interactions lack a stan-
dard trajectory, making it difficult to define the pro-
cess supervised signals (Luo et al., 2024). Current
methods often rely on ’LLM-as-judge’ to evalu-
ate whether the user’s needs are met at each step
(Chen et al., 2024; Li et al., 2024a). However, it
would require an API call after every step to check
progress, ultimately increasing both time and token
costs. Besides, the evaluation without objective sig-
nals demands strong analytical and reasoning skills
from LLMs. Existing methods deliberately avoid
these challenges by assuming GT is known (Wang
et al., 2024), matching task-level GT with action-
related outcomes at each step, like the tool agent
in Figure 1: the interaction turn stops only if they
match, or continues until the step limit is reached.

Since intermediate states are absent, if possible,
why not treat each complete end-to-end execution
as an atomic state? By iteratively exploring feasi-
ble solutions through parallel executions, we first
collect a batch of solutions, and then determine the
optimal one, as shown by the program agent in Fig-
ure 1. This idea inspires our node outcome-driven
reflection system specifically designed for multi-
tool interaction in real-world environments. Our

9805

Thought 2 :
I apologize for the confusion. It seems there

is an issue with this tool. Let me try a

different approach.

CodeProgram
import math

......

def haversine_distance(lat1, lon1, lat2, lon2):

R = 6371 # Earth's radius in kilometers

geocoding_result = llm_errhandler(Geocoding,

address="San Francisco")

if geocoding_result['status'] == 'success':

(a) CodeAct

Thought 1 :
I can use the NearbyRestaurants API.

Code Action 1 :
NearbyRestaurants({'latitude': 37.7749,

'longitude': -122.4194, 'distance': 1000}

Execution 1 :
TypeError: tool_gen.<locals>.tool_function()

takes 0 positional arguments but 1 was given

Code Action 2 :
Geocoding(address='San Francisco')

Execution 2 :
'latitude': 37.7749, 'longitude': 122.4194

……

Query

(b) Tree-of-Code (ToC)

Task Query

Valid Collections

collect all Executed-Successfully nodes

Ans

majority vote from Valid Collections

Accepted

Awaited

Discarded

Reflect and Expand Nodes

Valid:

Invalid:

Node Execution Success

Node Execution Failure

Thoughts
Based on the previous implementations, we have

successfully find nearby restaurants‘ location.....

1. Add more informative output, including......

2. Round the distance to three decimal places.....

3. Add error handling for the case......

Execution n:
['Restaurant B','Restaurant D']

Execution
Coordinates for San Francisco: (37.7749, 122.4194)

Found 2 restaurants within 1km of San Francisco:

1. Restaurant B (0.000 km away)

2. Restaurant D (0.000 km away)

Layer 1 -

Layer 2 -

Layer3 -

Ans

Node InCorrect

Continue Next Action

Node Correct

Stop and Output answer

Vote and Output answer

Figure 2: An Overview of CodeAct and ToC. (a) CodeAct regards code as action with step-by-step reasoning. (b)
ToC applies execution-based reflection in the tree structure, where each node (CodeProgram) generates end-to-end
code with global planning as its thoughts. At each layer, nodes are executed in parallel; if executed successfully,
they are collected for voting. Note that the process supervision relies solely on the node’s execution success or
failure, rather than on the specific content executed (whether correct or incorrect), which would require pre-known
labels. The query is "Find nearby restaurants within 1km of San Francisco" from API-Bank level-3 dataset.

key contribution is a self-growing framework en-
abling LLM agents to autonomously interact with
code through zero-shot learning without GT su-
pervision, whose implementation details will be
subsequently presented.

3 Tree-of-Code Method

Following the design motivation, we need to col-
lect all valid solutions and identify the one closest
to the GT. By treating each tree node as a com-
plete task-level solution and exploring different
nodes for breadth while deepening through itera-
tive refinement, we propose ToC (Tree-of-Code),
an execution-based, self-growing, and self-filtering
tree for handling real-world complex tasks.

3.1 Overview of Tree-of-Code

We represent the ToC framework as T = (N, S),
where N denotes a set of nodes (N), and S rep-
resents the stems (unidirectional arrows in Figure
2) , modeling the reflection reasoning process of
LLMs when expanding the nodes. The overview
of ToC and how it works is illustrated in Figure 2.
Let L denote the max depth, l the layer index, M
the expanded layer’s max-width, m the node index,
l ∈ {1, . . . , L}, m ∈ {1, . . . ,M}. We use T for
the thoughts of the N , C for code, and E for its

execution result. The next-layer N is denoted as:

N(l+1)-m = Sl→(l+1)(f,

l∑

j=0

(Tj-m+Cj-m+Ej-m))

where f represents the basic information of the
task, such as the user’s query, and all tool descrip-
tions. The sum

∑l
j=0 indicates that each reflection

reasoning process for generating the next node re-
lies on the thoughts, code, and execution results
from all ancestor nodes in the history. The node
index is fixed for simplicity in the formula.

3.2 Tree Node Generation
Unlike tool agents like CodeAct, which treat each
intermediate action and environmental feedback as
a step, each node in our ToC represents a complete
task, effectively increasing the granularity of task
handling at each layer.

In other words, a single tree node (one turn) is
equivalent to multiple turns of CodeAct, with both
being directly comparable and serving the same
purpose (final response), significantly improving
efficiency. We refer to this end-to-end code rea-
soning and generation paradigm as CodeProgram.
Figure 4 illustrates how it works.

Specifically, the end-to-end code in CodePro-
gram serves as a bridge, aligning with natural lan-
guage reasoning and execution outcomes in the
environment. Besides, by decoupling the reasoning

9806

Layer 1

1. We've added more detailed printing of the available
flights and hotels to better understand the data.
2. We removed the "luxury" preference from the hotel
booking function as it might not be a valid parameter.

def main():

 # Step 2: Book the highest-rated hotel
 hotels = book_hotel(LOC[2]) # Removed "luxury"
preference as it might not be valid

 # Step 3: Calculate the total budget
 ……
 rounded_budget = round(total_budget) # Round to nearest
integer

 return rounded_budget

result = llm_errhandler(main)
if result["status"] == "success":
 print(f"Final result: {result['result']}")
else:
 print(f"Error occurred: {result['error']}")

Best hotel: {'location': '"C"', 'preferences': ['wifi',
'pool'], 'price_per_night': 110, 'rating': 5}
Total budget for the trip: $1370

You are at LOC[4]. Plan a luxury trip to LOC[2] on 2023-10-05,
staying in the highest-rated hotel for 7 nights. Always choose
the cheaper flight. Give me the total budget for the trip.

4. max: Finds the maximum value among the given arguments.
5. min: Finds the minimum value among the given arguments.
6. sum: Sums the given float arguments.

1. find_flights: Finds flights based on source, destination and date.
2. book_hotel: Books a hotel based on location and preferences.
3. budget_calculator: Calculates the total budget for a trip.

