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Abstract

Large Language Models (LLMs) are being used
more and more extensively for automated eval-
uation in various scenarios. Previous stud-
ies have attempted to fine-tune open-source
LLMs to replicate the evaluation explanations
and judgments of powerful proprietary mod-
els, such as GPT-4. However, these methods
are largely limited to text-based analyses under
predefined general criteria, resulting in reduced
adaptability for unseen instructions and demon-
strating instability in evaluating adherence to
quantitative and structural constraints. To ad-
dress these limitations, we propose a novel eval-
uation framework, ARJudge, that adaptively
formulates evaluation criteria and synthesizes
both text-based and code-driven analyses to
evaluate LLM responses. ARJudge consists
of two components: a fine-tuned Analyzer that
generates multi-faceted evaluation analyses and
a tuning-free Refiner that combines and refines
all analyses to make the final judgment. We
construct a Composite Analysis Corpus that
integrates tasks for evaluation criteria genera-
tion alongside text-based and code-driven anal-
ysis generation to train the Analyzer. Our re-
sults demonstrate that ARJudge outperforms
existing fine-tuned evaluators in effectiveness
and robustness. Furthermore, it demonstrates
the importance of multi-faceted evaluation and
code-driven analyses in enhancing evaluation
capabilities.

1 Introduction

The rapid advancement of Large Language Models
(LLMSs) has highlighted the critical need for robust
output evaluation methods (Li et al., 2024a). While
proprietary models like GPT-4 have emerged as pre-
dominant evaluation approaches given their supe-
rior capabilities, transparent and controllable con-
siderations have driven research toward fine-tuning
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Figure 1: Comparison of previous fine-tuned evaluators
and our framework. Left is a former model and Right
is our ARJudge. The Analyzer adaptively defines eval-
uation criteria and conducts multi-faceted analyses in
various forms, e.g., text or code. The Refiner combines
all preceding analyses and produces the final evaluation.

open-source LL.Ms for evaluation tasks (Kim et al.,
2024a,b). Recent work has established the viabil-
ity of open-source alternatives by training LLMs
to replicate the evaluation explanations and judg-
ments of proprietary models (Ke et al., 2024; Liu
et al., 2024; Hu et al., 2024; Kim et al., 2024b).
However, existing fine-tuned evaluators rely
solely on text-based analysis with predefined eval-
uation criteria, leading to two key limitations (Li
et al., 2024b; Hu et al., 2024; Zhu et al., 2023;
Kim et al., 2024b). First, evaluation based on pre-
defined criteria can not fully capture the nuanced
task requirements. For example, general criteria
for writing, such as conciseness or logical structure,
may not be sufficient for evaluating creative writing
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tasks that require an engaging plot. Moreover, it is
challenging to effectively adapt predefined criteria
to new and diverse instructions (Li et al., 2024b).
Second, LLM-based evaluators demonstrate signif-
icant instability in evaluating adherence to complex
instruction requirements, particularly objective cri-
teria such as quantitative or structural constraints
(Zhou et al., 2023). For instance, they struggle to
reliably assess basic textual attributes such as word
counts, a common requirement in writing-related
instructions (Zhang and He, 2024). These limita-
tions also extend to the evaluation of formatting
constraints.

In this work, we argue that developing robust
fine-tuned evaluators requires the ability to adap-
tively generate evaluation criteria and conduct
multi-faceted analyses (Saha et al., 2024). These
abilities enhance the evaluators’ comprehensive
performance in both what to evaluate and how to
evaluate. Even for unseen instructions, the evalua-
tors can define tailored criteria and assess instruc-
tions with nuanced precision. Furthermore, evalua-
tors should use automated tools to assess objective
requirements (Wang et al., 2024a). These tools
provide reproducible feedback, offering reliable
verification that helps overcome LLMs’ inherent
limitations in objective evaluation.

To address these challenges, we propose AR-
Judge, a novel evaluation framework that com-
bines adaptive criteria generation with text-based
and code-driven analysis generation to comprehen-
sively assess LLM outputs. ARJudge comprises
two core components: (1) an Analyzer that gener-
ates multi-faceted evaluation with text-based and
code-driven analyses and (2) a Refiner that synthe-
sizes and refines these analyses to produce well-
reasoned judgments. We train ARJudge on a cu-
rated Composite Analysis Corpus, which contains
tasks for generating evaluation criteria and per-
forming multi-faceted analyses in both text and
code. This corpus enables the Analyzer to learn
context-sensitive evaluation logic, such as deriving
criteria from instructions and assessing responses
accordingly. Extensive experiments across multi-
ple benchmarks demonstrate ARJudge’s superior-
ity and robustness over existing open-source eval-
vators. Our further analysis validates the neces-
sity and effectiveness of integrating code-driven
analyses, which improve accuracy in evaluating
instruction following by up to 11.1% compared to
text-only methods.

The main contributions of this work include:

* We propose ARJudge, a novel evaluation
framework that combines adaptive criteria
generation with text-based and code-driven
analyses to evaluate LLM outputs. By in-
corporating code-driven analytical capabili-
ties, ARJudge extends beyond traditional text-
based evaluation approaches.

* We develop a training dataset, Composite
Analysis Corpus, containing samples for eval-
uation criteria generation, text-based analyses,
and code-driven analyses. It is the first dataset
to incorporate multi-faceted analytical sam-
ples for evaluator training.

* Extensive experiments across multiple bench-
marks demonstrate ARJudge’s superior per-
formance over existing fine-tuned evaluators.

