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Abstract

In named entity recognition (NER), models
are evaluated on their ability to identify entity
mentions in text. However, standard evalua-
tion methods often rely on test sets that contain
named entities already present in the training
data, raising concerns about overestimation of
model performance. This work investigates the
impact of varying degrees of entity contami-
nation on a dataset level on the generalization
ability and reported F1 scores of three state-
of-the-art NER models. Experiments on five
standard benchmarks show that F1 scores for
contaminated entities statistically significantly
inflate reported F1 scores as contamination
rates increase, with F1 performance gaps rang-
ing from 2-10% compared to entities not seen
during training. To address these inflated F1
scores, we additionally propose a novel NER
dataset splitting method using a minimum cut
algorithm to minimize train-test entity leakage.
While our splitting method ensures near-zero
entity contamination, we also compare new and
existing dataset splits on named entity sample
counts.

1 Introduction

Named entity recognition (NER) is a critical com-
ponent of information extraction that involves the
identification of named entities (NEs) in unstruc-
tured text. While significant progress has been
made in NER in recent years, there is still a press-
ing need for more accurate evaluation of model
performance. The existence of test set contamina-
tion is a key aspect of this evaluation. This occurs
when the model is evaluated using documents that
contain NEs present during training. This leads
to an overestimation of the model’s performance,
which does not accurately reflect the generalization
ability of an NER model.

Despite the availability of many NER datasets,
there has been surprisingly little research on the de-
gree of their test set contamination. Most of the ex-

Figure 1: Example of entity contamination (here: Idaho)
in the CoNLL04 (Roth and Yih, 2004) splits by Gupta
et al. (2016) between a training and test sample.

isting datasets have been generated using standard
random splitting methods (see Section 4). However,
we show that this approach is often the source of
significant contamination. Therefore, we perform
an in-depth analysis of seven widely used NER
datasets, namely ACE05 (Li and Ji, 2014), ADE
(Gurulingappa et al., 2012), CoNLL03 (Sang and
Meulder, 2003), CoNLL04 (Roth and Yih, 2004;
Gupta et al., 2016), GENIA (Kim et al., 2003),
NYT (Riedel et al., 2010), and SciERC (Luan et al.,
2018). We find a worrisome amount of test set con-
tamination in all of them. For example, as shown
in Figure 1, NEs such as Idaho occur both during
training and at test time, encouraging model mem-
orization rather than generalization, making the
evaluation a test of a model’s ability to memorize.

We investigate the effect of increasing contami-
nation rates on model generalization, i.e., the abil-
ity of the model to generalize to previously unseen
NEs, through a series of studies using three fun-
damentally different state-of-the-art NER architec-
tures. We found that even small rates of contam-
ination statistically significantly inflate reported
test F1 scores, thereby overestimating NER per-
formance. To address this issue, we propose a
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method to quantify the degree of overestimation
as a delta of the original F1 score. Furthermore,
based on our findings and the lack of existing re-
search and approaches, we identify a need for cre-
ating NER dataset splits that focus on creating a
test set that fairly evaluates a model’s ability to
generalize. We also argue that ideally, a test set
should contain as many unseen NEs as possible to
fairly test the model’s generalization ability (Sø-
gaard et al., 2021). In order to test the generaliza-
tion performance of NER models separately from
their memorization ability, we publish two subsets
of contaminated and clean entities for the test sets
of all datasets. These allow the calculation of the
∆F1 for each dataset. We also provide and demon-
strate a method for generating clean training and
test splits on all datasets using a minimum cut al-
gorithm (Karypis and Kumar, 1998). In brief, our
main contributions are as follows:

1. We provide an overview of the contamina-
tion rate for the widely used datasets ADE,
ACE05, CoNLL03, CoNLL04, GENIA, NYT,
and SciERC.

2. We perform a detailed analysis to test how
NE contamination rates statistically affect the
ability of an ensemble of models to generalize
to unseen NEs, and find how this leads to an
overestimation of NER performance.

3. Following the call for better evaluation by Sø-
gaard et al. (2021) and Gorman and Bedrick
(2019), we derive a measure to quantify the de-
gree of overestimation of a model’s F1 score.

4. We use a minimum cut algorithm (Karypis and
Kumar, 1998) to create NER training, devel-
opment, and test sets that contain a minimal
amount of NE contamination between them.

