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Abstract

Large vision-language models (LVLMs) have
shown great promise in medical applications,
particularly in visual question answering (Med-
VQA) and diagnosis from medical images.
However, existing datasets and models often
fail to consider critical aspects of medical di-
agnostics, such as the integration of historical
records and the analysis of disease progression
over time. In this paper, we introduce MMXU
(Multimodal and MultiX-ray Understanding),
a novel dataset for MedVQA that focuses on
identifying changes in specific regions between
two patient visits. Unlike previous datasets
that primarily address single-image questions,
MMXU enables multi-image questions, incor-
porating both current and historical patient
data. We demonstrate the limitations of cur-
rent LVLMs in identifying disease progression
on MMXU-test, even those that perform well
on traditional benchmarks. To address this, we
propose a MedRecord-Augmented Generation
(MAG) approach, incorporating both global
and regional historical records. Our experi-
ments show that integrating historical records
significantly enhances diagnostic accuracy by
at least 20%, bridging the gap between cur-
rent LVLMs and human expert performance.
Additionally, we fine-tune models with MAG
on MMXU-dev, which demonstrates notable
improvements. We hope this work could il-
luminate the avenue of advancing the use of
LVLMs in medical diagnostics by emphasizing
the importance of historical context in interpret-
ing medical images. Our dataset is released at
github*.

1 Introduction

Stemming from the ever-increasing number of
parameters and large-scale training corpus, large
vision-language models (LVLMs) (Zhu et al., 2023;
Bai et al., 2023; Liu et al., 2023; Achiam et al.,

†Corresponding authors
* https://github.com/linjiemu/MMXU

Worsen Improved No Change

Question: What change is observed in the mediastinum
region between the two sets of chest CXR images?
Options:   A: There is a new rightward mediastinal shift.

B: There is no mediastinal shift observed.
C: There is a new leftward mediastinal shift.
D: The mediastinal shift has improved.

Answer: A: There is a new rightward mediastinal shift.
Images:

Llama3.2-vision InternVL2 GPT-4o Human Expert

Overall

Figure 1: The upper part of the figure presents an ex-
ample from our constructed dataset, which includes two
images and a question regarding their changes. The
lower part illustrates the performance of human experts
and several models on three types of disease progres-
sion questions, emphasizing a notable gap between the
models and human experts.

2023; Lu et al., 2024; Chen et al., 2024c) have
demonstrated remarkable capabilities in general vi-
sual scene perception and understanding, as well
as in generating textual descriptions. As the de-
velopment of LVLMs accelerates, this paradigm
has spurred significant advancements in the med-
ical field (Li et al., 2023b; Wu et al., 2024a; Li
et al., 2024a; Chen et al., 2024a), particularly in the
analysis and diagnosis of medical images.

Although current medical LVLMs have shown
strong performance in downstream tasks such as
medical visual question answering (MedVQA) (Hu
et al., 2024; Sun et al., 2024; Saeed, 2024) and med-
ical report generation (Zhou and Wang, 2024; Bu
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et al., 2024; Huang et al., 2025; Yin et al., 2025) on
public benchmarks, they are still limited in respond-
ing to basic visual questions (i.e., those involving
a single image and a brief description (Bae et al.,
2024; Liu et al., 2024)). In real-world scenarios, di-
agnosis often requires physicians to integrate both
case history and current evidence (Lorkowski and
Pokorski, 2022). Case history serves as an invalu-
able source of evidence, encompassing factors such
as previous medical conditions, treatments, and pa-
tient demographics (Liu et al., 2024). Identifying
the differences between symptoms, clinical signs,
and diagnostic outcomes across the timeline is key
to accurate diagnosis. Based on these considera-
tions, we ask: Can LVLMs enhance the diagnostic
process by identifying these critical factors?

In this paper, we introduce MMXU (Multimodal
and MultiX-ray Understanding), leveraging the
rich resources of patient electronic medical records
(EMRs) from the MIMIC-CXR dataset. As shown
in Figure 1, unlike previous works (Bae et al., 2024;
Liu et al., 2024), which focus solely on the current
image or are restricted to simple questions, this
benchmark is specifically designed to inquire about
differences in specific regions between a patient’s
two visits. MMXU contains two splits: test and dev.
MMXU-test consists of 3,000 entries from 1,201
patients and 2,469 studies, while MMXU-dev con-
tains 118K QA pairs involving 114K images. We
evaluate a range of open-source and closed-source
models and conduct a user study to assess human
performance. The results indicate that LVLMs
struggle to identify differences between two vis-
its, even the LVLM that demonstrates notable per-
formance on other medical benchmarks exhibits a
significant performance gap—nearly 40%—when
compared to human performance.

Recognizing the limitations of current LVLMs in
such scenarios, we take steps toward bridging this
gap. Since physicians often rely on patient history,
previous treatments, and other contextual informa-
tion during the diagnostic process, we propose a
novel approach, MedRecord-Augmented Genera-
tion (MAG) to facilitate LVLMs. We introduce two
types of records as contextual information for diag-
nosis: global records (e.g., patient demographics
and overall medical report) and regional records
(e.g., specific regional details and diagnostic re-
sults). Our experiments show that incorporating
global or regional medical records leads to a sig-
nificant accuracy improvement of at least 20% for
several well-known models. Acknowledging the in-

adequate training on such tasks, we apply the MAG
method for fine-tuning the MMXU-dev dataset and
substantiate the effectiveness of both the dataset
and the MAG approach in enhancing overall per-
formance.

In summary, this paper presents three key con-
tributions. First, we introduce MMXU, the first
multi-image MedVQA dataset designed to investi-
gate differences in specific regions of CXR images
between a patient’s two visits, addressing the gap
between current MedVQA benchmarks and real-
world clinical scenarios. Second, our evaluation re-
sults show that current large vision-language mod-
els (LVLMs), including proprietary models such
as GPT-4o, face significant challenges in identify-
ing disease progression between two visits. Third,
we propose the MedRecord-Augmented Genera-
tion (MAG) method to enhance the diagnosis of
X-rays over time by leveraging the patient’s global
and regional historical records. Experimental re-
sults demonstrate the effectiveness of MAG, under-
scoring the potential of incorporating contextual
information in diagnostic processes.

2 Related Work

Large Vision-Language Models Large Vision-
Language Models, which integrate vision encoders,
connectors, and large language models to enhance
cross-modal understanding, have emerged as pow-
erful frameworks that combine visual and textual
information for a wide range of tasks. These mod-
els can be systematically categorized based on the
type of connector. The first category comprises
approaches utilizing cross-attention-based connec-
tors, such as Flamingo (Alayrac et al., 2022) and
CogVLM (Wang et al., 2023; Hong et al., 2024),
which exploit attention mechanisms to facilitate
the exchange of information between the vision
encoder and the language model. The second cate-
gory includes methods that employ query-based
connectors, such as BLIP-2 (Li et al., 2023a),
Instruct-BLIP (Dai et al., 2023), mPLUG-owl2 (Ye
et al., 2024), and Qwen-VL (Bai et al., 2023),
wherein queries are leveraged to orchestrate the
interaction between visual and textual modalities,
thereby enhancing the alignment and coherence of
visual and linguistic representations. Furthermore,
projection-based connector methods, exemplified
by LLaVA (Liu et al., 2023), Mini-GPT4 (Zhu et al.,
2023), DeepSeek-VL (Lu et al., 2024), and Mini-
Gemini (Li et al., 2024b), project visual data into a
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Dataset #Images # QA Pairs #Question Type #Regional #Comparative #Complex

