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Abstract

Financial markets exhibit complex dynamics
where localized events trigger ripple effects
across entities. Previous event studies, con-
strained by static single-company analyses and
simplistic assumptions, fail to capture these
ripple effects. While large language models
(LLMs) offer emergent reasoning capabilities,
their direct application falters due to structural
market unawareness and limited capacity to an-
alyze ripple effects. We propose FinRipple, an
elegant framework that empowers LLMs with
the ability to analyze ripple effects through
financial theory-guided large-scale reinforce-
ment learning. We begin by relaxing the as-
sumptions of previous methods, incorporating
a time-varying knowledge graph to accurately
represent market structure. By seamlessly inte-
grating classical asset pricing theory, we align
the LLM with the market, enabling it to predict
ripple effects. To the best of our knowledge,
we are the first to provide a standardized defi-
nition of ripple effect prediction, a task that is
extremely important yet unexplored in the fi-
nancial domain. Extensive experiments demon-
strate that FinRipple provides a promising so-
lution to this task.

1 Introduction

Financial markets are naturally complex, and sud-
den events can often impact the value of compa-
nies (Sorescu et al., 2017). A recent example un-
derscores the impact of market reactions: On Au-
gust 13, 2024, Starbucks announced Chipotle CEO
Brian Niccol as its new CEO, triggering a 24.5%
surge in Starbucks’ stock—the largest single-day
gain in its history—while Chipotle’s stock dropped
over 10%. The ripple effect extended to Starbucks’
supply chain, with Jones Soda Co. rising 9.52%,
BRC Inc. gaining 6.25%, and Celsius Holdings
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Inc. up 3.81%. This example demonstrates the
ripple effect that a single market event can have,
not just on the company involved, but on other rel-
evant companies (Ma et al., 2023). Understanding
and predicting these market ripple effects is crucial
for informed financial decision-making, risk man-
agement, and strategic portfolio optimization. In-
vestors and risk managers rely on such insights into
how company announcements (Boyd et al., 2010;
Wau et al., 2015), external news (Xiong and Bharad-
waj, 2013; Gao et al., 2015), or macroeconomic
shocks (Chen et al., 2012) may cascade through
the market to anticipate broader impacts, enabling
proactive strategies in volatile conditions (Ding
etal., 2015, 2014). However, capturing these ripple
effects remains a complex and underexplored chal-
lenge due to intricate, evolving, and interconnected
factors at play.

Event studies have followed two main directions:
case-by-case analysis and unified modeling based
on learning theory. The former focuses on how
specific market events affect the stock performance
of a company or industry, which is a rather sim-
plified assumption. For example, Austin (1993)
analyzed patent innovations in biotechnology, Lep-
etit et al. (2004) studied M&As in banking, and
Ramiah et al. (2013) assessed stock reactions to
green policies. While useful for direct impact as-
sessment, these studies struggle to capture ripple
effects across industries or the broader market. On
the other hand, learning-based approaches primar-
ily use news sentiment to predict stock movements,
acknowledging that a company’s stock price is in-
fluenced by its related entities (Ashtiani and Raa-
hemi, 2023). Recent innovations integrate multi-
source information (Ma et al., 2023) to enhance
the prediction of emotions. Mishev et al. (2020)
demonstrated that transformer-based models out-
perform lexicon-based and statistical approaches
in event-driven word representation. However, re-
lying solely on text sentiment can overlook critical
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Figure 1: An example of market ripple effects. The announcement of Starbucks’s CEO change not only boosted its
stock but also positively impacted other related companies in the beverage sector.

dynamics—for instance, positive news for one com-
pany may negatively impact its associates. Thus, a
more comprehensive framework is needed to model
ever-changing market dynamics and explain com-
plex intercompany relationships.

Recently, large language models (LLMs) have
been widely used across various domains due
to their advanced reasoning abilities (Huang and
Chang, 2023). They excel in structured informa-
tion extraction (Hao et al., 2024), analogical rea-
soning (Creswell et al., 2023; Wei et al., 2022b),
and question answering, making them promising
candidates for analyzing event-driven ripple ef-
fects. Given their ability to model complex in-
teractions, leveraging LLMs for financial market
predictions is a natural step. However, financial
markets, characterized by interconnected compa-
nies and dynamic relationships, evolve in response
to various events, making the direct application of
LLMs insufficient and potentially misleading (Tang
et al., 2022; Cheng and Li, 2021). To accurately
model ripple effects, LLMs must be complemented
with the latest market state.

A viable solution to address this challenge lies
in integrating a time-varying financial knowledge
graph (KG), which provides a structured view of
the market by capturing up-to-date company rela-
tionships. Continuously updating the KG ensures
a reliable snapshot of the evolving market (Yang
et al., 2023b), enabling the modeling of dynamic
corporate interactions (Cheng et al., 2020). To ef-
fectively incorporate this knowledge into the LLM,
we employ an adapter-based approach, injecting
structured information without retraining the model
from scratch. This method avoids potential infor-
mation loss from retrieval-based methods and of-
fers an extendable framework. By aligning LL.Ms
with the financial market’s unique characteristics,
our approach significantly enhances their ability

to analyze event-driven ripple effects. We vali-
date its effectiveness in asset pricing and portfolio
management through extensive experiments. The
contributions of this work can be summarized as
follows:

* FinRipple integrates classic asset pricing the-
ory with advanced LLMs, demonstrating
strong performance in predicting excess re-
turns while maintaining high interpretability.

* We rigorously validate our training framework
and showcase its strong potential for real-
world applications, such as asset pricing and
portfolio management. Furthermore, detailed
analyses illustrate the model’s reasoning path-
ways, confirming its ability to provide reliable
insights into the causal relationships driving
ripple effects.

* We first formulate the under-explored “ripple
effect prediction” task and provide an open-
source benchmark, offering a unified evalua-
tion standard for academia and industry.

2 Related Work

2.1 Event studies in finance

Event studies have been extensively employed to
assess the impact of significant events on asset
prices (Sorescu et al., 2017). An event can be a
firm announcement (e.g., the appointment of a new
CMO) or an announcement made by competitors or
regulatory bodies (Acquisti et al., 2006). For exam-
ple, Austin (1993) measured the innovative output
of patents within the biotechnology industry; Lep-
etit et al. (2004) discussed the effects of M&As
in the banking industry; and Ramiah et al. (2013)
analyzed the stock market reaction to green pol-
icy announcements. Due to simplistic assumptions,
these methods often fail to capture the complexity
and dynamics of modern financial markets.
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Recognizing these limitations, researchers have
explored unified modeling approaches based on
learning theory, typically utilizing news sentiment
analysis to predict stock price movements (Zhang
and Skiena, 2010; Pagolu et al., 2016). Recent ad-
vancements include the integration of multi-source
information (Ma et al., 2023), the employment of
more advanced embedding models (Kilimci and
Akyokus, 2019; Misheyv et al., 2020), and the us-
age of large language models (LLMs) (Wu et al.,
2023; Yang et al., 2023a). Despite these promising
developments, existing learning-based approaches
struggle to fully capture the dynamic, time-varying
relationships between companies and the evolving
financial market. Recent efforts on LLMs for finan-
cial tasks have aimed to overcome these challenges
through multi-agent systems (Yu et al., 2024b,a;
Zhang et al., 2024a) and by infusing financial trad-
ing knowledge(Zhang et al., 2024b). Considering
the structured, dynamic representations provided
by knowledge graphs (KGs) (Zhang et al., 2023),
FinRipple takes an alternative approach by com-
bining LLMs with financial KGs to capture ever-
changing market dynamics and explain complex
intercompany relationships.

2.2 KG Augmented LLM

Through the augmentation of knowledge graphs
(KGs), existing methodologies strive to mitigate
hallucinations, enhance reasoning capabilities, and
facilitate the recall of specific facts (Chen et al.,
2024; Agrawal et al., 2024). Research on leverag-
ing KGs to enhance LLMs can be broadly catego-
rized into two main directions (Wen et al., 2024;
Agrawal et al., 2024): 1) integrating KGs during the
pre-training phase, and 2) injecting KGs during the
inference stage. For methods that integrate KGs
into LLM pre-training, the common practice in-
volves designing knowledge-aware training objec-
tives by either incorporating KG entities and rela-
tions into the training data (Zhang et al., 2019; Sun
et al., 2021) or applying KG prediction tasks, such
as link prediction, as additional supervision (Ya-
sunaga et al., 2022). These methods directly com-
press KG knowledge into the parameters of LLMs
through supervision. However, constructing KGs
containing trillions of words is challenging, and
these approaches do not address the fundamental
limitations of LLMs in terms of flexibility, reliabil-
ity, and transparency.

