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Abstract

The field of neural machine translation (NMT)
has changed with the advent of large language
models (LLMs). Much of the recent emphasis
in natural language processing (NLP) has been
on modeling machine translation and many
other problems using a single pre-trained Trans-
former decoder, while encoder-decoder archi-
tectures, which were the standard in earlier
NMT models, have received relatively less at-
tention. In this paper, we explore translation
models that are universal, efficient, and easy to
optimize, by marrying the world of LLMs with
the world of NMT. We apply LLMs to NMT en-
coding and leave the NMT decoder unchanged.
We also develop methods for adapting LLMs
to work better with the NMT decoder. Further-
more, we construct a new dataset involving mul-
tiple tasks to assess how well the machine trans-
lation system generalizes across various tasks.
Evaluations on the WMT and our datasets show
that results using our method match or surpass
a range of baselines in terms of translation qual-
ity, but achieve 2.4 ∼ 6.5× inference speedups
and a 75% reduction in the memory footprint
of the KV cache. It also demonstrates strong
generalization across a variety of translation-
related tasks. Our code, datasets, and models
are publicly available at:

NiuTrans/LaMaTE

1 Introduction

The last decade has yielded remarkable break-
throughs in machine translation (MT) through the
use of deep neural networks, scaled dramatically
in both model parameters and training data. Dur-
ing this period, early methods, known as neural
machine translation (NMT), were largely based on
the encoder-decoder architecture (Sutskever et al.,
2014; Bahdanau et al., 2015). In NMT, the ma-
chine translation problem is commonly treated as
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Figure 1: Architectures of machine translation mod-
els. x = source-language token sequence, yi =
target-language token predicted as position i , y<i =
target-language tokens preceding i, and c = prompt.

a sequence-to-sequence task, where the input se-
quence is first encoded into an intermediate rep-
resentation, and the output sequence is then gen-
erated based on this representation, as illustrated
in Figure 1 (a). Models of this kind are typically
trained on bilingual text in a supervised manner,
and their inference on modern GPUs is efficient.
However, like their predecessors in past decades
(e.g., statistical machine translation models), NMT
models are generally developed for specific tasks,
such as translation in a specific genre or domain.

Everything changed in NLP, with the success of
LLMs through large-scale self-supervised learning
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(Brown et al., 2020). In the LLM paradigm, the
translation problem is framed as the token predic-
tion problem in language modeling, as illustrated
in Figure 1 (b). Such an approach greatly simplifies
the modeling. We can now pre-train the LLM on
large amounts of text via self-supervision so as to
produce a single model that can be fine-tuned and
prompted for various translation-related tasks, such
as constrained translation and post-editing. Nev-
ertheless, as a consequence of using large-scale
neural networks, LLMs are computationally expen-
sive and pose challenges for applications requiring
low latency and a small memory footprint.

The fundamental change brought by LLMs has
led most of the field to focus on replacing previous
NLP systems with LLMs. However, machine trans-
lation researchers might still expect that a system
could be efficient and easy to optimize, and, at the
same time, could generalize across various sorts of
tasks.

In this paper, we examine how the world of
LLMs can be married with the world of NMT,
thereby benefiting from both paradigms. One sim-
ple approach is to use an LLM as the encoder in
NMT (call it LaMaTE — Large Language Models
as Machine Translation Encoders). As both the
encoder and decoder are essentially based on lan-
guage models, we can view the whole system as a
single language model. The decoupling of encod-
ing and decoding from language modeling confers
great modeling flexibility. A direct result of this
is that we can employ a deep, complex encoder
and a lightweight decoder, as illustrated in Figure 1
(c). This heterogeneous architecture is particularly
well-suited for machine translation, where we can
use a powerful encoder to understand the input
text, while generating high-quality translations at a
lower decoding cost.

In order to examine to what extent the model can
generalize, we develop a new benchmark, called
the Comprehensive Machine Translation bench-
mark (ComMT). It consists of several diverse
tasks that evaluate different aspects of a transla-
tion model. While there have been datasets devel-
oped for fine-tuning LLMs for multiple translation
tasks (Alves et al., 2024), our focus is on a broader
range of application scenarios. We hope that such a
benchmark can be adopted to provide a systematic
evaluation of machine translation systems, and that
this, in turn, will encourage practitioners to pay
more attention to the issue of generalization when
developing these systems.

We conduct extensive experiments and evaluate
various models including NMT, LLMs, and our
LaMaTE method. Our results show that the La-
MaTE model achieves comparable or better perfor-
mance than a range of baseline systems on several
tasks, but runs 2.4 ∼ 6.5 times faster and reduces
the memory footprint of the KV cache by 75%.
Evaluations on the ComMT dataset also demon-
strate the strong generalization capabilities of the
LaMaTE model, showing significant improvements
over baseline systems. These results are not sur-
prising, but intriguing, as findings in NMT remain
applicable in the era of LLMs, for instance, scal-
ing up the encoding network is still beneficial for
machine translation tasks. This suggests an inter-
esting direction for future work, where we could
develop a powerful yet efficient system by using
a strong model for language understanding and a
lightweight model for language generation.

2 Related Work

Designing widely applicable models for MT has
been an active area of NLP research for decades.
Although MT models have evolved significantly
over time, most of them still operate on an “analyze-
then-generate” paradigm (Brown et al., 1993;
Koehn et al., 2003; Bahdanau et al., 2015). For
example, in statistical MT, the source-language sen-
tence is parsed into either syntactic or non-syntactic
forms, and the translation is generated by mapping
these parsed forms to target-language constructions
(Chiang, 2005). LLMs can broadly be categorized
as following a similar design: they first compute
the key-value cache for each input sequence, and
then produce output tokens in a left-to-right manner
based on this cache. From a modeling perspective,
therefore, decoupling the encoding and decoding
processes is a natural design choice for both tradi-
tional MT and LLMs.

In NLP, a large body of work has focused on
pre-training and applying text encoders, such as
the BERT series of models (Devlin et al., 2019),
which are primarily designed to address language
understanding problems. More recently, there have
been attempts to use LLMs as text encoders, though
these models are more commonly used for generat-
ing text. For example, BehnamGhader et al. (2024)
and Muennighoff et al. (2024) fine-tuned LLMs for
text encoding and showed that LLMs can produce
high-quality representations of text in various em-
bedding tasks. However, it is rare to see studies on
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incorporating LLMs in the encoding for NMT or
other language generation tasks.

In fact, the focus of research in MT has shifted.
Recent studies in this field are now more concerned
with the adaptation of LLMs, rather than the im-
provement of model architectures. One strand of re-
search aims to enable LLMs to translate via prompt-
ing techniques, including designing better prompts
(Zhang et al., 2023a; Zhu et al., 2024), introducing
translation demonstrations (Mu et al., 2023; Chitale
et al., 2024), and using chain-of-thought reasoning
(Lu et al., 2024). Another strand focuses on devel-
oping MT-specific LLMs via fine-tuning (Xu et al.,
2023; Yang et al., 2023b; Alves et al., 2024; Guo
et al., 2024; Zheng et al., 2025); we have followed
this approach, but with a focus on improving the
model architecture, as well as developing a new
benchmark for evaluating universal MT models.

This work is also related to efficient methods
for LLMs. For example, one can compress the
model using quantization and pruning techniques
(Xiao et al., 2023; Ma et al., 2023), and speed-up
inference using speculative decoding algorithms
(Leviathan et al., 2023; Kim et al., 2023). But
these methods and ours are in no way contradic-
tory. Since our model follows standard encoding
(or prefilling) and decoding frameworks, it can be
easily combined with various efficient methods to
further improve efficiency.

3 LaMaTE

In this section, we introduce LaMaTE and its train-
ing method.

3.1 Model Architecture
We begin by outlining the basic concepts and no-
tation needed for our description. There are three
networks that we consider here.

• NMT Encoder Enc(x). It is a standard Trans-
former encoder, consisting of an embedding
layer and a number of stacked Transformer
layers. The output of the NMT encoder is a
bidirectional representation of the input token
sequence x, denoted by H1.

• NMT Decoder Dec(H,y). It shares the same
architecture as the NMT encoder, with an ad-
ditional cross-attention sublayer added in each
Transformer layer. The NMT decoder accepts

1H is a sequence of vectors, each corresponding to the
representation at each position of x.

two inputs — one from the encoder for cross-
attention, and another as the regular sequential
input. In the self-attention mechanism, each
position can only attend to the preceding posi-
tions. So its output representation is unidirec-
tional. Typically, a Softmax layer is added on
top of the decoder to generate distributions of
tokens.

• LLM Decoder Dec( , [c,x,y]). It operates
on token sequences only, without the need
for input from the encoder. Thus, the cross-
attention sublayers are removed, and the first
parameter of the above function is left blank.
Here [c,x,y] denotes the concatenation of
the prompt c, the input sequence x, and the
translation y.

For NMT models, we can simply connect the
NMT encoder and decoder together. The probabil-
ity of token prediction can be expressed as

Pr(yi|x,y<i) = Softmax(WS)i (1)

S = Dec(H,y<i) (2)

H = Enc(x) (3)

where yi denotes the target-language token at posi-
tion i, y<i denotes the target-language tokens that
precede position i, and Softmax(WS)i denotes
the Softmax function that computes the distribu-
tion of tokens at position i. WS maps the decoder
output S to a representation space of the vocabulary
size using the linear mapping matrix W.

The LaMaTE model follows this encode-decode
architecture, but with an LLM decoder replacing
the NMT encoder, given by

S = Decϕ(H
′,y<i) (4)

H′ = Decθ( , [c,x]) (5)

Here we use the subscripts ϕ and θ to denote the
parameters for the NMT decoder and the LLM
decoder, respectively.

The function Decθ( , [c,x]) serves as a unidi-
rectional encoder. Although it is generally thought
that bidirectional encoders can make better use of
contextual information, our experiments in Sec-
tion 6.4 demonstrate that using such unidirectional
encoders based on LLMs is also very effective.
Given that both the encoder and decoder are unidi-
rectional, we can roughly think of the whole model
as a hybrid language model: a large, powerful
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Figure 2: The architecture of LaMaTE, where the Adaptor consists of three components: Fusion combines
the representations of layer groups gk, MLP reduces the representations’s dimensionality, and EncStack learns
bidirectional representations. The training process consists of two stages: the first stage trains the Adaptor and
Decoder, and the second stage trains all model parameters.

model is used for prefilling, and a small, efficient
model is used for decoding.

The use of pre-trained LLMs for encoding al-
lows the model to have a stronger understanding
of the input sequence, which has been found to be
very beneficial in NMT systems (Dou et al., 2018;
Wang et al., 2019). As another bonus, one can
easily adapt the model via fine-tuning and prompt-
ing, thereby deploying a single such system for
many different tasks. For example, by giving an
appropriate prompt c, we can guide the system to
produce outputs following specific needs or con-
texts. This gives LaMaTE a big advantage over
traditional NMT models.

One problem with the model described in Eqs.
(4-5) is that the LLM decoder may have a larger hid-
den size than that of the NMT decoder. In this case,
we add an adaptor to the output of the LLM decoder
to reduce its dimensionality, so that it matches the
NMT decoder. We can then redefine H′ as

H′ = Fω(Decθ( , [c,x])) (6)

where Fω(·) is the adaptor with the parameters ω.