MIMIC-CXR-VQA (Bae et al., 2024) 142K 377K Single ✓ ✗ ✓
GEMeX (Liu et al., 2024) 151K 1.6M Single ✓ ✗ ✓

Medical-Diff-VQA (Hu et al., 2023) 164K 700K Single&Multiple ✗ ✓ ✗
MMXU-dev (Ours) 114K 118K Multiple ✓ ✓ ✓

Table 1: Comparison of the MedVQA dataset constructed on MIMIC-CXR. In the #Question Type column, “Single”
refers to questions about a single image, and “Multiple” refers to questions about multiple images. Most existing
datasets primarily focus on observations in a single image. While Medical-Diff-VQA contains 131k QA pairs that
focus on multi-image changes, it has a simple structure and only considers global-level differences. Our MMXU-dev
dataset is the first to focus on complex changes in the same regions across multiple images at the regional level.

shared embedding space, thereby fostering seam-
less integration with textual information. These in-
novations offer a range of solutions for cross-modal
understanding, driving the potential applications of
intelligent systems in multi-task learning.
MedVQA Dataset on radiology Medical visual
question answering (MedVQA) datasets play a piv-
otal role in advancing AI-driven clinical decision-
making. VQA-RAD (Lau et al., 2018), as an early
pioneering work, introduces a meticulously curated
dataset for radiology images, featuring clinician-
generated questions and corresponding answers
tailored to clinically relevant tasks. SLAKE (Liu
et al., 2021) stands out as a large, bilingual dataset,
enriched with extensive semantic annotations and
spanning a wide range of radiological modalities.

MIMIC-CXR (Johnson et al., 2019) provides
a vast collection of 371,920 chest X-rays from
65,079 patients, serving as the foundation for nu-
merous subsequent studies. The comparison of
these datasets is shown in Table 1. MIMIC-CXR-
VQA (Bae et al., 2024) seamlessly integrates chest
X-rays with Electronic Health Records (EHRs), fa-
cilitating multi-modal question answering with an
emphasis on region-specific queries. The Medical-
Diff-VQA (Hu et al., 2023) is notable for its in-
clusion of seven distinct question types, particu-
larly focusing on the comparative analysis of cur-
rent and reference images for diagnostic purposes.
GEMeX (Liu et al., 2024) offers a large-scale, ex-
plainable VQA benchmark, complete with detailed
visual and textual explanations, thus addressing the
growing need for a diverse array of clinical ques-
tions. Most of these datasets primarily focus on
observations from a single image. While Medical-
Diff-VQA contains 131k QA pairs that address
multi-image changes, its structure is relatively sim-
ple and only accounts for global-level differences.
Our MMXU-dev dataset is the first to understand
complex changes in the same regions across multi-

ple chest X-ray images of the same patient at the
regional level, spanning several visits.

3 Dataset Construction

In this section, we outline the pipeline of construct-
ing MMXU, as shown in Figure 2. The process
starts with the Chest ImaGenome dataset (Wu et al.,
2021), which includes the silver_dataset section
containing annotations for 243,310 images from
63,945 patients. These annotations cover bounding
boxes for 29 anatomical regions, along with cor-
responding region-level report phrases, labeled at-
tributes, and relationships. The entire method con-
sists of four distinct phases: (1) Comparative Sen-
tences Extraction (§3.1), (2) Comparative Targets
Selection (§3.2), (3) QA pairs Generation (§3.3),
and (4) Post-Processing (§3.4).

3.1 Comparative Sentences Extraction

In the first stage, our objective is to identify and
extract sentences that contain comparative infor-
mation, forming the foundation for generating
question-answer pairs in subsequent stages. For
example, the sentence “Previously seen ill-defined
peribronchial lower lobe opacity seen on lateral
view has resolved,” along with its associated rela-
tionships label “comparison|yes|improved” explic-
itly indicates a comparison with prior conditions,
highlighting the resolution of the lower lobe opacity
and thus signaling an improvement in the patient’s
condition. In total, we extract 232,247 compara-
tive sentences, encompassing 22,770 patients and
102,606 reports. A more detailed example of such
a sentence is provided in Appendix C.1.

3.2 Comparative Targets Selection

At this stage, we categorize comparative sentences
into three groups based on disease progression:
“Worsen” (108,734), “Improved” (91,084), and “No
Change” (264,676), with the majority concentrated
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- Severe widening of the upper mediastinum continues to improve post-operatively and 
previous pulmonary edema has now cleared. (√)
- I do not see a significant pneumothorax and previous small right pleural effusion has 
virtually resolved. (√)
- An apical pleural tube is in place. (✗)
- Heart is top normal size, exaggerated by low lung volumes. (✗)
- Substantial bibasilar atelectasis left greater than right has not. (✗)
- Tracheobronchial airway is virtually obscured, presumably by edema and secretions, 
but really not assessed. (✗)

Stage I: Comparative Sentences Extraction

Chest ImaGenome

Sentence Selection

Rule 1: Choose one sentence for one study 
Rule 2: Randomly discard to balance

Comparative 
sentences

Region Selection

Rule 1: Generated on comparative sentence 
Rule 2: Focus on the change in same area 
…… ... …
Rule 6: Make questions diverse GPT-4o

Stage III: QA pairs Generation

History global report
Current global report
Comparative sentence
Relationship label

Stage IV: Post-Processing

Option balance

QA  validation

History global report
Current global report
Comparative sentence
Relationship label
QA pairGPT-4o

Question: What change is observed in the mediastinum
region between the two sets of chest CXR images?
Options: A: There is a new rightward mediastinal shift.

B: There is no mediastinal shift observed.
C: There is a new leftward mediastinal shift.
D: The mediastinal shift has improved.

Answer: A

Rule 1: Discard regions lacking bboxs
Rule 2: Discard regions lacking regional reports
Rule 3: Select based on original distribution

...
P=0.18

A B C D

Stage II: Comparative Targets Selection

IW NC R4R1 R2 R3

A B C D

MMXU-dev MMXU-test

QA  Pairs

IW NC ...

Figure 2: The pipeline of constructing MMXU. In the first stage, we extract all comparative sentences and their
associated labels from the Chest ImaGenome dataset. In the second stage, we refine our selection by applying
precise filtering rules and identifying regions of interest within these sentences. The third stage involves leveraging
GPT-4o with meticulously crafted prompts to generate region-level question-answer pairs. In the final stage, we
further refine and filter generated QA pairs, thereby constructing the MMXU-test and MMXU-dev.

in the “No Change” category. Given that the preva-
lence of medical conditions often follows a long-
tail distribution (Wu et al., 2024b), it is essential to
achieve a more balanced dataset for a robust eval-
uation of LVLMs. To this end, we implement two
key principles for sentence selection: (1) Retaining
only one comparative sentence per report, priori-
tizing those indicative of change, to enhance data
diversity and reduce redundancy. (2) Randomly
discarding a portion of “No Change” sentences to
equalize their count with that of the “Improved”
and “Worsen” categories, thereby mitigating class
imbalance.