Injecting structured symbolic knowledge from
KGs into LLM inference aims to enhance contex-

tual understanding, primarily by integrating knowl-
edge at the input level. Early efforts focused on
fusing KG triples into the inputs of LLMs through
attention mechanisms (Liu et al., 2020; Sun et al.,
2020) or by attaching graph encoders to LLM en-
coders to process KG information (Wang et al.,
2019). Subsequent work further adopted graph
neural networks (GNNs) in parallel with LLMs
for joint reasoning (Yasunaga et al., 2021), as
well as introducing interactions between text to-
kens and KG entities in the intermediate layers of
LLMs (Zhang et al., 2022; Yao et al., 2023).

3 Methodology

In this section, we commence by formalizing the
mathematical framework for the ripple prediction
task. We initially delineate the necessary inputs
and outputs for the task, as well as the evaluation
metrics. Subsequently, in Section 3.2, we present
the overall architecture of FinRipple. This architec-
ture primarily comprises two pivotal components:
knowledge injection and market alignment. The
theoretical underpinnings of the optimization ob-
jectives can be found in Appendix A.

3.1 Problem Formulation

The financial ecosystem evolves through the struc-
tured triad M; = (Cy, &, ut), where C; captures
the universe of public firms, &; the event space,
and y; the signed interaction measure. This mea-
sure’s duality — magnitude |z (c;, ¢;)| for connec-
tion strength and polarity sign(s(c;, ¢j)) for co-
operation/competition — synthesizes cross-channel
dependencies spanning operational, financial, and
strategic linkages.

Central to our framework is the propagator ®., 4,
a parametric operator that maps event-context pairs
to forward shock distributions:

(pet,é' D E XMy — RCHAt
e ;
Event-Context Shock Magnitudes

where 6 parameterizes network diffusion dynam-
ics. Its validation requires grounding in asset pric-
ing fundamentals: given stochastic discount factor
D4 at, the pricing error €; = E¢[DyA¢ R5%] quan-
tifies deviations from no-arbitrage equilibrium for
firm j.

The core specification standardizes pricing er-
rors by their cross-sectional volatility o, =
\/ Var(e;) to ensure scale invariance, yielding the
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Figure 2: Overview of FinRipple. The framework comprises three stages: (1) KG Construction: transforming
unstructured data, such as announcements, patents, and transactions, into time-varying KGs that capture company
relationships; (2) KG Injection: creating instruction datasets based on these KGs and using them to inject structured
knowledge into adapters of an LLM without retraining the original layers; (3) Market Alignment: aligning predictions
with real market reaction by using the correlation between the predicted event impact and CAPM residuals as the
reward for PPO to optimize model performance. The adapter is frozen, and the analysis ability is parameterized into

the original layers of the LLM.

propagator-constrained regression:

K
e ,

(7] =% + NP, 4+ ZFka,j + vy,
¢ k=1

Here ¢ captures baseline pricing anomalies, 1
quantifies the risk premium attributed to network-
propagated shocks via the propagator component
@itﬁ, and I'y, controls for K standard risk factors
X}, ;. The residual v; represents unexplained pric-
ing noise with variance o2,

Explanatory power is measured through normal-
ized variance absorption:

E [(¢j/oc = 5197)?]
Var(e; /o) ’

Ry =1-

where the expectation operator [E[-] averages over
the cross-section of firms Cya;. Values Ré >
0.15 indicate economically meaningful improve-
ments over benchmark factor models. Statisti-
cal significance is evaluated through the robust
t-statistic. A threshold |t,,| > 2.58 (p < 0.01)
establishes inference reliability. More evaluation
details can be found in Appendix F.

3.2 The pipeline of FinRipple

As shown in Figure 2, FinRipple starts with the
construction of time-varying KGs that incorporate
four relationships supported by prior research: lead-
ership networks, mutual fund holdings, patent re-
lationships, and supply chains. The specific data
sources and construction process for the KG can
be found in Appendix B.2. The next two key steps
are KG injection and market alignment, which we
will introduce in the following subsections.

3.2.1 Knowledge Graph Injection

FinRipple implements time-varying KG integra-
tion through structured instruction generation and
parameter-efficient adaptation. Each dynamic KG
snapshot G* = (C;, R¢) contains the set of pub-
lic firms C; and time-sensitive relations R;, en-
coding four validated interaction types: leadership
overlaps (CEO/board linkages), mutual fund cross-
holdings, patent co-development relationships, and
supply chain dependencies. These relations are
projected into instructional text via templated trans-
formations.

For each relational triple (¢;, 7y, ¢;) € GY, the
mapping operator 7; generates question-answer
pairs that capture both qualitative and quantitative
aspects of the relationship. A supply chain example
produces:

Instruction: “Identify primary suppliers for
¢; in 2023Q2”

Response: “c; provided $2.3M semiconduc-
tor components with 98% on-time delivery”

The instruction set D' = {(zf,y!)} integrates
three query modalities: entity retrieval probes (e.g.,
“List firms sharing board members with ¢;”), factual
verification tasks (“Did ¢; acquire ¢ in 202177),
and quantitative inference questions (“What per-
centage of ¢;’s R&D budget funds joint patents
with ¢;?”). Ablation studies confirm the necessity
of this multimodal design (Table 7 in Appendix E).

We use lightweight adapter modules to parame-
terize time-varying KGs in which ¢; as additional
parameters — distinct from and operating in paral-
lel to the frozen base LLM parameters ). These
adapters constitute only 3.2% of the total parame-
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ter count while enabling temporal adaptation. To
maintain temporal coherence, high-impact instruc-
tional pairs from prior periods are retained in a
rotating buffer, ensuring persistent interdependen-
cies remain accessible. The complete implementa-
tion — including temporal alignment protocols and
adapter initialization — is detailed in Appendix C.

3.2.2 Market Alignment

Before the training process, for each news item, we
retrieve the corresponding KG for the relevant time
and inject it into the adapter, enabling the model to
adapt to the time-varying market structure. Impor-
tantly, each time we fine-tune the backbone of the
LLM, the adapter, which stores the information of
the KG, is reinitialized and then kept frozen, ensur-
ing compatibility between the updated backbone
parameters and the dynamically injected knowl-
edge. The adapter, once frozen, functions as a static
feature extractor that represents market features at
specific times. Meanwhile, the LLM backbone
learns to make predictions consistent with the cur-
rent market context. During the market alignment
phase, FinRipple is primarily based on large-scale
reinforcement learning. By carefully designing
the feedback mechanism, we integrate the classic
CAPM theory with alignment technologies, endow-
ing the LLMs with the ability to analyze the rip-
ple effect. The propagator ®, ¢’s predictions are
validated through CAPM residual analysis. For
company c¢; € Cyyay, define:

E[R™ = Ry + B;(RLTA — Ry)
6§+At _ R;—i—At _ E[R§+At]
Cov(R;,Rm)
Var(Ry,)
rolling windows. The propagator’s output Y*+4¢ ¢
RICtIxd i5 aggregated to shock magnitudes:

where 3; = is estimated via OLS over

|Ce

\
t+At t+At
Z77 =) mleiscg) Y

i=1

The alignment between predicted shocks Z!+4¢

and observed residuals /T2 is quantified through:

C .
7. ¢ S rat min(| 251, le;))

+A

R(Z,€) =

[1Z]][]€] l€llx

direction match magnitude coverage

The first term of the above reward function mea-
sures how precisely the predicted impacts can ex-
plain the CAPM residuals, ensuring the model ac-
curately learns the influence magnitude of specific

events. At the same time, the regularization con-
trolled by the hyperparameter A maximizes the
recall rate to cover as many relevant impacts as
possible. The role of the regularization term is to
evaluate the extent to which Z!+4* covers e +2% by
comparing their values element by element (during
training, At is set to 1). More training details can
be found in Appendix C.

