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Abstract

Test-time compute is emerging as a new
paradigm for enhancing language models’
complex multi-step reasoning capabilities, as
demonstrated by the success of OpenAI’s o1
and o3, as well as DeepSeek’s R1. Compared
to explicit reasoning in test-time compute, im-
plicit reasoning is more inference-efficient, re-
quiring fewer generated tokens. However, why
does the advanced reasoning capability fail to
emerge in the implicit reasoning style? In
this work, we train GPT-2 from scratch on
a curated multi-step mathematical reasoning
dataset and conduct analytical experiments to
investigate how language models perform im-
plicit reasoning in multi-step tasks. Our find-
ings reveal: 1) Language models can perform
step-by-step reasoning and achieve high accu-
racy in both in-domain and out-of-domain tests
via implicit reasoning. However, this capabil-
ity only emerges when trained on fixed-pattern
data. 2) Conversely, implicit reasoning abilities
emerging from training on unfixed-pattern data
tend to overfit a specific pattern and fail to gen-
eralize further. Notably, this limitation is also
observed in state-of-the-art large language mod-
els. These findings suggest that language mod-
els acquire implicit reasoning through shortcut
learning, enabling strong performance on tasks
with similar patterns while lacking generaliza-
tion. Resources are available on the GitHub.

1 Introduction

Chain-of-Thought (CoT; Wei et al. (2022)) has
sparked the development of explicit reasoning in
large language models (LLMs). The subsequent
rise of large reasoning models (OpenAI, 2024b;
Google, 2024; DeepSeek-AI, 2025) based on long
CoT demonstrates impressive capabilities across
various tasks (Rein et al., 2023; MAA, 2024;
Jimenez et al., 2024). Recent works have shown
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that such reasoning capabilities can even be dis-
tilled into smaller models (DeepSeek-AI, 2025).1

Different from explicit reasoning, implicit rea-
soning offers greater inference efficiency by re-
lying on fewer tokens to generate an answer (Deng
et al., 2023). Yet, it falls short of the performance
achieved by explicit reasoning (Deng et al., 2024;
Allen-Zhu and Li, 2024). Why can’t implicit rea-
soning develop advanced reasoning capabilities?

While recent advances in mechanistic inter-
pretability have aimed to demystify the implicit rea-
soning processes of language models (LMs), most
studies are limited to single-step reasoning (Meng
et al., 2022; Wang et al., 2023; Nanda et al., 2023),
which does not meet the expectation for handling
complex reasoning tasks, such as advanced math-
ematical problems. Meanwhile, for multi-step im-
plicit reasoning, previous work primarily focuses
on reasoning over factual knowledge (Yang et al.,
2024a; Biran et al., 2024), which may be hindered
by issues such as inflated reasoning performance
due to memorizing entity co-occurrences in the pre-
training data (Elazar et al., 2023; Kang and Choi,
2023; Ju et al., 2024).

In this paper, to minimize the impact of mem-
orization and investigate the underlying reason-
ing mechanisms, we explore implicit reasoning
through the lens of mathematical problems. Mathe-
matical reasoning primarily depends on arithmetic
operations that follow strict logical rules, which re-
quire algebraic manipulation based on specific oper-
ators and operands rather than recalling pre-trained
knowledge like entity relationships. Given that the
strength of explicit reasoning stems from stepwise
rationales, the first question we seek to address is
RQ1: Can language models perform stepwise
reasoning internally? To investigate this, we
train GPT-2 from scratch on our synthetic multi-

1In this paper, “smaller” is relative to super large LMs like
Deepseek R1, which has 671B parameters.
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Figure 1: A failure of generalization in language models
trained on data with unfixed patterns, namely “Variable
as Subtrahend Plight”. When trained on unfixed premise
order, the model learns a reasoning shortcut that benefits
from addition commutativity. This shortcut enables
the model to perform implicit reasoning by chaining
numbers, which fails when variables are subtrahends.

step dataset composed of sequential mathematical
operations, which means premises are arranged in
the same order as they appear in the actual step-by-
step calculation process. The experimental results
and activation patching (Vig et al., 2020; Meng
et al., 2022) plots show that LMs can fully learn
to do stepwise reasoning internally and
generalize to problems with more steps,
provided they are trained on data where
all premises are presented sequentially.

However, the premises are not always presented
sequentially in real-world reasoning tasks, requir-
ing LMs to organize the information internally.
Therefore, based on the findings from RQ1, this pa-
per seeks to answer a more general research ques-
tion, RQ2: How do language models think
internally if the premise order is not
fixed? In contrast to the accuracy saturation
in RQ1, accuracy drops significantly when the
premise order is unfixed. We conduct further anal-
ysis and find LMs fail to learn stepwise
implicit reasoning when the premise order
is not fixed, struggling with “Variable
as Subtrahend Plight”. Specifically, as shown
in Figure 1, models trained on an unfixed premise
order overfit to an easy pattern in the data, relying
on a shortcut that benefits from addition commuta-
tivity. This shortcut allows the model to solve the
problem by directly chaining numbers, while the
presence of variables in the subtrahend position dis-
rupts this shortcut. Additional mechanistic analysis
validates our hypothesis.

Previous work demonstrated that even current
state-of-the-art (SoTA) LLMs also struggle with im-
plicit reasoning (Yu, 2024). Based on our previous
findings, we aim to investigate RQ3: How do LLMs
perform multi-step implicit reasoning?

We find “Variable as Subtrahend Plight”
also persists in SoTA LLMs, indicating
that these models, trained on diverse
unfixed premise corpora, are also relying
on shortcuts for multi-step implicit
reasoning. This further validates the correctness
and generalizability of our findings.

To summarize, in this paper, we investigate the
internal mechanisms of implicit reasoning in trans-
formers and uncover why the advanced reasoning
capabilities observed in explicit reasoning do not
emerge in implicit reasoning. While we reveal that
current LMs primarily rely on shortcuts for implicit
reasoning, a silver lining is that a stepwise reason-
ing pattern could indeed emerge through training.
Such a pattern underpins the advanced reasoning
capabilities of LMs, and we envision that future
advanced strategies could help form this pattern.