Next, we implement a regional selection process
to improve query accuracy, where one region is cho-
sen for each sentence to question. In real-world ap-
plications, a comparative statement may reference
multiple anatomical regions simultaneously. For in-
stance, the sentence “In comparison with the study
of ___, there has been worsening of the increased
opacification at the left base with silhouetting of the
hemidiaphragm and blunting of the costophrenic
angle” concurrently describes the “left lung”, “left
lower lung zone”, “left costophrenic angle” and
“left hemidiaphragm”. Consequently, it is crucial to
select the precise regions mentioned in the sentence
to eliminate ambiguity. Our approach is as follows:

(1) Exclude regions in both current and historical
images that lack a clearly defined bounding box.
(2) Eliminate regions that are not referenced in
prior reports, as it is infeasible to retrieve historical
region-level reports. (3) In cases where multiple
regions remain, randomly select one based on the
original distribution.

3.3 QA pairs Generation

In the third stage, we employ GPT-4o as the genera-
tor, leveraging comparative sentences, relationship
labels, and reports from two visits as foundational
data to guide the model in producing question-
answer pairs. Our observations suggest that a sin-
gle sentence can encapsulate multiple changes. For
instance, the sentence “Bilateral pleural effusions
are again seen, and atelectasis is present” concur-
rently describes alterations in both “pleural effu-
sions” and “atelectasis”. To fully harness this data,
we direct GPT-4o to generate up to three distinct
question-answer pairs, ensuring maximum diver-
sity. Additionally, to facilitate the future validation
of data accuracy, we require the model to provide
justifications for the generated pairs.

In total, we have established six rules to guide
GPT-4o generating QA pairs that capture changes
in the same area across the two reports. Appendix
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Here are two chest X-RAY images reports of
the same patient. Previous chest X-RAY is
Image-1. Current chest X-RAY is Image-2.
Your task is to evaluate the differences
between the two images based on the provided
report and question.
The report of Image-1 is: %s
The report of Image-2 is: %s
Question:%s
Options:
A: %s
B: %s
C: %s
D: %s
Answer with the option’s letter from the
given choices directly.

Figure 3: Text template during the data post-processing.

C.2 presents our prompt template and a detailed
example during the QA generation process.

3.4 Post-Processing
Finally, we conduct post-processing to further en-
sure the quality of generated QA-pairs. Since im-
balanced answer options can mislead the model
during training and result in unfair evaluations dur-
ing testing, we first balance the distribution of four
answer choices in the QA pairs generated by GPT-
4o. Moreover, we employ GPT-4o to answer the
generated questions with the prompt detailed in Fig-
ure 3, which contains the information used during
question generation. Questions that were answered
incorrectly are considered either excessively diffi-
cult or erroneous and are removed. As illustrated in
Table 2, 95.1% of the questions were answered cor-
rectly. The final candidate set comprises 121,800
QA pairs, including 47,000 instances of “Worsen”,
41,000 instances of “Improved” and 35,000 in-
stances of “No Change”.

#Examples #Correctness Rate

Worsen 50,305 45,395 90.2%
Improved 40,647 39,956 98.3%
No change 37,124 33,449 90.1%

Overall 128,076 121,800 95.1%

Table 2: Post-processing validation results of QA pairs
using GPT-4o. Here, #Total and #Correctness represent
the total number of original QA pairs and the number
of correctly answered pairs, respectively.

Data Splitting To facilitate a rigorous evalua-
tion for LVLMs, we carefully curate the MMXU-

test benchmark comprising 1,000 data samples
for each of the three categories—“Worsen”, “Im-
proved” and “No Change”. The remaining data
forms the MMXU-dev dataset. During the selec-
tion process, we meticulously ensured that ques-
tions derived from the same patient did not appear
in both the dev and test sets, thereby preventing
data leakage. Furthermore, we maintained a bal-
anced regional distribution across the training and
test sets to preserve the integrity of the evaluation.
Finally, the MMXU-test contains 3,000 QA pairs,
and MMXU-dev contains 118,800 QA pairs.

4 Benchmark Results

To ensure the professionalism and accuracy of
MMXU-test benchmark, we recruited a panel of 5
board-certified chest radiology experts to assess it.
Following that, we evaluated the performance of
several prominent open-source and closed-source
LVLMs capable of supporting multi-image VQA
on the MMXU-test benchmark. Since all the ques-
tions from our benchmark are single-choice, we
use accuracy as the metric.

4.1 Evaluation Models

For the general domain, we evaluated the following
models:
Open-source LVLMs: Qwen2-VL 2B& 7B (Bai
et al., 2023), DeepSeek-VL 1.3B& 7B (Lu et al.,
2024), InternVL2 1B&2B& 4B&8B (Chen et al.,
2024c), IDEFICS2 8B (Laurençon et al., 2024)
and Llama3.2-Vision 11B (Touvron et al., 2023)
Closed-source LVLMs: GPT-4o (Achiam et al.,
2023) and Claude-3-5-sonnet

For the medical domain, we evaluated the fol-
lowing models:
Medical LVLMs: LLaVA-Med-v1.5 (Li et al.,
2024a), Med-Flamingo (Moor et al., 2023) and
HuatuoGPT-vision (Chen et al., 2024b)

4.2 Human Expert Evaluation

To evaluate the quality of the MMXU-test bench-
mark, we conduct the human expert evaluation with
five radiologists. The data from the MMXU-test
benchmark was randomly divided into five parts,
containing 500, 500, 500, 750, and 750 questions,
respectively. We ensured that the three question
categories were distributed as evenly as possible
within each subset. The evaluation results are pre-
sented in Table 4. Except for Expert 3, all experts
achieved an accuracy rate of at least 96.0%, with
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Source LVLMs Size VQA-RAD MMXU-test

Closed Open Overall Worsen Improved No change Overall

Open

Qwen2-VL 2B 0.594 0.380 0.499 0.712 0.258 0.284 0.418
7B 0.745 0.430 0.605 0.331 0.554 0.500 0.458

DeepSeek-VL 1.3B 0.566 0.250 0.426 0.292 0.294 0.288 0.291
7B 0.582 0.300 0.457 0.389 0.310 0.606 0.435

InternVL2

1B 0.490 0.265 0.390 0.553 0.214 0.113 0.293
2B 0.641 0.350 0.512 0.560 0.182 0.559 0.434
4B 0.649 0.370 0.525 0.476 0.571 0.315 0.454
8B 0.665 0.480 0.583 0.423 0.483 0.495 0.467

IDEFICS2 8B 0.673 0.450 0.574 0.234 0.570 0.668 0.491

Llama3.2-vision 11B 0.649 0.515 0.590 0.596 0.608 0.356 0.520

Closed GPT-4o - 0.578 0.480 0.534 0.480 0.675 0.559 0.571

Claude-3.5 - 0.622 0.510 0.572 0.494 0.518 0.493 0.502

Table 3: Evaluation results of several mainstream open-source and closed-source LVLMs supporting multi-image
question answering on the VQA-RAD and MMXU-test benchmarks. For open-ended questions in VQA-RAD,
we used GPT-4o to evaluate LVLMs’ responses. The results in bold and underlined represent the best and the
second-best results, respectively.

Expert ID #Examples #Correctness Rate

1 500 487 97.4%
2 500 480 96.0%
3 500 453 90.6%
4 750 732 97.6%
5 750 723 96.4%

Total 3,000 2,875 95.8%

Table 4: Evaluation results of five experienced chest ra-
diology human experts on the MMXU-test benchmark.

an overall accuracy reaching 95.3%. These find-
ings demonstrate that the MMXU-test benchmark
is both highly professional and well-structured.