3.2 Adaptor
One simple form of adaptors is a linear mapping of
the output of the LLM decoder, that is, we linearly
transform representations from Decθ(·) to lower-
dimensional representations required by Decϕ(·).
But we find that this method falls short of our ex-
pectations because LLMs are typically too big that
simply transforming their output representations
into lower-dimensional ones makes it difficult for
untrained smaller models to use them directly.

Instead, we design an adaptor that makes better
use of the LLM outputs for the NMT decoder. It

involves three components. The complete model
architecture is illustrated in Figure 2

• Instead of considering only the output of the
final layer of the LLM, we fuse the outputs of
the intermediate layers to form a finer-grained
output of the LLM decoder. Such methods
have been found to be very beneficial to deep-
to-shallow architectures in NMT (Wang et al.,
2019; Yang et al., 2023a). To do this, we
divide the LLM layers into K groups, and
fuse their outputs in the following form

Hfuse = LayerNorm

(
1

K

K∑

k=1

wkgk

)
(7)

where LayerNorm(·) is the layer normaliza-
tion function, gk is the output of the k-th layer
group, and wk is the learnable weight for gk.
We use the last layer’s hidden states of each
group as that group’s hidden states.

• We place a 2-layer MLP after layer fusion to
reduce the hidden size of Hfuse (denoted by
d1) to the hidden size of the NMT decoder
(denoted by d2). This network is given by

Hmlp = GELU(HfuseW1)W2 (8)

where GELU(·) is the activation function, and
W1 ∈ Rd1×d2 and W2 ∈ Rd2×d2 are the
linear mapping matrices.

• It is also possible to learn bidirectional rep-
resentations from unidirectional representa-
tions. A common method is to incorporate
some Transformer encoder layers. Thus the

9402



self-attention models can help generate bidi-
rectional representations. The final output of
the adaptor is then given by

H′ = EncStack(Hmlp) (9)

where EncStack(·) is a stack of Transformer
encoder layers. Note that EncStack(·) con-
sists of only a few layers, and thus adds very
small computational overhead. This step of
bidirectional representation learning is op-
tional, and one can choose whether to adopt it
in practice.

3.3 Model Training
The LaMaTE model has three sets of parameters: θ
for the LLM decoder, ϕ for the NMT decoder, and
ω for the adaptor. Here, θ is initialized with the
pre-trained parameters of the LLM, while ϕ and ω
need to be trained from scratch.

Optimizing these parameters on bitext seems
straightforward, but poses practical challenges.
Since fine-tuning pre-trained LLMs is costly, using
less labeled data is generally favorable. However,
we found that this approach can lead to inadequate
learning of the new parameters ϕ and ω. On the
other hand, extensive fine-tuning may cause the
LLM to forget its original knowledge encoded in θ.
Similar findings have been reported in the literature
(Xu et al., 2023).

Here, we present a two-stage training method
that performs more efficient learning for different
types of parameters. In the first stage, we freeze
θ and pre-train both ϕ and ω. The task of pre-
training is a standard translation task. We train the
model to translate source-language sequences to
corresponding target-language sequences. There-
fore, the adaptor and the NMT decoder can learn to
map from source-language representations to trans-
lations. Since the parameters of the LLM decoder
are frozen, this process requires only the forward
pass of this large network, without the need for the
backward pass. It is thus less computationally ex-
pensive than LLM fine-tuning, making it possible
to scale up the pre-training to large datasets.

The second stage is a fine-tuning stage, where θ,
ϕ, and ω are fine-tuned together on various tasks.
For each task, as with instruction fine-tuning for
LLMs, we provide LaMaTE with task-specific in-
structions, inputs and outputs, and optimize all the
parameters end-to-end. In this way, the model is
adapted to follow these instructions and can be

deployed as a single, universal model to handle a
variety of translation-related problems. We use our
ComMT dataset for fine-tuning in this work.

4 ComMT

Many translation-related tasks, such as document-
level translation, rely on both understanding com-
plex inputs and generating coherent, contextually
appropriate outputs, which are not captured by com-
monly used sentence-level translation tasks. To
generalize LaMaTE to diverse tasks and evaluate
it on these tasks, we developed a new evaluation
benchmark called ComMT, constructed from ex-
isting publicly available translation datasets. It
comprises five tasks:

• General Translation. This is a standard sen-
tence in, sentence out task.

• Document-level Translation. This task
extends translation from sentence-level to
document-level.

• Domain Translation. This task focuses on
domain-specific translation.

• Terminology-constrained Translation. In this
task, the system is required to produce transla-
tions that follow the given terminology trans-
lation requirements.

• Automatic Post-editing. This task aims to au-
tomatically correct errors in translations.

We collected data mainly from public resources,
driven by two goals: (i) to find as many data sources
as possible in order to increase data diversity, and
(ii) to collect as much high-quality, manually an-
notated translation data as possible. ComMT is
multilingual and supports four languages: German,
Czech, Russian, and Chinese. The reader can refer
to Appendix Section B for more details of ComMT.

Ultimately, we created a training set of 239k sam-
ples, as shown in Figure 7, and the test set statistics
illustrated in Table 5. Overall, ComMT exhibits
significant diversity and broad applicability, pro-
viding a well-curated data resource for developing
and evaluating universal translation models.

5 Experimental Setup

5.1 Data and Evaluation Metrics
We trained our model on multilingual translations
between English (En) and four languages: Ger-
man (De), Czech (Cs), Russian (Ru), and Chinese
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Model
General Trans Domain Trans Doc-level Trans Terminology-con Trans Automatic Post-edition

COMET BLEU COMET BLEU COMET BLEU COMET BLEU TSR ↑ COMET BLEU HTER ↓
Decoder-only Models

ALMA-7B* 83.23 31.49 83.93 31.94 82.03 18.59 81.84 24.89 43.20 85.25 40.91 54.42
BigTranslate* 77.84 22.04 77.53 21.99 72.36 9.18 77.29 18.56 33.10 78.84 29.82 69.04
Aya-23-8B 82.72 32.11 84.07 33.67 84.98 32.19 81.47 31.14 74.15 87.68 67.92 36.23
TowerInstruct-7B 83.12 32.75 83.65 33.25 81.61 28.22 82.57 31.84 76.98 88.91 77.41 23.49
Bayling-13B 74.81 21.34 76.50 24.07 74.10 19.46 77.01 25.08 71.94 73.90 29.67 114.80
Llama3-8B-Base 79.03 26.89 81.21 28.29 80.44 26.77 81.81 29.84 79.20 86.26 61.43 38.93
Llama3-8B-Inst 73.56 23.20 73.04 22.69 81.79 27.22 71.36 24.41 86.46 68.05 25.70 101.85
Llama3-8B-SFT 82.41 32.42 84.60 36.92 83.79 31.75 84.01 36.77 87.52 88.57 70.13 31.57

Encoder-Decoder Models
NLLB-3.3B* 81.30 31.63 81.38 32.66 73.60 11.72 80.21 26.32 41.25 84.97 46.42 52.42
NMT-8-8* 79.70 30.08 80.63 32.76 73.98 10.11 77.03 25.54 40.56 84.50 47.52 50.21
NMT-40-8* 80.89 32.05 81.50 34.06 74.74 12.39 77.19 25.80 41.15 85.10 47.57 50.26
mT5-Large 81.26 29.34 82.06 30.26 77.69 14.43 81.80 30.34 76.93 85.88 62.77 45.10
LaMaTE (Ours) 82.32 33.85 84.69 37.49 84.34 31.69 83.35 34.76 75.64 88.60 69.10 33.42

Table 1: Performance on ComMT test set. Bold numbers represent the highest scores in each category, while
underlined numbers indicate the second highest scores. Models marked with "*" cannot handle additional inputs for
the terminology-constrained translation and automatic post-editing tasks, we only use the source sequence as input.

(Zh), resulting in a total of eight translation direc-
tions. The parallel corpus for training stage 1 was
sourced from WMT2023, as detailed in Table 6.
We sampled 10M bilingual sentence pairs for each
language, yielding a total of 40M pairs for training
stage 1. The training stage 2 utilizes data from the
ComMT training set with 239k samples.

We conducted tests on ComMT and evaluated
the model’s translation performance across all tasks
using COMET (wmt22-comet-da) (Rei et al., 2020)
and SacreBLEU (Post, 2018). Additionally, we
used Terminology Success Rate (TSR) for the
terminology-constrained translation task and Hu-
man Translation Edit Rate (HTER) for the auto-
matic post-editing task.

5.2 Training Setup

Our multilingual translation experiments necessi-
tate a language model with multilingual capabilities
for better encoding. We evaluated various popular
multilingual LLMs (see Appendix C.2 for details)
and selected Llama3-8B-base (Dubey et al., 2024)
as our encoder, which has a model dimension of
4096 and consists of 32 layers.

For the decoder, we set the dimension to 1024
with 8 layers, which also applies to the EncStack of
the adaptor, with the adaptor and decoder together
introducing fewer than 500M parameters. Hyper-
parameters for training are detailed in Table 7.

5.3 Models for Comparison
We create two categories of models for comparison:

Decoder-only Models. This includes: BigTrans-
late (Yang et al., 2023b), Bayling-13B (Zhang et al.,
2023b), Aya-23-8B (Üstün et al., 2024), ALMA-
7B (Xu et al., 2023) and TowerInstruct-7B (Alves
et al., 2024). Also included are variants of Llama3-
8B: Llama3-8B-Base (3-shot in-context learning),
Llama3-8B-Inst (general instruction-tuned), and
Llama3-8B-SFT (fine-tuned on ComMT).

Encoder-Decoder Models. This includes: (i)
NLLB-3.3B (Costa-jussà et al., 2022): a com-
prehensive multilingual model. (ii) Traditional
encoder-decoder models: NMT-40-8 (40 encoder
layers, 8 decoder layers) and NMT-8-8 (8 encoder
layers, 8 decoder layers), both with a model dimen-
sion of 1024, trained from scratch on 161M bilin-
gual sentences from combined parallel data of four
languages. (iii) Fine-tuned encoder-decoder mod-
els: mT5-Large (1.2B) (Xue et al., 2021), aligned
with our method’s data settings.

6 Results and Analyses

6.1 Results
The averaged performance across all directions is
shown in Table 1, with more detailed results pro-
vided in Table 14.

Comparison with Encoder-Decoder Models. In
comparison to encoder-decoder models, LaMaTE
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1Figure 3: Comparison of decoder-only (Llama3-8B and TowerInstruct-7B) and encoder-decoder (mT5-large and
LaMaTE) models on off-target rate (OTR), unaligned source words (USW), and unaligned target words (UTW).

demonstrates stronger performance, surpassing
NLLB-3.3B, NMT, and mT5-Large across all eval-
uated tasks. This result hightlights the potential of
LLMs as high-capacity encoders, capable of pro-
ducing more expressive and informative represen-
tations. These enhanced representations provide
a solid foundation for the decoder, ultimately im-
proving translation quality. Moreover, LaMaTE’s
consistent performance across multiple tasks un-
derscores its strong generalization capability.

Comparison with Fine-Tuned LLMs. When
compared with fine-tuned LLMs, LaMaTE
achieves comparable overall performance to
Llama3-8B-SFT. While Llama3-8B-SFT holds a
slight advantage in the terminology-constrained
translation task with higher TSR scores, there is no
significant difference in other tasks. Additionally,
LaMaTE outperforms earlier fine-tuned LLMs like
Bayling-13B and remains competitive with more
advanced models such as TowerInstruct-7B. This
further demonstrates that LLMs can serve as effec-
tive MT encoders, offering an effective and com-
putationally efficient alternative to the approach of
fine-tuning LLMs as direct generators.