2 Related Work

2.1 Mechanistic Interpretability of Language
Models

Mechanistic interpretability (MI) aims to uncover
and explain the internal workings of models. The
research of mechanistic interpretability in language
models primarily focuses on three key areas: fea-
tures within model representations (nostalgebraist,
2020; Gurnee et al., 2023; Zhou et al., 2024), cir-
cuits connecting these features (Wang et al., 2023;
Hanna et al., 2023; Prakash et al., 2024), and uni-
versality across diverse models and tasks (Chughtai
et al., 2023; Gurnee et al., 2024).

Mathematical tasks, due to their significance in
representing the reasoning capabilities of language
models, have been widely studied in MI (Hanna
et al., 2023; Kudo et al., 2024; Zhou et al., 2024).
However, most of the existing studies (Stolfo et al.,
2023; Yu and Ananiadou, 2024; Zhang et al., 2024;
Chen et al., 2024) focus on single-step mathemati-
cal reasoning. How LMs perform multi-step math-
ematical reasoning implicitly remains poorly un-
derstood. To bridge this gap, we employ activation
patching (Vig et al., 2020) to track the information
flow and reverse-engineer the behaviors of LMs in
multi-step arithmetic computations.

2.2 Multi-step Implicit Reasoning

As opposed to explicit reasoning, implicit reason-
ing is performed in the hidden states instead of
extra tokens. Previous studies typically investigate
implicit reasoning in two domains: factual reason-

9471



ing (Wang et al., 2024; Yang et al., 2024a,b; Biran
et al., 2024) and mathematical reasoning (Stolfo
et al., 2023; Nanda et al., 2023; Deng et al., 2024).
However, progress in reasoning over factual knowl-
edge risks being inflated by entity co-occurrence
learned from pre-training data (Elazar et al., 2023;
Kang and Choi, 2023; Ju et al., 2024). While math-
ematical reasoning is less susceptible to this issue
due to the variability of operands and operators,
LMs may rely on shortcuts or shallow heuristics
to predict the results (Liu et al., 2023; Nikankin
et al., 2025; Xie et al., 2024), which are often over-
looked in studies on multi-step implicit reasoning.
In our study, we scrutinize the impact of shortcuts
and represent the internal mechanisms driving the
observed phenomenon to the investigation of the
multi-step implicit mathematical reasoning abilities
in Transformer-based LMs.

3 General Setup

Task. Focusing on reasoning capability rather
than other factors (e.g., factual knowledge memo-
rization), we use mathematical problems as a lens.
To further minimize the impact of natural language
complexity, we shift our focus to mathematical for-
mulas rather than problem statements in natural
language. Specifically, we construct a synthetic
dataset of multi-step sequential modular addition
and subtraction as our testbed for analysis. As
shown in Figure 1, except for the first step, each
step of the computation involves a variable from
the previous step, a number (we name it operand
later), and an operator (i.e., “+” or “−”). Follow-
ing Ye et al. (2024), we consider using arithmetics
mod23 to avoid numbers being split into multiple
tokens and prevent errors from large number calcu-
lations, thereby focusing on reasoning itself rather
than calculation.

Data. For training data, we generate different
multi-step calculation templates for questions at
each length (ranging from 1 to 5 steps) and then
randomly use K different groups of variable names
to instantiate each template.2 To prevent LMs from
memorizing intermediate results from the training
set rather than performing actual reasoning to solve
the math problems in our test set, we filter out all
templates with preceding calculations, apart from
the first step, that overlap with the templates of the
training set during the test set generation process.

2K = 2 in this paper. Please refer to Appendix A for more
details about the data generation process.

For example, if “f=1+2,s=3-f,s»?” appears in the
training set, then “a=1+2,b=3-a,c=b+5,c»?” is not
allowed to appear in the test set because the first
two steps of the former are the same as the latter
regardless of variable names.

We evaluate both in-distribution (ID) and out-
of-distribution (OOD) performance, which are dis-
tinguished by the maximum reasoning steps of the
training set, with ID not exceeding the maximum
steps of the training set (i.e., 5-step) and OOD be-
ing one or two steps more than the maximum steps
of the training set (i.e., 6-step or 7-step). ID gener-
alization aims to evaluate whether the model learns
the latent rules of the training set, while OOD gen-
eralization is designed to assess whether the model
genuinely acquires some reasoning skills.

Model & Optimization. Following Ye et al.
(2024), we use a standard 12-layer GPT-2
model (Radford et al., 2019) and replace its
positional embeddings with rotary embeddings
(RoPE) (Su et al., 2024) to enable the model to
learn length generalization (i.e., to generalize its
ability to solve more steps in multi-step reason-
ing tasks than those seen during training). We use
AdamW (Loshchilov and Hutter, 2019) with learn-
ing rate 10−4, batch size 1600, weight decay 0.1
and 2000 warm-up steps.

Activation Patching. Activation patching (Vig
et al., 2020; Meng et al., 2022) is a strategy for
identifying the important modules that causally af-
fect the output by intervening on their latent acti-
vations. Specifically, if a module is important, the
alteration of its activation will significantly affect
the model’s output, whereas an unimportant one
will have little to no impact. Typically, the method
needs two inputs, an original one (e.g., “a=1+4,d=5-
a,c=1+d,c»?”) and another with a slight differ-
ence (e.g., “a=6+4,d=5-a,c=1+d,c»?”), and three
forward passes: The clean run and the corrupted
run take the above two inputs separately and cache
activations of the model’s components, such as at-
tention or MLP outputs. In the patched run, we
run the model on the original input but replace the
specific activation with the cached activation from
the corrupted run. Following previous work (Zhang
et al., 2024), we measure the changes in the out-
put logits of the ground truth tokens. Then, we
compute the patching effect (PE) as:

PE =
Logitcl(r)− Logitpt(r)

Logitcl(r)
, (1)
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where r is the correct answer of the original in-
put and cl, pt denote the clean and patched run
separately. The experiments are conducted on 100
randomly selected samples.