4.3 Model Performance

We evaluated the performance of several well-
known open-source and closed-source models
on two benchmarks: VQA-RAD, which focuses
on single-image visual question answering, and
MMXU-test, which emphasizes multi-image dif-
ference analysis. The experimental results are pre-
sented in Table 3. For open-ended questions in
VQA-RAD (Lau et al., 2018), we utilized GPT-
4o to compare the model-generated answers with
the ground truth, incorporating a certain level of
tolerance to assess correctness (He et al., 2024).

Comparing the performance of these models on
single-image and multi-image benchmarks, it is
clear that the accuracy of the same model on

Model Wors. Impr. Noch. Over.

Med-Flamingo-7B 0.289 0.304 0.251 0.281
Llava-med-7B 0.293 0.334 0.323 0.317
HuatuoGPT-Vision-7B 0.629 0.502 0.354 0.495

Table 5: Performance comparison of various medical
vision–language models.

overall accuracy on MMXU-test is lower than
its VQA-RAD closed-ended questions. For exam-
ple, with the Qwen2-VL 7B model, the accuracy on
VQA-RAD closed questions reaches an impressive
74.5%. However, its performance on MMXU-test
drops significantly to just 45.8%. This discrep-
ancy highlights the gap between current MedVQA
benchmarks and the demands of real-world sce-
narios, suggesting that models that perform well
on public benchmarks may not be effective in sup-
porting clinical diagnosis. Furthermore, as shown
in Table 4, even the best-performing model lags
behind human experts by nearly 40%. This high-
lights the existing limitations of these models in
multi-image MedVQA tasks.

Additionally, we observe that nearly all open-
source models demonstrate substantial dispari-
ties in accuracy across the three question types
in the MMXU-test, indicating inherent biases
in how these models interpret disease progres-
sion. This phenomenon is especially pronounced
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in smaller models—for instance, Qwen2-VL 2B
achieves an accuracy of 71.2% on “Worsen” ques-
tions, yet performs below 30% on the remaining
two types. Evidently, the model exhibits a strong
inclination toward outcomes associated with dis-
ease deterioration. In contrast, such biases are
less prominent in closed-source models. With in-
creasing model size, overall accuracy improves,
and the extent of progression-related bias tends
to decrease. Despite being general-purpose in
nature, these models still produce divergent re-
sults. Notably, smaller models tend to yield rel-
atively consistent performance, whereas discrep-
ancies become more pronounced once the model
size surpasses 7B. For example, models such as
DeepSeek-VL 1.3B and InternVL2 1B, or Qwen2-
VL 2B and InternVL2 2B, exhibit similar capabili-
ties. Conversely, larger models like DeepSeek-VL
7B, InternVL2 8B, and IDEFICS2 8B demonstrate
marked differences in their performance.

As shown in Table 5, we also evaluated three
medical models. For models restricted to single-
image inputs, we concatenated two images to facil-
itate evaluation. The results, summarized in the ta-
ble below, indicate that HuatuoGPT-Vision outper-
formed other models of similar size and achieved
performance comparable to the commercial model
Claude 3.5.

5 MedRecord-Augmented Generation

Through prior experiments, we pinpointed that cur-
rent LVLMs face significant challenges in identi-
fying disease progression. To address this chal-
lenge, we propose a novel approach, MedRecord-
Augmented Generation (MAG). In routine diag-
nostic practice, physicians often rely on a patient’s
historical records to inform their analysis and diag-
nosis of current conditions. To replicate this pro-
cess, we integrate historical records directly into
the prompt as contextual information. Our study
investigates the effectiveness of global reports de-
rived from historical images, alongside regional
reports related to the specified questions, which we
categorize as global and regional historical records.

5.1 Effectiveness of MAG

To more comprehensively evaluate the effective-
ness of MAG, we conducted tests across general-
domain open-source models, commercial models,
and medical models. The outcomes of these ex-
periments are summarized in Table 6. It is evident

Method Worsen Improved No change Overall

InternVL2 8B
- 0.423 0.483 0.495 0.467
+ G-MRec 0.440 0.644 0.838 0.641
+ R-MRec 0.483 0.830 0.842 0.718

Qwen2-VL 7B
- 0.331 0.544 0.500 0.458
+ G-MRec 0.427 0.683 0.784 0.631
+ R-MRec 0.458 0.755 0.805 0.673

GPT-4o
- 0.480 0.675 0.559 0.571
+ G-MRec 0.380 0.760 0.629 0.590
+ R-MRec 0.374 0.802 0.765 0.647

HuatuoGPT-Vision 7B
- 0.629 0.502 0.354 0.495
+ G-MRec 0.468 0.660 0.792 0.640
+ R-MRec 0.490 0.712 0.775 0.659

Llava-med-v1.5-mistral 7B
- 0.293 0.334 0.323 0.317
+ G-MRec 0.378 0.468 0.708 0.518
+ R-MRec 0.396 0.493 0.647 0.512

Table 6: Results of MedRecord-augmented generation
on the MMXU-test benchmark without fine-tuning. G-
MRec and R-MRec denote generation augmentation us-
ing global and regional historical records, respectively.

that providing historical records significantly en-
hances overall model accuracy, regardless of the
model type. With access to historical records, open-
source models achieved performance comparable
to that of closed-source commercial models.

With the exception of GPT-4o and Llava-med-
v1.5, incorporating medical records led to improve-
ments across all three question types, suggesting
that these models are capable of understanding and
reasoning from historical data rather than merely
repeating it. Furthermore, it is noticeable that
regional historical records yield greater improve-
ments than global records in nearly all models. This
may be due to the models’ limited ability to ana-
lyze contextual and region-specific nuances, which
makes it challenging to pinpoint the most relevant
information. By supplying precise, localized histor-
ical data, the models are better equipped to extract
meaningful insights.

The extent to which historical records contribute
to performance improvement varies across differ-
ent question categories. As illustrated in Table 6,
historical records notably enhance performances in
the “Improved” and “No Change” categories, while
providing only minimal benefit in the “Worsen” cat-
egory. In fact, for GPT-4o, performance in this cat-
egory even deteriorated. This indicates that the use
of historical records may not effectively address
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Method Worsen Improved No change Overall

InternVL2 8B + 20% MMXU-dev
- 0.834 0.802 0.810 0.815
+ G-MRec 0.856 0.841 0.843 0.847
+ R-MRec 0.866 0.830 0.848 0.848

InternVL2 8B + 40% MMXU-dev
- 0.838 0.813 0.839 0.830
+ G-MRec 0.867 0.857 0.867 0.864
+ R-MRec 0.868 0.845 0.874 0.862

InternVL2 8B + 60% MMXU-dev
- 0.855 0.822 0.841 0.839
+ G-MRec 0.884 0.855 0.873 0.871
+ R-MRec 0.880 0.855 0.869 0.868

InternVL2 8B + 80% MMXU-dev
- 0.857 0.814 0.866 0.846
+ G-MRec 0.881 0.861 0.884 0.876
+ R-MRec 0.873 0.869 0.881 0.875

InternVL2 8B + 100% MMXU-dev
- 0.860 0.840 0.852 0.851
+ G-MRec 0.887 0.878 0.882 0.883
+ R-MRec 0.884 0.871 0.888 0.881

Table 7: Fine-tuning Results of InternVL2 8B on
MMXU-dev dataset with MAG Method. G-MRec and
R-MRec denote generation augmentation using global
and regional historical records, respectively.

biases in a high-quality and robust manner.