1. The result is wrapped in the llm_errhandler for error
handling.
2. The main issue in the previous attempts was that we
were using "LOC[4]" and "LOC[2]" as literal strings,
which are not valid locations for the find_flights function.

def main():
 # Step 1: Find flights
 flights = find_flights(LOC[4], LOC[2], "2023-10-05")

 # Step 2: Book the highest-rated hotel
 hotels = book_hotel(LOC[2], "luxury")

 # Step 3: Calculate the total budget

 return total_budget

result = llm_errhandler(main)
if result["status"] == "success":
 print(f"Final result: {result['result']}")
else:
 print(f"Error occurred: {result['error']}")

Cheapest flight: {'from_location': '"E"',
'to_location': '"C“’, 'date': '2023-10-05', 'price':
600} ERR: Error occurred: max() arg is an
empty sequence

1. Find flights from LOC[4] to LOC[2] on 2023-10-05.
2. Book the highest-rated hotel in LOC[2] for 7 nights.
3. Calculate the total budget for the trip.

def main():
 # Step 1: Find flights
 flights = find_flights("LOC[4]", "LOC[2]", "2023-10-05")
 # Choose the cheaper flight
 cheaper_flight = min(flights, key=lambda flight: flight["price"])
 print(f"Selected flight: {cheaper_flight}")

 # Step 2: Book the highest-rated hotel
 hotels = book_hotel(“LOC[2]”, "luxury")
 # Choose the highest-rated hotel
 best_hotel = max(hotels, key=lambda x: x['rating'])
 print("Best hotel:", best_hotel)

 # Step 3: Calculate the total budget
 total_budget = budget_calculator(cheapest_flight['price'],
best_hotel['price_per_night'], 7)
 print(f"Total budget for the trip: ${total_budget:.2f}")

 return total_budget

main()

ERR: “LOC[4]” and “LOC[2]” are invalid. We can
not find the required flights.
“book_hotel” function can not find “LOC[2]” .

Layer 2 Layer 3

Figure 3: Illustrative example of a branch of ToC. We demonstrated the process of a node expanding into deeper
levels. Based on the user query, tool descriptions, and previous execution outcomes, ToC first thinks about how to
do it and then writes the end-to-end code. The example is selected from M3ToolEval dataset.

process from code execution, we achieve flexibility
while ensuring consistency.

3.2.1 Code as Reasoning

On the one hand, CodeProgram leverages the
concept of "code-as-reasoning" to generate code,
where the process of writing code itself mirrors the
reasoning process.

On the other hand, global reasoning is essential
for guiding CodeProgram’s complete code genera-
tion in a single end-to-end flow. This approach en-
ables the seamless integration of various reasoning
techniques for large language models (LLMs), such
as prompt engineering (Chen et al., 2023a), Chain-
of-Thoughts (CoT) (Wei et al., 2022), Tree-of-
Thoughts (ToT) (Yao et al., 2024), in-context learn-
ing (Kojima et al., 2022), self-reflection (Zhang
et al., 2024), and System2 reasoning (Frankish,
2010; OpenAI, 2024b). Additionally, longer chains
of thought have consistently been shown to enhance
task performance (Zelikman et al., 2024).

Building on this foundation of global reason-
ing, we write the root prompt based on previous
work (Wang et al., 2024) to guide the generation of
step-by-step CoT thoughts and the corresponding
complete code. LLMs are prompted to first analyze
and break down the problem, generate reasoning-
based thoughts for solving it, and then produce
the complete code that reflects and executes that
reasoning. The thoughts and codes are enclosed us-
ing the "<thought>-</thought>" and "<execute>-
</execute>" tags, respectively. The root prompt is

CodeProgram

Methods: CoT, ToT, In-
context learning, Self-
Reflection, System2...

Supervision signals

Rewards

OutComes: Successful /
Failed ? Error Types &

Messages？

Thoughts
SFT

ReFT

Training Label

Reasoning Execution Code

Data Pair: (Thoughts + Code, Label)

Figure 4: Illustration of the CodeProgram in ToC.

shown in Appendix A.

3.2.2 Two Helper Tools
CodeProgram struggles with environmental explo-
ration when LLMs must rely on tool outputs to
determine the next steps. For instance, in web
browsing tasks, the next action can only be decided
after viewing the page content, and a final summary
answer can only be provided after considering all
tool outputs. Thus, to maintain end-to-end flow, we
introduce two functions: a general res_handler,
which defines a prompt to generate results that meet
the prompt requirements for final summarization,
and a specific next_action for web tasks, which
decides the next action from a given set of possible
browsing actions based on the page content, visited
URLs, and task query. Their tool descriptions and
functions are shown in Appendix B.

They help better understand the semantic rela-
tionships between tools, ensuring a smooth, cohe-
sive sequence of tool calls during code generation.

9807

In the Appendix B.3, we also provide an example
demonstrating how these helper tools work.

3.2.3 Execution Outcome as Process Label
The code solution is task-level, and its execution
outcome is a self-provided annotation that can be
directly used as labels. Note that we focus solely
on task execution success, using a simple true/false
label to filter feasible solutions and approximate
more effective ones. This label is weak but avail-
able, simple, and useful—unlike pre-known GT or
correctness judgments.

Benefiting from our end-to-end paradigm (a
direct, complete task-level response to a single
query), we can select "successfully executed" sam-
ples for SFT and use various rich comments (such
as specific results or error messages) as rewards for
ReFT by repeating the CodeProgram in different
settings (i.e., multi-nodes). In this context, the code
acts as a verifier. This verification-then-refinement
concept also inspires the development of a multi-
layer Tree-of-Code (ToC).

Thanks to task-level granularity, the code’s exe-
cution outcomes align with both the task query and
the thought-code output, enabling the generation
of valuable data for potential future training.

3.3 Tree Expansion
We initialize from a root node and recursively ex-
pand the tree. The expansion process follows: (1)
The breadth-first search (BFS) strategy is applied,
with each parent node branching into M = 3 child
nodes. (2) Whether the node continues to grow de-
pends solely on the evaluation of its own execution
state (success or failure). For each Nl,
{

stop and collect, if El ̸= None or error,
grow N(l+1), otherwise.

(3) Expansion continues until all child nodes stop
or the maximum depth (L) of 3 is reached.

Execution-based Reflection. We can not guaran-
tee that one node solution will be correct on the
first attempt. Treating task-level execution errors as
continuation signals, we propose execution-based
reflection, which enables LLMs to self-reflect, iden-
tify errors, refine thoughts, and improve code. As
long as execution fails, self-reflection continues
iteratively, generating next-layer new nodes. The
prompt for reflection is shown in Appendix A.2.1.

This also allows the branch to grow into deeper
layers, where each node in the trajectory provides
process supervision signals based on its outcome.

Tool Available
find_flights, book_hotel, budget_calculator, max, min, sum

Task Query
You are at LOC[4]. Plan a luxury trip to LOC[2] on 2023-10-05, staying in the highest-rated

hotel for 7 nights. Always choose the cheaper flight. Give me the total budget for the trip.

Execution Res
No hotels found in C.

Reflection
Add error handling.

 Varying LLMs and Prompts

$ 1370

Reflection
Directly Estimate data.

$ 1900

Reflection
Correct Value Err.

 Exploration: Varying LLMs and Prompts

1370

Reasoning
First Thought

Execution Res
TypeError: Loc[C] is not a Dict.

......
......

Output

$ 1370

Execution Res
KeyError: ‘cost’

res[‘result’][‘cost’]

Execution Res
ValueError: max() arg
is an empty sequence

Execution Res
Try another destination or

remove the 'luxury'.

Reflection
Find more ditails.

 Exploration: Varying LLMs and Prompts

Reflection & Reasoning
Correct Type Err.

Figure 5: A detailed example illustrating ToC’s
execution-based reflection and expansion.

Note that the definition of ’turn’ is equivalent to
that of ’layer’; both terms carry the same meaning.
Since these supervision signals are inherently em-
bedded within the CodeProgram node, the growth
process is self-driven. Therefore, the whole tree is
end-to-end generated.