The dataset splits and code for reproducing ex-
periments, analyzing contamination of other NER
datasets, and the algorithm for creating clean NER
dataset splits are available on GitHub.

2 Related Work

The difficulty of NER models to generalize to un-
seen NEs has been studied and identified previ-
ously (Augenstein et al., 2017; Bernier-Colborne
and Langlais, 2020; Lin et al., 2021; Tu and Lig-
nos, 2021). In particular, Augenstein et al. (2017)
focus on evaluating NER performance on unseen

samples, and find lower F1 and recall scores in
various genres, and a tendency to overfit to previ-
ously seen tokens. Together with Bernier-Colborne
and Langlais (2020) and Lin et al. (2021) they re-
port percentages of unseen NEs on several datasets.
However, they all fail to analyze how different rates
of seen NEs for a given dataset statistically affect
the F1 score on previously seen and unseen NEs,
especially on current transformer and state-of-the-
art systems. Agarwal et al. (2021) analyze trans-
formers but find no improvement in BERT (Devlin
et al., 2019)’s generalization ability to unseen NEs
compared to GloVe-based (Pennington et al., 2014)
approaches, while ELMo (Peters et al., 2018) and
FLAIR (Akbik et al., 2019) are better at generaliz-
ing to different domains and contamination rates
– referred to in Fu et al. (2020) as entity cover-
age ratio. They also find that whether the context
of the test entity has been seen before affects the
generalization ability of NER models, not just the
previously seen surface shapes of NEs.
Most existing approaches to generalization testing
focus on extending the training or test data to cre-
ate unseen NEs (Morris et al., 2020; Ribeiro et al.,
2020; Lin et al., 2021), while others test on dif-
ferent domains (Augenstein et al., 2017; Agarwal
et al., 2020; Fu et al., 2020; Bernier-Colborne and
Langlais, 2020). For example, Lin et al. (2021)
used the semantic classes in Wikidata (Vrandecic
and Krötzsch, 2014) and BERT to replace target
entities for a given input to create unseen samples
and provide statistics on entities seen during train-
ing for the OntoNotes (Weischedel et al., 2013)
dataset. While these approaches are easy to use,
they require additional steps and do not address the
root cause of contamination.

A common approach to splitting a newly created
NER dataset into training, validation, and test sets
is to randomly split it in an 80-10-10 or similar
ratio (see Table 1). While there is research evalu-
ating standard splits versus multiple random splits
(Gorman and Bedrick, 2019) and multiple domains
of test sets (Søgaard et al., 2021; Vajjala and Bala-
subramaniam, 2022), to the best of our knowledge,
there is no research on creating NER test sets that
do not share NEs with the training set – except for
augmentation techniques.

Creating a method for generating clean train-
ing and test sets would solve the aforementioned
overfitting and scoring on the same NEs problems.
This method would ensure fair evaluation and a
better approximation of the model’s real-world per-
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formance (see Section 5.1 and Augenstein et al.
(2017)). Most importantly, this method would al-
low for a better partitioning of future NER datasets.

3 Methodology

In the following, we first lay the theoretical ground-
work for our analysis and define the terms contam-
ination and clean (Section 3.1), introduce a new
measure to quantify the overestimation of NER
model F1 scores (Section 3.2), and frame dataset
contamination as a minimum cut problem in order
to reduce the contamination of NER dataset splits
(Section 3.3).

3.1 Entity and Sample Contamination
Given training and test sets Dtrain,Dtest with
Σ = {train,test} consisting of samples (xi, Ei) of
documents xi and NEs Ei = {(xi,n...m, t)} of type
t ∈ T and case-sensitive words1 xi,n . . .xi,m (n ≤
m), we define the set of entities in split split as
the union of all entities present during training and
testing, respectively:

Esplit =
⋃

(xi,Ei)∈Dsplit

Ei (split ∈ Σ) (1)

Additionally, we define the opposite split for a
given split split as ω(split):

ω(train) = test ω(test) = train (2)

We define an NE eij ∈ Ei of sample (xi, Ei) as
contaminated if it is a member of the NEs of the
opposite split ω(split):

eij contaminated⇔ eij ∈ Ei ∧ eij ∈ Eω(split)

Similarly, we define a sample (xi, Ei) as partially
contaminated if and only if

∣∣Ei ∩ Eω(split)
∣∣ > 0 (3)

holds, i.e., at least one entity in a given sample
is a member of the entity set of the opposite split
Eω(split). Furthermore, we define a sample as fully
contaminated if and only if

∣∣Ei ∩ Eω(split)
∣∣ ≡ |Ei| (4)

holds, i.e., every entity in a given sample is con-
tained in the opposite split Eω(split).