5.2 MAG Fine-tuning on MMXU-dev
Furthermore, we assess the efficacy of MMXU-
dev dataset and our proposed MAG method by
fine-tuning the InternVL2 8B. The model was fine-
tuned using 20%, 40%, 60%, 80%, and 100% of the
MMXU-dev dataset. We evaluate the performance
on MMXU-test benchmark. The corresponding
fine-tuning results are presented in Table 7.

We observed that even with just 20% of the
MMXU-dev, the model achieved substantial im-
provements in accuracy across all three problem
categories, and the bias was almost eliminated.
As the dataset size expanded, the model’s over-
all performance continued to improve. When uti-
lizing the full 100% of MMXU-dev, the perfor-
mance gap between the model and human experts
narrowed to approximately 10%. This clearly un-
derscores the efficacy of the MMXU-dev dataset
we developed. Additionally, we found that the
MAG method continues to deliver significant im-
provements after model fine-tuning. Notably, as
the volume of training data increases, the enhance-
ment effect of global historical records surpasses
that of regional historical records. Fine-tuning
with larger datasets enables the model to more ef-
fectively capture relevant information, resulting in
more comprehensive and refined final outputs.

Method Worsen Improved No Change Overall

InternVL2 8B 0.423 0.483 0.495 0.467
+G-MRec 0.443 0.644 0.838 0.641
+G-MRec w/o PI 0.415 0.510 0.835 0.573
+R-MRec 0.483 0.830 0.842 0.718
+R-MRec w/o PI 0.364 0.593 0.823 0.593

Table 8: Ablation study on the impact of prior-image
information and historical records. Here, w/o PI denotes
the removal of the prior image when using the MAG
method.

5.3 Ablation Study on MAG

To assess whether the MAG model disproportion-
ately relies on report content, we evaluate the
performance of InternVL2 8B using only global
and regional historical records—excluding imag-
ing data—for question answering. As shown in
Table 8, the experimental results indicate a marked
performance decline in the zero-shot setting when
relying solely on textual input, as compared to uti-
lizing both textual and visual modalities.

This degradation is expected and underscores
the critical role of imaging data. Several factors
contribute to this dependency: clinical reports of-
ten lack detailed descriptions of prior findings or
may contain inconsistencies. In cases involving
disease progression or resolution, textual narratives
alone frequently fall short of conveying the nuance
required to assess subtle changes. Image compar-
ison is indispensable for accurately gauging such
progression. For example, if a prior report notes
an anomaly still visible in the current scan, the text
alone cannot determine whether the condition has
improved, deteriorated, or remained stable. Further-
more, if a subtle lesion was previously overlooked
and thus omitted from the report, the model might
incorrectly classify it as a novel finding, despite its
earlier presence in the images.

5.4 Case Study

In Figure 4, we present two answer samples pro-
vided by GPT-4o, InternVL2 8B, Qwen2-VL 7B,
and fine-tuned InternVL2 8B, evaluated under vari-
ous historical record strategies. Case 1 illustrates
a successful scenario where all models adjusted
their responses accurately when regional historical
records were incorporated. However, the zero-shot
InternVL model misinterpreted critical informa-
tion, primarily due to the global records containing
terms such as “unchanged” and “minimally,” which
led to an erroneous conclusion. Fine-tuning effec-
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Qwen2-VL GPT-4o InternVL2 InternVL2 (lora)

C (√) C (√) C (√) C (√)

C (√) C (√) B (✗) B (✗)

B (✗) B (✗) B (✗) B (✗)

Qwen2-VL GPT-4o InternVL2 InternVL2 (lora)

A (✗) C (✗) A (✗) C (✗)

B (√) B (√) C (✗) B (√)

B (√) B (√) B (√) B (√)

(Prior Image) (Current Image)

Right Lung
Right Lung

(Worsen) In the chest images, what change is observed in the right 
lung area?Question

Options

A: The right lung shows new pulmonary infiltrates.
B: There is a mild increase of pleural effusion partially obliterating 
the diaphragmatic contours. (√)
C: The right lung appears unchanged with minimal pleural effusion.
D: The right lung is completely opacified with no visible infiltrates.

As compared to the previous radiograph, the right pleural effusion 
has minimally increased. (regional report of right lung) Otherwise, 
the right lung looks unchanged. On the left, there is subtotal opaci-
ty of the hemithorax, with just a minimal apical lung portion that 
is ventilated. Mediastinal shift to the left persists.

Historical
Record

+ G-MRec

+ R-MRec

CASE 1 CASE 2

Right Lung Right Lung

(Improved) How has the condition of the pleural effusion changed 
in the right lung when comparing the two CXR images?

A: Right pleural effusion has increased in size.
B: Right pleural effusion remains unchanged.
C: Right pleural effusion has decreased in size. (√)
D: Right pleural effusion has resolved completely.

___ year old woman with bilateral pleural effusions, s/p right ches
t tube ___. In the interval, the right chest tube was removed. The ri
ght PICC line is in stable position. Stable appearance of the cardia
c silhouette. Unchanged bilateral small pleural effusions. No evide
nce of pneumothorax (regional report of right lung) .

(Prior Image) (Current Image)

Figure 4: Two Examples from MMXU answered by some LVLMs. The left image shows successful cases with
medical records enhancing the answers. The right image shows failed cases where historical records mislead the
answers.

tively mitigated this issue. In Case 2, historical
records resulted in misleading predictions. When
historical information was absent, all models deliv-
ered correct answers. However, the current right
pleural effusion had diminished in size, and prior
diagnoses indicated no changes. The inclusion of
historical records resulted in an incorrect response,
and fine-tuning did not yield an improvement in
this case. For more case studies, please refer to
Appendix E.

6 Conclusion

In this paper, we introduce MMXU, a dataset de-
signed for multi-modal and multi-X-ray under-
standing in MedVQA. First, we propose a bench-
mark, MMXU-test, and invite five chest X-ray ex-
perts to evaluate the performance. Then, we con-
duct evaluations using several well-known open-
source and closed-source large vision-language
models (LVLMs) that support multi-image VQA.
The experimental results indicate that even the
best-performing models exhibit a significant per-
formance gap—nearly 40%—compared to human
experts. To bridge this gap, we propose the MAG
method, which leverages historical records to en-

hance the understanding of disease progression.
We further evaluate its performance both without
fine-tuning and with fine-tuning on MMXU-dev
and the experiment confirm the effectiveness.

Limitation

Although we have carefully designed our MMXU-
test benchmark and established the MMXU-dev
dataset, there are still some limitations: 1) Our
dataset is based on MIMIC-CXR, a chest X-ray
dataset, which somewhat limits its generalization
when applied to other datasets. 2) We have pro-
posed the MAG method, inspired by clinical sce-
narios, to validate the effectiveness of historical
historical records in enhancing LVLMs’ medical
responses. Although we aim to replicate clinical
scenarios as closely as possible, the scarcity of data
means we can only use previous reports as histori-
cal records for research purposes.
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Figure 5: Figure (a) shows the distribution of the number of patients corresponding to different study counts. We
can see that a large number of patients have only one study. Figure (b) shows the blue line representing the changes
between two studies of the same patient in MIMIC-CXR as the study order increases. The red dashed lines indicate
the differences across patients with a number of studies no less than specific values.