Misalignment Evaluation. To further investigate
translation quality, we analyze misalignment is-
sues commonly observed in LLM-based genera-
tion (Zhang et al., 2024; Zeng et al., 2024), where
models may generate output that diverges from
the source text. We compare decoder-only models
(Llama3-8B and TowerInstruct-7B) and encoder-
decoder (mT5-large and LaMaTE) across three
metrics: off-target rate, unaligned source words,
and unaligned target words in En → X direction.
As shown in Figure 3, encoder-decoder models
consistently exhibit lower scores across all three
dimensions, indicating they reduce misalignment
compared to decoder-only models. LaMaTE fol-
lows the encoder-decoder paradigm, which also
helps mitigate misalignment issues as an added

Models HRL MRL LRL XRL

NMT-40-8 30.13 30.28 21.02 16.59
mT5-large 29.12 30.14 27.46 24.64
LaMaTE (Ours) 32.11 32.13 26.20 21.70

Table 2: BLEU performance evaluated on the FLORES-
200 devtest set, with models trained on OPUS-100 data.
HRL, MRL, LRL, and XRL represent high, medium,
low, and very low-resource languages, respectively.

bonus. We speculate that this improvement can
be attributed to the cross-attention mechanism in
the NMT decoder, which allows direct token-wise
interaction between the target and the source se-
quence, thereby enhancing source-target alignment.
In contrast, LLMs rely on a single attention mecha-
nism to jointly process the concatenated source and
target text, which could potentially cause a loss of
attention focus (Zhang et al., 2024).

Large-Scale Multilingual Translation. To fur-
ther validate whether our method can benefit a
broader range of languages, we conducted exten-
sive multilingual translation directions (99 lan-
guages), with the detailed description in Appendix
D.1. As shown in Table 2, LaMaTE significantly
outperforms the NMT-40-8 model across all re-
source levels and surpasses the mT5-large model
in high and medium language resources. This high-
lights the effectiveness of leveraging LLMs as en-
coders for multilingual translation, as their rich rep-
resentations can boost performance. However, our
model underperforms compared to mT5-large in
low and very low-resource languages, likely due to
limited pre-training data for these languages in the
Llama3-base model. Using a model with stronger
multilingual capabilities as the encoder could fur-
ther improve performance.
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6.2 Efficiency Analysis
Figure 4 illustrates the efficiency comparisons be-
tween LaMaTE and other models, with their con-
figuration details are provided in Table 10. The
results highlight two key improvements: decoding
speedup and memory efficiency.

The left chart in Figure 4 demonstrates that as
the source sequence length and batch size increase,
LaMaTE achieves a 2.4× to 6.5× speedup over
Llama3-8B (see Table 13 for details). Furthermore,
as shown in the right chart, LaMaTE significantly
reduces KV cache memory by 75% compared
to Llama3-8B. This reduction in memory usage
enhances scalability, enabling larger batch sizes
and longer source sequences. For instance, at an
80G memory budget, Llama3-8B encounters out-
of-memory issues at a batch size of 24 for source
lengths of 300-400, whereas LaMaTE still works
normally. This improvement is particularly bene-
ficial for large-scale inference, where optimizing
throughput is crucial for real-world deployment.
Overall, LaMaTE significantly enhances computa-
tional efficiency without compromising translation
quality, demonstrating its effectiveness in balanc-
ing performance and compute resources.

6.3 Depth vs Performance
To analyze how the depth of the EncStack and de-
coder affects performance and efficiency, we first
fix the decoder depth and vary the EncStack depth,
then fix the EncStack depth and adjust the decoder
depth. We evaluate translation performance in both
En → X and X → En directions and measure de-
coding speed, as shown in Figure 5.

The left panel presents the effect of increasing
the number of EncStack layers. The results show
that adding more EncStack layers leads to modest
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Figure 5: The impact of EncStack and decoder depth on
model performance and efficiency.

improvements in both translation directions, but the
gains are relatively small compared to variations
in the decoder. Additionally, since the EncStack
operates only on the encoder side, its impact on
decoding efficiency is minimal.

The right panel illustrates the effect of varying
decoder depth. Unlike the encoder, increasing de-
coder layers significantly influences both transla-
tion performance and efficiency. While deeper
decoders consistently improve translation quality,
particularly in the En → X direction, they also in-
troduce a notable trade-off: decoding speed drops
sharply as depth increases, with a 39% reduction
when moving from 8 to 16 layers. This suggests
that scaling the encoder offers a more effective
trade-off between performance gains and compu-
tational efficiency. Alternatively, the decoder can
be scaled using the Mixture of Experts (MoE) tech-
nique, which enables capacity expansion without
an increase in inference cost. We leave further
exploration of these strategies for future work.

6.4 Ablation Study

We present ablation studies in Table 3. First, train-
ing the model with only stage 1 (W/o S2) results
in a substantial performance drop. Incorporating
stage 2 while freezing LLM parameters yields no-
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Models COMET BLEU
LaMaTE (Ours) 82.32 33.85

W/o S2 80.07(−2.25) 29.67(−4.18)
W/ S2 & Frozen LLM 82.16(−0.16) 33.73(−0.12)

W/o Layer Fusion 82.08(−0.24) 33.14(−0.71)
W/o EncStack 82.02(−0.30) 33.32(−0.53)

Concat Decoder 81.52(−0.80) 31.51(−2.34)
Prefix Decoder 81.66(−0.66) 32.38(−1.47)

Table 3: Ablation studies on training methods, adaptor
design, and decoder variants. The numbers in the bot-
tom right represent the performance gap relative to the
complete model (LaMaTE).

ticeable improvements, but still falls short of La-
MaTE’s performance. This underscores the impor-
tance of both high-quality data and LLM parameter
tuning in maximizing model performance.

For the adaptor, removing the layer fusion leads
to a performance drop, indicating that fusing inter-
mediate LLM layers provides a more informative
representation than relying solely on the final layer.
Similarly, removing EncStack results in a slight
degradation. These findings confirm that the adap-
tor enhances the native representations of LLMs,
rendering them more suitable for the NMT decoder.

Besides, we explore two decoder variants—
Concat Decoder and Prefix Decoder—both of
which remove the cross-attention layer in the stan-
dard decoder. For a detailed description of these
variants, see Appendix D.3. As shown in the results,
the standard decoder proves superior to alternative
designs. Together with the observations from Fig-
ure 3, we argue that maintaining cross-attention in
the decoder is particularly beneficial for translation
tasks that demand strong alignment.

7 Conclusion

In this paper, we explore the connection between
the two worlds of LLMs and NMT, presenting
LaMaTE—a method that leverages LLMs as MT
encoders and pairs them with lightweight decoders.
We design an adaptor better to align LLM’s repre-
sentations for the decoder and propose a two-stage
training strategy to develop a universal transla-
tion model. Additionally, we introduce ComMT, a
new dataset suite encompassing diverse translation-
related tasks, facilitating the development and eval-
uation of universal translation models. Experi-
ments on ComMT demonstrate LaMaTE’s strong
performance and generalization ability, while sig-

nificantly improving computational efficiency—
achieving 2.4× to 6.5× faster decoding speeds and
reducing KV cache memory usage by 75%. We
hope this study will provide valuable insights and
inspire further exploration into optimizing LLMs
and expanding their role in NLP tasks.

Limitations

Our approach requires pre-training the decoder’s
parameters using large-scale bilingual data in the
first stage, as the decoder is randomly initialized.
This process may not be the most efficient. Future
work could explore initializing these parameters
from the encoder or directly leveraging a small
pre-trained language model to reduce the state gap
between the encoder and decoder. Additionally,
since our decoder is lightweight, it may become a
bottleneck when generating translations into many
target languages, so expanding its capacity is es-
sential for better performance. A more effective
strategy might involve scaling the decoder’s ca-
pacity with Mixture-of-Experts (MoE) instead of
adding more layers, thereby boosting performance
without compromising efficiency.
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A Encoder-Decoder vs Decoder-Only

Recent advancements in NLP have been profoundly
shaped by Transformer models (Vaswani et al.,
2017; Radford, 2018; Devlin et al., 2019), which
have revolutionized both model design and task
handling. The original Transformer (Vaswani et al.,
2017) was designed for sequence-to-sequence
(seq2seq) tasks, utilizing an encoder-decoder ar-
chitecture where the encoder encodes the input se-
quence and the decoder generates the output. Sub-
sequent models like GPT (Radford, 2018) leverage
only the Transformer’s decoder, omitting the cross-
attention layer, for language modeling tasks. Both
architectures are illustrated in Figure 6. Although
originally designed for different purposes, many
NLP tasks can be framed as either seq2seq or lan-
guage modeling problems (Xiao and Zhu, 2025;
Chang et al., 2024).

From a macroscopic perspective, the encoder-
decoder architecture employs an explicit encoder
module to encode the input, after which the de-
coder generates output based on both the source
representation from the encoder’s top layer and the
target representation from preceding layer. Given
the source sequence X and target sequence Y , this
process can be represented as follows 2:

Xl = FFN(SAtt(Xl−1,Mf )) (10)

Y l = FFN(CAtt(SAtt(Y l−1,Mc), X
L,Mf )) (11)

where l denotes the layer index, X l and Y l repre-
sent the representations of the source and target at
l-th layer, respectively, with X0 and Y 0 indicating
the embeddings. Each layer of the encoder first
performs self-attention (SAtt) with a fully-visible
mask pattern Mf , indicating that all tokens in the
source can attend to each other, followed by a feed-
forward neural network (FFN). The encoder gener-
ates its final representation XL parallelly by stack-
ing L such layers. The decoder is similar to the en-
coder but differs in that: (i) due to its autoregressive
nature, its self-attention uses a causal mask pattern
Mc, allowing attention only to historical tokens; (ii)
it incorporates an additional cross-attention (CAtt)
layer to integrate representations from the source,
where the mask Mf is a fully-visible mask pattern,
enabling the target to attend to the entire source.

Contrastingly, the decoder-only architecture pro-
cesses both the source and target sequences within
a single module:

2For simplicity, we omit layer normalization and residual
connections in the following formulas and descriptions.
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Figure 6: The Encoder-Decoder and Decoder-only architecture.

Model Connection Type Fuse Type Src Mask Enc-Dec
Parameter SharingTopOnly Layer-Wise Cross Attention Concat Attention

Encoder-Decoder ✓ ✓ Fully-visible ✗

Causal LM ✓ ✓ Causal ✓
Prefix LM ✓ ✓ Fully-visible ✓

Table 4: Comparision of different architecture by analyzing their structural elements.

[X l, Y l] = FFN(SAtt([X l−1, Y l−1],Mc)) (12)

In practice, due to the nature of causal attention,
the representation of X is independent of Y . This
allows us to encode X independently to obtain
representations at each layer, as shown in Equa-
tion (10). Subsequently, the representations of X l

at each layer are concatenated with the correspond-
ing target representations, enabling self-attention
computations of the target across both source and
target sequences, as shown in Figure 6(b). It is
important to note that: (i) when encoding X , we
can modify its original causal attention mask Mc

to be fully-visible mask Mf , similar to used in
the encoder-decoder architecture, thus creating a
variant of the CausalLM model known as the pre-
fixLM model (Dong et al., 2019; Raffel et al.,
2020); (ii) the fusion of source and target informa-
tion is achieved by computing attention on concate-
nated representations of both, distinct from cross-
attention, which we refer to in this paper as concat
attention; (iii) the interaction between X and Y is
Layer-Wise, rather than using only the top-layer
representation of X as in the encoder-decoder ar-
chitecture (TopOnly).