3.2.3 FinRipple

We collect the reward R to fine-tune the LLM
backbone using Proximal Policy Optimization
(PPO), while keeping the adapter layers frozen.
The fine-tuning process follows the pipeline de-
scribed below. First, we iterate through all avail-
able news articles. For each news item, we inject
the KG corresponding to the specific month into the
adapter. This allows the model to adapt to the time-
varying market structure encoded within the KG.
Importantly, every time we fine-tune the model, we
utilize a newly initialized adapter to ensure that the
updated LLM backbone parameters are compatible
with the dynamic knowledge injected from the KG.

Once the KG is injected, we proceed with PPO
fine-tuning for the LLM backbone. The frozen
adapter serves as a static market feature at a certain
time, while the LLM backbone learns to make pre-
dictions that align with the current market context
reflected in the news and KG data.

4 Experiment

4.1 Baselines and Evaluation Metrics

In this subsection, we provide a brief introduction
to the benchmarks and metrics for the asset pricing
task only. For further details and information on
downstream tasks related to portfolio management,
please refer to Appendix F.

Datasets We selected 10,000 news articles about
S&P 500 companies from January 1, 2020, to
June 30, 2022, as the test set, while approximately
110,000 articles from other years were used for
training. Detailed statistics on the dataset about
news and KGs can be found in Appendix B.

Baselines We adopt several mainstream meth-
ods to demonstrate that FinRipple offers a pow-
erful solution for this task. The baselines are
primarily divided into two categories. The first
category tests the analogical reasoning capabili-
ties of foundational LL.Ms, showing that untrained
LLMs lack the ability to analyze event impact effec-

9381



tively. The basic Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020) approach utilizes an
embedding model to retrieve relevant subgraph in-
formation from the KG, enabling LLMs to assess
impacts based on this data. Zero-Shot Inference
provides instructions to the model along with news
and concatenated graph information. However, due
to the limited window size of LLMs, some graph
data may be incomplete. For companies specifi-
cally mentioned in the news, a two-hop subgraph
is concatenated; otherwise, random graph infor-
mation fills the LLM’s input window. In-Context
Learning (ICL) (Brown et al., 2020) builds upon
the Zero-Shot approach by adding an example to
aid the LLM in reasoning. The second category
primarily includes fine-tuned variations of FinRip-
ple, both with and without market alignment. It
emphasizes that even if the LLM effectively ab-
sorbs the graph information, without aligning with
market dynamics, the model still lacks the ability
to effectively analyze the impact of events.

Evaluation metrics To evaluate the effectiveness
of FinRipple in analyzing financial market shocks,
we designed an evaluation framework focusing on
three metrics: (1) explanatory power on the mean
of the residuals, (2) explanatory power on the vari-
ance of the residuals, and (3) the refusal-to-answer
rate. The residuals, derived from a CAPM regres-
sion of stock returns against market returns, repre-
sent the portion of returns unexplained by market
factors. We use these residuals to assess whether
predicted event impacts significantly explain return
variance through regression analysis and ANOVA,
with p-values indicating statistical significance. Ad-
ditionally, the refusal-to-answer rate evaluates the
robustness of LLMs in generating meaningful re-
sponses in complex, event-driven contexts.

4.2 Main Results Analysis

As shown in Table 1, both open-source and closed-
source LLMs face significant challenges in ana-
lyzing the impact of financial market events with-
out domain-specific training. The results establish
three critical insights into LLLMs’ capabilities for
financial ripple effect prediction. General-purpose
architectures demonstrate systematic limitations in
event-driven scenarios, with RAG methods show-
ing performance instability due to deficient event-
context extraction and ICL providing negligible
improvements over zero-shot baselines. The ob-
served R? values below 0.25 across multiple model

families confirm these fundamental constraints.

A hierarchical pattern emerges in knowledge-
enhanced approaches. Basic market information
infusion yields marginal gains, while domain-
adapted implementations exhibit transformative im-
provements. The performance differential between
baseline and fine-tuned configurations reveals that
market dynamics internalization, not mere data in-
jection, drives meaningful capability enhancement.
Notably, model scale proves secondary to domain
alignment, as evidenced by smaller architectures
outperforming larger counterparts post-adaptation.

The demonstrated success of targeted domain
adaptation over architectural size or general capa-
bilities suggests that isomorphic mapping between
knowledge systems and market mechanisms en-
ables causal reasoning beyond native model capac-
ities. This repositions domain-specific alignment
as the critical pathway for developing professional-
grade financial analytics systems.

4.3 Portofolio Management

To further demonstrate the effectiveness of Fin-
Ripple, we implement a simple intraday trading
strategy based on the event impact prediction. The
strategy selects stocks that exhibit the highest pos-
itive predicted event-driven impacts and creates a
daily portfolio that rebalances at the end of each
trading day. Specifically, the steps are as follows:

1. Each morning, based on the predicted impact
results, we rank all stocks in our universe by
the magnitude of their predicted impact.

2. The top 10% of stocks with the highest pre-
dicted positive impact are selected for a long
position, while the bottom 10% with the high-
est predicted negative impact are shorted.

3. At the end of the day, the portfolio is rebal-
anced, and the next day’s selection is based
on new predictions.

In accordance with previous portfolio management
studies (Xu et al., 2024), we selected benchmarks
including Equal Weighting, Volatility Weighting,
the Markowitz Model, and Min-Variance Weight-
ing. Furthermore, we employed multiple evaluation
metrics, such as daily return (R), sharpe ratio (.5,),
and maximum drawdown (MDD), as presented in
Table 3. To prevent data contamination, the back-
test period was set from January 2020 to June 2022,
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Model RAG Zero-Shot ICL FinRipple/w-o alignment FinRipple

Coef. p-value R>  Coef. p-value R? Coef. p-value R?  Coef. p-value R? Coef.  p-value R?
1lama2-7b-chat 0.012 0.452  0.009 0.031 0.601 0.012  0.042 0.503 0.018 0.047 0.510 0.019 0.150* 0.030  0.083
1lama2-13b-chat 0.103 0.305 0.054 0.079 0.349  0.039  0.098 0.281 0.061 0.102 0.287 0.058  0.242%%* 0.009  0.193
1lama3-8b-instruct 0.091 0.318  0.047 0.072 0.402 0.037 0.107 0.254  0.058 0.110 0.249 0.060  0.278%* 0.004  0.251
vicuna-7b-chat 0.118 0.247 0.063  0.102 0.298  0.052 0.129 0.198 0.081 0.125 0.205 0.074  0.330%*%* 0.001 0.310

vicuna-13b-chat 0.248%  0.032  0.248 0.148 0.149  0.082
Phi-3.5-mini-instruct  0.082  0.395  0.032  0.065 0.498  0.019

0.176 0.098 0.102 0.171*%  0.040  0.108
0.094 0.347  0.052 0.096 0340  0.045

0.395%** ~ 0.000  0.340
0.245%* 0.006  0.155

gemma-2-9b-it 0.097 0298 0.048 0.083 0354  0.038  0.112 0245  0.063 0.109 0252 0.061 0.290***  0.001  0.215
GPT 3.5 0.083  0.398 0.028 0062 0.051 0.075 0.056** 0.004 0.112 / / / / / /
GPT ol-preview 0.152 0342  0.047 0.119 0392 0.056 0.192 0.229  0.082 / / / / / /
GPT 40-mini 0.124 0312 0.042 0312% 0.013 0035 0.104 0.879  0.103 / / / / / /

Table 1: Comparison of baselines and FinRipple on LLMs. This table focuses on the explanatory power on the value
of the CAPM residuals. The significance levels are indicated as follows: * p < 0.05, ** p < 0.01, *** p < 0.001.
Note that cells containing a slash (/) indicate that the model does not have open-sourced weights available.