We iterate activation patching over a set of acti-
vations and compare how much they affect the final
output, which allows us to localize which activation
matters and ultimately reverse-engineer the under-
lying circuit. In practice, we utilize sliding window
patching (Hase et al., 2023) with window size 2×2,
where at each token position, the representations
of the 2 × 2 region formed by the current layer
and the next layer, along with the current token
and the next token, are substituted by the cached
activations from the corrupted run.3

4 Can Language Models Perform
Stepwise Reasoning Internally?

Previous work found that smaller LMs (∼7B) can
hardly do multi-step mathematical reasoning cor-
rectly without CoT, while a 70B level model can
only achieve an accuracy of about 50% in 4-hop
reasoning (Yu, 2024). Since previous work demon-
strated that externalizing reasoning step by step
enhances performance in mathematical tasks (Wei
et al., 2022), a question is: does the poor perfor-
mance of implicit reasoning arise from the inability
to employ this step-by-step reasoning style? We be-
gin our investigation by training our GPT-2 model
on the synthetic dataset to learn implicit reasoning.

4.1 Results

Language models are able to perform implicit
mathematical reasoning with near-complete ac-
curacy when trained. We first analyze whether
our model is capable of solving multi-step im-
plicit mathematical reasoning. Figure 2 shows the
model’s accuracy on both the ID and OOD test
data throughout the optimization. The model not
only achieves 100% accuracy on implicit reasoning
tasks from the same distribution (ID set) but also
generalizes effectively to tasks requiring longer
reasoning steps in the OOD set. To be specific,
the model achieves 99% accuracy in tasks that re-
quire an additional step of reasoning and nearly
90% accuracy in tasks that require two more. This
implies that the model truly learns some implicit
reasoning skills rather than simply memorizing an-
swers, since our model has never seen any training

3We study the choice of metrics in Appendix B.1 and
window sizes in Appendix B.2.
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Figure 2: Test accuracy during the training stage. We
find that Transformers are able to learn to reason im-
plicitly and generalize well to those that require longer
reasoning steps.

example of the same length as in the test time.

4.2 The Working Mechanism of Model

Setting. To investigate whether the language
model is based on understanding (i.e., gathering
all the information together first and then comput-
ing) or reasoning step by step, we use activation
patching to reveal the model’s internal thought pro-
cess. Two different experiment setups are used to
reveal how the information is transmitted and what
information is transmitted separately.
• Tracing the information flow. To gain insights
into the working mechanisms of the model, we first
need to know the path through which the token’s
information is transmitted to the output, i.e., how
the information of a specific token affects the out-
put. To this end, we change only one operand or
operator in the original input and identify the acti-
vations that have an influence on the final output
by replacing activations.
• Tracking result-related information. The first
setting explains how information is transmitted to
the output, yet what information is transmitted
is still unclear. Therefore, we formulate a vari-
ant of the first setting to track the information
related to intermediate results (i.e., the value of
an intermediate variable). Specifically, we mod-
ify a set of operands and compare the differences
in patching effects when the intermediate results
are either identical or distinct. For example, if
we aim to track the related information of “d”
in “a=4+6,d=a+5,c=1+d,c»?”, We need to mod-
ify the operands while keeping the value of “d”
fixed at 15 (e.g., “a=4+1, d=a+10,c=1+d,c»?”) and
compare it with a case where the result changes
(e.g., “a=4+1,d=a+4,c=1+d,c»?”, where d=9). If
the model is performing step-by-step reasoning,
the patching effect will be more pronounced in
the first two steps due to the change in “a” and
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Figure 3: Activation patching on residual stream across
layers and token positions when changing the first num-
ber in the problems. All the premise orders are forward.

will then diminish from the third step onward in
the fixed-result setting, as the subsequent results
remain unchanged.

Language models are able to do step-by-step rea-
soning internally. To trace the information flow,
we first examine the residual stream patching plot
by only altering one operand.4 The patching effects
across layers and positions are shown in Figure 3.
We observe that a significant portion of the patch-
ing effects concentrate at the end of each step and
exhibit a clear trend of gradually propagating along
a diagonal line. This pattern forms the foundation
of step-by-step reasoning, which implies that each
intermediate result builds upon the last.

Based on the discovered information flow, we
investigate the information behind these activations
by tracking result-related information and adding
constraints to ensure the results remain the same
when changing the input. By comparing the re-
sults of the result-varied setting (Figure 5a) and the
result-fixed setting (Figure 5d), we find: The region
between Step 2 and Step 3, where the impact dimin-
ishes (highlighted by the green box in Figure 5d),
aligns precisely with the segment between the sec-
ond and third steps in the information flow (Fig-
ure 3). In the fixed-result setting, the substituted
activations retain the same information, leading to a
minor patching effect. However, in the unfixed set-
ting, the patching effect is more pronounced. This
provides evidence that this area stores information
related to the intermediate results.

To further validate that the language model per-
forms step-by-step reasoning by reusing intermedi-
ate results stored in a specific area from the last step,
we conduct an additional experiment to examine its
behavior when the information from previous steps
is masked by varying the attention window size

4We show the information flow related to operators in
Appendix C.

1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

Attention Window Size

A
cc

ur
ac

y

Figure 4: Test accuracy under different attention win-
dow sizes on 5-step problems. A window size of n
means that a token can focus on itself and its preceding
n− 1 tokens.

(see implementation details in Appendix D). Specif-
ically, each step consists of 6 tokens, and when we
scale up the attention window size to bigger than 6,
the model is able to access the information stored
from the previous step. We present the model’s
accuracy under different attention window sizes in
Figure 4. Our findings show that when the atten-
tion is restricted to the current step (i.e., window
size = 6), the model completely loses its reasoning
ability. However, once the attention is expanded to
include the previous step’s results, accuracy recov-
ers rapidly. This supports the hypothesis that the
model follows a step-by-step reasoning pattern, as
evidenced from a different perspective.

To sum up, the model computes the result of each
step once it concludes, and this information is then
utilized by the subsequent step in the next layers,
establishing a step-by-step computation pattern.