1Although this definition relies on words, a dataset built
using the character- or token-level boundaries of NEs is appli-
cable in the same way.

Finally, we define a function c(split) as the sub-
set of samples in the dataset split split that are par-
tially contaminated:

c(Dsplit) =
{
(xi, Ei) | Ei ∩ Eω(split) ̸= ∅

∧ (xi, Ei) ∈ Dsplit

} (5)

Inversely, we define

¬c(Dsplit) = Dsplit \ c(Dsplit) (6)

as the subset of not contaminated, clean samples
in split split.

3.2 Quantifying the Overestimation of NER
Performance due to Entity Contamination

To quantify the degree to which a model’s NER
performance is overestimated, we propose a simple
formula

F1(clean) =
2 ∗ P(orig.) ∗R(clean test)

P(orig.) +R(clean test)
(7)

∆F1 = F1(orig.) − F1(clean) (8)

where the precision P(orig.) is measured with re-
spect to the original test set, providing an accurate
measure of a model’s ability to capture all NEs rel-
evant for the NER task. Since we are interested in
quantifying the ability of the NER model to gener-
alize, i.e., to identify named entities at test time that
are not contaminated – named entities that were
not seen during training – the set of relevant named
entities in this context Ei

(clean) = Ei \ Etrain is
only a subset of the set of all named entities of
any given sample (xi, Ei) ∈ Dtest. Note that the
number of test samples remains unchanged.

Measuring Generalization Recall. We can di-
rectly use the set of non-contaminated entities
Ei

(clean) to calculate the non-contaminated recall
performance of a model, since this metric quan-
tifies how many of the non-contaminated named
entities a model was able to identify at test time. A
visualization of the intuition for Rclean is shown in
Figure 2. Given a set of named entities Oi identi-
fied by an NER model, the recall is thus defined as
follows:

R(clean) ⇔

⇔ |Ei
(clean) ∩Oi|

|Ei
(clean) ∩Oi|+ |Ei

(clean) \Oi|

⇔ |Ei
(clean) ∩Oi|
|Ei

(clean)|
.

(9)
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Approximating Generalization Precision. As
shown in Figure 2, calculating the precision of
an NER model with respect to just the non-
contaminated entities will cause contaminated
named entities

( )
being counted as false posi-

tives (Tu and Lignos, 2021), resulting in P(clean) +
Pcontam. = P(orig.), as shown in Equation 11.

There are two ways to approach the proper mea-
surement of a model’s precision with respect to
only the non-contaminated entities:

1. Over-approximation: P(clean) ≈ P(orig.)

This approach makes it easy for future re-
searchers to adopt our method, since the only
requirement for computing F1(clean) becomes
computing Rclean, which is trivially possible
using the exact same test set, but with only
non-contaminated NEs as targets2, as shown
in Figure 2 and Equation 9. In practice, this
amounts to running the test inference twice,
once with the filtered test set (where only non-
contaminated named entities are targets), ob-
taining the original precision and the clean
recall from the original and filtered runs, re-
spectively, and finally computing ∆F1.

2. Computing P(clean)∗ as

P(clean)∗ =
+

=

=
|Oi ∩ Ei

(clean)|
|Oi ∩ Ei

(clean)|+ |Oi \ Ei|

=
|Oi ∩ Ei

(clean)|
|Oi \ Ei

(contam.)|

(10)

However, this approach has a major limita-
tion: It creates significant overhead for fu-
ture researchers because the output of a model
must first be filtered to include only non-
contaminated NEs (Oi \ Ei

(contam.)) before
calculating true and false positives for any
given sample.

To further clarify this issue, assume an NER model
for persons outputs three named entities, Oi =
{Alice,Bob,Charlie}, for the input x = "Alice
and Bob meet at Checkpoint Charlie" and targets
Ei = {Alice,Bob}, where Alice was already
present during training, i.e. is contaminated.

2These splits are published on GitHub.

Ei

Ei
(clean)

Ei
(contam.)

OiOi ∩ Ei

Oi ∩ Ei
(clean)

Oi∩Ei
(contam.)