The overall comparison of these architectures
is shown in Table 4. In practice, some modern de-
ployment frameworks of LLMs (decoder-only mod-

els) explicitly separate encoding (prefilling) and de-
coding processes across distinct computational re-
sources, making the architecture structurally resem-
ble encoder-decoder models (Patel et al., 2024). In
this light, the so-called decoder-only model can be
considered a variant of the encoder-decoder model,
wherein the encoding function is implicitly inte-
grated through shared parameters with the decoder.
Conversely, one may view the encoder-decoder
model as an extension of PrefixLM, with a more
explicit division between encoding and decoding
stages.

B ComMT

B.1 Data Collection, Categorization and
Processing

Our data collection and curation efforts are guided
by two key principles: ensuring high quality and
maintaining diversity across translation tasks. To
this end, we extensively gathered publicly available
datasets from the research community, focusing
primarily on well-established repositories such as
OPUS 3, WMT 4, and Papers with Code 5. These
sources have been widely used in MT research.

To uphold data quality, we retained only those
datas that had undergone manual annotation, cul-

3https://opus.nlpl.eu/
4https://www2.statmt.org/wmt23/
5https://paperswithcode.com/datasets
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TCT
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DLT DT ICL

De
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Task Subtask De Ru Zh Cs All
GT - 38483 40862 56918 21058 157321
DLT - 2481 3323 2447 2207 10458

DT

Medical 3764 929 2682 788 8163
Law 1500 - 417 1466 3383
IT 2411 862 1694 357 5324

Colloquial 5116 3122 1510 - 9748
Literature 731 3561 2220 95 6607

TCT - 5318 4850 2615 - 12783
APE - 15314 1646 3646 - 20606
ICL - 1794 1535 1470 469 5268
ALL - 76912 60690 75619 26440 239661

Figure 7: Our comprehensive translation dataset, ComMT, includes diverse translation-related tasks. The table
presents the training set statistics for ComMT.

minating in a collection of over 50 high-quality
datasets covering a diverse range of domains, and
translation scenarios. For specialized tasks like
document-level translation with limited annotated
data, we sampled from resources such as news-
commentary. To further refine our dataset and
remove potentially low-quality samples, we em-
ployed the COMETkiwi (Rei et al., 2020) model
for filtering. We set the filtering threshold at 0.55
for literature and doc-level translation tasks and
0.75 for all other tasks.

After filtering, we carefully organized and cate-
gorized each dataset based on its characteristics ac-
cording to our classification protocol. All collected
datasets are presented in Table 15. The principles
for processing each task are as follows:

General Translation. This essential and well-
researched task in the MT field emphasizes
sentence-level translation in general domains, serv-
ing as the foundation for more specialized tasks.
Datasets lacking distinctive features are classified
as general sentence-level tasks. We included a
small amount of domain-specific data to enhance
generalizability, making this task the largest part of
ComMT.

Document-level Translation. Document-level
translation focuses on maintaining coherence
and context in extended texts, rather than merely
achieving sentence-level accuracy. This requires
the model to consider a broader context and
capture nuances across sentences (Maruf et al.,
2022; Hu et al., 2024). Our document-level
translation tasks mainly involve general long texts,
such as news articles. Jin et al. (2023a) indicates
that 3 preceding sentences are usually sufficient to
disambiguate most discourse phenomena. Based
on this finding and practical considerations, we
restricted our document-level translation tasks
to texts under 500 words and organized the data
accordingly.

Domain Translation. Domain translation focuses
on specialized domains, ensuring the accurate use
of domain-specific terminology and expressions.
Based on real-world applications and existing re-
search, we identified five initial domains for study:
Medical, Law, Information Technology(IT), Col-
loquial, and Literature. For the colloquial domain,
we focus on informal, non-written text data, mainly
from social media platforms, dialogues, and subti-
tles. For the literature domain, considering the
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Task Subtask
De Ru Zh Cs

De2En En2De Ru2En En2Ru Zh2En En2Zh Cs2En En2Cs

General Translation
WMT23 549 557 1723 2074 1976 2074 - 2074
WMT22 1984 2037 2016 2037 1875 2037 1448 2037
FLORES-200 - 1012 - 1012 - 1012 - 1012

Doc-level translation - 500 547 - 500 415 500 500 519

Domain Translation

Medical 748 744 513 1772 580 2094 999 -
Law - 969 - - - - - 959
IT - - - 650 - - - 519
Colloquial 517 595 564 507 520 652 - -
Literature 506 - 506 - 401 550 - -

Terminology-constrained Translation - 2948 775 - 500 1638 798 - 2898

Automatic Post-edition - 1980 1000 526 1023 - 1000 - -

Table 5: Statistics for the ComMT Test Set. We ensure that the source language of the test set is original, so not all
language directions have corresponding data for each task.
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Figure 8: Comparison of performance across three datasets—WMT17-20, TowerBlock, and ComMT—fine-tuned
on Llama3-8B and evaluated on the WMT23 test set.

complex discourse phenomena in literary texts,
sentence-level translation is unsuitable; thus, we
construct this task as multi-sentences form. We
categorize sentences into varying lengths of [100,
200, 300, 400] words, distributed in proportions of
[0.2, 0.3, 0.3, 0.2], to enhance generalizability.

Terminology-constrained Translation. This task
requires models to adhere to predefined terminol-
ogy pairs for accurate conversion of terms, which is
crucial for professional translations. Due to the lim-
ited availability of terminology translation data, we
sampled data and used the B2NERD (Yang et al.,
2024b) model to extract term pairs. Note that each
sample may contain one or more terminology pairs
in our data.

Automatic Post-editing. APE focuses on enhanc-
ing the quality of preliminary machine translation

outputs by automatically correcting errors in gram-
mar, spelling, and style in the raw output. We
focused on collecting authentic data for this task
rather than using synthetic data due to its potential
lack of accuracy in representing real post-editing
scenarios.

In-context Learning Translation. 6 We designed
this task mainly to leverage the inherent In-context
learning capabilities of LLMs, which potentially
enable models to adapt on-the-fly. We extracted
5% of the data from each task category to create
few-shot datasets. We structured these into 1-shot,
2-shot, and 3-shot data sets in proportions of [0.3,
0.3, 0.4].

6We created this few-shot training data to enhance data
diversity for the other five primary tasks. This task is used
solely for training and is not included in the evaluation.
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B.2 Construction of Training and Test Sets

For train sets, to manage the diverse data sources
and prevent excessive data accumulation, we have
set a cap of 5,000 samples per dataset. The training
set statistics are displayed in Figure 7. The sample
display of each task is shown in Table 16.

For test sets, we ensure that the source language
data is "source-original" to closely simulate real-
world scenarios and prevent "translationese" ef-
fects that could negatively impact evaluation ac-
curacy (Graham et al., 2020; Läubli et al., 2020).
For general translation tasks, we keep data from
WMT22 (Adelani et al., 2022), WMT23 (Kocmi
et al., 2023), and Flores-200 (Costa-jussà et al.,
2022), and use wmt23 as the default test set. For
other tasks such as terminology-constrained trans-
lation and automatic post-editing, we either use
standard test sets (e.g., WMT17–WMT23) or con-
struct custom test sets by sampling from multiple
publicly available datasets. We strive to maintain a
minimum of 500 examples per test set to ensure ro-
bust evaluation. For under-resourced tasks, test sets
are currently unavailable due to data scarcity, but
we plan to continue expanding coverage in future
work.

B.3 Quality Verification

To verify the quality of our dataset, we fine-tuned
the Llama3-8B model (Dubey et al., 2024) and
compared it against two other datasets commonly
used in LLM-based MT research: (i) a merged
news test set from WMT17 to WMT20 with 61k
samples, widely adopted data setting in previous
studies (Xu et al., 2023; Jiao et al., 2023; Guo
et al., 2024); (ii) the TowerBlock dataset (Alves
et al., 2024), which comprises 638k samples across
translation tasks, named entity recognition (NER),
general dialogue, and other tasks. We evaluated the
resulting models on the WMT23 test set, with the
results shown in Figure 8.

The results clearly demonstrate that ComMT sur-
passes WMT17–WMT20 in both the En → X and
X → En directions. However, while it excels in the
En → X direction, it underperforms in the X →
En direction compared to TowerBlock. This dis-
crepancy may be attributed to TowerBlock’s larger
dataset size and its inclusion of additional general
task data, predominantly in English, which may
specifically enhance performance when translating
into English. We intend to investigate this further
in future research.

C Experimental Setup

C.1 Data and Hyperparameter

Language Pair De-En Cs-En Ru-En Zh-En

Before Clean 50.1M 56.3M 39.2M 40.8M
After Clean 46.4M 50.4M 30.8M 33.6M

Table 6: Statistics on the use of parallel data from
WMT2023. Note that due to the extensive bilingual
data in the En-De CommonCrawl corpus, we only sam-
pled a portion and merged it with other data to create a
dataset of 50M. For En-Cs, we excluded the CzEng 2.0
dataset due to licensing issues.

While traditional MT research predominantly
employs beam search for decoding, LLM-based
generation often utilizes sampling strategies for
faster and more diverse outputs. This raises the
question of whether LLMs, when used for transla-
tion, should follow the conventional beam search
approach or adopt sampling-based decoding. To in-
vestigate this, we conducted a comparative analysis
of beam search (beam size = 5) and sampling (tem-
perature = 0.7, top-k = 50, top-p = 0.8) in terms of
translation quality and decoding speed (batch size
= 4). As shown in Table 8, while beam search is
significantly slower, it consistently yields higher
translation quality. Based on these observations,
we adopt beam search as the primary decoding
method in this paper.

C.2 Evaluating the Translation Capabilities of
Multilingual LLMs

To assess the fundamental translation capabilities
of state-of-the-art multilingual LLMs, we con-
ducted a comprehensive evaluation across several
widely used models, including XGLM-7.5B (Lin
et al., 2022), Bloom-7B (Scao et al., 2022), Falcon-
7B (Almazrouei et al., 2023), Qwen2-7B (Yang
et al., 2024a), Llama3-8B (Dubey et al., 2024).
These models were evaluated in both zero-shot and
three-shot settings across English ↔ German,
Czech, Russian, and Chinese translation tasks.

The averaged performance in in Figure 9 show
that Llama3-8B consistently outperformed the
other models in both En → X and X → En trans-
lation directions. Its superior performance across
different language pairs suggests that it possesses
stronger multilingual capabilities. Based on these
results, we selected Llama3-8B as our backbone
model for subsequent experiments.
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Hyperparameter Stage1 Stage2
Learning Rate 5e-4 2e-5
Adam β (0.9, 0.999) (0.9, 0.999)
LR Scheduler inverse_sqrt cosine
Number of Epochs 1 1
Global Batch Size 2,560 384
Train Steps 30,000 1,200
Warmup Ratio 0.01 0.01
Weight Decay 0.01 0.01
Decoding Method beam search
Beam Size 5

Table 7: Hyperparameter configuration during two-stage training and decoding. In the first training stage, we
use pure data parallelism because the LLM parameters are frozen. In the second stage, we employed DeepSpeed
ZeRO-2 (Rajbhandari et al., 2020) for full parameters training.