2 Composite Analysis Corpus

Collecting comprehensive and detailed evaluation
analysis data is essential for fine-tuning an LLM to
improve evaluation performance (Li et al., 2024b;
Hu et al., 2024). Previous studies (Li et al., 2024b;
Hu et al., 2024; Kim et al., 2024a,b) focus exclu-
sively on text-based analysis with predefined gen-
eral evaluation criteria, showing limited general-
ization and robustness (Huang et al., 2024a). To
address these limitations, we develop a compos-
ite analysis corpus to improve LLMs’ ability to
determine what to evaluate and how to evaluate
effectively. The process of constructing the corpus
involves three steps: (1) establishing evaluation
criteria specifically for each instruction (§2.1), (2)
conducting text-based analyses to assess responses
using multiple criteria (§2.2), and (3) designing
code-driven analyses to assess whether responses
satisfy the objective requirements of the instruc-
tions (§2.3).

First of all, we collect a large set of instruc-
tions from publicly available preference datasets
based on Li et al. (2024b). These datasets (Zheng
et al., 2023a; Nakano et al., 2021; Havrilla, 2023;
Ji et al., 2023) consist of preference pairs of LLM-
generated responses to identical instructions. Each
pair is annotated with a preference label that iden-
tifies the better response. In line with Li et al.
(2024b), non-English instructions and multi-turn
interactions are removed. Then, we establish multi-
ple evaluation criteria for each instruction.
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Figure 2: The overview of the corpus construction. “R1” and “R2” denote two candidate responses with a preference
annotation. “Sample Responses” are newly sampled responses that we use as references to generate evaluation
questions and code scripts. Step (1) produces two types of evaluation questions, respectively. Step (2) and Step (3)
develop corresponding text-based and code-driven analyses.

2.1 Establishing Evaluation Criteria

We define the evaluation criteria in the form of
concise questions (Zeng et al., 2024; Kim et al.,
2024b). Each question describes one aspect that a
high-quality response should fulfill. For example,
responses to the instruction “Draft an email to my
deputy chairperson requesting their signature on
the attached approval letter in a professional and
polite manner” can be evaluated using the follow-
ing three questions: ‘‘I. Does the response include
a polite and professional request for the deputy
chairperson to sign the attached approval letter? 2.
Does the response mention the attached approval
letter and provide the necessary details about it?
3. Does the response offer assistance with any
questions or clarifications the deputy chairperson
might have about the approval letter?” We estab-
lish two types of questions by prompting an LLM
in a zero-shot manner. Type 1 focuses on gener-
ating text-based analysis, while Type 2 involves
generating Python functions and using execution
feedback as code-driven analysis.

To generate the first type of question, we prompt
an LLM using three sample responses produced by
advanced LLMs as well as the instruction . Such
sample responses offer a reference understanding
of the instruction. The specific prompt is shown
in Figure 6. We collect three questions gte,: for
each instruction x following Zeng et al. (2024) and
construct training samples in the format (z, grezt)-

For the second type, we must generate new in-
structions x’ with objective constraints in advance,
since their proportion in the datasets is relatively
low. We use the self-instruct (Wang et al., 2023b)

method to add objective constraints to the instruc-
tions and then produce evaluation questions for ver-
ifying these constraints. Following the verifiable
instructions! summarized by Zhou et al. (2023), we
first generate several objective constraints for each
instruction, such as “word count” and “end with”.
The specific prompt is shown in Figure 7. Then,
we randomly select one to three constraints to add
to each instruction and collect the corresponding
evaluation questions g.qq.. The training samples
are constructed in the format (2, geoge )-

2.2 Collecting Text-based Analysis

We perform pairwise text-based analyses by pro-
viding an LLM with the instruction z, two re-
sponses 1 and o, and their corresponding eval-
uation questions {qc.¢ }. The output necessitates a
comparative analysis for each question, followed
by a final determination of the better response.
The specific prompt is shown in Figure 8. We
exclude analyses where the final decision contra-
dicts existing human annotations in the datasets.
The training samples are constructed in the format
(x ® 11 D T2 D Grewts Ytext). Here, yieqr denotes
the associated analysis result for the evaluation
question qgeyt, Which begins with the hint: “Let’s
evaluate whether responses meet the criteria’.

2.3 Developing Code-driven Analysis

To enhance evaluation robustness, we develop code-
driven analyses to assess evaluation questions de-
signed to verify objective requirements. The pro-

Verifiable instructions are instructions that can be objec-
tively verified for compliance using tools.
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cess is completed in two steps: Collecting Python
Scripts and Reverse Validation. The first step
involves generating Python functions to analyze
whether a response satisfies the objective require-
ment included in an evaluation question. The sec-
ond step reversely checks whether the generated
function’s code is designed to analyze the evalua-
tion question.

Collecting Python Scripts. Given three sample
responses and one evaluation question gcqe, We
prompt an LLM to generate a Python function for
verifying the compliance of sample responses. The
input of the function is one response, and the out-
put is a comprehensive intermediate of the results
related to the evaluation questions. To ensure good
generalization, the sample responses are a mix of
outputs from advanced and weak LLMs. The spe-
cific prompt is shown in Figure 9. After prompting,
we extract the generated Python function using
Markdown parsing. We preliminarily filter out in-
valid code using two checks: 1. The written Python
function fails to execute with the provided sample
responses as input; 2. The function fails when
tested with an additional set of three sample re-
sponses. By filtering out invalid code, we ensure
that the generated Python functions are executable
and generalizable.