Model RAG Zero-Shot ICL FinRipple/w-o alignment FinRipple
ANOVA-F ANOVA-p ES ANOVA-F ANOVA-p ES ANOVA-F ANOVA-p ES ANOVA-F ANOVA-p ES ANOVA-F ANOVA-p ES

llama2-7b-chat 1.624 0.231 0.089 1.304 0.274 0.068 0.097 0.108 2.565 0.082 0.092 3.123% 0.033 0.142
Ilama2-13b-chat 2.175 0.139 0.102 1.782 0.188 0.082 0.075 0.117 3.052% 0.051 0.105  4.103%* 0.012 0.198
Illama3-8b-instruct 1.210 0.324 0.085 2221 0.141 0.099 0.088 0.112 2.835 0.069 0.101  4.110%* 0.010 0.203
vicuna-7b-chat 0.910 0.452 0.071 1.512 0.248 0.074 0.060 0.115 2.672 0.074 0.097 3.832% 0.019 0.341
vicuna-13b-chat 2.703 0.112 0.115 2.910% 0.058 0.110 3.001* 0.052 0.125  3.932%* 0.031 0.119  5.231%#* 0.003 0.287
Phi-3.5-mini-instruct 1.563 0.257 0.097 2334 0.126 0.104 0.062 0.118 3.014* 0.048 0.110  4.315%* 0.009 0.215
gemma-2-9b-it 2.443 0.128 0.109 1.905 0.172 0.091 0.089 0.095 3.122% 0.039 0.108  4.012%* 0.014 0.159
GPT 3.5 1.375 0.301 0.090 1.645 0.223 0.088 0.129 0.105 / / / / / /
GPT 4.0-preview 0.812 0.443 0.067 2.112 0.145 0.100 0.098 0.117 / / / / / /
GPT 40-mini 2.153 0.144 0.099 2.875% 0.059 0.108 0.061 0.145 / / / / / /

Table 2: Comparison of baselines and FinRipple on various models using ANOVA analysis. ANOVA-F represents
the F-value from the ANOVA test, indicating the ratio of systematic to error variance. ANOVA-p represents the
p-value for statistical significance, with * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. Eta Squared (ES)
represents the correlation ratio, which indicates the proportion of variance explained by the model. Cells with a
slash (/) indicate that the model cannot be fine-tuned using FinRipple due to unavailable open-source weights.

ensuring the result reliability. A detailed introduc-
tion to portfolio strategies and their evaluation can
be obtained in Appendix F.

The results show that accurately predicting the
range of impacts from financial market events can
significantly mitigate portfolio risks. The strat-
egy based on FinRipple outperforms benchmarks
in key metrics, including daily return, Sharpe ra-
tio, and maximum drawdown, achieving a daily
return of 0.052, a Sharpe ratio of 1.153, and a max-
imum drawdown of —0.283. In contrast, strategies
like Equal Weighting and Min-Variance Weighting
exhibit higher maximum drawdowns, indicating
greater vulnerability to market shocks without pre-
cise impact predictions. Overall, accurate event
impact forecasting is crucial for enhancing risk
control and improving investment outcomes.

4.4 Other Analysis

Knowledge Inject Analysis When effectively in-
jecting KGs into LLMs, optimizing the model’s
understanding of market structures is paramount.
One strategy involves using a preprocessing mod-
ule to filter potential subgraphs as inputs. The sim-
plest approach is to traverse one-hop and two-hop
subgraphs related to a target company. While this
method may be applicable in some contexts, it fails

to capture the market’s dynamic complexity, partic-
ularly in scenarios where events do not specifically
target individual companies, such as those affecting
entire supply chains.

Another strategy is to leverage RAG, which heav-
ily relies on the performance of embedding models
designed to recall companies that are “semantically
similar” to specific queries. However, these em-
bedding models often overlook the deeper market
relationships associated with specific events when
filtering for potentially impacted companies. This
dependency can lead to significant misjudgments
or biases in the model’s event impact predictions.

In contrast, the parameterization approach,
which transforms KGs into adjustable parameters,
provides a more comprehensive reflection of mar-
ket trends and their complex interrelationships.

This method enables dynamic adjustment and op-
timization of parameters during training, allowing
the model to better capture the nonlinear dynamics
of the market. By employing time-varying adapters,
the model’s adaptability to changes in market struc-
ture is enhanced, improving its responsiveness and
predictive accuracy regarding market dynamic. For
news events that focus on a specific central com-
pany, as Figure 4 shows, RAG primarily retrieves
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Benchmark Daily Return (R; x 1071 Sharpe Ratio (S,) Maximum Drawdown (MDD) Win Rate
Equal Weighting 0.034 0.882 -0.351 0.582
Volatility Weighting 0.041 1.021 -0.312 0.643
Markowitz Model 0.029 0.954 -0.292 0.613
Min-Variance Weighting 0.028 0.821 -0.401 0.552
FinRipple 0.052 1.153 -0.283 0.685

Table 3: Summary of backtest results for different portfolio management strategies on S&P 500 constituent stocks
(January 2020 to June 2022). Note that the daily return is presented with a factor of 10~! for better readability.

Example of a news event not targeting a specific company:

friendly transportation system.

% In August 2021, the Biden administration announced a plan to invest $7.3 billion in the construction of
electric vehicle (EV) charging infrastructure. This initiative aims to establish 50,000 public charging stations
across the United States by 2030, supporting the widespread adoption of electric vehicles. This effort is part of a
broader strategy to promote clean energy and reduce carbon emissions, ultimately creating a more environmentally

Figure 3: An example where subgraph search is not applicable. As shown in the figure, this news event impacts the
entire electric vehicle charging infrastructure industry rather than targeting a specific company.
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Figure 4: This diagram compares candidate companies
identified by FinRipple and other methods. Due to the
network’s complexity, only selected nodes in the exam-
ples are shown for illustration purposes.

based on semantic similarity, which often leads to
a low recall rate when dealing with larger graphs.
This limitation also affects first- and second-degree
nodes, reducing the effectiveness of the retrieval
process. Subgraph retrieval without alignment may
select a larger number of relevant companies, but it
often lacks the necessary logical structure to make
meaningful predictions. FinRipple, by contrast, ef-
fectively captures not only the relationships among
entities but also the logical pathways of impact
from the central company, offering a more coherent
and precise prediction of event impact. The clear
propagation routes observed in FinRipple highlight
its ability to model the cascading effects of an event

through the network, accurately representing both
direct and indirect influences.

Model Zero-Shot ICL FinRipple
Ilama2-7b-chat 041+0.16 0.25+0.09 0.21+0.11
llama2-13b-chat 036 £0.18 0.13+£0.08 0.15+0.09
llama3-8b-instruct 045+0.19 0.11£0.07 0.14 £0.08
vicuna-7b-chat 039+0.14 022+0.10 0.23+0.05
vicuna-13b-chat 0.34+£0.15 0.13+£0.02 0.10+0.04
Phi-3.5-mini-instruct  0.48 £0.21 0.31 £0.12 0.26 £ 0.09
gemma-2-9b-it 038 +£0.17 023+0.08 0.18+0.06
GPT 3.5 0.32 0.18 /

GPT 4.0-preview 0.14 0.10 /

GPT 40-mini 0.12 0.09 /

Table 4: Refusal-to-Answer Rate Comparison. The
fluctuating values indicate variation under different tem-
perature settings. This experiment is conducted on our
benchmark, where refusal-to-answer samples are those
that could not be post-processed into valid outputs.

Refusal-to-Answer Rate Analysis In line with
our experience, the refusal-to-answer rate largely
depends on the model’s instruction-following capa-
bility. As shown in Table 4, zero-shot approaches
exhibit systematically higher refusal rates with
greater volatility across model architectures, reflect-
ing fundamental limitations in interpreting complex
domain-specific instructions. This pattern holds
particularly for smaller open-source models, where
instruction misinterpretation manifests as high vari-
ance in refusal behavior.

Closed-source architectures demonstrate supe-
rior instruction grounding, achieving sub-0.15 re-
fusal rates through advanced comprehension capa-
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Recollection

In January 2020, MGM Resorts International sold the MGM Grand and Mandalay Bay to a joint venture including Blackstone
Group Inc. as part of MGM’s "asset-light" strategy to divest real estate and focus on sports betting and entertainment.

In 2017, Hilton Worldwide (HLT) spun off its real estate assets into Park Hotels & Resorts (PK) REIT to focus on hotel
management and brand services, simplifying its structure and reducing heavy assets.

Analysis

Vanguard Group holds shares in MGM. If MGM divests its real estate
assets, Vanguard may adjust investments in similar sectors, potentially
affecting Simon Property Group holding comparable real estate assets.

Inference

Vanguard Group Simon Property Grou

Vanguard Group holds shares in both MGM and Cisco Systems. MGM's

asset divestiture may reduce demand for network equipment, impacting
Cisco Systems' revenue and Vanguard's returns on its Cisco holdings.

Vanguard Group holds shares in United Technologies. MGM's asset

divestiture may affect United Technologies’ performance and
Vanguard's investment returns.