Figure 3 shows an example of a branch of ToC
while Figure 5 demonstrates execution-based reflec-
tion and tree expansion. Additionally, our flexible
tree-structured framework allows for the integra-
tion of any reflection method for tree expansion.
Exploration strategy. Generating code in a single
pass presents two main limitations on diversity:

• 1) Limited strategy: It easily leads to cognitive
narrowing, where the fundamental reasoning
mechanism remains unchanged.

• 2) Limited robustness: If an error occurs, the
only option for the user is to re-run the whole
process, without any proactive adjustments,
which leads to inefficiencies.

9808

Research (Renze and Guven, 2024) has shown
that performance benefits from diverse perspectives
of error identification, which encourages models to
generate multiple solutions (ie. nodes in ToC).

To enhance the diversity of ToC, we introduce
randomness into the expansion process by varying
LLMs and prompts, inspired by the random for-
est (Rigatti, 2017). At the system level, different
LLMs from our list, introduced in Section 4.1, are
explored randomly with a consistent temperature
setting of 0.1. At the instruction level, prompts
are randomly selected from a diverse pool, created
through self-evolution and human crafting.

The random exploration mechanisms operate at
each node individually, while the prompt pool is
created just once for the entire system.

Specifically, we used ten LLMs to generate ten
diverse prompts through prompt evolution from the
root prompt (see Appendix A). The evolution pro-
cess ensures the core content remains consistent
while promoting orthogonal or divergent expres-
sions. Six distinct prompts were manually selected
and the following modifications were then applied:
(1) adding detailed usage examples (beyond just
printing "Hello world") to three prompts; (2) adjust-
ing the format with line breaks and indentation; (3)
randomly rearranging components, including the
reflection part, usage examples, role instructions,
tool descriptions, and chat history.

3.4 Final Result Generator

Once valid outputs from successfully executed
nodes are collected, the same LLM makes the final
decision by performing a majority vote and summa-
rization to determine the most likely answer. Ties
are rare in our observations, so we always choose
the most frequent answer without special handling.

4 Experiment and Analysis

4.1 Setup

Datasets. Following CodeAct, our evaluation is
based on M3ToolEval1 (M3) (Wang et al., 2024)
and the test set of API-Bank2 (Li et al., 2023b). M3
consists of 82 tasks utilizing 100 tools in code/J-
SON/txt action space respectively across 5 types
of scenarios, including DNA sequencer, message
decoder, trade calculator, travel itinerary planning,

1https://github.com/xingyaoww/code-act/tree/
main/scripts/eval/m3tooleval

2https://huggingface.co/datasets/
liminghao1630/API-Bank/tree/main

and web browsing. API-Bank contains 314 tool-
use dialogues and 73 API tools, including level-1,
2, 3. Unlike CodeAct, which evaluates only on
level-1, we focus directly on the 50 most challeng-
ing level-3 tasks, on which nearly all non-GPT4
models score 0%, according to the original paper.
Considering API-Bank only supports JSON format,
we make following modifications to adapt it for
code interaction: (1) functionalize all API tools,
(2) add output examples to each function descrip-
tion (Figure 6). We include all tool signatures in
the prompt context and let LLMs inherently search
and select tools, instead of using ToolSearch API,
deemed the least essential in (Li et al., 2023b). (3)
determine correctness by matching the response
to the expected final output through conditional
keywords, not by API call matching.

Example of the Function Signature in API-Bank level-3
UserMoviePreferences():
 description: "API for retrieving user preferences for
movie recommendations. Here is an example of the output:
result = {'api_name': 'UserMoviePreferences', 'input':
{'user_name': 'John'}, 'output': {'preferences': ['Action',
'Comedy', 'Drama']}, 'exception': None}"
 input_parameters:{
 'user_name': {'type': 'str', 'description': 'Name of
the user.'},
 }
 output_parameters:{
 'preferences': {'type': 'list', 'description': 'List
of movie preferences.'},
 }

Figure 6: Example of the function signature in level-3.

Models. We include the following ten models
in our model pool for evaluation: the GPT family
from OpenAI (Achiam et al., 2023; Bubeck et al.,
2023; OpenAI, 2024a), including gpt-3.5-turbo-
1106, gpt-4o-mini-2024-07-18, gpt-4o-2024-08-06,
and gpt-4-1106-preview checkpoints, excels in gen-
eration capabilities. From the Anthropic’s Claude
family (Anthropic, 2023, 2024), we select claude-
instant-1, claude-2, claude-3-haiku-20240307, and
claude-3-5-sonnet-20240620 known for their code
generation and problem-solving capabilities. Be-
sides, we incorporate open-sourced deepseek-chat
from DeepSeek (Guo et al., 2024) and qwen2.5-
72b-instruct from Alibaba (Bai et al., 2023).
Baselines. ReAct (Yao et al., 2022) combines
reasoning and action in a dynamic, step-by-step
interaction, providing a flexible approach to task-
solving. We use JSON as the action space. Code-
Act (Wang et al., 2024) utilizes a block of code as
the LLM agent’s action, enabling more efficient
multi-turn interactions.
Metrics. The evaluation includes accuracy and

9809

https://github.com/xingyaoww/code-act/tree/main/scripts/eval/m3tooleval
https://github.com/xingyaoww/code-act/tree/main/scripts/eval/m3tooleval
https://huggingface.co/datasets/liminghao1630/API-Bank/tree/main
https://huggingface.co/datasets/liminghao1630/API-Bank/tree/main

Mechanism M3ToolEval API-Bank level-3

Avg Turns Correct Output Words Avg Turns Correct Output Words

ReAct 8.2 38.1 % 1.86 k 9.5 8.2 % 1.66 k
CodeAct 7.0 49.4 % 1.91 k 8.9 19.2 % 1.82 k
Tree-of-Code (3-3) 1.7 ↓ 67.1 % ↑ 0.44 k ↓ 2.1 ↓ 38.0 % ↑ 0.39 k ↓

Table 1: Performance comparison of the baselines and our ToC in terms of averaged turns, output words, and
accuracy on two datasets. Note: all numerical results presented in this paper are rounded.

averaged turns. Accuracy represents the percentage
of complex tasks that are correctly solved. We
consider the LLM-generated code at the same layer,
generated in parallel, as one turn. We also record
the average number of output words for the API
cost evaluation.

4.2 ToC vs. CodeAct and ReAct

We primarily compare the ToC framework, which
is comprised of CodeProgram nodes, with the
CodeAct and ReAct framework, which are com-
prised of steps, using the M3 and the level-3
datasets. For ToC, we randomly sample the LLM
and prompt from the LLM list and prompt pool,
respectively, at each node exploration. For Code-
Act and ReAct, we report the average results across
all LLMs used in this paper. Table 1 shows ToC
achieves consistent superior performance (nearly
20% higher) with significantly fewer interaction
steps and averaged output words (nearly 1/4), high-
lighting its efficiency in handling complex tool-use
scenarios. Specifically, Figure 7 shows the com-
parison of ReAct, CodeAct, and ToC on the five
tasks in the M3, where ToC achieves near-perfect
accuracy on all tasks except the web browsing task.

Figure 7: Comparison across five tasks in the M3.