Reverse Validation. To further validate whether
the generated Python functions fulfill their intended
purpose, we design a reverse validation process.
Specifically, we first prompt an LLM with the plain
text of the evaluation function, requesting an expla-
nation of the expected outputs. Second, we prompt
the LLM again to check for consistency between
the explanation and its associated question:

e ~ LLM(f, prompt

eacplain) (1)
r = LLM(e, Geode: promptcheck)

where f is the evaluation function, e denotes
the generated explanation, r indicates whether
the explanation is consistent with the question
Geode- The specific prompts are included in Fig-
ure 10. If the function is found to be inconsistent
with the aim of the evaluation question, it is dis-
carded. Finally, we collect the effective Python
functions and construct training samples in the for-
mat (' B 11 B 72D Geodes Yeode)- HETE, Yeode TEPIE-
sents the Python function f concatenated with the
code output hint “Let’s write a Python function”.

3 ARJudge

After constructing the corpus, we collect around
25K composite training samples. We fine-tune
an LLM based on them and develop ARJudge,
a novel evaluation framework that adaptively evalu-
ates LLM-generated responses and integrates both
text-based and code-driven analyses. ARJudge con-
sists of two components: a fine-tuned Analyzer
and a tuning-free Refiner. Figure 1 presents the
overall framework. The Analyzer is trained on the
Composite Analysis Corpus to adaptively generate
evaluation criteria for any instruction and produce
multi-faceted evaluation, including both text-based
and code-driven analyses. The Refiner leverages
the general LLM’s generalist evaluation capabili-
ties to refine the analysis results produced by the
Analyzer and make the final judgment. This frame-
work partially preserves the generalist evaluation
pattern of the general model while enhancing the
evaluation pattern in the fine-tuning dataset.

3.1 Training

We train the Analyzer with diverse training samples
and tasks, including question generation samples
(%, Gtext) and (', Geode )» text-based analysis sam-
ples (x ® r1 © r2 @ Grext, Ytext ), and code-driven
analysis samples (' & r1 ® r2 B Geode, Yeode)- BY
training on these combined samples, we aim to en-
hance the LLM’s comprehensive analytical capabil-
ities, enabling it to adaptively propose evaluation
criteria and conduct multi-faceted analyses. We
employ distinct prompt templates for question gen-
eration and response analyses, while maintaining a
consistent prompt template for both text-based and
code-driven analyses. Different forms of analyses
are triggered by their respective starting hints.

3.2 Evaluation

Given an instruction z and two responses r; and
r9, the Analyzer first generates several evaluation
questions. Then, it performs a comparative analy-
sis of the two responses based on each evaluation
question. Notably, the Analyzer autonomously de-
termines whether to generate Python functions ac-
cording to question characteristics. If the analysis
text includes Python functions, the Analyzer will
call a Python interpreter to execute them and return
the execution feedback as the code-driven analysis
results. Finally, the above multi-faceted analysis
results are aggregated and sent to the Refiner for
further evaluation. We instruct the Refiner to evalu-
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ate the above analysis and refine it with a renewed
focus on the instruction’s requirements. The Re-
finer will determine which response is better in a
zero-shot manner.

4 Experiments

4.1 Implementation Details

To construct the Composite Analysis Corpus, we
prompt GPT-40 to generate evaluation questions
for each instruction and collect text-based analysis.
Besides, we prompt Claude-3.5-Sonnet to generate
Python functions for code-driven objective analy-
sis. We selected Claude-3.5-Sonnet due to its supe-
rior performance in code generation. We fine-tune
Qwen?2.5-7B-Instruct (Qwen, 2025) on the corpus,
creating a model we refer to as the Analyzer for
performing multi-faceted evaluations. We use the
same model in a zero-shot setting as the Refiner,
with carefully crafted prompt templates. All gener-
ation in the main experiments is performed using
greedy decoding by setting the temperature to 0.
Details are described in Appendix A.

4.2 Benchmarks

We assess our framework on various evaluation
datasets. Four human-annotated pairwise evalua-
tion test sets are included: PandalLM Eval (Wang
et al., 2024b), Auto-J Eval (Li et al., 2024b), MT-
Bench (Zheng et al., 2023a), and the LLMBar se-
ries (Zeng et al., 2024). These sets were chosen for
their broad coverage of evaluation tasks and their
diverse set of evaluation criteria. For the LLM-
Bar series, we use four adversarial sets, Neighbor,
GPTInst, GPTOut, and Manual, as unseen sets. Un-
like the other three sets and our training datasets,
where candidate responses are directly sampled
based on instructions, the responses in LLMBar
are artificially designed to challenge evaluators by
incorporating potentially misleading qualities, such
as a more engaging tone. One GPT-4-annotated
pairwise evaluation set, JudgeLM Eval (Zhu et al.,
2023), is adopted. For all pairwise sets, samples
with two equally preferred responses were omitted.
Additionally, an instruction-following benchmark,
IFEval (Zhou et al., 2023), is incorporated. We
use this benchmark to assess the effectiveness of
code-driven analysis.

4.3 Baselines

Tuning-free General LLMs We compare our
framework with several general LLMs that can

evaluate response quality. Three powerful LLMs,
GPT-40, Deepseek-v3 (DeepSeek-Al, 2024), and
Claude-3.5-Sonnet, are used due to their balanced
and comprehensive performance across most evalu-
ation tasks (Huang et al., 2024a). Additionally, the
backbone model used for fine-tuning the Analyzer,
Qwen2.5-7B-Instruct (Qwen, 2025), is employed
to demonstrate improvements. The implementation
of closed-source models is done via their respective
APIs.