—_—
MGM\ Cisco Systems Vanguard Group

_—
United Technologies Vanguard Group

Figure 5: Using CoT to analyze the reasoning process of vicuna-13b-chat. The model is aligned by FinRipple.

bilities. The FinRipple framework bridges this ca-
pability gap by transforming instruction semantics
into market-dynamics-aware representations. Its ef-
fectiveness correlates with base model competency
- stronger initial instruction following enables more
precise financial alignment, as evidenced by order-
of-magnitude improvements in compliant models.

Case study We believe that the logical reasoning
capability of LLMs lies in their ability to establish
connections with previously acquired knowledge
or patterns. Therefore, in the inference process,
we employ a straightforward Chain-of-Thought
(CoT) (Wei et al., 2022a) approach to capture the
intricate reasoning pathways, leading to the refined
outcomes of FinRipple, as shown in Figure 5. We
can clearly observe that the inference process of the
LLM, after being aligned with the financial market,
is divided into three distinct steps: the first step
involves establishing connections with past news,
the second step focuses on analysis, and the third
step derives the impact pathways. It is worth not-
ing that not all news articles can directly establish
connections with past knowledge. News that has
undergone pre-training or supervised fine-tuning
(SFT) is often more likely to be fully recalled and
integrated into reasoning processes.

5 Conclusion

In conclusion, we present FinRipple, a novel train-
ing framework that empowers LLMs to analyze
and predict the ripple effects of sudden events in
financial markets. By constructing a time-varying
financial KG and integrating it into the LLM using
adapters, we align the model with the dynamic mar-
ket structure without retraining from scratch. Our

rigorous validation showcases FinRipple’s strong
potential in real-world applications like asset pric-
ing and portfolio construction.

6 Limitations

FinRipple also faces several limitations that war-
rant further attention. First, it relies heavily on high-
quality, explicit KGs for effective performance.
Without timely and high-quality data, the system’s
capabilities may degrade over time, resulting in
outdated knowledge and less relevant reasoning
processes. At the same time, any delay in updating
the KG may affect the relevance and accuracy of
the generated outputs, especially during periods
of rapid market fluctuations. Lastly, the scalabil-
ity of LLMs when integrated with large-scale KGs
remains a major concern (Ibrahim et al., 2024).
As KGs grow in size, the computational burden
of incorporating all relevant entities and relation-
ships into LLMs increases substantially. Moving
forward, efficient data management strategies and
techniques such as model pruning will be essen-
tial to balance performance and computational cost
effectively.
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A Theoretical Analysis

A.1 Problem Setting

Let C = {ci1,...,c,} be a set of companies and
Et={él,... el } asetof events at time ¢. Given:
True impact function: f(c;, e}) for company c¢;
and event ). Learnable model: fp(c;,e}) with
parameters #. We aim to minimize the empirical
risk:

n m 2
R(6) = 2 3 (S [#eie) ~ folene)])
i=1 > j=1
and bound the expected risk:
RIO) = Bum| 1 D0 (flcs0) = flei o)
i=1

Assumption 1 (Sparsity). For all j € [m] and
i€ n):

(Event Sparsity) ‘{z | f(cs, 6;-) + 0}‘ <k,
(Company Sparsity) |{j | f(ci,e}) # 0} <.

Assumption 2 (IID Sampling). The events
{ef}i, are iid. samples from the distribution

Assumption 3 (Non Dominant Error). For all ¢ =
1,...,nand j =1,..., m, we have

m
aij; < H E aij | »
j=1

where H > 0 is a given constant.

A.2 Generalization Bound
Theorem 1 (Generalization Bound). Under As-
sumptions 1-3, if R(0) < % for some B > 0, then

B kl

n vm’

where C' > 0 is a universal constant independent
of n,m,k, L.

R(9) <

Proof. Define the per-instance error a;; :=
f(cir€h) = fo(ci, €5). The empirical risk becomes:

. AL > B
RO =23 (Sa) <2
i=1

J=1

Combining Assumption 3 and the above inequality,
we have:

n m n m m
9IRS 99 9] (% o
i=1 j=1 i=1 j=1 k=1

2

n m
=HY (> a;| <HB
i=1 \j=1

Define the loss class £ = {(e,¢;) — aj; | 6 €
©}. By the Rademacher complexity bound (Mohri
and Rostamizadeh, 2008; Yin et al., 2019):

ki1
Ron(L) < osn
m

Applying standard generalization bounds with
probability 1 — §, we obtain:

. log(1
R(6) < R(6) + 2R (L) + gQ(m/f”
B, kllogn \/1og(1/5)
n m 2m
B kl
< = _
= n +C\/m7

where the constant C' absorbs all logarithmic fac-
tors and numerical constants. O

B Datasets Details

Data preparation is critical in ensuring the qual-
ity and relevance of the input information for our
model. This phase is bifurcated into two primary
components: the collection of news events and the
construction of the time-varying financial KG.

B.1 News Collection and Processing:

The original 792,684 news articles are sourced
from Dow Jones News Services and the Wall
Street Journal, and stored as structured XML
files. The structured dataset comprises eight
variables, including {Publication_datetime, Pub-
lisher_name, Region_code, Company_code, Title,
Body, Word_count, Action}. Detailed descriptions
of these variables are provided in Table 5. Us-
ing the ‘Company_code’ variable, we filtered out
129,753 news articles about individual S&P 500
firms, covering the period from March 8, 2001,
to October 30, 2023. After removing the irrele-
vant variables, the remaining eight variables and
their descriptions are detailed in Table 5. Figure 6
(A) illustrates the distribution of news articles over
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time. Notably, only 2 articles were recorded in
2001, while the highest number of articles, 16,103,
was collected in 2012. The analysis of word counts
reveals that the average number of words per news
article is 5,443.85, with the maximum word count
reaching 77,086 and the minimum at 23 words.
This variation indicates a wide range of article
lengths, from brief news briefs to extensive, in-
depth reports. Figure 6 (B) presents the top ten
companies with the highest number of news ar-
ticles in the dataset. This ranking highlights the
companies that receive the most media attention,
which may be attributed to their market influence,
recent activities, or significant corporate actions.
We further analyzed the properties of daily news
based on the ‘Action’ variable, as shown in Figure
6 (C). 63.94% of the news articles pertain to orga-
nizational adjustments, which include changes in
the company’s business strategy, personnel, or de-
partmental structures. 36.06% of the news articles
involve new initiatives, such as the establishment
of new companies, launching new projects or ser-
vices, hiring new executives, and introducing new
product lines, etc.

B.2 Knowledge Graph Construction:

We constructed comprehensive financial KGs
aimed at capturing the multifaceted interrelation-
ships between companies and their potential im-
pacts on profitability. Each company is represented
as a node, while the interrelationships between
companies constitute the edges of the KGs. To
achieve this, we integrate various types of relation-
ships derived from multiple data sources, ensuring
arich and nuanced representation of corporate in-
teractions.

¢ Technical Relevance Relationships. We col-
lect detailed and comprehensive information
on firms’ patents, including their correspond-
ing Cooperative Patent Classification (CPC)
codes, from the USPTO (United States Patent
and Trademark Office) database to ensure a
robust foundation for analyzing technical rel-
evance and relationships between companies.
Following the methodology outlined in (Lee
et al., 2019), we calculate pairwise technical
closeness between two firms by measuring the
correlation of CPC code distribution across
their portfolios. An edge between two compa-
nies reflects their patent-based technical simi-
larity. The strength of the edge is proportional

to the degree of technical similarity, capturing
the depth of their technological connections.

* Supply Chain Relationships. Information
on firms’ supply chains is extracted from the
Compustat-Capital 1Q database. Nodes rep-
resent companies, and edges indicate input-
output relationships between companies. The
strength of an edge is determined by the finan-
cial value of transactions between companies,
providing a weighted representation of the in-
tensity of their supply chain interactions.

* Shared Leadership Relationships. We ob-
tain detailed information on firms’ top leaders
from the Boardex database. This data high-
lights interconnections between companies
through shared executive affiliations. Edges
denote the number of directors who simulta-
neously serve on the boards of two companies.
This construction approach quantifies the de-
gree of overlap in leadership structures, cap-
turing the corporate governance ties between
firms.

* Mutual Fund Holding Relationships. Data
on mutual fund holdings of the listed U.S.
firms is sourced from the Thomson/Refintiv
database. Utilizing this information, we con-
struct the holding-based relationships where
an edge between two companies signifies that
they are held by the same mutual fund. This re-
lationship reflects the shared ownership struc-
tures and potential investment linkages among
firms.