Rclean =
+

Pclean =
+

Rorig. =
+

Porig. =
+

Figure 2: To illustrate the problem of using the naive
P(clean) to determine the precision of an NER model
on non-contaminated NEs: True positives that are con-
taminated ( ) would count as false positives when
calculating P(clean). Oi is a set of named entities pre-
dicted by an NER model, Ei models the target entities
for sample i.

P(orig.)

⇔ |Oi ∩ Ei|
|Oi ∩ Ei|+ |Oi \ Ei|

⇔

∣∣∣Oi ∩
(
Ei

(clean) ∪ Ei
(contam.)

)∣∣∣
|Oi|

⇔

∣∣∣Oi ∩ Ei
(clean)

∣∣∣+
∣∣∣Oi ∩ Ei

(contam.)
∣∣∣

|Oi|

⇔

∣∣∣Oi ∩ Ei
(clean)

∣∣∣
|Oi|

+

∣∣∣Oi ∩ Ei
(contam.)

∣∣∣
|Oi|

⇔

∣∣∣Oi ∩ Ei
(clean)

∣∣∣
∣∣∣Oi ∩ Ei

(clean)
∣∣∣+

∣∣∣Oi \ Ei
(clean)

∣∣∣

+

∣∣∣Oi ∩ Ei
(contam.)

∣∣∣
∣∣∣Oi ∩ Ei

(contam.)
∣∣∣+

∣∣∣Oi \ Ei
(contam.)

∣∣∣
= P(clean) + P(contam.)

(11)

Therefore the non-contaminated precision
P(clean)∗ = |{Bob}|

|{Oi\Alice}| = 0.5 (following Eq. 10),

compared to P(clean) ≈ P(orig.) =
|{Bob,Alice|

|{Oi}| =
2
3 . Note that for P(clean)∗ Alice gets excluded
from the model outputs as it is a contaminated NE.
This must be known in advance. If F1(clean) were
to use P(clean)∗ , Section 3 would display an even
larger ∆F1, as P(orig.) ≥ P(clean)∗ .

In the end, we decided to approximate
P(clean)∗ ≈ P(orig.), since we still want to quan-
tify how precise a model is at retrieving all relevant
named entities, i.e., how many named entities are
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actual false positives, and not just contaminated
named entities that are not part of Ei

(clean).

3.3 Sample Contamination as a Minimum Cut
Problem

To the best of our knowledge, we are the first to
introduce the minimum cut algorithm (Karypis and
Kumar, 1998) as a tool to split an NER dataset
into non-contaminated splits. To minimize the con-
tamination between documents, we encode each
document in a dataset as a node in a weighted graph,
where the weight of the connection between nodes
is equal to the number of named entities they share.
Using a minimum cut algorithm, we then retrieve
three partitions of the original graph with as few
edge crossings (i.e., partially contaminated sam-
ples) as possible.

Let {(xi, Ei)} denote all documents from the
entire dataset. For any two nodes i and j, we assign
an edge weighted by the size of the intersection of
Ei and Ej , i.e.,

Aij = |Ei ∩ Ej | (12)

Conceptually, two documents from the dataset have
a weighted connection equal to the number of enti-
ties shared by both documents.

We use METIS (Karypis and Kumar, 1998) to
perform a constrained minimum cut, partitioning
the entire dataset into three new subsets such that
each split maintains the original split ratio (see Ta-
ble 1). By minimizing the total edge weight cross-
ing the partitions, we obtain a segmentation that
preserves strongly connected documents within
the same subset, while ensuring that each subset
roughly meets the prescribed size requirements for
the training, development, and test sets. This ap-
proach allows us to create new training, develop-
ment, and test sets that minimize NE contamination
between them.

4 Datasets

While it is known for ACE05 and CoNLL04 that
both datasets were created using random split-
ting (Li and Ji, 2014; Gupta et al., 2016), we
assume a similar splitting strategy for the other
datasets in our analysis (ADE, CoNLL03, GENIA,
NYT, and SciERC), as random splitting is con-
sidered standard practice (Gorman and Bedrick,
2019), resulting in similar patterns of contamina-
tion across all datasets, as shown in Figure 3. This
is further justified by the split ratios for all datasets
in Table 1.