A Pilot Studies on Medical Diff-VQA

A.1 Motivation

In the clinical diagnostic process, medical experts
integrate a patient’s medical historical records with
current medical evidence to guide their diagnos-
tic decisions. To explore whether this approach
can enhance the diagnostic capabilities of large
vision-language models in medical settings, we
fine-tuned and evaluated InternVL2 8B and Qwen2-
VL 8B on the publicly available Medical-Diff-VQA
dataset (Hu et al., 2023), incorporating historical
medical records.

Assume you are a professional thoracic
doctor. You are now provided with a
chest radiology image. There is also a
certain probability that you will be given
the patient’s previous treatment image and
report. Based on the provided information,
please answer the corresponding questions.
The current study image is <image>.
The reference image is <image>.
The report of reference image is:
{historical records}
The question is: {question}

Figure 6: Text template on Medical-Diff-VQA using
historical records.

The Medical-Diff-VQA dataset comprises seven
categories of questions: abnormality, location, type,
level, view, presence, and difference. However,
we excluded the view questions, as they do not re-
quire historical information. Therefore, we selected

Assume you are a professional thoracic
doctor. You are now provided with a chest
radiology image and a question. Based on
the provided information, please answer the
corresponding questions.
The study image is <image>.
The question is: {question}

Figure 7: Text template on Medical-Diff-VQA without
historical records.

six categories of questions from the Medical-Diff-
VQA dataset for our study: abnormality, location,
type, level, presence, and difference. The distribu-
tion of the training and test sets for each category is
detailed in Table 9. For each category, two distinct
templates were used as model inputs: one incor-
porating historical records and the other devoid of
additional information, as illustrated in Figure 6
and Figure 7. These templates were employed to
fine-tune and evaluate the model performance. It is
worth noting that not all questions are associated
with historical information; some are constructed
based on records from a patient’s initial visit, seen
in Figure 5(a). In such instances, we directly em-
ployed the template without additional information
as the model input.

For historical records, we utilized the report in
MIMIC-CXR dataset, which contains data from
65,079 subjects, each representing an individual pa-
tient. A subject may have multiple studies, where
each study corresponds to a patient’s visit and in-
cludes multiple chest X-ray (CXR) images along
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Abnormality Level Location Presence Type Difference

Training set 116,394 53,728 67,187 124,654 22,067 131,563
Test set 14,515 6,846 8,496 15,523 2,702 16,389

Table 9: The number of training and test samples for the six categories of questions in Medical-Diff-VQA.
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Figure 8: Visualization of experimental results for dif-
ferent settings on the Medical-Diff-VQA dataset.

with an associated medical report. As shown in
Figure 5(b), the blue line shows the average L1
distance variation between the Chexpert (Ye et al.,
2020) labels of different studies within the same
subject. The red dashed line indicates the aver-
age L1 distance between patients who meet certain
conditions in terms of the number of studies. It is
evident that as the study order increases, the differ-
ences between studies grow significantly. Further-
more, under the same conditions, the differences
between patients are much greater than those within
a single patient. Based on these observations, we
selected the most recent frontal CXR and report
as the historical records for our study.

A.2 Experimental
Experimental Setting We benchmarked our ap-
proach against the DRax method (Nisar et al.,
2025), employing distinct evaluation metrics: to-
ken recall for open-ended questions and accuracy
for close-ended ones. The models utilized in the
experiments were InternVL2 8B and Qwen2-VL
8B. During the fine-tuning process, the LoRA rank
was set to 16, the learning rate to 4e-5, and a cosine
learning rate scheduling strategy was implemented.
Training was conducted using the DeepSpeed Zero
Stage 2 (Rajbhandari et al., 2020) distributed strat-
egy on a 8-GPU RTX 3090 server.

Experimental Results Figure 8 shows the vi-

sualization of experimental results on 5 types of
single-image questions (including closed-ended
questions and open-ended questions). The results
clearly indicate that integrating historical records
as references significantly enhances VQA perfor-
mance on both Qwen2-VL 8B and InternVL2 8B.

For the sixth category, the difference questions,
we also investigated the effect of providing refer-
ence images along with historical records on the
outcomes. These results are shown in Table 10.
The responses to “difference” questions consist
primarily of two components: the 14 ChexPert la-
bels (Ye et al., 2020) that are either missing or
added in the main image compared to the reference.
The “Missed Labels” and “Added Labels” sections
of the table employ accuracy, recall, and F1 scores
for the quantitative assessment of the model out-
puts. Our findings indicate that the inclusion of
historical records resulted in a substantial improve-
ment across all evaluation metrics. (The 14 clinical
efficacy labels in chexpert include: atelectasis, car-
diomegaly, consolidation, edema, enlarged cardio-
mediastinum, fracture, lung lesion, lung opacity, no
finding, pleural effusion, pleural other, pneumonia,
pneumothorax, support devices.)

However, the Medical-Diff-VQA dataset does
not fully capture the nuanced relationship between
these questions and the evolution of historical his-
torical records. This shortcoming complicates the
determination of whether the model is truly lever-
aging historical information or simply reiterating
prior data. Such behavior falls short of the expec-
tations for real-world clinical applications. As a
result, there is an urgent need for a dataset that
seamlessly integrates and balances historical
medical records, thereby supporting their mean-
ingful utilization in practical healthcare settings.

B Detailed Data Case

Figure 9 illustrates a detailed example from the
MMXU dataset we developed, which is specifi-
cally tailored to analyze changes between two his-
torical records of a patient related to chest X-rays.
Each sample includes a single-choice question fo-
cused on changes in the condition of a particular
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Method NLG metrics Missed Labels Added Labels Average
BLUE-1 Token Recall Token F1 ML Acc ML Recall ML F1 AL Acc AL Recall AL F1

w/ MedRecord 0.464435 0.614229 0.59154 0.884127 0.267652 0.259081 0.885768 0.283076 0.275101 0.502779
w/o MedRecord 0.550117 0.684575 0.674029 0.947046 0.629887 0.615927 0.901559 0.345302 0.334627 0.631452

Table 10: Evaluation results for the differences category in Medical-Diff-VQA using different methods.

{
"qid": 53804,
"question": "Considering the changes observed, what can be concluded about the left lung in

the recent CXR images?",
"question_type": "single choice",
"content_type": "worsen",
"options": {

"A": "Worsened with increased effusion.",
"B": "Stable with no change.",
"C": "Improved or resolving condition.",
"D": "Complete resolution."

},
"answer": "A",
"region_name": "left lung",
"current_image_path": "files/p19/p19839145/s55247427/79b946ab-8d938e59-52027cad-8b4a4268-dab

951d0.jpg",
"regional_current_bbox": [1637, 122, 2796, 2196],
"history_image_path": "files/p19/p19839145/s59400960/36b4f554-95744e28-8b7baa81-fa621df8-41a

d666f.jpg" ,
"regional_history_bbox": [1514, 463, 2442, 2278],
"regional_history_report": "Opacities in the left upper lobe have markedly improved. Moderate

bilateral effusions larger on the left side with adjacent atelectasis are grossly unchanged.
There is no pneumothorax.",

"global_history_report": "Mild cardiomegaly is stable. The aorta is tortuous.
Cardiomediastinum is shifted to the right as before. Moderate bilateral effusions larger on the
left side with adjacent atelectasis are grossly unchanged. Opacities in the left upper lobe
have markedly improved. There is no pneumothorax."
}

Figure 9: A detailed data case sampled from the MMXU dataset.

region, along with comprehensive records from
the patient’s two visits. For the initial visit, the
dataset provides images, bounding boxes mark-
ing the relevant regions, region-level reports, and
overall-level reports. The questions are divided
into three categories: “Worsened”, “Improved”,
and “No Change”, based on the comparative state-
ments within the raw report. This dataset serves
as a valuable resource for advancing research in
multi-image comparison, historical record integra-
tion, and the application of visual grounding.