Models Decoding Method De2En Ru2En Zh2En En2De En2Cs En2Ru En2Zh Avg. Speed (tokens/s)

TowerInstruct-7B
Beam Search 85.15 83.18 80.36 83.10 78.88 85.39 85.93 83.16 114
Sampling 84.98 82.49 79.79 82.03 68.97 84.14 84.39 81.15 167

Llama3-8B-SFT
Beam Search 83.76 81.66 76.97 82.66 85.80 82.42 80.80 84.03 123
Sampling 83.48 80.58 76.63 80.01 81.74 82.21 82.03 80.87 151

LaMaTE
Beam Search 83.90 81.46 79.13 80.73 86.81 82.71 84.41 82.59 296
Sampling 82.82 80.53 77.97 80.73 86.81 82.71 84.41 80.57 379

Table 8: Comparison of the effectiveness and efficiency of beam search versus sampling.
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Figure 9: Evaluation of LLM translation capabilities in 0-shot and 3-shot settings using the WMT23 test set.

D Experiment Results

D.1 Results
We present a detailed performance of each transla-
tion task and language pair in the ComMT bench-
mark in Table 14.

Misalignment Evaluation. To assess the transla-
tion misalignment issue, we used three metrics: off-
target rate, unaligned source words, and unaligned
target words. Off-target refers to instances where
machine-generated translations contain segments
from incorrect languages or exhibit code-switching.
We utilize langdetect 7 to determine the language

7https://github.com/Mimino666/langdetect

of each translation. The off-target rate for a trans-
lation is calculated by subtracting the probability
of the predicted target language from 1. We then
average this rate across all sentences. Unaligned
source words (USW) refer to words in the source
sentence that do not have a corresponding transla-
tion in the target sentence. Conversely, unaligned
target words (UTW) capture instances where words
appear in the translation without clear support from
the source sentence, indicating potential insertions
or hallucinations. We employ awesome-align (Dou
and Neubig, 2021) to obtain word alignments. Ta-
ble 9 displays the results of these three indicators.
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Models Off-target Rate ↓ USW Rate ↓ USW Rate ↓
De Cs Ru Zh De Cs Ru Zh De Cs Ru Zh

Llama3-8B-SFT 5.63 9.45 2.92 3.76 12.03 17.59 17.13 19.36 14.16 14.80 14.10 22.59
Tower-7B 6.07 10.41 3.49 2.46 10.78 17.65 15.79 18.72 12.39 15.51 13.28 23.93
mT5-large 6.52 9.14 2.53 3.50 10.00 15.03 15.31 16.88 11.60 11.45 12.51 18.27
LaMaTE 4.97 7.93 2.06 3.17 10.74 16.11 16.34 17.57 11.82 11.10 12.61 17.51

Table 9: Results of the Decoder-only and Encoder-Decoder models on three indicators of misalignment.

Models
Decoder-only Encoder-Decoder

Llama2-7B Llama3-8B Llama2-13B NMT-40-8 mT5-large NLLB-3.3B LaMaTE (Ours)
Dim 4096 4096 5120 1024 1024 2048 4096-1024
Encoder layer - - - 40 24 24 32-8
Decoder layer 32 32 40 8 24 24 8
Vocab size 32k 128k 32k 128k 256k 256k 128k
Params 6.73B 8.01B 13.01B 0.77B 1.23B 3.34B 8.5B
KV Cache (Kb) 524b(s+t) 131b(s+t) 819b(s+t) 32b(s+t) 98b(s+t) 196b(s+t) 32b(s+t)

Table 10: Details on parameter and theoretical KV cache size of the compared models in our work. In the KV
Cache, b, s, and t denote the batch size, source sequence length, and target sequence length, respectively. Note that
Llama3-8B uses GQA (Ainslie et al., 2023), resulting in smaller KV cache usage compared to Llama2-7B.

Large-Scale Multilingual Translation. To fur-
ther validate whether our method can benefit a
broader range of languages, we conducted exten-
sive multilingual translation. Specifically, we uti-
lized OPUS-100 (Zhang et al., 2020) as our training
set, which includes bilingual data for 99 languages
paired with English, totaling 55M sentences. Ta-
ble 12 shows the classification of resource levels for
these languages. We trained the models on the X
→ En direction and evaluated with Flores-200 dev-
test set (Costa-jussà et al., 2022). For our method,
we froze the LLM parameters during training and
only trained the parameters of the adaptor and de-
coder. Due to the high cost of fine-tuning LLMs on
such a large-scale dataset, we did not compare the
LLM-SFT model.

D.2 Efficiency Analysis

We first summarize the key architectural details of
the evaluated models in Table 10. Next, we evaluate
the decoding efficiency of these models in Table 13
by comparing their decoding speed across different
sequence lengths and batch sizes. VLLM (Kwon
et al., 2023) accelerates LLM decoding but has lim-
ited beam search support and compatibility issues
with some models. To ensure fair and consistent
evaluation, we use the original Transformers frame-
work across all models. The results demonstrate
that LaMaTE consistently outperforms Llama3-8B
in decoding speed, particularly as batch sizes and
input lengths increase, achieving a speedup ranging

from 2.4× to 6.5×.

D.3 Decoder Variants Comparision
The decoder of the original transformer utilizes
cross attention to integrate the encoder’s represen-
tation, as shown in Equation (11). We refer to this
standard decoder Cross Decoder. We propose two
variants of the decoder that omit the cross-attention
layer.

The first variant, referred to as the Concat De-
coder, handles the encoder’s representation HE by
incorporating it directly into the self-attention lay-
ers of the decoder. Specifically, in the self-attention
computation, the keys and values are computed
from [HE , Y

l−1], while the queries are derived
solely from Y l−1. Thus, this allows target tokens
to integrate source and target information within a
single attention computation:

Y l = FFN(SAtt([HE , Y
l−1])) (13)

The second variant, taking inspiration from re-
cent research in multimodal language model (Liu
et al., 2023), referred to as Prefix Decoder, where
the encoder representations are concatenated di-
rectly with the decoder’s embeddings Y0 before
being fed to the upper decoder layers:

Y l = FFN(SAtt(Y l−1)), Y 0 = [HE , Y
0] (14)

We adopt a masking strategy similar to PrefixLM,
ensuring that source-side tokens retain their bidi-
rectional feature.
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Figure 10: Three variants of decoders: Cross Decoder is the standard decoder, while Concat Decoder and Prefix
Decoder remove the cross-attention sublayer, integrating source information through self-attention and early fusion
methods, respectively.

Decodery Training
1 Stage

De Cs Ru Zh Avg.
COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU

Cross Decoder
say 1 79.93 31.68 85.31 33.22 79.38 26.67 78.64 29.92 80.07 29.67
say 2 82.22 39.50 86.54 35.34 81.71 28.61 81.46 34.00 82.32 33.85

Concat Decoder
say 1 79.45 30.50 85.02 32.89 79.45 26.40 78.99 30.15 80.01 29.33
say 2 79.89 32.38 85.97 34.04 81.63 28.47 81.14 33.49 81.52 31.51

Prefix Decoder
say 1 79.12 30.04 85.37 32.73 79.71 26.73 79.24 30.21 80.11 29.25
say 2 81.17 37.56 85.54 32.06 81.11 27.54 81.07 33.10 81.66 32.38

Table 11: A comparison of decoder variants.

A comparative overview of the three variants is
presented in Figure 10. Table 11 displays their per-
formances. As shown, the Cross Decoder, i.e., the
standard decoder, achieves the best overall perfor-
mance.
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Resource Languages

Arabic (ar), German (de), English (en), Spanish (es), French (fr),
High Italian (it), Japanese (ja), Dutch (nl), Polish (pl), Portuguese (pt),
(>1%) Russian (ru), Turkish (tr), Chinese (zh)

Bulgarian (bg), Bengali (bn), Catalan (ca), Czech (cs), Danish (da),
Modern Greek (el), Estonian (et), Persian (fa), Finnish (fi), Hindi (hi),

Medium Hungarian (hu), Indonesian (id), Korean (ko), Lithuanian (lt), Latvian (lv),
(>0.1%) Norwegian (no), Romanian (ro), Slovak (sk), Slovene (sl), Swedish (sv),

Thai (th), Ukrainian (uk), Vietnamese (vi)

Afrikaans (af), Azerbaijani (az), Belarusian (be), Basque (eu), Galician (gl),
Gujarati (gu), Modern Hebrew (he), Armenian (hy), Icelandic (is), Georgian (ka),

Low Kazakh (kk), Kannada (kn), Macedonian (mk), Malayalam (ml), Mongolian (mn),
(>0.01%) Marathi (mr), Nepali (ne), Albanian (sq), Serbian (sr), Tamil (ta), Telugu (te),

Urdu (ur)

Amharic (am), Aragonese (an), Assamese (as), Avaric (av), Tibetan (bo),
Breton (br), Bosnian (bs), Welsh (cy), Dzongkha (dz), Esperanto (eo),
Western Frisian (fy), Irish (ga), Gaelic (gd), Hausa (ha), Croatian (hr),
Igbo (ig), Central Khmer (km), Kurdish (ku), Kirghiz (ky), Limburgish (li),

Very-Low Malagasy (mg), Malay (ms), Maltese (mt), Burmese (my), Norwegian Bokmål (nb),
(<0.01%) Norwegian Nynorsk (nn), Occitan (oc), Oriya (or), Panjabi (pa), Pashto (ps),

Kinyarwanda (rw), Northern Sami (se), Serbo-Croatian (sh), Sinhala (si),
Tajik (tg), Turkmen (tk), Tatar (tt), Uighur (ug), Uzbek (uz), Walloon (wa),
Xhosa (xh), Yiddish (yi), Yoruba (yo), Zulu (zu)

Table 12: We categorized 99 languages in OPUS-100 (Zhang et al., 2020) into four resource levels—–high, medium,
low, and very low—based on the proportion of data available on the internet.
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Batch Size Length
Decoder-only Encoder-Decoder Speedup↑

Llama2-7B Llama3-8B Llama2-13B NMT-40-8 mT5-large NLLB-3.3B LaMaTE (Ours)

1

0-100 35 32 28 170 43 48 77 2.41
100-200 33 33 23 167 44 42 83 2.52
200-300 31 34 21 162 43 38 83 2.44
300-400 29 32 19 160 42 36 82 2.56
400-500 29 33 18 160 43 36 81 2.45

2

0-100 67 63 51 310 84 77 152 2.41
100-200 53 62 34 294 83 63 156 2.52
200-300 45 58 29 289 81 55 154 2.66
300-400 38 52 24 281 80 52 157 3.02
400-500 38 51 24 283 79 51 155 3.04

4

0-100 114 123 76 515 164 181 296 2.41
100-200 57 87 35 472 141 112 276 3.17
200-300 47 77 OOM 453 133 94 272 3.53
300-400 38 66 OOM 421 123 82 263 3.98
400-500 38 65 OOM 422 123 79 259 3.98

6

0-100 144 172 90 668 230 217 416 2.42
100-200 59 100 OOM 565 183 116 363 3.63
200-300 49 87 OOM 549 171 95 355 4.08
300-400 39 73 OOM 495 155 84 335 4.59
400-500 39 72 OOM 500 154 83 334 4.64

8

0-100 162 210 100 789 289 232 532 2.53
100-200 59 109 OOM 643 216 119 446 4.09
200-300 OOM 93 OOM 617 198 99 432 4.65
300-400 OOM 78 OOM 553 177 87 404 5.18
400-500 OOM 77 OOM 556 175 82 397 5.16