100% 75% 50% 25% 0% 25% 50% 75% 100%

Contamination Rate

186174552551 279 24

2142ours274 ours

56196357955000 4368

52969ours59719256466 ours4285 1731

16692946718021854 1362 484

14951ours1795 ours

92259295288 237 57

1218ours113 ours

95522231 17

1135ours 8922131 ours 5

38452410335427 172

3502ours356 ours

10051642528772050 1438 905

11626ours1448 ours

SciERC

NYT

GENIA

CoNLL04

CoNLL03

ADE

ACE05
Test Split Train Split

Partial sample contamination Full sample contamination

Clean samples

Partial sample contamination Full sample contamination

Clean samplesClean samples

Figure 3: Original training (blue) and test (purple) sam-
ple contamination rates for the test and train splits of
ACE05, ADE, CoNLL03, CoNLL04, GENIA, NYT,
and SciERC (development splits are not included here).
With our method (green), we can reduce contamination
rates across the board, resulting in non-contaminated
datasets for ACE05, ADE, CoNLL04, GENIA, and Sci-
ERC, while reducing contamination for CoNLL03 and
NYT.

Dataset Train (%) Dev (%) Test (%)

ACE05 69.22 16.66 14.12
ADE 90.01 0.00 9.99
CoNLL03 68.12 15.42 16.48
CoNLL04 63.98 16.03 19.99
GENIA 90.00 0.00 10.00
NYT 84.89 7.55 7.56
SciERC 69.26 10.23 20.51

Table 1: Original training, development, and test split
ratios relative to total dataset size.

To quantify the effect of different degrees of con-
tamination on the generalization ability of NER
models, we sample new training sets Cγtrain ⊂
Dtrain with increasing partial contamination rates
γ from 0 to 100% in 10% increments from the
original training sets using Algorithm 1.

The size of these sets is fixed to the minimum
of the amount of clean and partially contami-
nated training samples (Eq. 13), since at most
|¬c(Dtrain)| samples can be clean while at most
|c(Dtrain)| samples can be partially contaminated.
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Hyperparameter ACE05 GENIA SciERC NYT CoNLL04
Diffusion ITER ASP Diffusion ITER ASP Diffusion ITER ASP Diffusion ITER ASP Diffusion ITER ASP

Epochs 100 25 200 100 25 200 100 25 200 100 25 200 100 25 200
Learning rate (T5) 2.0e−5 3.0e−5 5.0e−6 3.0e−5 3.0e−5 5.0e−6 2.0e−5 3.0e−5 5.0e−6 2.0e−5 3.0e−5 5.0e−6 2.0e−5 3.0e−5 5.0e−6

Learning rate (Task) - 3.0e−4 1.0e−5 - 3.0e−4 1.0e−5 - 3.0e−4 1.0e−5 - 3.0e−4 1.0e−5 - 3.0e−4 1.0e−5

Weight decay 0.01 0.08 0.1 0.01 0.08 0.1 0.01 0.08 0.1 0.01 0.08 0.1 0.01 0.08 0.1
Warmup steps 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.1 0.1 0.01 0.05 0.1 0.01 0.05
Task weight decay 0.01 0.11 0.1 0.01 0.11 0.1 0.01 0.1093 0.1 0.01 0.11 0.1 0.01 0.11 0.1
Task warmup steps 0.1 0.05 0.05 0.1 0.05 0.05 0.1 0.05 0.1 0.1 0.05 0.05 0.1 0.05 0.05
Batch size 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Dropout 0.1 0.2 0.0 0.1 0.2 0.0 0.3 0.2 0.3 0.1 0.2 0.0 0.1 0.2 0.0

Table 2: Hyperparameters for three models on five datasets. The following GPUs were used for training: ITER
was trained on an H100, ASP on an RTX 4090, and DIFFUSIONNER on an A100. The total computing time is
approximately 976.25 hours.

We keep both the size and content of the original
test set fixed in our experiments. For each of the
eleven contamination rates, we sample five splits,
resulting in 55 training splits for each dataset.

min(|¬c(Dtrain)| , |c(Dtrain)|) (13)

Algorithm 1 Algorithm for creating a training split
with contamination level γ ∈ [0, 100] for seed σ ∈
[0, 4].