C Detailed of Dataset Construction

In this section, we will introduce some additional
information during the construction process.

C.1 Comparative Sentences Extraction

Figure 10 presents a detailed example of a compar-
ative sentence extracted during the dataset construc-
tion process. The example includes the compara-

tive sentence itself, the specific regions it pertains
to, and the two corresponding images. Additionally,
the bounding boxes of the relevant regions within
the images, along with the comparative relation-
ship, are illustrated. This detailed data structure is
crucial for building a robust dataset that facilitates
accurate comparisons during QA generation.

C.2 QA Pairs Generation

The version of GPT-4o we utilized is gpt-4o-2024-
08-06. We employ the prompt template shown in
Figure 11, where the "explanatory information"
is derived from the details associated with the re-
lationship label. Figure 16 illustrates a detailed
example of the input prompt and output content
for the question-answer pair model using GPT-4o.
We provided six specific rules and supplied GPT-
4o with comparative sentences, relationship labels,
reports from two visits, and the region name of
interest. Notably, the answers generated by GPT-
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{
"cmp_id": 3,
"subject_id": "14731346",
"study_id": "54684841",
"cur_image_path": "files/p14/p14731346/s54684841/56ec2474-cfdbbdcd-5b133f15-6c0bc409-17435e

c2.jpg",
"prior_image_path": "files/p14/p14731346/s51369333/33585d85-edf829eb-51303048-7bd9062a-b6ee3

a5b.jpg",
"cur_report": "Right lower quadrant pain. In comparison with the study of ___, there has been

worsening of the increased opacification at the left base with silhouetting of the hemidiaphragm
and blunting of the costophrenic angle. These findings are consistent with a combination of
volume loss in the left lower lobe and pleural effusion. Right lung is clear, and there is no
evidence of vascular congestion.",

"prior_report": "Hyperglycemia, intubated for airway protection, please assess NG tube and
ET tube placement. AP radiograph of the chest was compared to prior study obtained the same
day earlier. The ET tube tip is approximately 4.3 cm above the carina and slightly impinging
the right wall of the trachea and should be repositioned. The NG tube tip is in the stomach.
Right subclavian line tip is at the level of cavoatrial junction. Heart size and mediastinum
are unremarkable. There is no pneumothorax. Minimal bibasilar opacities most likely reflect
areas of atelectasis. No pulmonary edema is seen.",

"comp_sent": "FINDINGS: In comparison with the study of ___, there has been worsening of the
increased opacification at the left base with silhouetting of the hemidiaphragm and blunting of
the costophrenic angle.",

"relationships": {
"left lung": ["comparison|yes|worsened"],
"left lower lung zone": ["comparison|yes|worsened"],
"left costophrenic angle": ["comparison|yes|worsened"],
"left hemidiaphragm": ["comparison|yes|worsened"]

},
"related_region_names": ["left lung", "left lower lung zone", "left costophrenic angle",

"left hemidiaphragm"],
"cur_image_size": [2544, 3056],
"cur_image_bboxs": {

"left lung": [1186, 777, 2087, 2210],
"left lower lung zone": [1241, 1705, 2087, 2210],
"left costophrenic angle": [1719, 1719, 1991, 1991],
"left hemidiaphragm": [1186, 1691, 2605, 2769]

},
"prior_image_size": [[2544, 3056]],
"prior_image_bboxs": {

"left lung": [[1268, 327, 2537, 2878]],
"left lower lung zone": [[1487, 1705, 2537, 2878]],
"left costophrenic angle": [[]],
"left hemidiaphragm": [[]]

}
}

Figure 10: A detailed data case about comparative sentence during dataset construction.

4o are not limited to simple responses regarding
improvements, deteriorations, or stability. Instead,
we emphasize capturing more detailed changes in
the regions.

D Evaluation on MMXU-test benchmark

Experimental Settings We respectively utilized
specialized prompt templates for three distinct sce-
narios: direct evaluation, enhancement through
the integration of global and regional historical
reports as historical records. For all generation pro-
cesses, we set do_sample to False and temperature
to 0. During the InternVL2 8B fine-tuning pro-

cess, we set epochs to 1, max_dynamic_patch to 6,
down_sample_ratio to 0.5, lora_rank to 16, and the
learning_rate to 4e-5. The learning rate scheduler
type is set to "cosine," with a warmup ratio of 0.03.
The fine-tuning is carried out using the DeepSpeed
Zero Stage 2 (Rajbhandari et al., 2020) distributed
strategy on an 8-GPU NVIDIA RTX 3090 server.

Text Prompt To assess the impact of historical
records on medical diagnosis, we performed evalu-
ations on our MMXU-test dataset under three dis-
tinct conditions: without historical records, with
global reports as historical records, and with re-
gional reports as historical records. Figure 14 il-
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You are a chest x-ray assistant and you are presented with a sentence involving a comparison in
the original and current reports of a patient’s two visits before and after, as well as some
additional related explanatory information about the sentence. Please generate up to 3 single
choice questions about the changes in the images from the two visits, based primarily on the
sentence involving the comparison and the additional information, with the aid of referencing
the two reports. Format the output into JSON format.

Here are some rules:

(1) Your questions are generated primarily around the KEY COMPARISON SENTENCE IN THE CURRENT
REPORT and related explanatory information, with the content of the two reports as a secondary
aid.
(2) Your question should be whether the chest CXR images have changed in some way in the same
area, including abnormality, disease, location, severity, etiology, etc.
(3) For each question, you should clearly identify the area in which the question is asked and
provide the correct answer, along with an explanation of why that answer was chosen.
(4) Your question is intended to answer the case where only images of the two diagnoses are
known. Therefore, please do not include the words report comparison in your question; what
should be included is image comparison.
(5) The JSON in related explanatory information consists of a "region" and a "list of explanatory
information". For example, "right lung": ["comparison|yes|improved"] indicates that the right
lung region has improved, and "left lung": ["comparison|yes|worsen"] indicates that the left
lung region has worsened.
(6) Avoid asking questions that do not involve a change in two pictures. Ensuring all the
questions are as diverse as possible.

Here is one example:
{...}

Here is some information:
{comparison sentence}, {explanatory information}, {current report}, {prior report}

Figure 11: Text prompt for generating multiple image-based question-answer pairs in MMXU using GPT-4o

Image-1: <image>
Image-2: <image>
Here are two chest X-RAY images of the same patient. Previous chest X-RAY is Image-1. And
current chest X-RAY is Image-2. Your task is to evaluate the differences between the two images
based on the provided report and question.

The report of Image-1 about is:
%s

Question:
%s

Options:
A: %s
B: %s
C: %s
D: %s

Answer with the option’s letter from the given choices directly.

Figure 12: Text prompt template for evaluation on MMXU-test benchmark with full report as historical records

lustrates the prompt template used in the absence
of historical records, where only the basic instruc-
tions, questions, and options are provided. Figure
12 depicts the prompt template incorporating global
reports as historical records, in which we enhance
the original template by including the global report.

Figure 13 showcases the prompt template with re-
gional reports as historical records. In contrast to
the global reports, these regional reports are tai-
lored to the specific region relevant to the question,
with the region’s name explicitly indicated.