4.2.1 Other multi-turn vs. Our one-turn
Furthermore, we explore the performance of one-
layer ToC (1-x) with the fixed model. As a node
in ToC, CodeProgram enables the complete solu-
tion in a single turn by leveraging code’s ability
to handle long logic chains. Table 2 shows that,

with a significant advantage in the number of turns
(one vs. multi-turn: averaged 7.0/8.9), our perfor-
mance on some models even surpasses multi-turn
CodeAct and ReAct, particularly with the Claude
series. Compared to CodeProgram, ie. ToC (1-1),
the single layer, three nodes ToC (1-3) with ran-
dom prompts significantly boosts performance. Its
average accuracy already surpasses CodeAct, high-
lighting the effectiveness of prompt randomness.

We highlight the best-performing models in bold.
Experimental results show that the top models dif-
fer between the CodeAct and ToC, and even within
CodeAct, performance varies by dataset. For M3,
gpt-4 performs best, while for API-Bank level-3,
gpt-4o excels, likely because API-Bank level-3 em-
phasizes tool usage over scenario understanding,
with simpler problem expressions. For ToC, claude-
3-5-sonnet stands out due to its strong prompt-
following ability, which is key for aligning rea-
soning with code and tool selection.

4.3 Analysis and Ablation Studies

Varying tree sizes. We test the performance of
the top model, claude-3-5-sonnet, on different tree
sizes to evaluate the trade-off between efficacy
and efficiency. Table 3 shows impressive results:
with proper prompts and no additional training, the
model achieves 84.1% accuracy (3-3) on the M3,
10.9% higher than 73.2% (1-1).

It seems the "nodes per Layer" contribute more
than Layers, likely because our tree structure is
designed to enhance exploration. Increasing the
number of nodes certainly introduces more diverse
prompts and model variations, whereas adding
more layers (ie. more turns) mainly accumulates
histories without significantly improving decision-
making, especially with models that have limited
contextual understanding.
Prompt exploration. Ablation results in Table 4
confirm the effectiveness of prompt exploration. By
comparing the random model with the fixed model
(claude-3-5-sonnet), prompt exploration proves to
be more critical in scenarios with lower diversity.

9810

Model
M3ToolEval API-Bank level-3

ReAct CodeAct ToC (1-1) ToC (1-3) ReAct CodeAct ToC (1-1) ToC (1-3)

claude-instant-1 28.0% (8.7) 18.0% (8.9) 30.5% (1) 35.3% (1) 0.0% (10.0) 2.0% (10.0) 6.0% (1) 18.0% (1)

claude-2 40.2% (8.2) 54.9% (7.2) 57.3% (1) 59.8% (1) 0.0% (10.0) 20.0% (8.9) 8.0% (1) 18.0% (1)

claude-3-haiku 24.4% (9.0) 9.8% (9.4) 29.3% (1) 31.7% (1) 10.0% (9.4) 0.0% (10.0) 6.0% (1) 8.0% (1)

claude-3-5-sonnet 48.8% (7.7) 73.2% (5.7) 73.2% (1) 82.9% (1) 14.0% (9.3) 32.0% (7.8) 48.0% (1) 52.0% (1)

gpt-3.5-turbo-1106 18.3% (8.9) 25.6% (8.6) 12.2% (1) 17.1% (1) 14.0% (9.2) 2.0% (9.9) 4.0% (1) 8.0% (1)

gpt-4-1106-preview 54.9% (7.5) 75.6% (5.4) 72.0% (1) 73.2% (1) 18.0% (8.2) 30.0% (8.2) 34.0% (1) 38.0% (1)

gpt-4o-mini-2024-07-18 32.9% (8.4) 47.6% (7.0) 31.7% (1) 42.7% (1) 10.0% (9.6) 16.0% (9.5) 14.0% (1) 20.0% (1)

gpt-4o-2024-08-06 35.4% (8.5) 56.1% (6.7) 51.2% (1) 62.2% (1) 14.0% (9.4) 36.0% (7.8) 28.0% (1) 32.0% (1)

qwen2.5-72b-instruct 50.0% (7.9) 70.7% (5.6) 51.2% (1) 59.8% (1) 2.0% (9.9) 30.0% (8.2) 24.0% (1) 32.0% (1)

deepseek-chat 47.6% (7.6) 62.2% (5.9) 40.2% (1) 52.4% (1) 0.0% (9.8) 24.0% (8.6) 22.0% (1) 26.0% (1)

Avg. 38.05% (8.24) 49.37% (7.04) 43.53% (1) 50.98% (1) 8.2% (9.48) 19.2% (8.89) 19.4% (1) 24.4% (1)

Table 2: Ablation study of the model exploration. With different fixed models, the detailed performance comparison
of ReAct, CodeAct, ablated ToC (1-1) (ie. the CodeProgram node), and ToC (1-3) on the M3ToolEval and API-Bank
level-3 datasets is shown. The correctness is reported, with the average number of turns in parentheses.

Layer / Node Per Layer 1 2 3
1 73.2% (1) 75.6% (1) 82.9% (1)
2 73.2% (1.4) 76.8% (1.4) 84.1% (1.5)
3 74.4% (1.8) 79.3% (1.7) 84.1% (1.6)

Table 3: The performance of varying tree sizes.

Mechanism M3ToolEval

Avg Turns Correct

Random Model (∆ = 3.7%)
ToC 1.7 67.1%
ToC w/o prompt exploration 1.9 63.4% ↓

Fixed Model (the best) (∆ = 8.5%)
ToC w/o model exploration 1.6 84.1%
ToC w/o model+prompt exploration 1.8 75.6% ↓↓

Table 4: Ablation study of the prompt exploration.

5 Related Work

LLM Code Generation for Complex Tasks. Re-
cent works integrating LLMs with code have
largely focused on task completion in program-
ming domains like software development (Qian
et al., 2024; Wang et al., 2023), programming as-
sistance (Islam et al., 2024; Wen et al., 2024b), and
scientific problems (Chen et al., 2022; Gao et al.,
2023; Hong et al., 2024). These studies primar-
ily address pure code generation, where correct
task completion only relates to accurate reason-
ing logic within the code. For example, Chain of
Codes (Li et al., 2023a) broadens LLM capabili-
ties by enabling "thinking in code." In contrast, our
work addresses real-world, zero-shot online com-
plex tasks that involve multiple tool calls. Only
CodeAct (Wang et al., 2024) treats code as a scal-

able language to call multiple tools, but their ap-
proach is limited by an almost one-turn, one-tool,
step-by-step mechanism. This results in stalled
thinking and accumulated histories, relying heavily
on ground-truth supervision for each step, which is
incompatible with zero-shot, online settings. In our
framework, every node represents a complete so-
lution that can be directly evaluated via execution
supervision without requiring additional labels.

Tree-based Code Generation. A recent work,
CodeTree (Li et al., 2024b), uses a tree structure to
explore the search space of code generation tasks.
Unlike our approach, CodeTree focuses on multi-
agent searching rather than an end-to-end, self-
growing tree. While self-repair trees (Olausson
et al., 2023) begin with a specification root node,
grow into initial programs through separate feed-
back and repair stages–often bottlenecked by the
model’s limited capacity–our approach unifies rea-
soning (including reflection) and generation in a
single cycle at each node, and directly expands
the tree with prompt and model exploration. Some
contemporaneous works utilizing tree-based search,
such as MCTS (Xu et al., 2024a; Yu et al., 2024),
require multiple rollouts and significant computa-
tional resources, making them unsuitable for online,
real-time applications. Unlike these methods, our
self-growing tree generates multiple valid solutions
and directly selects the one closest to the ground
truth through a voting mechanism. Additionally,
these studies typically focus on tasks with easier-
to-obtain process supervision, whereas our work
addresses real-world, complex multi-tool datasets.