Fine-tuned Evaluators We employ five fine-
tuned evaluation models that can conduct pairwise
evaluation. PandalLM (Wang et al., 2024b) com-
pares two responses and identifies the better one.
Auto-J (Li et al., 2024b) and Prometheus (Kim
et al., 2024b) support both single-response scoring
and pairwise response comparison. Themis (Hu
et al., 2024) rates each response based on various
criteria and determines the better one by compar-
ing their scores. JudgeLM (Zhu et al., 2023) pro-
vides a comparison of two responses along with
their corresponding scores. We use official models
with 7B parameters for PandalLM, Prometheus, and
JudgeLLM, and models with 13B and 8B parameters
for Auto-J and Themis, respectively.

4.4 Main Results

The main comparative results against baseline
methods are shown in Table 1. Following Zeng
et al. (2024) and Li et al. (2024b), we calculate
the accuracy of the pairwise preference evaluation
with and without swapping the two candidate re-
sponses, respectively. The average accuracy and
the positional agreement rate are displayed as Acc
and Agr. The performance in LLMBAar is the aver-
age of its four subsets. We observe that ARJudge
surpasses all fine-tuned evaluators of similar model
sizes. Notably, on the challenging LLMBar set,
ARJudge outperforms the best fine-tuned baseline,
Prometheus2-7B, by 26.7%. Even without more
exposure to challenging samples like LLMBar, AR-
Judge achieves an average 15.6% improvement
over its backbone model, Qwen2.5-7B-Instruct.
Additionally, ARJudge’s performance is compa-
rable to that of powerful tuning-free LLMs on
some test sets. For example, ARJudge performs on
par with GPT-40 and Claude-3.5-Sonnet on Auto-J
Eval and with DeepSeek-V3 on LLMBar. Besides,
compared to other fine-tuned methods, ARJudge
can generalize to more test sets.

Table 2 further presents detailed evaluation re-
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JudgeLM Eval PandaLM Eval Auto-J Eval MTBench LLMBar

Models Acc Agr Acc Agr Acc  Agr Acc Agr Acc Agr Ave
Tuning-free

GPT-40 81.8  88.1 83.1 875 786 825 788 854 798 834 804
Claude-3.5-Sonnet 829 864 864 914 782 855 80.8 89.1 834 903 823
Deepseek-v3 832 89 874 878 829 842 797 87.0 68.6 81.6 804
Qwen2.5-7B 800 780 80.7 792 738 651 752 721 526 657 725
Fine-tuned

PandalLM-7B 699 747 731 718 652 71.0 740 784 259 825 61.6
Auto-J-13B 719 8.6 772 872 797 875 750 842 278 83.6 675
Prometheus2-7B 765 803 763 709 751 772 743 795 415 7T77.6 687
JudgeLM-7B 81.8 860 703 814 66.1 802 646 77.1 281 820 622
Themis-8B 66.4 - 61.3 - 39.2 - 349 - 266 - 457
ARJudge 81.0 833 824 835 785 803 783 813 682 729 717

Table 1: Results of different evaluators on the pairwise comparison. “Acc” and “Agr” denote average accuracy and
positional agreement rate. “Ave” is the average “Acc” across all test sets. The highest average accuracy is marked

by bold for two series models, respectively.

LLMBar

Models Neighbor GPTInst GPTOut Manual
Tuning-free

GPT-40 81.0 86.4 75.5 76.1
Claude-3.5-Sonnet 83.2 87.0 76.6 87.0
Deepseek-v3 61.6 76.6 69.2 67.4
Qwen2.5-7B 47.0 56.0 61.7 45.6
Fine-tuned

PandalLM-7B 14.9 21.2 48.9 18.5
Auto-J-13B 20.5 21.2 479 21.7
Prometheus2-7B 25.4 31.0 63.8 45.6
JudgeLM-7B 21.3 25.5 41.5 23.9
Themis-8B 20.2 32.6 31.9 21.7
ARJudge 72.4 734 60.7 67.4

Table 2: Evaluation accuracy on test subsets of LLMBar
series. The highest average accuracy is marked by bold.

sults in different subsets of LLMBar. Our ARJudge
performs the best on most subsets and has made
significant improvements compared to the back-
bone model, Qwen2.5-7B-Instruct. On LLMBar-
Neighbor, it achieves higher evaluation accuracy
than the advanced DeepSeek-V3.

4.5 Ablation Study

To further investigate the effectiveness of our frame-
work, we analyze several variations of ARJudge,
as detailed below. (1) w/o FT: we replace the fine-
tuned Analyzer with the same tuning-free model as
the Refiner and prompt the model to generate evalu-
ation questions and conduct the multi-faceted eval-
uation. (2) w/o FT&MEF: we apply the model as in
the w/o FT setting, generating Chain-of-Thought
(CoT) evaluations directly. (3) w/o Refine: we re-

Models JudgeLM PandaLM Auto-] MTBench LLMBar
Qwen2.5-7B 80.0 80.7 73.8 75.2 52.6
ARJudge 81.0 82.4 78.5 78.3 68.2
-w/o FT 73.1 75.6 68.7 70.0 62.5
-w/o FT&MF 74.7 722 65.6 67.8 63.7
-w/o Refine 81.7 82.8 79.6 79.1 63.7

Table 3: Comparison results under ablation settings.
“JudgeLM”, “PandaLM”, and “Auto-J” are abbreviation
of the associated testsets. “FT” and “MF” represent
fine-tuning and multi-faceted.

tain the fine-tuned Analyzer and make slight mod-
ifications to the prompt for the Refiner to directly
output the label of the better response.