Attention mechanism propagates intermediate
results, and MLP modules enhance features re-
lated to inputs and outputs. Intervening on hid-
den states only provides us with a glimpse of the in-
formation flow, but the roles of various components
within the model remain unclear. By decomposing
the causal effects of contributions of attention and
MLP modules (Figure 5b,5e and Figure 5c,5f), we
find a decisive role for attention modules in the
middle layers and MLPs in early and final layers.
In conjunction with the findings on information
flow, we infer that the attention layers are respon-
sible for extracting the information needed in the
current step and gradually transferring intermediate
computational information to deeper layers. There-
fore, a possible explanation of the model’s behavior
on this task is that the MLP modules enhance fea-
tures of operators and operands in early layers, then
the attention mechanism facilitates the step-by-step
propagation of intermediate results, and finally, the
MLP modules in the last layers enhance the proba-
bilities of correct predictions.
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(b) Attention
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(c) MLP
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(d) Residual Stream
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(e) Attention
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(f) MLP

Figure 5: Patching effect of different components across layers and token positions. We change the numbers in
the first two steps. The result of step 2 is changed in sub-figure (a)(b)(c), while the result is kept unchanged in
sub-figure (d)(e)(f). A deeper color indicates the significance of activation at that position. We add a green rectangle
in the figure to better illustrate the location where the patching effect first starts to diminish.

5 How Do Language Models Reason
Internally When the Premise Order is
Not Fixed?

Based on the above findings, we find that Trans-
formers are able to perform step-by-step reasoning
internally when the premise order is fixed. How-
ever, in complex reasoning tasks, the premises are
not always presented sequentially; they may appear
in a random order, requiring LMs to organize the
information internally. Can language models still
perform implicit reasoning step by step when the
premises are shuffled?

Setup. For consistency, we continue to use the
original data but randomly shuffle the order of
premises5, excluding the question. To assess the
impact of premise order, we study three differ-
ent orders, including forward, reverse, and ran-
dom. Specifically, for the reverse order, we list
the premises in reverse order; for the random order,
we shuffle the premises randomly.

5.1 Result

Language models fail to learn implicit reasoning
when the premise order is not fixed. In contrast
to the high accuracy scores achieved by the model
trained on fixed-order premises, Table 1 shows
that the model trained on shuffled premises fails
to perform multi-step implicit reasoning correctly.
Specifically, as the number of steps increases, the
model’s accuracy gradually decreases, reaching

5More details of data setups are included in Appendix E.

Order 2-Step 3-Step 4-Step 5-Step 6-Step

Forward 1.00 0.87 0.57 0.43 0.23
Reverse 1.00 0.81 0.51 0.38 0.19
Random 1.00 0.83 0.53 0.37 0.23

Table 1: The accuracy of the model trained with unfixed
premise order dataset on the original test set. Each
column represents problems with a specific number of
steps, and each row represents a premise order used
during testing.

only ∼40% accuracy when five steps of reason-
ing are required, contrasting the saturated accuracy
of the model trained on fixed premise order.

Language models struggle with “Variable as
Subtrahend Plight.” To explore how LMs per-
form implicit reasoning after being trained on an
unfixed premise order, we conduct further analy-
sis and find that the model is more prone to mak-
ing mistakes when the premise contains multiple
equations with a variable as the subtrahend. De-
tailed statistics are provided in Table 2 on how
the model’s accuracy varies with the number of
variables being subtrahends for questions requiring
three to five steps of reasoning. As the number of
variables being subtracted increases, the model’s
accuracy decreases drastically, which is consistent
across different premise orders. We term this phe-
nomenon as “Variable as Subtrahend Plight.” When
almost all the variables in the premise are subtra-
hends, the model almost fails to solve any of the
problems correctly. To rule out the possibility of
a special case, we conduct experiments with in-
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Order
#VARIABLE BEING SUBTRAHEND

0 1 2 3 4

3-Step Problems

Forward 1.00 0.83 0.35 - -
Reverse 1.00 0.73 0.15 - -
Random 1.00 0.73 0.26 - -

4-Step Problems

Forward 1.00 0.33 0.08 0.12 -
Reverse 1.00 0.15 0.08 0.10 -
Random 1.00 0.23 0.08 0.08 -

5-Step Problems

Forward 0.92 0.20 0.04 0.05 0.03
Reverse 0.90 0.10 0.04 0.03 0.03
Random 0.90 0.09 0.03 0.02 0.02

Table 2: Accuracy of the model on questions with dif-
ferent numbers of variables being subtrahends. The
accuracy is calculated on 100 instances. Since the first
step involves an operation between two numbers, the
maximum number of variables as subtrahends is one
less than the total number of steps.

creased data volume and with different models, yet
the phenomenon remains consistent. Please refer
to Appendix F for more details.

To explore why models struggle with the “Vari-
able as Subtrahend Plight”, we revisit arithmetic
expressions. While addition benefits from com-
mutativity (e.g., a+b=b+a), subtraction lacks this
property, as swapping the minuend and subtrahend
changes the outcome unless a=b. This asymmetry
creates challenges for models. For instance, in the
sequence “a=6+2,b=a-3,c=4+b”, the model might
shortcut it as “c=6+2-3+4” (treating subtraction as
addition). However, when subtrahends are vari-
ables, such a shortcut fails. If “b=3-a”, the model
can no longer chain terms directly and must com-
pute intermediate results in sequence. As the num-
ber of variable subtrahends increases, the model
faces greater difficulty in determining the correct
order of operations, requiring rigorous step-by-step
reasoning instead of relying on shortcuts.