9811

6 Conclusion

This paper introduced the Tree-of-Code (ToC)
method, which enables self-growing, end-to-end
thought-code generation based on successful exe-
cution, addressing complex multi-tool online tasks.
With efficient model integration and prompt explo-
ration, ToC outperformed baselines on two com-
plex task datasets, improving both efficiency and
task-solving performance.

Limitations

Limited reasoning scope for Program

We emphasize that our method operates at the
granularity of code "program" rather than "action".
However, it is limited in fully open-ended scenarios
requiring step-by-step exploration, such as a robot
navigating an unfamiliar environment, or in han-
dling tasks with extremely long sequences beyond
the capabilities of current reasoning methods, like
generating an entire paper. In such cases, it cannot
provide a complete final solution. Even though, in
practical industrial applications where a predefined
toolset is available, CodeProgram’s end-to-end exe-
cution remains more efficient for online, zero-shot
scenarios, for fewer turns, and for fewer LLM calls.

For larger and more complex system programs
in the future, our method may serve as a "subpro-
gram" within the overall solution, similar to a single
agent’s role in multi-agent systems.

Opportunities for Reflection Refinement

While our framework provides a solid foundation
inspired by human problem-solving, it uses a basic
reflection mechanism, relying on execution feed-
back alone. Whether tracking full execution history
or selectively summarizing with LLMs offers better
performance remains an open question. Future re-
search could explore enhanced search strategies or
adaptive pruning methods to handle more complex
real-world tasks.

Vast Potential in Prompt Pool Design

We enhanced the diversity of strategies and the
robustness of results in our Tree-of-Code by de-
signing a prompt pool composed of multiple
prompts. The introduction of multiple reasoning
paths guided by diverse prompts represents a sig-
nificant innovation. However, our current approach
relies primarily on simple prompt evolution and
manual adjustments. Future work should focus on

more in-depth and systematic research into con-
structing prompt pools.

Acknowledgments

This work was supported by the National Sci-
ence and Technology Major Project under Grant
2022ZD0116409, and the National Natural Science
Foundation of China under Grant 62301559.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2023. Introducing claude. https://www.
anthropic.com/index/introducing-claude.
Accessed: 2023-10-20.

AI Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. Claude-3 Model Card, 1.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

GN Blount and S Clarke. 1994. Artificial intelligence
and design automation systems. Journal of Engeer-
ing Design, 5(4):299–314.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and
Shengxin Zhu. 2023a. Unleashing the potential of
prompt engineering in large language models: a com-
prehensive review. arXiv preprint arXiv:2310.14735.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin
Shi. 2023b. Autoagents: A framework for automatic
agent generation. arXiv preprint arXiv:2309.17288.

Mouxiang Chen, Hao Tian, Zhongxi Liu, Xiaoxue Ren,
and Jianling Sun. 2024. Jumpcoder: Go beyond au-
toregressive coder via online modification. In Annual
Meeting of the Association for Computational Lin-
guistics.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

9812

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://api.semanticscholar.org/CorpusID:266999066
https://api.semanticscholar.org/CorpusID:266999066

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Keith Frankish. 2010. Dual-process and dual-
system theories of reasoning. Philosophy Compass,
5(10):914–926.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming–
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Samuel Holt, Max Ruiz Luyten, and Mihaela van der
Schaar. 2024. L2mac: Large language model auto-
matic computer for extensive code generation. In
The Twelfth International Conference on Learning
Representations.

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu,
Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin Wang,
Lingyao Zhang, Mingchen Zhuge, et al. 2024. Data
interpreter: An llm agent for data science. arXiv
preprint arXiv:2402.18679.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.
Metagpt: Meta programming for multi-agent collabo-
rative framework. arXiv preprint arXiv:2308.00352.

Md Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent
code generation for competitive problem solving.
arXiv preprint arXiv:2405.11403.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1–38.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen,
Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-
Fei, Fei Xia, and Brian Ichter. 2023a. Chain of code:
Reasoning with a language model-augmented code
emulator. arXiv preprint arXiv:2312.04474.

Jierui Li, Hung Le, Yinbo Zhou, Caiming Xiong, Sil-
vio Savarese, and Doyen Sahoo. 2024a. Codetree:
Agent-guided tree search for code generation with
large language models.

Jierui Li, Hung Le, Yinbo Zhou, Caiming Xiong, Sil-
vio Savarese, and Doyen Sahoo. 2024b. Codetree:
Agent-guided tree search for code generation with
large language models.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, and
Yongbin Li. 2023b. Api-bank: A comprehensive
benchmark for tool-augmented llms. arXiv preprint
arXiv:2304.08244.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi.
2024. Improve mathematical reasoning in language
models by automated process supervision. ArXiv,
abs/2406.06592.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie,
Peng Sun, Xiaoran Jin, and Hang Li. 2024. Reft:
Reasoning with reinforced fine-tuning. ArXiv,
abs/2401.08967.

Grégoire Mialon, Clémentine Fourrier, Craig Swift,
Thomas Wolf, Yann LeCun, and Thomas Scialom.
2023. Gaia: a benchmark for general ai assistants.
ArXiv, abs/2311.12983.

Theo X Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2023. Is self-repair a silver bullet for code genera-
tion? In The Twelfth International Conference on
Learning Representations.

OpenAI. 2024a. Hello gpt-4o. https://openai.com/
index/hello-gpt-4o/. Accessed: 2024-05-18.

OpenAI. 2024b. Openai o1 system card. https://cdn.
openai.com/o1-system-card-20240917.pdf.
Accessed: 2024-09-12.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai,
Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. 2023. Generative agents: Interactive sim-
ulacra of human behavior. Proceedings of the 36th
Annual ACM Symposium on User Interface Software
and Technology.

Swarna Kamal Paul. 2024. Continually learning plan-
ning agent for large environments guided by llms.
In 2024 IEEE Conference on Artificial Intelligence
(CAI), pages 377–382. IEEE.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, et al. 2024. Chatdev: Communicative
agents for software development. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15174–15186.

9813

https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:270379625
https://api.semanticscholar.org/CorpusID:270379625
https://api.semanticscholar.org/CorpusID:267027728
https://api.semanticscholar.org/CorpusID:267027728
https://api.semanticscholar.org/CorpusID:265351664
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://cdn.openai.com/o1-system-card-20240917.pdf
https://cdn.openai.com/o1-system-card-20240917.pdf
https://api.semanticscholar.org/CorpusID:258040990
https://api.semanticscholar.org/CorpusID:258040990

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan,
Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
ArXiv, abs/2307.16789.

Matthew Renze and Erhan Guven. 2024. Self-reflection
in llm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682.

Steven J Rigatti. 2017. Random forest. Journal of
Insurance Medicine, 47(1):31–39.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024. Executable
code actions elicit better llm agents. arXiv preprint
arXiv:2402.01030.

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and
Heng Ji. 2023. Leti: Learning to generate from tex-
tual interactions. arXiv preprint arXiv:2305.10314.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Jiaxin Wen, Ruiqi Zhong, Pei Ke, Zhihong Shao, Hongn-
ing Wang, and Minlie Huang. 2024a. Learning task
decomposition to assist humans in competitive pro-
gramming. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics.

Jiaxin Wen, Ruiqi Zhong, Pei Ke, Zhihong Shao, Hongn-
ing Wang, and Minlie Huang. 2024b. Learning task
decomposition to assist humans in competitive pro-
gramming. arXiv preprint arXiv:2406.04604.