By extracting different types of relationships from
these diverse data sources, we are able to construct
a KG reflecting various dimensions of corporate
interactions. In the KG, each company and event is
represented as a node, while the interrelationships
between companies (such as collaborations or com-
petitions) and the impact of events on companies
constitute the edges of the graph.

In the process of constructing the KG, we pay
special attention to associations supported by em-
pirical financial research, such as future technology
linkages evidenced by patent data and upstream-
downstream enterprise relationships. This focus
ensures that the KG not only documents the static
relationships but also delves deeply into how these
relationships influence company performance un-
der varying market conditions and in response to
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Variable Description

Publication_datetime

Date and time of news article publication. It records the exact date
and time when the news article was officially published.

Publisher_name

Name of the news publisher. It indicates the media outlet or
organization that published the news article.

Region_code

Geographical region code. It specifies the geographic location
relevant to the company’s operational area.

Company_code

Unique identifier or code for the relevant company. A unique code
that identifies the company mentioned in the news.

Title Title of news article. A brief headline that summarizes the main
topic or event described in the news article.
Body The detailed news content.

‘Word_count

Number of total words in the body of the news article.

Action

‘rep’ or ‘add’.

Type of corporate action mentioned in the news. Its value can be

Table 5: The variables in the collected news articles dataset.

2012: 16,103 0

Test Set Walmart Inc.

Textron Inc.
Citigroup Inc.

2003: 16

Merrill Lynch

2001 2006 2012 2018

(A) Number of news articles per year

2023

Morgan Stanley
Wells Fargo&Co.

Southern California Edison
Bank of America Corporation

3000 7000

Goldman Sachs Group Inc.
JPMorgan Chase & Co.

Addition
36.06%

Replacement
63.94%

(B) Companies with top 10 news count (C) Proportions ‘Action’ types

Figure 6: The statistical results of our collected news articles. (A) demonstrates the temporal distribution of news
articles, (B) displays the company rankings with the top ten news counts, and (C) shows the properties of different

corporate actions.

specific events. The resulting KG provides a com-
prehensive understanding of the interactions among
S&P 500 companies and offers the framework a ro-
bust and comprehensive understanding foundation.

Our KG dataset is divided into training and test-
ing sets. The training set covers the period from
March 2001 to December 2019 (226 months), and
the testing set encompasses the period from January
2020 to June 2022 (30 months). Table 6 presents
detailed statistics for both the training and testing
KGs. It includes the number of contained graphs,
the average number of nodes per graph, the average
number of edges per graph, and the distribution of
relationship multiplicities between nodes.

C FinRipple Details

C.1 The detailed pipeline of FinRipple

The training pipeline of FinRipple is detailed in
Algorithm 1.

C.2 The Prompts used in FinRipple

The following is a detailed prompt designed in Fin-
Ripple to guide the LLM for financial event analy-
sis. The LLM is instructed to evaluate the impact of
news on companies and provide a structured output.
The news report will be placed in the “[INSERT
MARKET NEWS REPORT]” section. The LLM
is expected to determine the affected companies,
classify the impact type, and assign an impact score
from -10 to +10. A high positive or negative score
indicates the strength of the potential market ef-
fect. The output should include specific company
names, detailed descriptions, and adhere strictly to
the given format for consistency and clarity. An
example is provided within the prompt to illustrate
the expected response.

Instruction:

You are a financial event analyst focused on
analyzing the potential impacts of news reports
on the market. Based on the given news content
and current market structure, evaluate and

output the affected companies, the type of
impact (positive, negative, or neutral), and a
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Graphs Avg. Nodes Avg. Edges Single Dual Triple

P per Graph  per Graph  Relationship (%) Relationships (%) Relationships (%)
Training set 226 6621.6018 13,844,186 92.7923 7.1956 0.0104
Testing set 30 6452.1667 14,228,088 95.0923 4.9007 0.0053

Table 6: KG Data Statistics.

score representing the strength of the impact (
ranging from -10 to +10, where -10 indicates a
very negative impact, and +10 indicates a very
positive impact). Provide specific company names
and event descriptions for clarity and utility.
Here is an example.

Input Example:

"Company A announces a partnership with Company

B to jointly develop new technology, expected to
significantly enhance production efficiency and
increase market share.”

Output Format Example:
{

"impact_analysis": {
"affected_companies”: [
{
"name”: "Company A",
"impact_type": "positive",
"impact_score": 8
}’
{
"name"”: "Company B",
"impact_type"”: "positive”,
"impact_score”: 6
}
:ly
"analysis”: "The partnership between Company
A and Company B is expected to enhance their
technological capabilities and market
competitiveness, likely increasing their
revenues and stock prices.

}
}
Input (you need to analyze):
[INSERT MARKET NEWS REPORT]

Provide your result, strictly following the output
format in the Example, without any additional
output.

D Asset Pricing Models

Asset pricing models are essential tools in finance
for understanding the relationship between risk and
expected return. This appendix briefly introduces
three prominent models: CAPM, Fama-French
Three-Factor Model (Fama3), and Fama-French
Five-Factor Model (Fama5).

D.1 Capital Asset Pricing Model

The CAPM describes the relationship between sys-
tematic risk and expected return. The expected

return of an asset is proportional to its beta, which
measures the sensitivity of the asset’s returns to
market returns. The formula for CAPM is:

E(R;) = Ry + Bi (E(Rin) — Ry)

where F(R;) represents the asset’s expected return,
Ry is the risk-free rate, 3; is the asset’s beta that
measures its sensitivity to market movements, and
E(R,,) is the expected return of the market.

D.2 Fama-French Three-Factor Model

The Fama3 expands upon CAPM by including two
additional factors: size and value. The size pre-
mium, denoted as Small Minus Big (SMB), cap-
tures the excess return of small-cap stocks over
large-cap stocks, while the value premium, denoted
as High Minus Low (HML), captures the excess re-
turn of high book-to-market stocks over low book-
to-market stocks. The model is represented as:

E(R;) = Ry + Bi (E(Rm) — Ry)
+ 5 x SMB + h x HML,

where s and h represent the sensitivities of the
asset’s returns to the SMB and HML factors, re-
spectively.

D.3 Fama-French Five-Factor Model

The Fama5 extends Fama3 by adding two more
factors: profitability and investment. The prof-
itability premium, denoted as Robust Minus Weak
(RMW), captures the excess return of firms with
high profitability over those with low profitability.
The investment premium, denoted as Conservative
Minus Aggressive (CMA), captures the excess re-
turn of firms with conservative investment policies
over those with aggressive policies. The updated
model is:

E(R;) = Ry + 3 (E(Ry,) — Ry)
+ s x SMB + h x HML
+ 7 X RMW + ¢ x CMA,

where r and c represent the sensitivities to the
RMW and CMA factors, respectively.
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D.4 Residuals and Market Anomalies

Residuals of these models represent the portion
of an asset’s return not captured by the included
risk factors. By analyzing residuals, investors can
identify abnormal returns that the models fail to
explain. These anomalies often arise due to market
inefficiencies, information asymmetries, or other
idiosyncratic risks not accounted for by the system-
atic factors in the models. Understanding residuals
helps investors gain insights into potential mispric-
ing and hidden variables in the market, revealing
opportunities or risks that standard models over-
look.

Model ‘ All ‘ w/o RQ ‘ w/o FJ ‘ w/o FQ
Gemma-2b-it 84.6% | 38.5% | 15.4% | 30.8%
Gemma-7b-it 69.2% | 30.8% | 46.2% | 46.2%
Llama-13b-chat | 61.5% 7.7% 154% | 23.1%

Table 7: Ablation study results for the three classes of
questions: Retrieval Questions (RQ), Factual Judgments
(FJ) and Factual Questions (FQ). The above results are
averaged over five shuffles of the subgraph.