When generating region-level reports as histori-
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Image-1: <image>
Image-2: <image>
Here are two chest X-RAY images of the same patient. Previous chest X-RAY is Image-1. And
current chest X-RAY is Image-2. Your task is to evaluate the differences between the two images
based on the provided regional report and question.

The report of Image-1 about region %s is:
%s

Question:
%s

Options:
A: %s
B: %s
C: %s
D: %s

Answer with the option’s letter from the given choices directly.

Figure 13: Text prompt template for evaluation on MMXU-test benchmark with regional report as historical records

Image-1: <image>
Image-2: <image>
Here are two chest X-RAY images of the same patient. Previous chest X-RAY is Image-1. And
current chest X-RAY is Image-2. Your task is to evaluate the differences between the two images
based on the provided question.

Question:
%s

Options:
A: %s
B: %s
C: %s
D: %s

Answer with the option’s letter from the given choices directly.

Figure 14: Text prompt template for direct evaluation on MMXU-test benchmark without historical records

cal record enhancements, we distinguish regions us-
ing the 29 anatomical names provided in the Chest
ImaGenome dataset, including: right lung, right
upper lung zone, right mid lung zone, right lower
lung zone, right hilar structures, right apical zone,
right costophrenic angle, right hemidiaphragm, left
lung, left upper lung zone, left mid lung zone, left
lower lung zone, left hilar structures, left apical
zone, left costophrenic angle, left hemidiaphragm,
trachea, spine, right clavicle, left clavicle, aortic
arch, mediastinum, upper mediastinum, svc, car-
diac silhouette, cavoatrial junction, right atrium,
carina, and abdomen.

E More Case Study

Figure 15 shows two challenging examples from
the "Worsen" category in MMXU. In CASE 1, none

of the models without fine-tuning were able to cor-
rectly answer the question, and only the fine-tuned
model using the MAG method provided the correct
answer. This may be due to the difficulty of the
question itself, as well as the challenge of extract-
ing useful information to answer the question from
the historical records.In CASE 2, only GPT-4o was
able to answer the question correctly after provid-
ing historical records. For other models, since R-
MRec reiterated previously unchanged views, all
incorrectly chose option A (no change), indicating
that these models failed to correctly understand the
change and simply repeated the previous informa-
tion.
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Qwen2-VL GPT-4o InternVL2 InternVL2 (lora)

C (√) B (✗) D (✗) C (√)

C (√) C (√) A (✗) A (✗)

A (✗) C (√) A (✗) A (✗)

Qwen2-VL GPT-4o InternVL2 InternVL2 (lora)

B (✗) B (✗) B (✗) B (✗)

B (✗) D (✗) B (✗) C (√)

B (✗) B (✗) B (✗) C (√)

(Prior Image) (Current Image)

(Worsen) In terms of the upper mediastinum, how have the 

findings changed between the prior and current chest x-ray images?
Question

Options

A:Findings have improved.

B: Findings remain stable.

C: Findings have worsened.

D: The region is not mentioned in either report.

Lungs are well expanded and clear. There is no pleural abnormalit

y. Heart size is normal. There is greater fullness in the right lower 

paratracheal station of the mediastinum. If there is lymph node enl

argement, there is no compromise of the airway, and therefore ade

nopathy would not explain shortness of  breath.

Historical

Record

+ G-MRec

+ R-MRec

CASE 1 CASE 2

Right Lung

Cardiomediastinal contours are within normal limits and without cha

nge. Minimal bibasilar atelectasis is present, but there are no new ar

eas of consolidation to suggest the presence of a new site of pneumo

nia. Nasogastric tube continues to terminate in the stomach, but side 

port is in close proximity to the gastroesophageal junction.

(Prior Image) (Current Image)

Upper 

Mediastinum

Upper 

Mediastinum

(Worsen) What change is observed in the right lung region when 

comparing the chest CXR images from the two visits?

A: No change in the right lung.

B: Improvement in the right lung.

C: Worsening in the right lung. (√)

D: New consolidation.

Right Lung

Figure 15: Two hard examples from “Worsen” category of MMXU answered by some LVLMs.
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USER: You are a chest x-ray assistant and you are presented with a sentence involving a comparison
in the original and current reports of a patient’s two visits before and after, as well as some
additional related explanatory information about the sentence. Please generate at most 3 single
choice questions about the changes in the images from the two visits, based primarily on the
sentence involving the comparison and the additional information, with the aid of referencing
the two reports. Format the output into JSON format.
Here are some rules:
(1) Your questions are generated primarily around the KEY COMPARISON SENTENCE IN THE CURRENT
REPORT and related explanatory information, with the content of the two reports as a secondary
aid.
(2) Your question should be whether the chest CXR images have changed in some way in the same
area, including abnormality, disease, location, severity, etiology, etc.
(3) For each question, you should clearly identify the area in which the question is asked and
provide the correct answer, along with an explanation of why that answer was chosen.
(4) Your question is intended to answer the case where only images of the two diagnoses are known.
Therefore, please do not include the words report comparison in your question; what should be
included is image comparison.
(5) The JSON in related explanatory information consists of a "region" and a "list of explanatory
information". For example, "right lung": ["comparison|yes|improved"] indicates that the right
lung region has improved, and "left lung": ["comparison|yes|worsen"] indicates that the left
lung region has worsened.
(6) Avoid asking questions that do not involve a change in two pictures. Ensuring all the
questions are as diverse as possible.
Here is one example:
{

"question": ...,
"region": ...,
"content_type": ..., # worsen, improved or no change
"options": {

"A": ...,
"B": ...,
"C": ...,
"D": ... }

"answer": ..,
"reason": ...

}
Here is some information:
KEY COMPARISON SENTENCE IN THE CURRENT REPORT: "Widening mediastinum has improved."
Explanatory Information: "upper mediastinum": ["comparison|yes|improved"]
Current Report: Moderate to severe cardiomegaly is stable. Widening mediastinum has improved.
Bilateral effusions are small. Opacities in the lower lobes bilaterally larger on the left
side are likely atelectasis, superimposed infection cannot be totally excluded. There is no
evident pneumothorax. Sternal wires are aligned. Degenerative changes in the thoracic spine
are mild. There is mild vascular congestion. Bilateral healed rib fractures are again noted.
Small bilateral effusions with adjacent opacities, these are likely atelectasis but superimposed
infection cannot be totally excluded. Mild vascular congestion.
Prior Report: IN COMPARISON TO ___ RADIOGRAPH, CARDIOMEGALY IS ACCOMPANIED BY IMPROVING PULMONARY
EDEMA. A MORE CONFLUENT OPACITY IN THE LEFT RETROCARDIAC REGION HAS WORSENED, AND MAY REFLECT
A COMBINATION OF PLEURAL effusion and adjacent atelectasis or consolidation. No other relevant
change.

GPT-4o:
{

"question": "What change has been observed in the upper mediastinum region of the chest CXR
images?",

"region": "upper mediastinum",
"content_type": "improved",
"options": {

"A": "The widening has worsened.",
"B": "There is new vasculature congestion.",
"C": "The widening has improved.",
"D": "There is no notable change."

},
"answer": "C",
"reason": "The related explanatory information indicates that there is an improvement in

the upper mediastinum, corresponding to the general improvement of the mediastinum’s widening
mentioned in the key comparison sentence."
}

Figure 16: A detailed example of the input and output content for the question-answer pair model using GPT-4o
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