Bin Xu, Yiguan Lin, Yinghao Li, and Yang Gao. 2024a.
Sra-mcts: Self-driven reasoning augmentation with
monte carlo tree search for code generation. arXiv
e-prints, pages arXiv–2411.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024b. Wizardlm: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Zhuohao Yu, Weizheng Gu, Yidong Wang, Zhengran
Zeng, Jindong Wang, Wei Ye, and Shikun Zhang.
2024. Outcome-refining process supervision for code
generation. arXiv preprint arXiv:2412.15118.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna
Jayasiri, Nick Haber, and Noah D Goodman. 2024.
Quiet-star: Language models can teach them-
selves to think before speaking. arXiv preprint
arXiv:2403.09629.

Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying
Peng, Jun Wang, Yueting Zhuang, and Weiming
Lu. 2024. Self-contrast: Better reflection through
inconsistent solving perspectives. arXiv preprint
arXiv:2401.02009.

9814

https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759

A Prompt

A.1 Root Prompt

You a r e a h e l p f u l a s s i s t a n t a s s i g n e d wi th t h e t a s k o f problem − s o l v i n g .
To a c h i e v e t h i s , you w i l l be u s i n g an i n t e r a c t i v e c o d i n g e n v i r o n m e n t e q u i p p e d w i t h a v a r i e t y o f t o o l

f u n c t i o n s t o a s s i s t you t h r o u g h o u t t h e p r o c e s s . \ n \ n
At each t u r n , you s h o u l d f i r s t p r o v i d e your s t e p −by− s t e p t h i n k i n g f o r s o l v i n g t h e t a s k , f o r example : <

t h o u g h t > I need t o p r i n t " h e l l o wor ld ! " < / t h o u g h t > .
A f t e r t h a t , you can I n t e r a c t w i th a Python programming e n v i r o n m e n t and r e c e i v e t h e c o r r e s p o n d i n g o u t p u t .
Your code s h o u l d be e n c l o s e d u s i n g "< e x e c u t e >" tag , f o r example : < e x e c u t e > p r i n t (" H e l l o World ! ") </

e x e c u t e > . \ n \ n
You can use t h e f o l l o w i n g f u n c t i o n s : \ n{ t o o l s e t _ d e s c s } \ n .
Ensure t h e code matches t h e f n _ s i g n a t u r e and i n p u t − o u t p u t f o r m a t s f o r p r o p e r e x e c u t i o n . \ n
Here ' s t h e c h a t h i s t o r y f o r your r e f e r e n c e : \ n{ c h a t _ h i s t o r y } \ n \ n
H i s t o r y End : \ n
User ' s Query : \ n{ que ry } \ nYour Thought And Code : \ n

A.2 Additional Prompt

A.2.1 Reflection Prompt

Based on t h e p r o v i d e d c h a t h i s t o r y , r e f l e c t on t h e code and i t s e x e c u t i o n . I d e n t i f y p o t e n t i a l i s s u e s o r
a r e a s f o r o p t i m i z a t i o n and p r o v i d e s p e c i f i c s u g g e s t i o n s t o r e f i n e and improve t h e code . C o n s i d e r
edge c a s e s , e f f i c i e n c y , and c l a r i t y i n your r e f l e c t i o n s .

A.2.2 The Prompt for Prompt Evolution

In o r d e r t o g u i d e t h e d i v e r s i t y o f r e s u l t s and enhance t h e p e r f o r m a n c e t h r o u g h ensemble methods , we need
t o i n c r e a s e t h e d i v e r s i t y o f prompts . We d i v e r s i f y t h e c u r r e n t prompt w h i l e m a i n t a i n i n g c o n s i s t e n c y
i n c o r e c o n t e n t , a iming f o r o r t h o g o n a l e x p r e s s i o n s o r prompts t h a t l e a d t o d i f f e r e n t d i r e c t i o n s and
d i v e r g e n t t h i n k i n g .

A.2.3 The Prompt Sample from Prompt Pool for API-Bank

Note :
The o u t p u t s p roduced by t h e t o o l w i l l be f o r m a t t e d l i k e a JSON d i c t i o n a r y .
For example , ' r e s u l t = { { ' api_name ' : ' QueryMeeting ' , ' i n p u t ' : { { ' user_name ' : ' John ' } } , ' o u t p u t ' : { { '

mee t ings ' : [{ { ' mee t i ng_ id ' : 1 , ' meeting_name ' : ' Meet ing w i th t h e c l i e n t ' , ' mee t ing_ t ime ' :
'2021 −01 −01 1 0 : 0 0 : 0 0 ' , ' m e e t i n g _ l o c a t i o n ' : ' Room 1 ' , ' m e e t i n g _ a t t e n d e e s ' : [' John ' , ' Mary ' , ' P e t e r
'] } } , { { ' mee t i ng_ id ' : 2 , ' meeting_name ' : ' Meet ing a b o u t t h e new p r o j e c t ' , ' mee t ing_ t ime ' :
'2021 −01 −02 1 0 : 0 0 : 0 0 ' , ' m e e t i n g _ l o c a t i o n ' : ' Room 2 ' , ' m e e t i n g _ a t t e n d e e s ' : [' John ' , ' Mary ' , ' P e t e r
'] } }] } } , ' e x c e p t i o n ' : None } } '

Ensure t h a t t h e code s t r i c t l y a d h e r e s t o t h e f u n c t i o n d e s c r i p t i o n s and t h e i n p u t − o u t p u t f o r m a t p r o v i d e d .
N a v i g a t e t h r o u g h t h e ' o u t p u t ' key c o r r e c t l y t o r e t r i e v e r e s u l t s .
I f you e n c o u n t e r any u n f a m i l i a r f o r m a t s , f i r s t p r i n t t h e s t r u c t u r e t o e n s u r e p r o p e r h a n d l i n g i n t h e

f u t u r e .
C o n s i s t e n t l y f o c u s on t h e use r ' s r e q u e s t and a t t e m p t t o p roduce t h e c o m p l e t e s o l u t i o n w i t h o u t n e e d i n g

m u l t i p l e s t e p s .

B Helper tools

B.1 ResHandler

B.1.1 ResHandler Tool Description

r e s _ h a n d l e r () :
name=" r e s _ h a n d l e r " ,
d e s c r i p t i o n = ' D e f in e a prompt t o g e n e r a t e r e s u l t s t h a t meet t h e prompt r e q u i r e m e n t s . Note t h a t you

need t o d e f i n e t h e r e q u i r e m e n t s f o r t h e g e n e r a t e d r e s u l t s i n t h e prompt . i n p u t : prompt (s t r) :
The i n p u t prompt f o r t h e l a r g e l a n g u a g e model , d e f i n i n g t h e t a s k r e q u i r e m e n t s f o r t h e g e n e r a t e d
r e s u l t s . Common t a s k s i n c l u d e summar i za t i on , s t y l i s t i c w r i t i n g , t r a n s l a t i o n , q u e s t i o n answer ing ,

e t c . o u t p u t : c o m p l e t i o n (s t r) : The i n f e r e n c e r e s u l t g e n e r a t e d by t h e l a r g e model , t y p i c a l l y a
summary , w r i t i n g o u t p u t , t r a n s l a t i o n r e s u l t , o r answer t h a t meets t h e r e q u i r e m e n t s . ' ,

f u n c t i o n = r e s _ h a n d l e r ,
f n _ s i g n a t u r e = ' r e s _ h a n d l e r (prompt : s t r) −> s t r ')