The ablation results are shown in Table 3. We
observe accuracy drops across all test sets with
the ablation variants, indicating the effectiveness
of each component in ARJudge. Specifically, fine-
tuning significantly enhances a general LLM’s eval-
uation capability, enabling it to propose reason-
able evaluation questions and analyze responses
accordingly. Evaluation questions help the LLM
focus on relevant aspects and enhance its evalua-
tion performance. Interestingly, we find that the
effects of refinement differ between the fine-tuned
and tuning-free Analyzer. In JudgeLM Eval, Pan-
dalLM Eval, Auto-J, and MTBench, the refinement
keeps evaluation accuracy under the fine-tuned An-
alyzer’s analysis (w/o Refine vs. ARJudge) but
significantly decreases it under the tuning-free An-
alyzer’s analysis (Qwen2.5-7B vs. w/o FT&MF).
It may be related to the controversial phenomenon
that LLMs cannot truly self-correct (Huang et al.,
2024b). Additionally, for challenging samples in
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LLMBiar, refinement significantly strengthens the
performance of the fine-tuned and tuning-free ones.

4.6 Capability to Evaluate Using Code

Code-driven analysis plays a crucial role in robustly
verifying the objective requirements of instructions.
To assess the effectiveness of code-driven analy-
sis, we use the execution results of the IFEval of-
ficial code as a benchmark and compute the Con-
sistency between its judgment (Loose or Strict)
and that of other models. We compare ARJudge
with GPT-40, Claude-3.5-Sonnet, and Qwen2.5-
7B-Instruct. These three models are prompted to
make judgments in a zero-shot manner. As shown
in Figure 3, our framework achieves a significant
improvement over the backbone model, Qwen2.5-
7B-Instruct, with the help of code-driven analysis.
Moreover, ARJudge performs comparably to GPT-
40 and Claude-3.5-Sonnet, demonstrating its poten-
tial as a viable alternative. Notably, the execution
success rate of the generated code is 100%.

4.7 Effect of Increasing Analysis Quantity

We extend our analysis by scaling up the number
of question sampling attempts, exploring the ef-
fect of increasing analysis quantity. We set the
temperature to 0.2 to sample evaluation questions
multiple times, ensuring diversity in the gener-
ated questions. As shown in Figure 4, evaluation
accuracy improves with more analyses for most
datasets, including JudgeLM Eval, Auto-J Eval,
PandalLM Eval, and MTBench. The highest accu-
racy is achieved with four or five rounds of question
sampling and their combined analysis. However, in
the LLMBar series, additional analysis had little or
even a negative impact on accuracy. This may be
because the Analyzer has greater uncertainty about
the evaluation samples in these sets, and additional
analysis further amplifies this uncertainty.

4.8 Generalization of Evaluation Capability

To further demonstrate the generalization of evalu-
ation capability, we compute the ratio of judgment
change after refining as shown in Table 4. Combin-
ing Table 3 and 4, we observe that the Refiner main-
tains evaluation performance in JudgeLM Eval,
PandalLM Eval, Auto-J Eval, and MTBench, while
significantly increasing it in the LLMBar series.
This indicates that re-analysis improves the gen-
eralization of evaluation capability, especially in
handling unseen challenging samples.
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Figure 4: Evaluation results with increasing analyses.
The right displays the results of four subsets in LLMBar.

Models JudgeLM PandalLM Auto-J] MTBench LLMBar
W—C 39 4.4 23 2.1 7.8
C—-W 4.6 4.8 34 29 3.6

Table 4: Ratio of change after refining. “W—C” de-
notes a judgment changing from wrong to correct after
refinement, while “C—W” denotes the opposite.

5 Case Studies

We show an example of a multi-faceted evalua-
tion generated by ARJudge in Figure 5. Given an
instruction and two responses, the Analyzer first
generates three evaluation questions and the corre-
sponding multi-faceted analyses. The last question
is analyzed by constructing a Python function and
assessing execution feedback to determine require-
ment completeness. Then, the Refiner reviews the
preliminary analysis and refines it by reconsidering
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Response 1: Here is a draft cover letter that references each of the
key functions listed in the job description: Dear Hiring Manager, |
am writing to express my strong interest in the Secretary of State
position with the National Parks Association.[...]

Instruction: I'm applying to the job of "secretary of state" for the national parks association in the UK. The job description is as follows: [...]
Can you write afirst draft of a cover letter? Include a reference to each bullet point. | will discuss my experience, and we can edit paragraphs.

Response 2: | am writing to apply for the role of Secretary of State

for the National Parks Association in the UK. With my background
in environmental policy, | believe | have the necessary skills and
experience to make a positive contribution to the role. [...]

edits based on the applicant's background. [...]
Q83: Does the response include a reference to each bullet point?

=)

Multi-faceted Analysis

Q1: Does the response provide a clear, structured, and relevant first draft tailored to the "secretary of state"?
Response 1 provides a clear, structured, and relevant first draft. [...] Response 2, on the other hand, is much shorter and less detailed. [...]

Q2: Does the response maintain a professional tone and format suitable for a cover letter, and does it align
with the instruction to discuss and edit based on the applicant's background?

Response 1 is well-structured, with a clear introduction, body paragraphs[...] Response 2 does not explicitly invite further discussion or

] f" &3 Outputs: 50% include for Response 1; 0% include for Response 2.

Refinement

Assessment of Preliminary Analysis: [...] Refinement of Analysis: [...] Conclusion: Therefore, Response 1 is better.

Figure 5: An example of evaluation generated by ARJudge.

the instruction’s requirements.

6 Related Work

6.1 Tuning-Free Generalist Evaluators

Tuning-free generalist evaluators leverage the inher-
ent capabilities of large language models (LLMs)
to assess responses through the use of carefully
designed prompts, offering exceptional flexibility
and scalability. Various techniques have been em-
ployed to enhance the accuracy of these evalua-
tions, such as in-context learning (Fu et al., 2023;
Lin and Chen, 2023)), adding task-specific crite-
ria (Kotonya et al., 2023; Zhuo, 2024), and Chain-
of-Thought analysis (Liu et al., 2023; Zhuo, 2024)).