16

0-100 167 278 95 956 446 281 816 2.94
100-200 OOM 118 OOM 728 269 OOM 631 5.35
200-300 OOM 99 OOM 690 244 OOM 589 5.95
300-400 OOM 82 OOM 609 207 OOM 535 6.52
400-500 OOM 81 OOM 602 206 OOM 533 6.58

24

0-100 130 308 OOM 976 550 307 1050 3.41
100-200 OOM 121 OOM 739 263 OOM 728 6.02
200-300 OOM 102 OOM 708 250 OOM 667 6.54
300-400 OOM OOM OOM 624 OOM OOM 594 -
400-500 OOM OOM OOM 619 OOM OOM 593 -

Table 13: Evaluate model decoding speed (tokens/s) across various batch sizes and source sequence lengths. Speedup
indicates the decoding speedup ratio of LaMaTE versus Llama3-8B.
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General Translation

Model
En2De En2Cs En2Ru En2Zh De2En

COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU

NLLB-3.3B 79.62 33.51 88.06 36.79 83.74 29.03 79.66 34.84 81.35 35.42
BigTranslate 70.27 14.59 83.45 23.50 79.46 19.04 80.60 30.99 79.36 26.43
Aya-23-8B 82.27 34.13 87.25 32.02 83.92 26.41 84.03 41.39 84.29 41.24
TowerInstruct-7B 83.10 35.00 78.88 17.41 85.39 29.81 85.93 42.66 85.15 44.33
Bayling-13B 70.03 15.97 68.15 14.34 64.22 12.38 81.88 37.89 81.39 27.85
NMT-8-8 77.18 29.16 85.54 35.94 79.48 25.43 80.29 38.78 81.33 33.33
NMT-40-8 78.42 31.81 86.91 38.04 80.65 26.07 82.05 40.73 82.85 36.99
mT5-Large 78.83 30.74 84.22 30.08 81.62 24.10 83.59 36.89 82.93 37.12
Llama3-8B-Base, 3-shot 73.82 18.61 81.63 24.34 80.17 23.20 81.89 39.51 80.45 32.84
Llama3-8B-Inst, 0-shot 78.81 29.01 77.46 22.29 80.21 22.67 67.46 18.51 74.40 33.20
Llama3-8B-SFT 82.66 37.76 85.80 29.64 83.94 27.03 83.72 40.66 83.76 40.62
LaMaTE-s1 77.73 29.96 85.31 33.22 79.19 24.16 80.88 39.61 82.12 33.39
LaMaTE-s2 80.68 37.59 86.54 35.34 82.45 26.93 84.05 45.98 83.75 41.41

Model
Ru2En Zh2En Avg. En → X Avg. X → En

COMET BLEU COMET BLEU COMET BLEU COMET BLEU

NLLB-3.3B 80.70 31.59 77.44 22.14 82.77 33.54 79.83 29.72
ALMA-7B 82.46 31.52 79.45 22.77 84.28 31.33 82.18 31.66
BigTranslate 76.84 23.43 75.48 16.29 78.45 22.03 77.23 22.05
Aya-23-8B 81.38 29.92 77.54 21.03 84.37 33.49 81.07 30.73
TowerInstruct-7B 83.18 34.54 80.36 23.99 83.33 31.22 82.90 34.29
Bayling-13B 77.34 21.12 76.89 18.59 71.07 20.15 78.54 22.52
NMT-8-8 78.84 29.13 76.15 21.04 80.62 32.33 78.77 27.83
NMT-40-8 79.83 30.28 76.63 22.56 82.01 34.16 79.77 29.94
mT5-Large 80.42 27.85 77.97 19.73 82.07 30.45 80.44 28.23
Llama3-8B-Base, 3-shot 80.17 30.14 75.38 19.08 79.38 26.42 78.67 27.35
Llama3-8B-Inst, 0-shot 70.55 21.49 68.44 15.12 75.99 23.12 71.13 23.27
Llama3-8B-SFT 81.66 31.88 76.97 20.70 84.03 33.77 80.80 31.07
LaMaTE-s1 79.56 29.18 76.40 20.22 80.78 31.74 79.36 27.60
LaMaTE-s2 80.97 30.29 78.87 22.02 83.43 36.46 81.20 31.24

Domain Translation(COMET)

Model
Medical Law IT

De2En En2De Ru2En En2Ru Zh2En En2Zh Cs2En En2De En2Cs En2Ru En2Cs

NLLB-3.3B 87.32 86.65 84.49 88.71 84.29 85.29 88.20 86.89 89.88 86.81 92.09
ALMA-7B 87.06 86.10 84.56 88.02 84.83 85.66 87.57 85.45 88.94 86.60 92.35
BigTranslate 84.79 82.63 81.04 80.14 81.70 84.17 85.61 83.26 88.03 78.57 84.08
Aya-23-8B 87.15 85.88 84.08 88.04 84.82 86.49 87.71 86.31 89.24 87.19 92.97
TowerInstruct-7B 87.51 86.89 85.44 87.77 85.40 87.08 87.15 86.27 82.14 85.27 84.86
Bayling-13B 85.62 80.11 82.47 64.29 83.00 85.03 84.12 75.39 70.65 66.26 75.52
mT5-Large 86.37 85.01 83.24 86.63 82.90 85.86 86.56 84.16 86.85 84.93 91.49
NMT-8-8 87.12 86.69 83.85 86.93 83.61 85.46 87.76 87.98 91.14 83.17 92.73
NMT-40-8 87.50 87.03 84.74 87.79 84.42 86.09 88.21 88.28 91.78 83.03 93.25
Llama3-8B-Base, 3-shot 85.14 83.32 83.11 84.61 82.46 83.96 86.57 79.46 82.13 84.43 88.48
Llama3-8B-Inst, 0-shot 73.47 84.79 74.20 85.72 74.58 75.20 66.78 83.59 81.95 84.20 86.25
Llama3-8B-SFT 86.65 85.86 83.95 88.94 84.85 87.69 88.07 85.53 88.18 88.88 92.84
LaMaTE 87.10 86.39 84.36 88.95 84.36 88.73 87.68 87.70 91.36 89.48 93.86
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Model
Colloquial Literature

Avg. COMET Avg. COMET
De2En En2De Ru2En En2Ru Zh2En En2Zh De2En Ru2En Zh2En En2Zh En → X X → En

NLLB-3.3B 87.09 81.32 82.75 78.94 80.69 85.04 63.65 65.98 59.98 65.94 84.32 78.44
ALMA-7B 88.65 82.55 85.86 84.26 83.13 86.86 74.75 72.17 72.27 76.54 85.76 82.09
BigTranslate 82.68 69.91 74.72 66.70 79.57 82.05 67.78 57.47 62.22 72.72 79.30 75.76
Aya-23-8B 89.18 83.50 86.61 84.90 83.18 87.56 74.77 72.45 68.68 77.01 86.28 81.86
TowerInstruct-7B 88.48 81.73 86.66 82.12 82.45 86.79 75.44 73.29 75.38 79.37 84.57 82.72
Bayling-13B 85.94 71.40 81.97 59.95 80.22 82.73 73.92 69.36 71.30 73.87 73.20 79.79
mT5-Large 87.08 78.05 83.92 80.69 80.73 86.85 71.22 69.09 68.30 75.36 84.17 79.94
NMT-8-8 87.79 78.19 83.20 77.54 79.55 84.52 62.26 64.20 51.11 71.86 84.20 77.05
NMT-40-8 88.98 79.76 84.45 79.28 80.53 86.09 63.82 66.56 48.39 75.10 85.23 77.76
Llama3-8B-Base, 3-shot 86.74 75.46 85.39 80.81 78.91 79.51 75.56 72.82 70.58 76.32 81.68 80.73
Llama3-8B-Inst, 0-shot 61.97 73.28 62.26 81.34 57.89 58.92 70.70 69.35 72.04 60.14 77.76 68.32
Llama3-8B-SFT 89.20 85.02 86.75 85.46 81.00 84.73 77.33 75.62 72.26 79.75 86.63 82.57
LaMaTE 88.76 83.01 85.58 82.84 82.75 87.53 75.17 72.15 74.54 78.51 87.12 82.25

Domain Translation(BLEU)

Model
Medical Law IT

De2En En2De Ru2En En2Ru Zh2En En2Zh Cs2En En2De En2Cs En2Ru En2Cs

NLLB-3.3B 42.09 33.26 44.36 33.54 31.29 36.81 46.54 48.74 50.43 35.83 33.94
ALMA-7B 41.25 30.20 41.06 28.97 33.32 36.75 42.46 36.61 35.95 33.21 31.69
BigTranslate 32.69 22.00 29.48 18.81 23.56 31.56 37.05 30.83 37.70 20.34 20.5
Aya-23-8B 41.82 30.05 41.01 28.83 32.63 39.09 43.92 42.46 42.64 35.59 34.20
TowerInstruct-7B 43.83 33.71 46.31 32.37 36.13 42.04 43.18 41.83 19.25 33.04 19.03
Bayling-13B 35.04 23.28 32.82 13.71 27.43 36.40 31.26 25.50 18.74 19.31 15.14
mT5-Large 38.44 27.88 36.80 27.38 28.16 34.86 38.61 39.24 39.42 34.08 33.81
NMT-8-8 43.71 34.21 42.18 31.68 33.36 38.55 43.68 49.85 52.75 34.06 38.86
NMT-40-8 44.14 35.43 43.40 32.48 35.28 39.82 46.12 51.68 54.17 33.26 40.33
Llama3-8B-Base, 3-shot 37.89 25.20 37.57 24.07 29.33 30.84 39.71 30.64 26.62 31.98 23.74
Llama3-8B-Inst, 0-shot 27.21 28.33 28.12 26.47 22.31 18.24 22.53 35.31 29.54 32.75 25.40
Llama3-8B-SFT 41.70 30.53 42.70 36.18 36.24 45.76 49.07 41.08 39.90 40.96 36.77
LaMaTE 41.98 32.74 42.04 37.64 32.76 48.97 45.16 47.96 50.83 42.23 45.64

Model
Colloquial Literature

Avg. BLEU Avg. BLEU
De2En En2De Ru2En En2Ru Zh2En En2Zh De2En Ru2En Zh2En En2Zh En → X X → En

NLLB-3.3B 48.09 42.90 32.44 20.69 20.94 33.72 14.51 20.69 5.24 11.76 34.69 30.62
ALMA-7B 49.19 38.16 37.63 26.41 22.20 32.15 22.77 24.04 12.13 13.88 31.27 32.61
BigTranslate 32.92 20.54 19.81 8.45 15.15 24.08 14.91 7.68 3.74 10.05 22.27 21.70
Aya-23-8B 50.86 42.54 40.04 28.84 21.36 35.65 23.65 25.38 10.57 16.48 34.22 33.12
TowerInstruct-7B 53.77 42.61 39.68 26.95 22.65 34.11 24.35 27.79 15.06 18.49 31.22 35.28
Bayling-13B 43.73 28.55 27.45 12.25 20.46 30.57 20.23 18.10 9.61 13.41 21.53 26.61
mT5-Large 49.23 36.53 32.27 24.05 21.39 31.40 19.02 20.99 9.37 13.18 31.08 29.43
NMT-8-8 50.55 41.63 32.31 23.74 21.32 33.79 11.61 16.73 4.74 11.34 35.50 30.02
NMT-40-8 54.16 43.43 34.32 24.53 21.83 33.75 13.06 18.45 4.60 13.52 36.58 31.54
Llama3-8B-Base, 3-shot 46.09 28.92 36.14 23.83 18.16 25.50 24.24 25.13 11.30 14.75 26.01 30.56
Llama3-8B-Inst, 0-shot 22.55 32.94 16.55 25.04 9.10 11.21 21.02 24.38 11.75 7.75 24.82 20.55
Llama3-8B-SFT 55.53 49.83 41.79 31.01 22.28 28.71 30.50 36.33 16.36 21.76 36.59 37.25
LaMaTE 53.41 48.91 36.94 29.80 24.42 38.41 25.60 26.40 16.49 21.82 40.45 34.52
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Doc-level Translation