Language models do not think step-by-step
when the premise order is not fixed and overfit
to an incorrect shortcut. Based on our analy-
sis above, accuracy sharply declines if the model
relies on shortcut computation. In contrast, step-
by-step computation would result in minimal accu-
racy variation, as whether variables are subtrahends
or not does not significantly affect sequential rea-
soning. To validate our hypothesis, we plot the
accuracy trends against the number of equations

0 1 2 3 4
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Figure 6: Test accuracies with increasing number of
equations containing a variable as the subtrahend. The
step-by-step computation model (Step-by-step Model)
is evaluated on OOD 7-step problems since the accuracy
of this model in both ID ones and OOD 6-step is nearly
100%. The model trained on problems with unfixed
premise order (Shortcut Model) is evaluated on ID 5-
step problems.

with “Variable-as-Subtrahend” in our step-by-step
computation model used in Section 4. As shown
in Figure 6, there is only a slight variation in the
accuracy of the step-by-step computation model
while the accuracy of the model trained on prob-
lems with varied premise order drops significantly,
which verifies our hypothesis.6

To sum up, when the training data follows a fixed
pattern, LMs can learn a fixed pattern to store each
intermediate result upon completing a step. For
instance, in a forward premise order, the model
simply follows the operators to compute the results
of operands sequentially (i.e., step-by-step reason-
ing). There is no need to track the variables, as
they must come from the previous step. However,
when the premise order is shuffled, this shortcut
pattern no longer exists, which necessitates the true
reasoning capability: first tracking the variables
and then performing the computation. More steps
involve more complex tracking and computation,
which explains why accuracy decreases as the num-
ber of steps increases. This implies that when LMs
perform implicit reasoning, they are relying on
shortcuts rather than engaging in true reasoning.

Furthermore, we find that the premise order does
not significantly affect the model trained on an
unfixed pattern. This further validates our hypothe-
sis that such a language model relies on shortcuts
for reasoning, as there is no difference in reason-
ing through shortcuts like chaining the numbers
directly, whether in forward order (e.g., “c=6+2-
3+4”) or reverse order (e.g., “c=4-3+6+2”).

6We also provide mechanistic analysis of “Variable-as-
Subtrahend” in Appendix G.
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Figure 7: Performance comparison on 3-step problems with increasing numbers of equations containing a variable
as the subtrahend. The problems in all the figures are the same, except for the order of premises. In a 3-step problem,
at most two equations can have a variable as the subtrahend.

6 How Do LLMs Perform Multi-step
Implicit Reasoning?

In the previous section, we found that GPT-2 is
unable to perform implicit reasoning when there
is no fixed pattern to learn during training. Does
this phenomenon also apply to current SoTA LLMs,
given that their training data is not always presented
in a fixed order? Do these models reason step-by-
step, or rely on shortcuts to solve the problem?

Setup. We conduct zero-shot experiments using
both open-source and closed-source models, includ-
ing GPT-4o-2024-08-06 (OpenAI, 2024a), Claude-
3.5-sonnet-20241022-v2 (Anthropic, 2024), Llama-
3-70B-Instruct (AI@Meta, 2024), and Qwen2.5-
72B-Instruct (Qwen-Team, 2024). We instruct the
model to provide answers directly with the tempera-
ture set to 0. To ensure the consistency and fairness
of our evaluation: 1) We retain the original data
generation method but restrict instances to those
with intermediate computation results between 0
and 22, thus eliminating the impact of mod23 on ac-
curacy. 2) We focus on 3-step problems, as implicit
reasoning for 4-step problems proves too challeng-
ing for current LLMs, with low performance that
undermines the reliability of our experiments. 3)
To reduce randomness, we generate 100 problems
for each ratio of equations containing a variable as
the subtrahend. For each question, we evaluate it
with three premise orders, i.e., forward order, re-
verse order, and shuffled order. 4) The accuracy is
computed only in cases where the model does not
output in CoT format. More details of the experi-
mental setups are in Appendix H.

6.1 Result

Figure 7 shows the accuracy of LLMs on prob-
lems with different ratios of equations containing

Steps

Acc.

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1.0

Figure 8: The accuracy of GPT-4o on problems with
different step counts. The premise is in the forward
order without any subtrahend being a variable. The red
dashed line represents the accuracy of the same model
on 3-step problems, where there are two equations with
“Variable-as-Subtrahend”.

a variable as the subtrahend. We find: 1) As the
proportion of expressions with a variable as the
subtrahend increases, the accuracy of the LLMs
tends to decrease drastically. The accuracy of GPT-
4o even drops from nearly 100% to approximately
30% regardless of premise order. 2) All the models
fail to do 3-step problems containing two equations
with a variable as the subtrahend, and open-source
LLMs still lag behind closed-source LLMs in im-
plicit reasoning. 3) Compared to the influence of
variables as the subtrahends, the impact of premise
order is not that significant, which aligns with our
models trained on unfixed premise order.

We further plot the accuracy of GPT-4o on prob-
lems stated in the forward order without any subtra-
hend being a variable but with different steps of cal-
culations. From Figure 8, we observe that though
the accuracy of GPT-4o decreases gradually, the
accuracy on 9-step problems even surpasses that
on 3-step problems containing two equations with
a variable as the subtrahend in Figure 7.

To sum up, the findings suggest that LLMs

9477



likely rely on shortcuts for implicit reasoning
rather than performing step-by-step reasoning,
which aligns with our observations in the GPT-2
model. To speak further, while current LLMs can
perform implicit reasoning within a fixed pattern
and for a limited number of steps, they cannot gen-
eralize beyond these constraints.

7 Conclusion

In this paper, we investigate the implicit reasoning
mechanism to uncover why advanced reasoning
capabilities fail to emerge in the implicit reason-
ing style. We find that language models rely on
shortcuts for implicit reasoning, and these short-
cuts only work when the training data aligns with
a specific pattern that supports directly chaining
numbers. As a result, language models struggle
with the “Variable as Subtrahend Plight,” which
requires true reasoning capabilities, such as vari-
able tracking and step-by-step computation, where
shortcuts are no longer effective. Experiments with
current SoTA LLMs further validate our findings.

We hope this work deepens the understanding of
implicit reasoning limitations in LMs and sparks
future research to address LMs’ key challenges in
implicit multi-step reasoning.

Limitations

In this paper, we explore the mechanism of the
language models performing multi-step implicit
reasoning on synthetic arithmetic problems. To
avoid large number operations and decimal opera-
tions, we only experiment with two fundamental
arithmetic operators. This limitation suggests that
future work could expand the scope to include a
broader range of mathematical operators. Besides,
we only focus on arithmetic reasoning due to the
reasons elaborated in Section 1. We leave reason-
ing beyond arithmetic problems, e.g., common-
sense reasoning, for further exploration in future
research.