Require: Dtrain, Dtest, γ, σ
N ← min(|¬c(Dtrain)|, |c(Dtrain)|)
Nclean = N · (1− γ/100)
Ncontam. = N · (γ/100)
A← RANDSELECT(¬c(Dtrain), Nclean, σ)
B ← RANDSELECT(c(Dtrain), Ncontam., σ)
Cγ,itrain ← A ∪B

Furthermore, we duplicate the original test set
for each of the 55 training splits into three separate
test sets

Cγtest = Dtest

Cγclean test = {(xi, Ei \ Etrain)}
Cγcontam. test = {(xi, Ei ∩ Etrain)}

∀(xi, Ei) ∈ Dtest

where both Cγclean test and Cγcontam. test contain all
samples from the test set, but only entities that are
either clean or contaminated.

5 Experiments

We outline the experimental setup for three main
investigations: contamination training across mul-
tiple NER models, the application of the minimum
cut algorithm for dataset splitting, and the quan-
tification of state-of-the-art model overestimation
due to contamination. The main results and evalua-
tions are also presented, focusing on correlations

between model evaluation and contamination, over-
estimation of F1 values in the state of the art, and
analysis of datasets generated using minimum cut.

5.1 Contamination Training
To test how NER models are affected by differ-
ent degrees of dataset contamination, we train an
ensemble of three different state-of-the-art NER
architectures on 55 training splits (see Section 4)
for each of the five respective datasets. We use
the encoder-decoder model ASP (Liu et al. (2022),
flan-t5-base), the diffusion-based approach DIFFU-
SIONNER (Shen et al. (2023), bert-large-cased)
and the encoder-based model ITER (Hennen et al.
(2024), deberta-v3-small). If available, we use ex-
isting hyperparameter configurations (see Table 2).
We do not perform any hyperparameter optimiza-
tion, as we do not want to find the optimal per-
formance of each model, but rather observe the
behavior of a model as it is exposed to increasing
contamination rates.

Results. Our observations, supported by figures,
tables and significance tests, are as follows:

1. When comparing different state-of-the-art ar-
chitectures at different degrees of contamina-
tion, all suffer a similar performance loss on
clean NEs compared to contaminated NEs
(see Figures 4, 5, and 11). Especially a higher
Recall Delta in Figure 4 with higher contam-
ination illustrates the models are failing to
classify enough clean NEs. The original Re-
call is hence not a meaningful measure since
it is inflated by contaminated NEs. This is
further verification of the need for test sets
of clean – non-contaminated – NEs, for an
accurate measure of model performance.

2. In addition, the contamination rate has a mod-
erate to strong Pearson correlation with the
∆F1 (0.57). This statistically proves that
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Figure 4: Recall delta (Rorig. −Rclean) and F1 delta (∆F1) for each model over all datasets.

0 20 40 60 80 100

60

70

80

90

100

F1

ITER

0 20 40 60 80 100

60

70

80

90

F1

Dataset: NYT
ASP

0 20 40 60 80 100

50

60

70

80

90

F1

DiffusionNER

0 20 40 60 80 100
Train Contamination (%)

60

70

80

90

F1

ITER

0 20 40 60 80 100
Train Contamination (%)

60

70

80

90

100

F1

Dataset: ACE05
ASP

0 20 40 60 80 100
Train Contamination (%)

20

40

60

80

F1
DiffusionNER

Original Contamination original contam. clean

Figure 5: ITER, ASP, DIFFUSIONNER performance on original, clean and contaminated NYT and ACE05 test sets
measured by original F1, F1(clean) (Eq. 7) and F1(conta) respectively. Other datasets are visualized in Figure 11.

higher contamination leads to more inflated
F1 scores, again highlighting the need to eval-
uate the aforementioned performance gap in
future work. All of this indicates, that a lower
contamination rate leads to a more meaning-
ful F1 score, which motivates the creation of
non-contaminated NER datasets.

3. To compute the Pearson correlation, we focus
on the influence of the contamination rate on
the different F1 values measured over all 825
evaluated models (see Figure 6). This evalua-
tion is also done on a per-model basis in Fig-
ure 10. The contamination rate has a weaker
correlation (0.18) with F1clean on clean NEs
while it correlates moderately to strongly with

contaminated F1 (0.52) – determined in the
same way as in Equation 7, confirming that the
contamination mostly benefits contaminated
NEs.

4. We find no difference in performance per class
when it comes to clean NEs from over- or
under-represented classes (see Figure 9), al-
though this is only assessable for ITER.