Model
De2En En2De En2Ru Zh2En En2Zh

d-COMET d-BLEU d-COMET d-BLEU d-COMET d-BLEU d-COMET d-BLEU d-COMET d-BLEU

NLLB-3.3B 74.01 11.75 73.19 14.56 78.10 7.37 68.34 11.14 70.17 18.58
ALMA-7B 83.73 25.58 81.10 20.14 85.93 14.29 76.53 20.97 80.56 16.26
BigTranslate 74.77 9.04 68.47 9.80 71.34 5.61 68.01 8.48 80.24 22.46
Aya-23-8B 86.10 39.87 85.19 28.92 89.15 25.79 76.61 28.05 82.31 33.04
TowerInstruct-7B 85.86 37.74 83.41 25.61 80.93 18.57 82.53 38.88 81.47 22.22
Bayling-13B 84.71 30.56 72.55 17.50 45.83 4.82 78.62 23.69 79.92 20.90
mT5-Large 79.29 17.04 71.22 10.69 78.99 7.28 74.71 18.11 80.97 22.73
NMT-8-8 74.80 10.94 71.76 9.78 74.49 3.58 69.76 16.00 74.33 11.18
NMT-40-8 76.69 14.04 71.40 11.78 74.33 4.72 69.89 17.26 75.75 13.37
Llama3-8B-Base, 3-shot 34.42 81.76 19.31 75.99 15.26 81.27 29.39 76.52 31.71 83.67
Llama3-8B-Inst, 0-shot 83.01 33.97 82.89 24.09 84.27 19.32 81.91 36.35 70.12 15.48
Llama3-8B-SFT 84.87 35.07 81.62 26.35 85.25 21.78 80.62 40.85 86.25 38.08
LaMaTE 83.52 32.69 82.17 27.45 87.02 22.56 82.68 39.65 83.50 37.56

Model
En2Cs Cs2En Avg. En → X Avg. X → En

d-COMET d-BLEU d-COMET d-BLEU d-COMET d-BLEU d-COMET d-BLEU

NLLB-3.3B 78.43 10.41 74.34 9.24 74.97 12.73 72.23 10.71
ALMA-7B 84.74 12.38 82.69 17.71 83.08 15.77 80.98 21.42
BigTranslate 68.86 3.98 74.65 6.17 72.23 10.46 72.48 7.90
Aya-23-8B 88.44 24.36 88.33 41.14 86.27 28.03 83.68 36.35
TowerInstruct-7B 66.40 8.22 87.13 36.69 78.05 18.66 85.17 37.77
Bayling-13B 62.70 7.80 85.48 24.23 65.25 12.76 82.94 26.16
mT5-Large 77.80 7.24 80.39 15.45 77.25 11.99 78.13 16.87
NMT-8-8 77.24 7.73 75.92 9.48 74.46 8.07 73.49 12.14
NMT-40-8 78.54 10.54 76.81 12.75 75.01 10.10 74.46 14.68
Llama3-8B-Base, 3-shot 13.67 77.69 36.83 85.34 19.99 79.66 33.55 81.21
Llama3-8B-Inst, 0-shot 83.53 18.99 85.23 34.60 80.20 19.47 83.38 34.97
Llama3-8B-SFT 83.21 19.49 84.98 35.28 84.08 26.43 83.49 37.07
LaMaTE 86.57 22.92 85.36 34.95 84.82 27.62 83.85 35.76

Terminology-constrained Translation

Model
De2En En2De En2Ru Zh2En

COMET BLEU TSR COMET BLEU TSR COMET BLEU TSR COMET BLEU TSR

NLLB-3.3B 79.50 21.18 36.03 89.59 48.37 77.52 89.77 30.02 57.83 65.76 8.74 8.91
ALMA-7B 79.49 21.41 36.38 88.49 40.64 69.95 88.98 24.98 55.01 73.29 12.33 24.08
BigTranslate 77.88 18.06 32.25 83.85 29.16 58.41 81.29 17.44 40.16 66.59 7.16 12.55
Aya-23-8B 80.95 31.71 67.25 83.35 39.86 85.78 86.17 27.29 70.55 71.99 13.40 71.18
TowerInstruct-7B 81.35 31.09 66.27 88.85 46.57 87.54 89.39 30.85 73.50 73.28 15.43 78.84
Bayling-13B 81.33 29.76 70.28 81.58 33.65 84.10 66.44 12.46 51.24 70.96 12.03 74.29
mT5-large 81.74 33.70 76.34 87.50 42.76 88.30 87.79 25.71 66.55 71.20 12.44 76.15
NMT-8-8 78.80 21.26 35.62 89.37 47.79 77.14 87.34 27.85 55.24 55.58 6.16 8.53
NMT-40-8 79.35 21.75 36.56 89.45 47.99 76.83 88.64 27.92 55.24 54.37 5.97 8.80
Llama3-8B-Base, 3-shot 81.73 34.34 77.08 85.18 38.04 88.30 86.72 22.60 71.85 73.40 13.87 76.49
Llama3-8B-Inst, 0-shot 64.85 20.68 84.67 85.99 40.56 95.03 84.68 24.76 80.92 57.72 7.96 83.35
Llama3-8B-SFT 82.53 37.28 87.15 89.85 49.62 94.27 89.84 31.70 84.69 74.56 17.06 82.18
LaMaTE 81.83 33.03 71.05 90.17 52.12 90.90 89.53 32.59 72.79 72.71 13.91 75.05
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Model
En2Zh En2Cs Avg. En → X Avg. X → En

COMET BLEU TSR COMET BLEU TSR COMET BLEU TSR COMET BLEU TSR

NLLB-3.3B 85.89 40.52 64.84 85.89 31.77 39.87 87.79 37.67 60.02 72.63 14.96 22.47
ALMA-7B 85.95 38.38 62.56 85.77 27.63 37.15 87.30 32.91 56.17 76.39 16.87 30.23
BigTranslate 83.19 32.19 50.24 80.99 19.24 26.39 82.33 24.51 43.80 72.24 12.61 22.40
Aya-23-8B 87.37 46.84 88.37 88.95 44.92 71.59 86.46 39.73 79.07 76.47 22.56 69.22
TowerInstruct-7B 87.42 48.68 90.45 85.67 35.56 74.10 87.83 40.42 81.40 77.32 23.26 72.56
Bayling-13B 85.46 42.96 92.87 77.95 27.96 58.11 77.86 29.26 71.58 76.15 20.90 72.29
mT5-Large 86.40 40.66 85.81 86.79 41.25 69.73 87.12 37.60 77.60 76.47 23.07 76.25
NMT-8-8 84.48 38.79 60.07 86.25 35.04 43.65 86.86 37.37 59.03 67.19 13.71 22.08
NMT-40-8 85.10 39.34 61.52 86.83 35.70 44.88 87.51 37.74 59.62 66.86 13.86 22.68
Llama3-8B-Base, 3-shot 85.62 40.65 90.59 86.68 40.98 75.64 86.05 35.57 81.60 77.57 24.11 76.79
Llama3-8B-Inst, 0-shot 72.46 32.78 95.36 82.60 39.90 84.29 81.43 34.50 88.90 61.29 14.32 84.01
Llama3-8B-SFT 89.44 56.76 96.06 88.69 47.34 86.45 89.46 46.36 90.37 78.55 27.17 84.67
LaMaTE 89.72 58.44 87.68 88.29 41.01 61.54 89.43 46.04 78.23 77.27 23.47 73.05

Automatic Post-edition

Model
De2En En2De Ru2En En2Ru

COMET BLEU HTER COMET BLEU HTER COMET BLEU HTER COMET BLEU HTER

NLLB-3.3B 89.18 52.90 38.94 85.99 51.55 38.70 85.53 48.71 42.47 85.92 40.49 53.89
ALMA-7B 88.12 45.56 44.08 84.24 42.71 46.84 86.74 47.01 42.97 85.93 35.14 58.49
BigTranslate 85.70 42.44 51.04 75.70 24.55 68.72 78.43 30.62 59.87 77.21 21.55 75.29
Aya-23-8B 89.08 75.51 22.83 84.71 63.41 29.53 90.93 75.46 19.22 88.49 54.35 40.16
TowerInstruct-7B 88.98 80.62 17.06 85.64 71.84 20.87 91.64 81.49 14.41 91.13 75.32 19.14
Bayling-13B 84.89 39.59 63.14 74.17 29.85 76.56 78.77 28.56 92.13 51.54 7.89 218.99
mT5-large 88.34 73.97 21.57 85.15 70.13 22.17 89.25 70.37 26.23 81.60 35.31 86.20
NMT-8-8 89.46 52.67 36.74 84.50 50.25 39.38 85.05 51.81 37.90 84.70 43.46 49.92
NMT-40-8 89.60 53.55 36.43 84.88 50.39 39.55 86.10 53.23 36.46 85.12 39.98 52.69
Llama3-8B-Base, 3-shot 88.15 61.72 33.26 84.06 59.78 32.26 86.97 66.00 29.09 88.84 62.54 32.92
Llama3-8B-Inst, 0-shot 61.70 23.09 94.49 78.79 36.02 59.94 55.35 17.51 112.49 79.42 20.86 95.40
Llama3-8B-SFT 90.08 78.05 19.53 86.56 66.46 26.00 90.34 75.15 20.76 91.36 69.48 25.77
LaMaTE 90.50 76.86 21.03 86.07 64.63 25.80 91.04 75.13 19.88 90.89 68.24 26.72

Model
En2Zh Avg. En → X Avg. X → En

COMET BLEU HTER COMET BLEU HTER COMET BLEU HTER

NLLB-3.3B 75.87 34.04 99.76 82.59 42.03 64.12 87.36 50.81 40.71
ALMA-7B 79.05 28.71 90.65 83.07 35.52 65.33 87.43 46.29 43.52
BigTranslate 73.91 23.21 103.89 75.61 23.10 82.63 82.07 36.53 55.45
Aya-23-8B 82.84 63.29 84.56 85.35 60.35 51.42 90.01 75.49 21.03
TowerInstruct-7B 85.73 74.12 53.72 87.50 73.76 31.24 90.31 81.06 15.74
Bayling-13B 72.20 38.00 160.32 65.97 25.25 151.96 81.83 34.08 77.64
mT5-Large 82.15 54.63 90.52 82.97 53.36 66.30 88.80 72.17 23.90
NMT-8-8 75.99 34.69 99.98 81.73 42.80 63.09 87.26 52.24 37.32
NMT-40-8 77.08 34.85 100.00 82.36 41.74 64.08 87.85 53.39 36.44
Llama3-8B-Base, 3-shot 81.94 54.66 74.88 84.95 58.99 46.68 87.56 63.86 31.17
Llama3-8B-Inst, 0-shot 74.51 36.41 145.27 77.57 31.10 100.20 58.53 20.30 103.49
Llama3-8B-SFT 82.91 55.08 77.20 86.94 63.67 42.99 90.21 76.60 20.14
LaMaTE 82.35 53.76 86.66 86.43 62.21 46.39 90.77 76.00 20.45

Table 14: Performance on ComMT benchmark.