Despite their versatility, tuning-free evalua-
tors often suffer from biases such as position
bias (Raina et al., 2024; Wang et al., 2023a; Zheng
et al., 2023b) and verbosity bias (Khan et al.,
2024; Ye et al., 2024), which can skew evaluation
outcomes. Methods like response-adapted refer-
ences (Zhang et al., 2024), multi-agent collabora-
tion (Xu et al., 2023), and divide and conquer (Saha
et al., 2024; Li et al., 2023) have been proposed to
mitigate these issues, improving the fairness and
reliability of LLM-based evaluations.

6.2 Specialized Fine-Tuned Evaluators

While tuning-free approaches provide flexibil-
ity, specialized fine-tuned evaluators are explic-
itly trained on human-labeled preference data to
achieve higher accuracy and domain-specific re-

liability. These models undergo supervised fine-
tuning or reinforcement learning-based optimiza-
tion to align their evaluations more closely with
expert judgments (Li et al., 2024b; Wang et al.,
2024b; Kim et al., 2024a,b; Xie et al., 2024).

While fine-tuned evaluators offer improved accu-
racy, they face notable challenges in scalability and
generalization (Huang et al., 2024a). Unlike tuning-
free approaches, which can adapt to new tasks with
minimal configuration, fine-tuned models require
ongoing updates through methods such as super-
vised fine-tuning or direct preference optimiza-
tion (Rafailov et al., 2024). To remain effective
amidst evolving benchmarks (Zheng et al., 2023a;
Zeng et al., 2024), Auto-J (Li et al., 2024b) lever-
ages a large dataset of scoring and preference an-
notations while incorporating dynamic in-context
learning techniques, such as few-shot prompting, to
enhance adaptability. Similarly, FLAMe (Vu et al.,
2024) combines fine-tuning on labeled preference
data with large-scale multitask instruction tuning,
enabling it to dynamically adapt to new evaluation
criteria while maintaining flexibility.

7 Conclusion

This work proposes a novel evaluation framework,
ARJudge, which adaptively designs evaluation cri-
teria and performs multi-faceted evaluation in both
text and code. A new Composite Analysis Corpus,
designed for both criteria generation and multi-
faceted analysis, is developed to train ARJudge.
Extensive experiments demonstrate the superiority
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and robustness of our framework across diverse
evaluation benchmarks. Notably, with code-driven
analyses, ARJudge gains strong evaluation capa-
bilities for assessing instruction following. Future
studies can explore the effective use of more tools,
such as a search engine, to improve evaluation hon-
esty and mitigate hallucination.

Limitations

While our framework outperforms various baseline
approaches in LLLM evaluation, there is still room
for improvement. Our method is limited to using
code to enhance evaluation robustness and does not
consider additional tools such as search engines or
specialized agents. Furthermore, our approach par-
tially relies on the LLM’s own reasoning ability for
evaluation. If the LLM itself lacks strong reasoning
capabilities, the effectiveness of refinement may be
limited. Additionally, our evaluation is restricted
to pairwise comparisons and does not enhance the
model’s ability to score single responses. Although
single-response scoring can be achieved by mod-
ifying the Refiner’s prompt, its accuracy has not
been properly aligned.
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A Training Settings

We train Qwen2.5-7B-Instruct® to perform as the
Analyzer. The number of training samples in the

Zhttps://huggingface.co/Qwen/Qwen2.5-7B-Instruct

Composite Analysis Corpus is around 25K, in-
cluding 7.7K evaluation question generation sam-
ples, 6K code-driven analysis samples, and 11K
text-based analysis samples. The corpus is con-
structed based on instructions from Auto-J3 (Li
et al., 2024b). We train it for 2 epochs with a
global batch size of 96 and we save checkpoints
for every 50 steps. The learning rate is set to le-5.
We use DeepSpeed ZeRO3 and FlashAttention to
reduce computational memory usage. The training
is implemented on 6 computing devices. We use
Pytorch with the 2.4.0 version, Transformers with
the 4.44.2 version, and deepspeed with the 0.14.4
version.

B Prompt Templates

Prompt templates used for dataset construction are
shown in Figure 6, Figure 7, Figure 8, Figure 9,
and Figure 10.

Prompt templates used for the Analyzer and Re-
finer of our ARJudge are shown in Figure 11, Fig-
ure 12, and Figure 13.

C Quality Analysis of Data Generation

Table 5 displays the success rate of each step in the
filtering process.

Filtering Remaining rate
Check 1 (execute with the sample responses in the prompt) 100%
Check 2 (execute with another three sample responses) 99%
Reverse Validation 94%

Table 5: Filtering Process and Corresponding Remain-
ing Rates

Overall, the high remaining rates across all steps
indicate the effectiveness of our generation pipeline
and the reliability of the final dataset. The reverse
validation step, in particular, plays a crucial role in
maintaining high-quality standards.

To enhance reproducibility, we have included
representative examples of both accepted and re-
jected Python scripts in the supplementary material,
along with the rationale for their inclusion or ex-
clusion.

D Training Dataset Statistics

Table 6 presents a comprehensive summary of
dataset statistics, including the distribution of task
types, average length of analysis, and diversity of
criteria. This provides clearer insight into the scope
and representativeness of the training data.

3https://github.com/GAIR-NLP/auto-j
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Prompt for evaluation question geneartion

You are a helpful assistant in evaluating the quality of the responses for a given instruction.
Please propose at most three concise evaluation questions about whether a potential response is a good response for a given instruction.
Another assistant will evaluate different aspects of the response by answering all the questions.