9815

B.1.2 ResHandler Tool Function

from some_model_API i m p o r t l l m _ p l a y g r o u n d

d e f r e s _ h a n d l e r (prompt) :
r e s u l t _ s t r = " "
r e s u l t = l l m _ p l a y g r o u n d (prompt [: 2 0 0 0 0] , s t r e a m = F a l s e)
f o r i t em i n r e s u l t :

r e s u l t _ s t r += i t em
r e t u r n r e s u l t _ s t r

B.2 NextAction for Web Task

B.2.1 NextAction Tool Description

from t y p i n g i m p o r t Tuple
n e x t _ a c t i o n () :

name=" n e x t _ a c t i o n " ,
d e s c r i p t i o n = ' Examine t h e r e s u l t s o f t h e view f u n c t i o n t o d e t e r m i n e i f i t can answer t h e use r ' s

o r i g i n a l q u e s t i o n , and d e c i d e what t o do n e x t . R e t u rn t h e n e x t a c t i o n and t h e viewed whole page
c o n t e n t . The n e x t p o s s i b l e a c t i o n s i n c l u d e c l i c k _ u r l (URL) , g o _ t o _ p r e v i o u s _ p a g e () and end () , which

r e p r e s e n t c l i c k i n g a l i n k , and g o _ t o _ p r e v i o u s _ p a g e () means you s h o u l d go t o p r e v i o u s page t o
f i n d answer , and end () means you have found t h e answer page , r e s p e c t i v e l y . I f n e x t a c t i o n i s end
() , i t means t h a t r e l e v a n t i n f o r m a t i o n t o u s e r que ry i s found , you s h o u l d summarize s t r i n g
r e s u l t based on r e s _ h a n d l e r . c l i c k _ u r l (URL) , g o _ t o _ p r e v i o u s _ p a g e () can be d i r e c t l y c a l l e d , and
URL s h o u l d be C l i c k a b l e u r l . Note t h a t que ry s h o u l d be use r ' s o r i g i n a l q u e s t i o n and can n o t be
r e w r i t t e n . ' ,

f u n c t i o n = n e x t _ a c t i o n ,
f n _ s i g n a t u r e =" n e x t _ a c t i o n (que ry : s t r , c u r r e n t _ p a g e _ c o n t e n t : s t r , v i s i t e d _ u r l s : L i s t [s t r]) −> Tuple [

s t r , s t r] ")

B.2.2 NextAction Tool Description

from some_model_API i m p o r t l l m _ p l a y g r o u n d

d e f n e x t _ a c t i o n (que ry = " " , c u r r e n t _ p a g e _ c o n t e n t = " " , v i s i t e d _ u r l s = []) :
v i s i t e d _ u r l s = [x . r e p l a c e (' \ ' ' , ' ') . r e p l a c e (' \ " ' , ' ') f o r x i n v i s i t e d _ u r l s]
v i s i t e d _ u r l s = l i s t (s e t (v i s i t e d _ u r l s))
w h o l e _ p a g e _ c o n t e n t = c u r r e n t _ p a g e _ c o n t e n t
w h i l e True :

s c r o l l _ d o w n _ p a g e = s c r o l l _ d o w n ()
i f s c r o l l _ d o w n _ p a g e == " [Reached t h e bot tom of t h e page .] \ n " :

b r e a k
e l s e :

w h o l e _ p a g e _ c o n t e n t += s c r o l l _ d o w n _ p a g e
d e f e x t r a c t _ c l i c k a b l e _ p a t h s (t e x t : s t r) −> l i s t [s t r] :

i m p o r t r e
p a t t e r n = r " C l i c k a b l e ' ([^ '] *) ' "
matches = r e . f i n d a l l (p a t t e r n , t e x t)
r e t u r n matches

a l l _ u r l s = e x t r a c t _ c l i c k a b l e _ p a t h s (w h o l e _ p a g e _ c o n t e n t)

n o t _ v i s i t e d = []
h i g h l i g h t _ u r l s = []

f o r v i n a l l _ u r l s :
i f v i n v i s i t e d _ u r l s :

h i g h l i g h t _ u r l s . append (v)
e l s e :

n o t _ v i s i t e d . append (v)

i f l e n (h i g h l i g h t _ u r l s) == 0 :
j s o n _ s t r _ f o r m a t = "< t h o u g h t > your t h o u g h t o f your d e c i s i o n < / t h o u g h t > \ n< a c t i o n > c l i c k _ u r l (

s p e c i f i c _ u r l) o r end () o r n o t _ f o u n d () </ a c t i o n >"
prompt = f "You a r e v iewing page c o n t e n t s , t h e c o n t e n t i s : \ n{ w h o l e _ p a g e _ c o n t e n t } \ n You s h o u l d

make d e c i s i o n on t h e n e x t s t e p . g i v e n u s e r que ry { que ry } , you have t h e f o l l o w i n g o p t i o n s ,
p l e a s e f o l l o w t h e o u t p u t f o r m a t . \ n1 . end () : i t means c u r r e n t u s e r que ry can be answered by
c u r r e n t page c o n t e n t . \ n2 . c l i c k _ u r l (URL) : i t means c u r r e n t u s e r que ry s h o u l d be checked by
c l i c k i n g one of t h e u r l s shown on t h e c u r r e n t page c o n t e n t f o r more d e t a i l s . s p e c i f y t h e

9816

d e t a i l e d u r l i n t o URL f i e l d . \ n P l e a s e v i s i t any C l i c k a b l e u r l s a s many as p o s s i b l e t h a t has
n o t been v i s i t e d . \ n3 . n o t _ f o u n d () : i t means t h a t c u r r e n t page does n o t c o n t a i n answer f o r
c u r r e n t que ry and a l l C l i c k a b l e URLS have been c l i c k e d . \ nYour o u t p u t f o r m a t : {
j s o n _ s t r _ f o r m a t } \ n \ nYour Outpu t : \ n "

e l s e :
v i s i t e d _ u r l _ s t r = ' , ' . j o i n ([' \ ' ' + x + ' \ ' ' f o r x i n h i g h l i g h t _ u r l s])
j s o n _ s t r _ f o r m a t = "< t h o u g h t > your t h o u g h t o f your d e c i s i o n < / t h o u g h t > \ n< a c t i o n > c l i c k _ u r l (

s p e c i f i c _ u r l) o r end () o r n o t _ f o u n d () </ a c t i o n >"
prompt = f "You a r e v iewing page c o n t e n t s , t h e c o n t e n t i s : \ n{ w h o l e _ p a g e _ c o n t e n t } \ n You s h o u l d

make d e c i s i o n on t h e n e x t s t e p . g i v e n u s e r que ry { que ry } , you have t h e f o l l o w i n g o p t i o n s ,
p l e a s e f o l l o w t h e o u t p u t f o r m a t . \ n1 . end () : i t means c u r r e n t u s e r que ry can be answered by
c u r r e n t page c o n t e n t . \ n2 . c l i c k _ u r l (URL) : i t means c u r r e n t u s e r que ry s h o u l d be checked by
c l i c k i n g one of t h e u r l s shown on t h e c u r r e n t page c o n t e n t f o r more d e t a i l s . s p e c i f y t h e
d e t a i l e d u r l i n t o URL f i e l d . \ n3 . n o t _ f o u n d () : i t means t h a t c u r r e n t page does n o t c o n t a i n
answer f o r c u r r e n t que ry and a l l C l i c k a b l e URLS have been c l i c k e d . \ nRemember t h a t you have
v i s i t e d t h e u r l l i s t [{ v i s i t e d _ u r l _ s t r }] . You a r e n o t a l l o w e d t o v i s i t t h e u r l s you have
v i s i t e d . P l e a s e v i s i t any C l i c k a b l e u r l s a s many as p o s s i b l e t h a t has n o t been v i s i t e d . \
nYour o u t p u t f o r m a t : { j s o n _ s t r _ f o r m a t } \ n \ nYour Outpu t : \ n "