Data Set Language Task
WMT 14-23-news8 Cs, De, Ru, Zh GT

WMT 16-21-ape9 De, Ru, Zh APE

WMT 20,22-chat10 De DT(colloquial)
8https://www.statmt.org/wmt21/translation-task.html.
9https://www.statmt.org/wmt21/ape-task.html.

10https://www.statmt.org/wmt20/chat-task.html.
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Data Set Language Task

WMT 14, 18-22-medical11 Cs, De, Ru, Zh DT(medical)

WMT 16-it12 Cs, De DT(it)

WMT 20-robustness13 De DT(colloquial)

WMT 21, 23-terminology14 Cs, De, Ru, Zh TCT

WMT 23-literary Zh DLT

IWSLT 14-1715 Cs, De, Ru, Zh DLT

IWSLT 1616 De APE

IWSLT23_OPUS_OpenSubtitles 17 De GT, DT(colloquial)

news-commentary-v18 18 Cs, De, Ru, Zh DCL

GlobalVoices 19 Cs, De, Ru GT

DiscoMT20 De DCL

frmt (Riley et al., 2022) Zh GT

PAWS-X (Yang et al., 2019) De, Zh GT

XNLI-15way (Conneau et al., 2018) De, Ru, Zh GT

NTREX128 (Federmann et al., 2022) Cs, De, Ru, Zh GT

CommonMT (He et al., 2020) Zh GT, APE

BMELD (Liang et al., 2021) Zh DT(colloquial)

par3 (Karpinska et al., 2022b) Cs, De, Ru, Zh DLT, DT(literature)

BWB (Jiang et al., 2023) Zh DLT, DT(literature)

UM-corpus (Tian et al., 2014) Zh GT, DT(law, literature)

mZPRT (Xu et al., 2022) Zh DLT, DT(colloquial, literature)

tico19 (Anastasopoulos et al., 2020) Ru, Zh GT

FGraDA (Zhu et al., 2021) Zh GT

NLLB (Costa-jussà et al., 2022) Ru GT, DT(colloquial)

MULTI30k (Elliott et al., 2016) Cs, De GT

FLORES-200 (Costa-jussà et al., 2022) Cs, De, Ru, Zh GT

localization-xml-mt
De, Ru, Zh DT(it)

(Hashimoto et al., 2019)

DEMETR (Karpinska et al., 2022a) De, Ru, Zh APE

11https://www.statmt.org/wmt21/biomedical-translation-task.html.
12https://statmt.org/wmt16/it-translation-task.html.
13https://statmt.org/wmt20/robustness.html.
14https://statmt.org/wmt21/terminology-task.html.
15https://wit3.fbk.eu/2014-01.
16https://wit3.fbk.eu/2016-02.
17https://iwslt.org/2024/subtitling.
18https://data.statmt.org/news-commentary/v18.1/training/.
19https://opus.nlpl.eu/GlobalVoices/corpus/version/GlobalVoices.
20https://www.idiap.ch/webarchives/sites/www.idiap.ch/workshop/DiscoMT/.
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Data Set Language Task

mlqe-pe (Fomicheva et al., 2020) De, Ru, Zh APE

XQUAD (Artetxe et al., 2019) De, Ru, Zh GT

p2p-data (Jin et al., 2023b) Zh DLT, DT(literature)

NEJM (Liu and Huang, 2021) Zh DT(medical)

DGT-TM (Steinberger et al., 2013) Cs, De DT(law)

health_term (Xu and Carpuat, 2021) De TCT

XCOPA (Ponti et al., 2020) Zh GT

MINTAKA (Sen et al., 2022) De GT

MGSM (Shi et al., 2023) De, Ru, Zh GT

MSLT (Federmann and Lewis, 2017) Zh DT(colloquial)

Perseus (Zheng et al., 2023) Zh GT, DLT, DT(it, medical)

BiPaR (Jing et al., 2019) Zh DLT, DT(literature)

XStoryCloze (Lin et al., 2021) Ru, Zh GT, DT(literature)

RELX (Köksal and Özgür, 2020) De GT

PETCI (Tang, 2022) Zh GT, ICL

QALD-9-Plus (Perevalov et al., 2022) De, Ru GT

SubEdits (Chollampatt et al., 2020) De APE

hallucinations-in-nmt
De APE

(Guerreiro et al., 2023)

good-translation-wrong-in-context
Ru GT, ICL, DT(colloquial)

(Voita et al., 2019)

CoCoA-MT (Nădejde et al., 2022) De, Ru GT, DT(colloquial)

unfaithful(Zhang et al., 2024) De, Zh GT

ContraPro (Müller et al., 2018) De GT, APE, DT(colloquial)

LiteraryTranslation
Cs, De, Ru, Zh DLT, DT(literature)

(Karpinska and Iyyer, 2023)

ctxpro (Wicks and Post, 2023) De, Ru GT, ICL, DT(colloquial)

DeCOCO (Hitschler et al., 2016) De GT

IdiomsInCtx-MT (Stap et al., 2024) De, Ru GT, ICL

Books 21 De, Ru DLT, DT(literature)

EUbookshop 22 Cs, De, Ru DLT

TED2020 (Reimers and Gurevych,
2020)

Cs, De, Ru DLT

Table 15: Data composition of our ComMT. We compiled translation datasets and manually categorized them based
on predefined characteristics. Task abbreviations: GT - general translation, DLT - doc-level translation, DT - domain
translation, TCT - terminology-constrained translation, APE - automatic post-editing, ICL - in-context learning.

21https://opus.nlpl.eu/Books/corpus/version/Books
22https://opus.nlpl.eu/EUbookshop/corpus/version/EUbookshop
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General translation
Prompt: Translate the following text from English into Chinese.
English: I know that advertising is how they make their money, but all that garbage seems
counterproductive if it drives people away.
Chinese: 我知道广告是为他们创收的一种方式，而如果大量的广告让观众反感离开，似乎会适得其反。

Doc-level translation
Prompt: Translate the following text from English into Chinese.
English: The outliers tend to be those who die young, so that typical (median) life
expectancy is higher than average life expectancy. This means that raising the average
HLE can be achieved by raising the HLE of those at the bottom of the health distribution
to that of the typical (median) person. This not only makes targeting inequality more
attractive, but does not require path-breaking medical innovations to achieve longer
lifespans – just the achievement of typical outcomes for more people. With this in mind,
it is urgent to close the sizeable rich-poor life-expectancy gap – around 15 years – in the
United States. As a metric for economic and social progress, targeting HLE implicitly
acknowledges that aging is malleable (if it wasn’t, it wouldn’t be a viable target). It
turns out that a range of behaviors and policies, as well as the environment we inhabit,
influence how we age and how long we live. It is estimated that our genetics account for
only one-quarter of the factors contributing to how we age. Given this malleability, it
is crucial that governments focus on HLE for the maximum number of people. Such a
focus would also help governments confront one of the biggest challenges of the future:
societal aging. Given that every country in the world is expected to experience societal
aging, focusing on how well we age becomes paramount. This age malleability requires
drawing a distinction between chronological and biological measures of age and focusing
on the latter.
Chinese: 反常之处便是那些年纪轻轻便死去的人，他们让典型（中位）寿命预期长于平均寿命预期。这意味着提高平均健康寿命预期可以通过将位于健康分布底层的人变成典型（中位）健康寿命预期的人来实现。这不仅让针对不平等性问题变得更有吸引力，也不必一定需要突破性的医学创新才能实现生命周期的延长——而只需要让更多人实现典型结果。基于此，现在迫切需要缩小美国庞大的贫富寿命预期差距——大约在15年左右。作为一个经济和社会进步的指标，健康寿命预期间接承认衰老具有可塑性（若非如此的话，这就不是一个可行的目标）。一系列行为和政策，以及我们所居住的环境，都影响着我们如何变老和如何延长我们的寿命。据估计，我们的器官大约占我们衰老的四分之一因素。考虑到这一可塑性，政府必须关注最大数量人口的见刊寿命预期。关注这一点也有助于政府面对未来最巨大的挑战之一：社会老龄化。世界上每一个国家都会经历社会老龄化，关注我们以多么优秀的方式衰老变得至关重要。这一年龄可塑性需要区分年龄的时间和生物指标，专注于后者。
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Domain translation
Domain: Medical
Prompt: Translate the following text from English into Chinese.
English: The median age of the 30 patients was 56.5 (28-80) years old, among them, 25
patients were primary plasma cell leukemia, and 5 patients were secondary plasma cell
leukemia.
Chinese: 30例PCL患者中位年龄56.5（28-80）岁，25例为原发性浆细胞白血病，5例为继发性浆细胞白血病。
Domain: Law
Prompt: Translate the following text from English into Chinese.
English: Article 8 Small and medium-sized enterprises shall observe the laws and reg-
ulations of the State on labor safety, occupational health, social security, protection of
resources and environment, quality, taxation and finance, etc. and shall operate and
manage according to law, and may not infringe upon the legitimate rights and interests of
the employees or damage the public interests.
Chinese: 第八条中小企业必须遵守国家劳动安全、职业卫生、社会保障、资源环保、质量、财政税收、金融等方面的法律、法规，依法经营管理，不得侵害职工合法权益，不得损害社会公共利益。
Domain: IT
Prompt: Translate the following text from English into Chinese.
English: If you are using a Customer Portal and want to allow self-registration, follow
these steps:
Chinese: 如果您正使用客户入口网站并希望允许自助注册,请按以下步骤操作:

Domain: Colloquial
Prompt: Translate the following text from English into Chinese.
English: Believe me, I’m gonna take care of you and he’s gonna be OK.
Chinese: 相信我,我会照顾好你们,他会没事的.

Domain: Literature
Prompt: Translate the following text from English into Chinese.
English: The President required the name of that citizen. The accused explained that the
citizen was his first witness. He also referred with confidence to the citizen’s letter, which
had been taken from him at the Barrier, but which he did not doubt would be found among
the papers then before the President.
Chinese: 庭长问那公民是谁。被告说那公民便是他的第一个证人。他还很有把握地提起那人的信，那是在城门口从他身上取走的，他相信可以在庭长的卷宗中找到。
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Terminology-constrained translation
Prompt: Translate the following text from English into Chinese using the provided
terminology pairs, ensuring the specified terms are accurately translated as indicated.
Terminology pairs: "National Football League" = "国家橄榄球联盟"
English: Tim’s younger brother, Tod Leiweke, is currently the chief operating officer of
the National Football League since 2015.
Chinese: 蒂姆的弟弟托德·莱维克自 2015年以来担任国家橄榄球联盟的首席运营官。

Automatic post-edition
Prompt: Improve the following machine-generated translation from English to Chinese.
Correct errors and generate a more accurate translation.
English: unfazed, Matteo hires an assassin to bomb the resort to create chaos and mayhem.
Chinese: 马特奥不慌不忙地雇用了一名刺客来轰炸制造混乱和混乱的手段.
Improved translation: 马特奥不慌不忙地雇用了一名刺客来轰炸度假村，从而引起混乱。

Table 16: Examples from ComMT.
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