E Other Experimental Results
E.1 The Accuracy of KG injection

We used a random subgraph of 100 nodes for train-
ing, with an 8:2 split between the training and test-
ing datasets. The results indicate that all three types
of questions are beneficial. Note that some ques-
tions may not be answered correctly if the informa-
tion needed is not fully covered by the training set.
If all information is covered, our tests show that the
adapter’s memory accuracy reaches approximately
90%. We constructed three types of questions by
traversing the KG, as shown in Table 8. The first
category, Retrieval Questions, focuses on identify-
ing specific relationships between companies, such
as shared CEOs or upstream-downstream connec-
tions. The second category, Factual Judgments,
is used to determine whether certain relationships
exist, such as common fund holdings or supply
chain transactions. Finally, the third category, Fac-
tual Questions, aims to explore the details of re-
lationships between entities, such as the nature of
technical similarities or similarity scores.

E.2 Evalidation on Other Asset Pricing
Models

In this subsection, we also evaluate FinRipple’s
ability to explain the residuals of other models,

including Fama3 and FamaS5. Based on our experi-
mental findings, as shown in Table 9 and Table 10,
we observe that the explanatory difficulty of Fama3
and Fama residuals gradually decreases. This re-
duction is primarily due to the stepwise exclusion
of interfering factors from the residuals. The contri-
butions of different variables were compared using
standardized regression coefficients, as shown in
Figure 7. The results reveal that these factors ex-
hibit distinct cyclical patterns. To account for these
dynamics, we constructed training objectives based
on the more challenging CAPM model. Although
this approach increases the optimization difficulty,
it ensures stable performance even when certain
factors become less effective.

E.3 Ablation Study on Graph Relationships

We examined how different types of relationships
in the graph affect prediction results. Removing
any of the three relationship types—technical rele-
vance, supply chain, or shared leadership—led to a
drop in performance. As shown in Table 11, among
them, removing supply chain relationships caused
the largest decline in explanatory power. The full
model performed best and showed a statistically
significant effect. This suggests that all three types
of relationships are useful, with supply chain links
being especially important.

F Baselines Details

F.1 Asset Pricing
F.1.1 Zero Shot

Zero-shot inference enables the model to analyze
a wider range of market scenarios without relying
on specific examples. The prompt used is shown
as follows: Instruction:

You are a financial event analyst focused on
analyzing the potential impacts of news reports
on the market. Based on the given news content
and current market structure, evaluate and
output the affected companies (TICKER in SP500),

the type of impact (positive, negative, or
neutral), and a score representing the strength
of the impact (ranging from -10 to +10, where
-10 indicates a very negative impact and +10
indicates a very positive impact). Provide
specific company names and event descriptions
for clarity and utility. A market news report,
company's knowledge graph information, specific
requirements and output format will be provided
below.

Market news report:

[INSERT MARKET NEWS REPORT]
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Problem Classification ‘ Typical Questions

“Which companies have a common CEO relationship with {}?”
. “Which companies have an upstream-downstream relationship with {}?”
Retrieval PR . X . . . s
Questions ‘Which companies have multiple relationships with { }?
ues s “Which companies have one relationship with {}?”
“Which companies have one relationship with {}?”
“Are there supply chain upstream and downstream transactions between { } and {}?”
Factual « . "
Judements ‘Are the companies {} and {} held by the same fund?
g ) “Are the companies {} and {} held by the same fund?”
“What is the relationship between {} and {}?”
Factual P . . c "
Questions ‘What is the technical similarity between {} and {}?
) ) “What is the technical similarity score between {} and {}?”

Table 8: The three classes of instruction questions generated from KGs.

Knowledge Graph (current market structure
you can refer to):

[INSERT KNOWLEDGE GRAPH]

Requirement:

"Provide your result, strictly following the
output format below, without any additional
output.”

Output Format:

"Please provide your response in a structured
JSON format. The JSON should have a top-level
object with a single key 'impact_analysis'. The
value of 'impact_analysis' should be an object
containing two keys: 'affected_companies': An
array of objects: 'name': The company's name (
string) 'impact_type': The type of impact, e.g.
'positive' or 'negative' (string) 'impact_score':
A numerical score representing the impact (
integer) 'analysis': A string containing a brief
analysis of the overall impact. Please ensure
that the JSON is properly formatted and uses
double quotes for strings.

Here's an example of how the structure should
look:

{
"impact_analysis': {
'affected_companies': [

{

'name': 'Company Name',
'impact_type': 'impact type',
'impact_score': score

}7
]

'analysis': 'Your analysis text here.'
}
}Il

F.1.2 RAG and ICL

To effectively analyze financial events and their
market impact, we employ an ICL baseline. This
method provides the model with a concrete exam-
ple, demonstrating the expected input format, anal-
ysis process, and output structure. By presenting a
sample scenario and its corresponding analysis, we

establish a clear framework for the model to follow.
For the RAG method, we use text-embedding-ada-
002 as our embedding model, with the same prompt
template as used in ICL. The following prompt il-
lustrates this few-shot learning technique:
Instruction:

You are a financial event analyst focused on
analyzing the potential impacts of news reports
on the market. Based on the given news content
and current market structure, evaluate and
output the affected companies (TICKER in SP500),
the type of impact (positive, negative, or
neutral), and a score representing the strength
of the impact (ranging from -10 to +10, where
-10 indicates a very negative impact, and +10
indicates a very positive impact). Provide
specific company names and event descriptions
for clarity and utility. Here is an example.

Input Example:

"Company A announces a partnership with Company

B to jointly develop new technology, expected to
significantly enhance production efficiency and
increase market share.”

Output Format Example:
{

"impact_analysis": {
"affected_companies”: [

{
"name”: "Company A",
"impact_type": "positive",
"impact_score": 8
}Y
{
"name"”: "Company B",
"impact_type"”: "positive”,
"impact_score”: 6
3
]y
"analysis”: "The partnership between Company

A and Company B is
expected to enhance their technological
capabilities and market
competitiveness, likely increasing their
revenues and stock prices.
}
}

Input (you need to analyze):
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Model RAG Zero-Shot ICL FinRipple/w-o alignment FinRipple
Coef. p-value R?> Coef. p-value R? Coef. p-value R?>  Coef. p-value R? Coef. p-value R?

Llama2-7b-chat 0.021 0.482 0.013 0.040 0.657 0.021 0.058 0.287 0.145 0.090 0.520 0.152 0.310% 0.021  0.275
Llama2-13b-chat 0.132 0.405 0.074 0.095 0445 0.065 0.158 0.245 0.138 0.182 0314 0.195 0.445% 0.013  0.390
Llama3-8b-instruct 0.102 0365  0.051 0.067 0380 0.030 0.088 0.370 0.099 0211 0.402 0.178 0.007  0.400
vicuna-7b-chat 0.158 0.235 0.095 0.112 0400 0.078 0215 0.142 0.134 0250 0.188 0.256 0.001  0.485
vicuna-13b-chat 0.505*%*% 0.028* 0.145 0.172 0210 0.123 0.290* 0.031 0255 0.365 0.175 0.342 0.001  0.550
Phi-3.5-mini-instruct ~ 0.097 0.512  0.032 0.056 0.670 0.026 0.075 0470 0.086 0.153 0.395 0.202 0.005  0.335
Gemma-2-9b-it 0.112 0.298 0.061 0.089 0423 0.047 0.178 0.285 0.144 0265 0.305 0.330 0.001  0.445
GPT 3.5 0.060 0.455 0.018 0.045 0.550 0.039 0.069* 0.018 0.106 / / / / / /
GPT 4.0-preview 0.165 0328 0.045 0.119 0389 0.063 0.195 0512 0.138 / / / / / /
GPT 40-mini 0.198 0215 0.051 0.145 0312 0055 0.155 0.209 0.121 / / / / / /

Table 9: Differences in the explanatory power of Fama3 residuals by baselines and FinRipple applied to LLMs.
Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. Cells with ‘/* indicate unavailable model parameters.