## Rules of the evaluation:
1. You should prioritize evaluating whether the response honestly/precisely/closely executes the instruction.
2. Responses should NOT contain more/less than what the instruction asks for, as such responses do NOT precisely execute the instruction.

## Requirements for Your Output:

The evaluation questions should **specifically** target the given instruction instead of some general standards, so the questions may revolve
around key points of the instruction. Questions are presented from most important to least important. You should directly give the questions
without any other words. Format is "Questions:\n1. {question1}\2. {question2}...".

## Instruction:
{instruction}

## Reference Response 1:
{response1}

## Reference Response 2:
{response2}

## Reference Response 3:
{response3}

Figure 6: Prompt template for evaluation question generation.

Prompt for constraint geneartion \

You are an expert for writing constraints. These constraints can be clearly and objectively check whether they have been followed
correctly.

## Examples of Verifiable Constraint Types:

1. Keywords (Include Keywords: Include keywords {keyword1}, {keyword2} in your response; Keyword Frequency: In your response, the word
word should appear {N} times; Forbidden Words: Do not include keywords {forbidden words} in the response; Letter Frequency: In your
response, the letter {letter} should appear {N} times; etc.)

2. Language (Response Language: Your ENTIRE response should be in {language}, no other language is allowed; etc.)

[..]

7. Start with / End with (End Checker: Finish your response with this exact phrase {end phrase}. No other words should follow this phrase;
Quotation: Wrap your entire response with double quotation marks; etc.)

8. Punctuation (No Commas: In your entire response, refrain from the use of any commas; etc.)

## Examples of Instruction and Generated Constraints:

Instruction:

Write a limerick about Hannah, a college student, doing an internship at a coffee company. Make sure that her father would love the limerick.
Constraints:

1. Include the words "intern" and "grow".

2. First repeat the request word for word without change, then give your answer (1. do not say any words or characters before repeating the
request; 2. the request you need to repeat does not include this sentence)

[.]

## Requirements for Your Output:

Please write additional different 8 verifiable constraints for the following instruction. You should randomly select verifiable constraint types
from the above examples of verifiable constraint types. The constraint form can be arbitrary like examples of instruction and generated
constraints. The constraints should be tailored to the context of the instruction. Format is "Constraints:\n1. {constraint1)\2. {constraint2}...".
Don't state the type name in constraints.

## Instruction:
{instruction}

Figure 7: Prompt template for objective constraint generation.

Training Samples Quantity ~ Average Length E More Statistics of Type 2 Questions
Total 35144 111.5
- Text Analysis Samples 21060 81.7
- Python Script Samples 6322 2479

Table 7 provides detailed statistics on Type 2 ques-
tion coverage. Specifically, we categorize objec-
Table 6: Statistics of Training Samples by Category tive constraints into 8 types following (Zhou et al.,
2023) and report their proportions in the fine-tuning
set. This addition helps illustrate how ARJudge
generalizes across diverse constraint-based evalua-
tions.
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- Evaluation Question Samples 7762 81.2




Prompt for text-based evaluation \

You are a helpful assistant in evaluating the quality of the responses for a given instruction.
Select the better response, Response 1 or Response 2, based on the evaluation questions. The two responses are generated by two different
Al chatbots respectively.

## Rules of the evaluation:

1. You should prioritize evaluating whether the response honestly/precisely/closely executes the instruction.

2. Responses should NOT contain more/less than what the instruction asks for, as such responses do NOT precisely execute the instruction.
3. You should avoid any potential bias and your judgment should be as objective as possible. For example, the order in which the responses
were presented should NOT affect your judgment, as Response 1 and Response 2 are **equally likely** to be the better.

## Requirements for Your Output:

1. You should do the evaluation based on thinking about the evaluation questions.

2.You should first provide an analysis of each response based on the comparison between them, and then end your output with either
"Therefore, Response 1is better" or "Therefore, Response 2 is better," verbatim.

3. Do NOT say both/neither are good. Do NOT say "Response 1 is better" or "Response 2 is better" at the beginning.

4.You should do reasoning and thinking **before** claiming which is better.

5.Format is "Analysis of Question 1: {analysis}\n\nAnalysis of Question 2: {analysisf\n\nAnalysis of Question 3: {analysis}\n\n..Therefore,
Response {idx} is better." Don't use comment symbols like "*".

## Instruction:
{instruction}

## Response 1:
{response1}

## Response 2:
{response2}

## Evaluation Questions:
{criteria}

Figure 8: Prompt template for text-based evaluation.

Prompt for code-driven evaluation \

You are a helpful assistant in writing evaluation functions in Python to evaluate whether a response aligns with the given evaluation
question.

## Reference Response 1:
{response1}

## Reference Response 2:
{response2}

## Reference Response 3:
{response3}

## Evaluation question:
{question}

## Requirements for Your Output:
1. You should write a Python function named "evaluate" to evaluate whether an input string "response" aligns with the given evaluation
question. Use ".format()" instead of f-string. Use escape character "\\n" if necessary.
2.You should comprehensively understand the question and write Python function suitable for evaluating all responses.
3."Starts with" or "Ends with" mean the first or last several characters of the response should meet some requirements. The whitespaces at the
beginning or end of sentences can be ignored.
4. The Python function must print not only the main results but also intermediate calculations or additional information that helps to
understand the logic of the code.
5.DO NOT print out the original responses.
6. The execution lines are as follows:
“python
# Example usage
responses = [responsel, response2, response3]
for i, response in enumerate(responses, 1):
print("\nEvaluating Response {}:".format(i))
evaluate(response)

Figure 9: Prompt template for code-driven evaluation.