Another limitation lies in the possibility of in-
flated performance when evaluating LLMs. As
their training methodologies and datasets remain
proprietary, it is unclear whether these models were
exposed to synthetic computational tasks similar to
those explored in our study.
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A More Details of the Data Generation
Process

We provide an overview of the data generation pro-
cess in Figure 9. First, for the training set, we
create 25 000 distinct multi-step calculation tem-
plates for questions of each length (2 to 5 steps).
For the 1-step template, we include all the possible
combinations to enable the model to learn basic
calculations. Then, we use the same method for
the test set, but an additional filter mechanism is
employed to prevent LMs from utilizing interme-
diate results from the training set. As shown in
Figure 9, the model may directly utilize the result
of v1 from the training data to calculate v2 by just
calculating v2 = 4 + v1. Therefore, the test set
retains only the templates whose preceding calcu-
lations, apart from the first step, do not overlap
with those of the training set. This setting prevents
LMs from memorizing intermediate results during
training and recall them during testing rather than
performing actual reasoning.

During generation, each of the two operators
has a 50% probability, and the variable has a 50%
probability of appearing before or after the operator
(except for the first step). This results in 25% of
the steps having the variable as the subtrahend in
the original training and test set.

Since the variables in the template are sorted as
v0, v1, ..., to prevent the model from learning the
calculation order through the indices, we randomly
replace them with the letters a-z. We use K dif-
ferent groups of variable names to instantiate each
template in the training set. For the choice of K,
please refer to the subsequent subsection.

A.1 Effect of the Number of Template
Instantiations

In our early experiments, we find that when K
equals 1, the model trained from scratch struggles
to generalize effectively to problems outside the
training set, even when these problems share the
same template but have different variable names.
We attempt to adjust the training hyperparameters,
including the learning rate and weight decay; how-
ever, the situation remained unchanged. After in-
creasing K to 2, the model successfully handles
problems with the same template but different vari-
able names, as well as those in the test set. So, we
continue to use K = 2 in our experiment to ensure
that the failure of generalization is caused by the
model rather than our data.

Training Set

Test Set

Templates
Instances

v0=1+2
v1=3-v0
v1>>?

f=1+2
s=3-f
s>>?

v=1+2
p=3-v
p>>?

v0=1+2
v1=3-v0
v2=4+v1
v2>>?

v0=1+2
v1=v0-3
v2=3+v1
v2>>?

a=1+2
e=a-3
g=3+e
g>>?

Test template overlaps
with training set!

  ❌ Poor Template

✓ Good Template

Template Instance

Instantiation Overlap

Figure 9: An overview of the data generation process.

B Choice of Activation Patching Settings

In this section, we study the choice of metrics and
window sizes in the discovery of information flow.

B.1 Patching Metrics
Following the notations in Section 3, Logit denotes
the output logit at the last token position, r and r′

are the correct answer of the original input and
corrupted input, and cl, *, pt denote the clean, cor-
rupted and patched run separately.

In Figure 10, we compare the effect of several
commonly used metrics:

a) Logit of the clean run’s ground-truth token r:
Logitcl(r) − Logitpt(r). We normalize this by
Logitcl(r), and obtain the normalized patching
effect as shown in Equation 1;

b) Logit of the corrupted run’s ground truth token r′:
Logitpt(r

′)− Logitcl(r
′). We do not normalize

since Logitcl(r
′) can be very small, which may

produce noisy localization outcomes. So we use

PE = Logitpt(r
′)− Logitcl(r

′); (2)

c) Logit difference: LD(r, r′) = Logit(r) −
Logit(r′). We normalize this by LDcl(r, r

′) −
LD∗(r, r′), and get

PE =
LDcl(r, r

′)− LDpt(r, r
′)

LDcl(r, r′)− LD∗(r, r′)
, (3)
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Figure 10: Comparison of different patching metrics. (a) Logit of the clean run’s ground truth token r. (b) Logit of
the corrupted run’s ground truth token r′. (c) Logit difference between r and r′.
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(b) 1× 2
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(d) 2× 2

Figure 11: Patching effect with different window sizes. A window size of m× n represents at each token position
the representations of the region formed by the current layer and the subsequent m− 1 layers, along with the current
token and the next n− 1 tokens, are copied from the corrupted forward pass.

so it typically lies in [0, 1].
We find there is no significant difference in the
discovery of information flow, and we use a) in our
experiments for the following reasons:

1) Compared to c), a) can measure the patching
effect when the ground truth tokens of the clean
run and the corrupted run are the same.

2) Compared to b), the patching effect of a) can be
normalized to [0, 1] more stably.

B.2 Window Sizes
Following the best practices of activation patch-
ing (Zhang and Nanda, 2024), we initially em-
ploy single-layer interventions to identify crucial
model components. However, as illustrated in Fig-
ure 11a, individual layer modifications produce
only marginal effects, making it difficult to iso-
late critical hidden states. We speculate that lan-
guage models may use aggregations from multiple
inference pathways (McGrath et al., 2023), using a
region rather than a hidden state to perform compu-

tations and restore intermediate results. Noting that
the critical blocks in Figure 11a frequently exhibit
rectangular patterns, we implement a 2 × 2 win-
dow size to capture the joint effect of these regions.
Our comparison of different patching window sizes
in Figure 11 reveals that different window sizes
generally preserve similar information flow charac-
teristics, and our 2× 2 configuration best captures
the information flow. We do not use a larger win-
dow size since the 2 × 2 window size is enough,
and a larger window size may result in inflated
localization plots.

C Information Flow Related to Operators

We present the residual stream patching plot al-
tering the first operator in Figure 12. Similar to
changing the operand, the patching effect is still
pronounced at the end of each step, with informa-
tion still propagating downward along the diagonal.
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Figure 12: Activation patching on hidden states across
layers and token positions when changing the first oper-
ator in the problems.

D Implementation Details of Masking
Information from Previous Steps

In this experiment, we modify the Transformer
model to restrict the attention so that each to-
ken can only attend to itself and the preceding
window_size− 1 tokens. This is achieved by ap-
plying a sliding window mask, as illustrated in
Algorithm 1. Specifically, we create an attention
mask, where the parts we want to focus on are set to
0, and the remaining positions are set to −∞. The
attention mask is then added to the attention score
and passed through the softmax function. This pro-
cedure ensures the positions outside of the attention
window are assigned zero attention after the soft-
max operation, effectively preventing the model
from considering information from these positions.
Through this modification, we can further confirm
whether the model only utilizes the information of
the current step and the intermediate result from
the previous step.