r e s u l t _ s t r = " "
r e s u l t = l l m _ p l a y g r o u n d (prompt [: 2 0 0 0 0])
f o r i t em i n r e s u l t :

r e s u l t _ s t r += i t em

i f n o t " C l i c k a b l e " i n w h o l e _ p a g e _ c o n t e n t and n o t " end () " i n r e s u l t _ s t r :
r e t u r n (" g o _ t o _ p r e v i o u s _ p a g e () " , w h o l e _ p a g e _ c o n t e n t)

i f n o t " end () " i n r e s u l t _ s t r and l e n (n o t _ v i s i t e d) == 0 :
r e t u r n (" g o _ t o _ p r e v i o u s _ p a g e () " , w h o l e _ p a g e _ c o n t e n t)

i f " c l i c k _ u r l " i n r e s u l t _ s t r :
i m p o r t r e
p a t t e r n = r " c l i c k _ u r l \ (' . * ' \) "
match = r e . s e a r c h (p a t t e r n , r e s u l t _ s t r)
i f match :

r e t u r n (match . group () , w h o l e _ p a g e _ c o n t e n t)
e l s e :

p a t t e r n = r " c l i c k _ u r l \ (. * \) "
match = r e . s e a r c h (p a t t e r n , r e s u l t _ s t r)
i f match :

r e t u r n (match . group () , w h o l e _ p a g e _ c o n t e n t)
e l i f " end () " i n r e s u l t _ s t r :

r e t u r n (" end () " , w h o l e _ p a g e _ c o n t e n t)
e l i f " n o t _ f o u n d () " i n r e s u l t _ s t r :

r e t u r n (" g o _ t o _ p r e v i o u s _ p a g e () " , w h o l e _ p a g e _ c o n t e n t)
r e t u r n (" end () " , w h o l e _ p a g e _ c o n t e n t)

B.3 An example to show the performance of two helpers tools

For web-based queries, ResHandler and NextAction, these two helper tools are essential to ensure that our
method can directly generate the final result without requiring intermediate feedback.

To further clarify their effectiveness, we provide a qualitative and specific example demonstrating how
they function in practice.

Below is the full code output for the query: "Find the email of Henry Santiago. Answer in the format
of ’xxx@xxx.xxx’." from typing import List, Tuple

d e f f i n d _ e m a i l (que ry : s t r , c u r r e n t _ p a g e _ c o n t e n t : s t r , v i s i t e d _ u r l s : L i s t [s t r] , max_depth : i n t = 30) −>
s t r :

i f max_depth <= 0 :
r a i s e E x c e p t i o n (" Max s e a r c h d e p t h reached , e m a i l n o t found . ")

Check i f t h e e m a i l i s d i r e c t l y a v a i l a b l e i n t h e c u r r e n t page c o n t e n t
i f " Henry S a n t i a g o " i n c u r r e n t _ p a g e _ c o n t e n t and "@" i n c u r r e n t _ p a g e _ c o n t e n t :

e m a i l = r e s _ h a n d l e r (f " E x t r a c t t h e e m a i l o f Henry S a n t i a g o from t h e f o l l o w i n g t e x t : {
c u r r e n t _ p a g e _ c o n t e n t } ")

i f e m a i l :
r e t u r n e m a i l . s t r i p ()

I d e n t i f y c l i c k a b l e URLs and n a v i g a t e t o them

9817

n e x t _ s t e p _ a c t i o n , r e f e r e n c e _ p a g e _ c o n t e n t = n e x t _ a c t i o n (query , c u r r e n t _ p a g e _ c o n t e n t , v i s i t e d _ u r l s)

i f n e x t _ s t e p _ a c t i o n == " end () " :
e m a i l = r e s _ h a n d l e r (f " E x t r a c t t h e e m a i l o f Henry S a n t i a g o from t h e f o l l o w i n g t e x t : {

r e f e r e n c e _ p a g e _ c o n t e n t } ")
i f e m a i l :

r e t u r n e m a i l . s t r i p ()
e l s e :

r a i s e E x c e p t i o n (" Email n o t found i n t h e r e f e r e n c e page c o n t e n t . ")

e l i f n e x t _ s t e p _ a c t i o n . s t a r t s w i t h (" c l i c k _ u r l ") :
u r l = n e x t _ s t e p _ a c t i o n . s p l i t (' (') [1] . s p l i t (') ') [0] . s t r i p () . s t r i p (' " ')
i f u r l n o t i n v i s i t e d _ u r l s :

v i s i t e d _ u r l s . append (u r l)
new_page_con ten t = c l i c k _ u r l (u r l)
r e t u r n f i n d _ e m a i l (query , new_page_con ten t , v i s i t e d _ u r l s , max_depth − 1)

e l i f n e x t _ s t e p _ a c t i o n == " g o _ t o _ p r e v i o u s _ p a g e () " :
new_page_con ten t = g o _ t o _ p r e v i o u s _ p a g e ()
r e t u r n f i n d _ e m a i l (query , new_page_con ten t , v i s i t e d _ u r l s , max_depth − 1)

e l s e :
r a i s e E x c e p t i o n (" Unknown n e x t s t e p a c t i o n e n c o u n t e r e d . ")

Main f u n c t i o n t o s t a r t t h e s e a r c h
d e f main () :

que ry = " Find t h e e m a i l o f Henry S a n t i a g o "
i n i t i a l _ p a g e _ c o n t e n t = view ()
v i s i t e d _ u r l s = []
t r y :

e m a i l = f i n d _ e m a i l (query , i n i t i a l _ p a g e _ c o n t e n t , v i s i t e d _ u r l s)
p r i n t (e m a i l)

e x c e p t E x c e p t i o n as e :
p r i n t (f " E r r o r : { e } ")

i f __name__ == " __main__ " :
main ()

Functionality of the Helper Tools

For res_handler:

Example usage:

e m a i l = r e s _ h a n d l e r (" E x t r a c t t h e e m a i l o f Henry S a n t i a g o from t h e f o l l o w i n g t e x t : {
c u r r e n t _ p a g e _ c o n t e n t } ")

We provide the content that the final result depends on (i.e., the return value of other functions in the
code) as input to this function. It then passes the information to an LLM to generate the final answer.

For next_action:

Example usage:

I d e n t i f y c l i c k a b l e URLs and n a v i g a t e t o them
n e x t _ s t e p _ a c t i o n , r e f e r e n c e _ p a g e _ c o n t e n t = n e x t _ a c t i o n (query , c u r r e n t _ p a g e _ c o n t e n t , v i s i t e d _ u r l s)

This function determines the next action based on: the current page content, the original query, and the
list of visited URLs.

9818

C Visualization of the Table 2

Figure 8: Performance of 10 LLMs on ReAct, CodeAct, CodeProgram, and 1-3 ToC for the M3 dataset is visualized,
with average and standard deviation reported.

9819