5.2 Quantifying Overestimation

To test how state-of-the-art models are overesti-
mated by contaminated NEs, we train and test DIF-
FUSIONNER, ASP, and ITER on the full train set
of all datasets and quantify the decrease in perfor-
mance with F1(clean) and ∆F1 using the original,
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Figure 6: Correlation across all datasets, models, con-
tamination rates. ** denotes high statistical significance.

contaminated and clean test splits.

Results. Training ASP, DIFFUSIONNER and
ITER on all original datasets, with evaluation on
all three test splits per dataset, produces the follow-
ing results shown in Table 3.

There is a noticeable difference between F1clean
and F1orig for all architectures. This further sug-
gests that the generalization ability of current state-
of-the-art models is being overestimated. The re-
call distance between the original and clean scores
is roughly twice the ∆F1 – in part because we
are approximating P(clean)∗ with P(orig.) – an over-
approximation when Ei

(contam.) is large in terms
of size. This evaluation highlights the applicability
of ∆F1 and recall to gain more meaningful insight
into the real-world performance of future models.

Dataset
contam. %

Model Recall↑ clean
Recall ↑ ∆R ↓ F1 ↑ clean

F1↑ ∆F1 ↓

ACE05 DIFFUSIONNER 87.22 71.00 16.22 86.73 77.88 8.85
70% ASP 90.50 78.58 11.92 90.20 83.86 6.34

ITER 89.66 76.91 12.75 89.53 82.69 6.84

CoNLL04 DIFFUSIONNER 88.23 83.73 4.50 87.42 85.15 2.27
83% ASP 89.16 82.90 6.26 88.30 85.11 3.19

ITER 91.41 87.43 3.98 91.23 89.21 2.02

GENIA DIFFUSIONNER 77.86 71.90 5.96 79.07 75.88 3.19
74% ASP – – – – – –

ITER 79.95 73.07 6.88 80.82 77.15 3.67

NYT DIFFUSIONNER 96.41 81.82 14.59 95.03 87.35 7.68
99% ASP 94.42 68.66 25.76 94.39 79.48 14.91

ITER 94.53 72.65 21.88 94.48 82.12 12.36

SciERC DIFFUSIONNER 70.21 66.67 3.54 66.26 64.64 1.62
50% ASP 68.75 65.25 3.50 67.86 66.11 1.75

ITER 71.25 67.39 3.86 69.24 67.36 1.88

Table 3: Comparison of Recall and F1 scores (original,
clean) and ∆F1 when training on original training set.
ITER (476M) uses deberta-v3-large, ASP (229M) uses
FLAN-T5-base and DIFFUSIONNER (381M) uses bert-
large-cased. Training runs for ASP on GENIA did not
converge.

5.3 Minimum Cut
To evaluate the minimum cut algorithm in gen-
erating dataset splits, we apply it to the datasets
from Figure 3. We then evaluate its effectiveness
by attempting to reconstruct the original dataset
proportions, as shown in Table 1.

Results. By applying the minimum cut algorithm
as described in Section 3.3, we achieve 0% con-
tamination on ACE05, SciERC, GENIA, and ADE,
and significantly reduce contamination in the re-
maining datasets.

In addition, for the resulting splits, it is crucial
to consider the number of entity type samples per
split, to ensure that each split contains a sufficient
number of NE type samples for effective training
and testing. Figure 13 visualizes all NE type counts
for all minimum cut dataset splits and compares
them to the original datasets. While the algorithm
does not focus on one NE type distribution per
se, it produces adequate splits for almost all (see
Figures 3 and 13). For ACE05 and GENIA where
the algorithm did not achieve satisfactory (at least
20) entity type counts, we try 80-10-10 split ratios
and find 0% contamination as well as adequate
counts per class. We encourage future users of the
algorithm to try different train-dev-test sizes and
consider the number of NE types.

6 Conclusion and Future Work

Our work extends and statistically substantiates the
effects of entity contamination identified in previ-
ous research. Based on our results – specifically the
correlation between contamination and the model
performance gap between clean and contaminated
NEs and the associated inflation of reported F1
scores – and the calls for better scoring (Søgaard
et al., 2021), we create a novel method for splitting
NER datasets that can help other researchers cre-
ate clean splits and scores for existing and future
datasets. Performance on new entities is quantified
by the introduced metrics F1clean and ∆F1, which
are easy to calculate for future researchers and
provide intuitive insights into the memorization-
generalization gap. Furthermore, we share contam-
inated and clean test splits for all datasets for fairer
and better generalization comparisons between ex-
isting and future models.