Algorithm 1 Creating Sliding Window Mask

Input: seq_length, window_size
Output: mask
1: Initialize mask as a seq_length×seq_length

matrix
2: for i← 0 to seq_length− 1 do
3: for j ← 0 to seq_length− 1 do
4: if j < max(0, i − window_size + 1)

or j > i then
5: mask[i][j]← −∞
6: else
7: mask[i][j]← 0
8: end if
9: end for

10: end for
11: return mask

E More Details of the Training Premise
Pattern

In order to enable the model to learn to reason
when the order of the premises is not fixed, the
training data needs to contain patterns with differ-
ent premise orders. To this end, in our early experi-
ment, we have tried several data configurations on
original GPT-2-Medium to select the best one, and
see whether the failure stems from the insufficiency
of premise pattern. Specifically, we gradually ex-
pand the dataset by controlling the upper limit of
the patterns that can be added to the training data
for each template (×m indicates that at most m or-
ders for each template will be added to the training
data). If the total number of premise orders for a
certain template is less than or equal to m, then all
order combinations will be added to the dataset; if
the total number of orders is greater than m, then
for each template, m randomly selected orders of
this template will be added to the dataset. We pro-
vide the sample size for each dataset in Table 3. As
shown in Figure 13, including more patterns does
not necessarily improve performance. When all
the patterns are added, the loss of the model on the
test set basically cannot decrease, and overfitting
occurs rapidly.

Dataset ×1 ×5 ×10 All

Size 202K 850K 1.4M 7.6M

Table 3: Size of different datasets. We control the upper
limit of patterns that can be added to the dataset for
each template. For example, ×5 indicates that at most
5 orders for each template will be added to the training
data.
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Figure 13: Loss of the model on the ID test set during
training when trained with different data configurations.
The y-axis is plotted on a logarithmic scale.

For the dataset including all the premise orders
for every template, we also try another approach
that upsample problems with fewer than 5 steps to
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the same proportion as that in the ×5 dataset. Al-
though the minimum value of the evaluation loss is
slightly lower, the loss increases rapidly after reach-
ing the minimum value. We provide the accuracy
of both models in Table 4. We find that both mod-
els cannot escape “Variable as Subtrahend Plight”.
Considering training and data efficiency, unless
otherwise specified, we set the upper limit of the
number of patterns for each step to 5 in all of our
experiments.

Order
#VARIABLE BEING SUBTRAHEND

0/4 1/4 2/4 3/4 4/4

×5

Forward 1.00 0.90 0.90 0.30 0.05
Reverse 1.00 0.97 0.98 0.50 0.08
Random 1.00 0.83 0.89 0.45 0.23

All (Upsample)

Forward 1.00 0.87 0.85 0.55 0.08
Reverse 1.00 0.97 0.95 0.64 0.06
Random 1.00 0.86 0.92 0.54 0.16

Table 4: Accuracy of the models with different training
dataset on 5-step problems.

F Extended Experiments on Increased
Data Volume and Different Models

F.1 Model Size and Initialization
When training from scratch, we also test larger
models, i.e., GPT2-RoPE-medium, by increasing
the number of layers from 12 to 24, but the accuracy
does not improve. We find that our GPT2-RoPE
model initiated from a pre-trained GPT-2’s weight
may alleviate overfitting and have a higher perfor-
mance, but we only observe this phenomenon on
GPT2-RoPE-Medium. As shown in Table 5, de-
spite the increased accuracy, the model still fails
when almost all the variables are subtrahends. In
addition, investigating model initialization is not
the main focus of our paper.

Order
#VARIABLE BEING SUBTRAHEND

0/4 1/4 2/4 3/4 4/4

GPT2-RoPE-Medium-Pretrained

Forward 1.00 0.98 0.99 0.97 0.05
Reverse 1.00 0.99 0.84 0.06 0.02
Random 1.00 0.90 0.83 0.35 0.08

Table 5: Accuracy of the model on 5-step questions with
different numbers of variables being subtrahends.

Since training from a pre-trained model is often

better than training from scratch, in order to bet-
ter control the experimental variables and illustrate
the impact of the model size on the experimental
results, we use the original pre-trained GPT-2 se-
ries to explore the influence of the model size. In
Figure 14, we present the loss curves on the ID test
set for different model sizes, ranging from GPT2-
Small (124M) to GPT2-XL (1.5B). We find that
increasing the model size from Small to Medium
can lead to improvements. However, after reach-
ing a certain size (Medium), further increasing the
model size does not yield additional gains.
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Figure 14: Loss of the model on the ID test set during
training when trained with different model sizes. The
y-axis is plotted on a logarithmic scale.

F.2 Model Architecture

In addition to the GPT-2 models (with or without
RoPE), we also test other model architecture such
as Qwen2.5. Since the performance of the pre-
trained models is better than those trained from
scratch, we initiate from the pre-trained weight. As
shown in Table 6, we find that the model still does
not escape “Variable as Subtrahend Plight”.

Order
#VARIABLE BEING SUBTRAHEND

0/4 1/4 2/4 3/4 4/4

Qwen2.5-1.5B-Base

Forward 1.00 0.98 0.79 0.62 0.40
Reverse 0.99 0.97 0.98 0.90 0.69
Random 1.00 0.89 0.81 0.74 0.61

Table 6: Accuracy of the models with different architec-
ture on 5-step problems.