F Further Explanation of Positional
Agreement Rate

While ARJudge shows a slightly lower Agr com-
pared to Auto-J-13B, it is important to note that
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Prompt for reverse validation

Example:
## Evaluation Function:
“python
{function}

## Explanation:
{explanation}

## Evaluation Function:
““python
{function}

-

You are an expert in converting Python evaluation function code into the corresponding explanation text. | will provide the evaluation
function code. Please strictly follow the code to convert it into the corresponding explanation text.

Please convert the following evaluation function into explanation stored in a list:

Figure 10: Prompt template for reverse validation.

Prompt for the Analyzer: question

## Requirements for Your Output:
revolve around key points of the instruction.

## Instruction:
{instruction}

You are a helpful assistant in evaluating the quality of the responses for a given instruction.
Propose 3-6 concise evaluation questions about whether a potential response is a good response for a given instruction.

The evaluation questions should **specifically** target the given instruction instead of some general standards, so the questions may

Figure 11: Prompt template for question generation of the Analyzer.

Prompt for the Analyzer: multi-faceted evaluation

## Requirements for Your Output:

## Instruction:
{instruction}

## Response 1:
{response1}

## Response 2:
{response2}

## Evaluation Question:
{criteria}

I

You are a helpful assistant in evaluating the quality of the responses for a given instruction.
Evaluate the following two responses based on the given evaluation question.

1. You should do the evaluation based on thinking about the evaluation question.
2. You should provide an analysis of each response based on the comparison between them.
3. You can write Python code to do the analysis for some verifiable evaluation question.

Figure 12: Prompt template for multi-faceted analysis of the Analyzer.

Auto-J-13B is nearly twice the size of our model
and uses samples with swap responses to en-
hance positional agreement. When compared to
models of similar scale—such as Pandal.M-7B,
Prometheus2-7B, and JudgeLM-7B—ARJudge
achieves superior or comparable Average Agr
scores as shown in Table 8.

We believe the current level of positional agree-
ment already demonstrates strong alignment. More
importantly, ARJudge consistently outperforms all

baselines across every evaluation benchmark, par-
ticularly on the more challenging LLMBar dataset
(ARJudge Acc: 68.2, others < 42). This highlights
the effectiveness of our multi-faceted analysis and
refinement design, which contributes to more ro-
bust and accurate evaluations.

G Granular Ablation of Analysis Types

Table 9 presents a more fine-grained ablation study
that evaluates a model variant with code-driven
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Prompt for the Refiner N
You are a helpful assistant in evaluating the quality of the responses for a given instruction.
Select the better response, Response 1 or Response 2. The two responses are generated by two different Al chatbots respectively.
## Rules of the evaluation:
1. You should prioritize evaluating whether the response honestly/precisely/closely executes the instruction.
2. Responses should NOT contain more/less than what the instruction asks for, as such responses do NOT precisely execute the instruction.
3. You should avoid any potential bias and your judgment should be as objective as possible. For example, the order in which the responses
were presented should NOT affect your judgment, as Response 1 and Response 2 are **equally likely** to be the better.
## Requirements for your output:
1. You should provide a detailed explanation of your analysis, and then always end your response with either "Therefore, Response 1is
better." or "Therefore, Response 2 is better." verbatim.
2.Do NOT say both/neither are good. Do NOT say "Response 1 is better" or "Response 2 is better" at the beginning.
3. You should do reasoning and thinking **before** claiming which is better.
## Instruction:
{instruction}
## Response 1:
{responsel}
## Response 2:
{response2}
## Analysis by preliminary evaluators:
{analysis}
## Your analysis (Give a detailed explanation: step 1: what do you think of the analysis by other evaluators?; step 2: can you refine the
analysis by reconsidering the requirements of the instruction?; step 3: which response is better?):

J

Figure 13: Prompt template for refinement of the Refiner.

Constraint Type Count Percentage
Keywords 1,983 26.2%
Language 303 4.0%
Length Constraints 1,193 15.8%
Detectable Content 627 8.3%
Detectable Format 1,035 13.7%
Change Cases 374 4.9%
Start with / End with 1,741 23.0%
Punctuation 316 4.2%
Total 7572 100%

Table 7: Constraint Types with Corresponding Counts
and Percentages

analysis disabled, in order to isolate the contribu-
tion of each analysis type. We do not evaluate
a setting with only code-driven analysis, as most
existing benchmarks are primarily designed for as-
sessing content quality rather than objective con-
straints.

The results demonstrate that code-driven analy-
sis contributes meaningfully to performance, par-
ticularly on MTBench, Auto-J Eval, and IFEval.
The variation in performance gains across these
benchmarks reflects their differing focuses: MT-
Bench and Auto-J Eval emphasize open-ended con-
tent evaluation, where textual coherence and rea-

Model Average Agr
GPT-40 85.38
Claude-3.5-Sonnet 88.54
Deepseek-v3 85.30
Qwen2.5-7B 72.02
Pandal.M-7B 76.65
Auto-J-13B 85.48
Prometheus2-7B 78.65
JudgeLM-7B 81.33
Themis-8B -
ARJudge 80.85

Table 8: Average Agreement Scores Across Different
Models

ARJudge MTBench (Acc) Auto-J (Acc) IFEval (Consistency)
Complete 78.3 78.5 85.6
Text Only 77.4 77.9 76.1

Table 9: Performance Comparison of ARJudge Methods
across Different Benchmarks

soning dominate, while IFEval targets instruction-
following with verifiable constraints, where code-
based analysis plays a more central role.
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