Future work could analyze possible relationships
between contamination rate and different training
and model sizes. While achieving 0% contamina-
tion should be considered ideal, alternative data
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splitting techniques could be explored to account
for NE types while minimizing contamination as
much as possible. Although expensive and highly
complex, one could explore relation extraction, an-
alyze overlapping triples and relations, and apply
similar data splitting methods to this area of re-
search.

7 Limitations

Our work has several limitations. First, our exper-
iments do not account for the fact that a higher
per-sample contamination rate increases both the
number of NEs per sample and the NE contamina-
tion rate (see Figures 7 and 8). However, we see
that the number of entities per class remains mostly
the same across contamination splits (see Figure
9).

Second, we only analyze supervised training
methods, which means that our results may not
be directly applicable to Large Language Models
(LLMs) or other training paradigms, thus stimulat-
ing future research. Third, in our experiments we
are limited to relatively small, English-language
datasets – mainly because of Equation 13. Fourth,
we deliberately exclude the development set from
our analysis to avoid complexities such as increased
overlap. Finally, our minimum cut partitioning
approach does not take into account the number
of entity classes. Therefore, we need to include
an additional step to verify that all named entity
types are sufficiently represented across training,
development, and test splits. When using the min-
imum cut algorithm, increasingly powerful com-
puting resources are required as the dataset size
increases. We also acknowledge that the creation
of minimum cut splits reduces comparability be-
tween existing and future models, but we argue that
future NER datasets should consider more robust
partitioning strategies, and new models should ad-
ditionally be evaluated with ∆F1 on the published
contaminated and clean test splits.

8 Licenses

We provide information about the license or terms
of use and/or distribution of datasets used in this
work. ACE05 (Li and Ji, 2014) uses the LDC
User Agreement for Non-Members. We provide
a script in our Github to re-create all clean and
contaminated test splits, as well as splits with dif-
ferent contamination levels required for our exper-
iments. ADE (Gurulingappa et al., 2012) is pub-

0 10 20 30 40 50 60 70 80
Sample Contamination Rate (%)

1k

5k

10k

26k

Nu
m

be
r o

f E
nt

iti
es

 (l
og

sc
al

e)

Sample Contamination Rate to Number of Entities

Figure 7: For some datasets, the number of entities
cannot be controlled by randomly sampling from the
contaminated part of the train set. The more named enti-
ties in a sample, the greater the chance of contamination,
so more contamination occurs as the number of entities
per named entity increases.
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Figure 8: The correlation between NE contamination
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linearly increasing. Not all values in (0,0) can be dis-
played.

licly available here3, but has no attributed license.
For CoNLL04, (Roth and Yih, 2004; Gupta et al.,
2016) published at NAACL 2004 is thus under
Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 International License. This also

3https://huggingface.co/datasets/ade-benchmark-
corpus/ade_corpus_v2
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applies to CoNLL03 (Sang and Meulder, 2003).
GENIA (Kim et al., 2003) is listed in the GE-
NIA Project License for Annotated Corpora. NYT
(Riedel et al., 2010) is listed under the User Li-
cense Agreement for The New York Times Anno-
tated Corpus (LDC2008T19). SciERC (Luan et al.,
2018) was presented at EMNLP 2018 and is there-
fore licensed under Creative Commons Attribution
4.0 International License
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Figure 9: Per-class performance degradation over all datasets on ITER with respect to training counts in each
contamination split. No class-specific scores are available for ASP and DIFFUSIONNER.
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Figure 9: [continued] Per-class performance degradation over all datasets on ITER with respect to training counts
in each contamination split. No class-specific scores are available for ASP and DIFFUSIONNER.
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Figure 10: Combined correlation statistics and per model. Missing values are not statistically significant.
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Figure 11: Detailed model performance on each dataset over all contamination rates. Training ASP on GENIA
did not converge. We hypothesize that due to the highly nested NEs. DIFFUSIONNER may have imperfect
hyperparameters as it struggles on splits with a lower number of NEs (ACE05 and GENIA).
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Figure 12: Per-class comparison between the original test set and the contaminated and clean entity splits –
created depending on the original training set – and sharing for easier and better generalization and memorization
evaluations.
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Figure 13: Entity class counts for original development and test sets vs. our minimum cut clean splits for all datasets.
For all datasets, the training splits were successfully created and omitted for simplicity, readability and y-axis
scaling issues.
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