F.3 Data Volume

Another potential explanation for the poor general-
ization could be the limited number of templates
used during training. To investigate, we expand
the dataset to include 50000 different templates

9484



for each step (except for the single-step question).
Since the performance of the GPT2-RoPE model
used in Table 5 is better than the one used in Table 1,
we continue to train from the GPT2-RoPE-Medium
model initiated from a pre-trained GPT-2’s weight
in this experiment. As shown in Table 7, this ex-
panded experiment yields similar results, with mod-
els still failing to generalize to problems in which
most variables are subtrahends. Furthermore, we
scale up the templates for 5-step problems tenfold
(simultaneously upsample instances of other step
counts to maintain the proportion of different step
counts within the dataset), so the training dataset
comprises 500K different 5-step templates, hop-
ing the model will thoroughly learn to solve 5-step
problems. In addition to the accuracy on 5-step
problems in Table 7, we also visualize the model’s
performance on 6-step problems in Figure 15. Al-
though continuing to scale up the data can slightly
boost the model’s performance within the sequence
lengths seen during training, data scaling does not
address the core reasoning flaw that the model can-
not genuinely track variables and perform step-by-
step calculations, causing it to fall into the “Vari-
able as Subtrahend Plight”.

Order
#VARIABLE BEING SUBTRAHEND

0/4 1/4 2/4 3/4 4/4

50000 Templates

Forward 1.00 0.99 0.97 0.89 0.25
Reverse 1.00 1.00 0.96 0.85 0.24
Random 1.00 0.97 0.92 0.70 0.26

50000 Templates w/ further expansion

Forward 1.00 1.00 1.00 0.92 0.47
Reverse 1.00 1.00 0.98 0.90 0.44
Random 1.00 1.00 0.95 0.81 0.44

Table 7: Accuracy of the models with different training
data volume on 5-step problems.
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Figure 15: Test accuracies with increasing number of
equations containing a variable as the subtrahend. To
test genuine reasoning abilities, the premise order used
during testing is random.

G Mechanistic Insights into “Variable as
Subtrahend Plight”

Due to the low accuracy of the models trained
from scratch, we use the GPT2-RoPE-Medium-
Pretrained model from Section F.1 instead for anal-
ysis. Since the model can not fully learn to do im-
plicit reasoning on problems requiring more than
3 steps of reasoning, we first restrict our analysis
to 3-step problems. We use 1 × 1 patching for
this model, since 1× 1 patching has already had a
noticeable impact.

To see why the model fails to handle equa-
tions with variables being the subtrahends, we
begin our mechanistic exploration by investigat-
ing the impact of the position of the variables.
Specifically, we analyze four distinct operator-
variable combinations: “number+variable”,
“variable+number”, “variable−number” and
“number− variable”. As shown in Figure 16, the
first three graphs exhibit similar patterns, with the
exception of the fourth graph, which shows some
differences. We can see that in the first three graphs,
the darker-colored areas are exclusively distributed
in the output and numerical tokens, which means
that the information in the remaining positions has
no effect on the output. This phenomenon holds
for all premise orders (Figure 17), since premise
order does not disturb implicit reasoning through
chaining the numbers directly. In contrast, in Fig-
ure 16d, we find that the dark color appears on the
variable token (i.e., v0), which means the model
needs the variable value at the subtrahend position
to handle subsequent calculations. We also provide
the patching plot on 4-step problems in Figure 18,
where a clear difference can also be observed.

These mechanistic findings show that LMs chain
the numbers directly when there is no variable as
the subtrahend, and explain why the premise order
does not significantly affect accuracy, which val-
idates our previous analysis in Section 5 that the
model relies on shortcuts to solve the problems.

H More Details of the Experimental
Setup in Section 6

In our preliminary tests, GPT-4o achieved less than
35% accuracy on 4-step problems containing only
one variable as the subtrahend, while other open-
source models performed only slightly above ran-
dom guessing. Thus, we only study 3-step prob-
lems to ensure meaningful evaluation and better
show the decreasing trend of the accuracy. Since
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the first step of the operation is between numbers,
there are at most two equations containing a vari-
able as the subtrahend in 3-step problems.

As the random premise order may still contain
the forward order and the reverse order, we specify
a fixed shuffled order instead. Specifically, we re-
arrange the original premise ([step1, step2, step3])
to [step3, step1, step2]. The second step is delayed
until the end, so the model can only link all the
steps together at the last of the problem.

To prevent generic LLMs from using CoT rea-
soning to answer the question, we carefully craft
the prompt to instruct the model to directly output
the answer. An example of the prompt used for
instructing generic LLMs to think without extra
tokens in our task is shown below.

For Qwen and Llama, we use� �
a = 4 + 14
c = a - 12
s = 6 - c
What is the value of s? Please answer
directly with "s = xx".� �
and for GPT-4o and Claude, we use� �
a = 4 + 14
c = a - 12
s = 6 - c
What is the value of s? You must answer
directly. Only output the final result.
Begin your answer with "s = xx".� �
to prevent the model from outputting CoT process.

We also test questions in the form of natural
language, and reach the same conclusion as shown
in Table 8. This indicates that our findings are
unrelated to the form of the description.

Order #VARIABLE BEING SUBTRAHEND

0/2 1/2 2/2

GPT-4o

Forward 0.94 0.47 0.28
Reverse 0.93 0.33 0.21
Shuffled 0.88 0.39 0.15

Claude-3.5-sonnet-v2

Forward 0.98 0.79 0.35
Reverse 0.91 0.67 0.05
Shuffled 0.85 0.64 0.20

Table 8: Performance comparison on 3-step problems
in the form of natural language. The problems in each
column are the same, except for the premise order.

An example of the natural language form ques-
tion is shown below. Here, we convert the equa-
tions in the original prompt into natural language

descriptions resembling grade school math prob-
lems.� �
A's number of apples equals 4 plus 14.
C's number of apples equals A's number
of apples minus 12.
S's number of apples equals 6 minus C's
number of apples.
How many apples does S have? Only output
the final result. Do not output

intermediate results.� �
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(b) variable+number
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(c) variable−number
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(d) number− variable

Figure 16: Patching effect with different combination of the operator and the position of the variable when changing
the first number in the problem.
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(a) Forward order
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(b) Reverse order
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(c) Shuffled order

Figure 17: Patching effect of different premise order averaged on the same set of problems when changing the first
number in the problem.
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(a) No variables in the problem are subtrahends
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(b) Only the variable in the second step is subtrahend

Figure 18: Patching effect on 4-step problems when changing the first number. Only the second steps of the
problems are different.
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