Model RAG Zero-Shot ICL FinRipple/w-o alignment FinRipple
Coef. p-value R? Coef. p-value R? Coef. p-value R? Coef. p-value R? Coef. p-value R?
Llama2-7b-chat 0.018 0489 0.014 0.042 0670 0.025 0.078 0.260 0.152 0.127 0.445 0.185  0.345%* 0.007  0.300

Llama2-13b-chat 0.155% 0.039  0.082 0.091 0.435  0.068
Llama3-8b-instruct 0.112 0.368  0.059 0.075 0.385  0.034
vicuna-7b-chat 0.170* 0.021  0.101 0.125 0.370  0.087
vicuna-13b-chat 0.540**  0.010  0.160 0.190*  0.042  0.148
Phi-3.5-mini-instruct ~ 0.105 0.495 0.038 0.050 0.690 0.032
Gemma-2-9b-it 0.140* 0.028  0.068 0.087 0.425  0.048

0.180  0.428 0.150 0.225 0.309 0.220
0.103 0330  0.109 0.265 0.306 0.205
0.250 0303 0.145 0.288  0.107 0.280
0320 0315 0260 0420 0.111 0.375
0.090 0460 0.095 0.185 0.422 0.230
0205 0.727  0.155 0305 0.267 0.360

0.500%#*  0.001  0.420
0.405%** 0.001  0.440
0.565%** ~ 0.001  0.525
0.655%**  0.000  0.590
0.330%* 0.004  0.360
0.430%** ~ 0.001  0.485

GPT 3.5 0.070 0.435 0.023 0.038 0.585  0.039
GPT 4.0-preview 0.180* 0.031  0.050 0.125 0.390  0.062
GPT 40-mini 0.205 0.629  0.058 0.145 0.315  0.061

0.085 0322 0.120 / / / / / /
0.220  0.606  0.150 / / / / / /
0.175  0.703  0.135 / / / / / /

Table 10: Differences in the explanatory power of Fama5 residuals by baselines and FinRipple applied to LLMs.
Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. Cells with ‘/* indicate unavailable model parameters.

Model Variant Coef. p-value R?

Llama2-7b-chat 0.150*  0.030 0.083
w/o Technical Relevance  0.111 0.120  0.067
w/o Supply Chain 0.084 0.261 0.052
w/o Shared Leadership 0.095 0.058 0.071

Table 11: Impact of Removing Graph Relationship
Types on Prediction.

"Company A announces a partnership with Company
B to jointly develop new technology, expected to
significantly enhance production efficiency and
increase market share.”

Knowledge Graph (current market structure
you can refer to):

(Company A, Company
(Company C, Company D, subsidiary)

(Company E, Company F, competitor)

B, supplier)
D
F
(Company G, Company H, partner)
J
R

(Company I, Company J, investor)

(Company Q, Company R, technology provider) ...
Provide your result, strictly following the output
format in the example, without any additional
output.

F.2 Statistical Metrics

This subsection introduces key statistical metrics
used to evaluate the explanatory power of indepen-
dent variables on the dependent variable, including

Coefficient (Coef.), p-value, Coefficient of Deter-
mination (R?), ANOVA F-statistic (ANOVA-F),
ANOVA p-value (ANOVA-p), and Effect Size (772).

Coefficient (Coef.) The coefficient ([3;) repre-
sents the estimated effect of an independent vari-
able X; on the dependent variable Y, holding all
other variables constant. The regression equation is
givenby Y = Bo+ 51 X1 + B2 Xo+- - -+ B X +e,
where € is the error term.

p-value The p-value indicates the statistical sig-
nificance of each coefficient, measuring the prob-
ability of observing the estimated effect under the
null hypothesis that the coefficient is zero. A
smaller p-value suggests stronger evidence against
the null hypothesis.

Coefficient of Determination (R?) The Coeffi-
cient of Determination (R?) measures the propor-
tion of variance in the dependent variable that is
explained by the independent variables. It is cal-
n A2
culated as R = 1 — Z’;TL?_%, where y; is the
. Zi:l(yz .Z/) .

observed value, §; is the predicted value, and ¥ is
the mean of the observed values.

ANOVA F-statistic (ANOVA-F) The ANOVA
F-statistic tests whether the regression model ex-
plains a significant proportion of variance in the
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Figure 7: Variable importance of Fama-French 5 factors on 2018 returns.

dependent variable compared to a model with no
predictors. It is calculated as F' = %, where
MS;egression 1S the mean square due to regression,
and MS,¢giqual 1S the mean square due to residual
error. Higher values of F' suggest a better fit forr

the model.

ANOVA p-value (ANOVA-p) The ANOVA p-
value indicates the statistical significance of the
F-statistic, reflecting the probability of obtaining
the computed F-statistic under the null hypothesis
that the regression model has no explanatory power.

Effect Size (1>) Effect Size (n?) represents the
proportion of the total variance in the dependent
variable that is attributable to an independent vari-
able or a set of independent variables. It is calcu-
lated as n? = %, where SSpetween 1S the sum
of squares between groups, and SSt, is the total
sum of squares. This metric helps determine the
magnitude of the effect of the independent vari-

ables.

F.3 Portfolio Management

Portfolio management involves the selection and
optimization of asset allocation to maximize the
return within a given investment process (Hu and

Lin, 2019). In this section, we describe the im-
plementation details of five benchmark portfolio
strategies: Equal Weighting, Volatility Weighting,
Markowitz Model, Min-Variance Weighting, and
FinRipple. These benchmarks are evaluated using
metrics such as Daily Return (R,;), Sharpe Ratio
(S4), Maximum Drawdown (MDD), and Win Rate.
In our experiments, we use historical data from the
past 30 days as input. To simplify the comparison
and ensure fairness, tax rates are set to zero across
all scenarios.

F.3.1 Equal Weighting

The Equal Weighting strategy assigns an equal
weight to each asset in the portfolio:

where w; represents the weight of asset 4, and [V is
the total number of assets.

F.3.2 Volatility Weighting

The Volatility Weighting strategy allocates weights
inversely proportional to the historical volatility of
each asset:
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- % i=12....N (1)

where o; is the historical volatility (standard de-
viation) of asset 4.

F.3.3 Markowitz Model

The Markowitz Model, also known as the Mean-
Variance Optimization Model, aims to maximize
expected return for a given level of risk or minimize
risk for a given expected return:

A
wlpy— §WTEW

w >0

max
w
st. 1Tw= 1,

where w is the vector of portfolio weights, w is the
expected return vector, 3 is the covariance matrix
of asset returns, and A = 1 is the risk aversion pa-
rameter, representing a moderate balance between
risk and return.

F.3.4 Min-Variance Weighting

The Min-Variance Weighting strategy seeks to con-
struct a portfolio with the lowest overall risk:

min  wlXw
w

st. 1Tw=1, w>0

where X is the covariance matrix of asset returns.

F.4 Metrics of Portfolio Management

The benchmarks are evaluated using the following
metrics:

Daily Return (R;) The daily return measures
the return of an asset over one day, calculated as
Ry = % where P, is the asset price at time
t, and P,_; is the price on the previous trading day.

Sharpe Ratio (S;) The Sharpe ratio measures
investment performance compared to a risk-free
asset, adjusted for risk, using the formula S, =
R“U_Rf where R, is the average annual return, R
is the risk-free rate, and o, is the standard deviation

of the return.

Maximum Drawdown (MDD) Maximum Draw-
down represents the maximum observed loss from
a peak to a trough of an asset’s price, given by

MDD = maxe[1 1) (M>, where P;
is the price at time ¢, and T’ is the total time period
considered.

max;e(1,¢] P;

Win Rate (Wr) Win Rate represents the percent-
age of time periods in which the portfolio achieves

a positive return, defined as Wr = w X
100%, where R; is the return at time ¢, T is the total
number of time periods considered, and I(R; > 0)
is an indicator function that equals 1 if R; > 0, and
0 otherwise.

G Reproducibility Statement

G.1 Hyperparameter Selection

We conducted hyperparameter tuning on a small-
scale dataset to determine the optimal settings for
minimizing the refusal-to-answer rate. The re-
sulting hyperparameter settings are shown in Ta-
ble 12, aiming to reduce the likelihood of model
refusal while maintaining high response quality.
In the reward function, A is set to 0.1. We used
LoRA (Low-Rank Adaptation) (Hu et al., 2021)
to fine-tune the model, with key settings including

lora_alpha = 16, lora_dropout = 0.1, and rank

T = 64.
Model Temperature Top-k Top-p
Llama2-7b-chat 0.8 40 0.85
Llama2-13b-chat 0.7 50 0.90
Llama3-8b-instruct 0.7 30 0.80
vicuna-7b-chat 0.8 45 0.88
vicuna-13b-chat 0.7 50 0.92
Phi-3.5-mini-instruct 0.9 35 0.86
Gemma-2-9b-it 0.9 25 0.83
GPT 3.5 0.8 - 0.80
GPT 4.0-preview 0.8 - 0.85
GPT 40-mini 0.7 - 0.87

Table 12: Hyperparameter experiments.

G.2 Computational Resources and Code
Availability

The training and inference results required a total of
over 9000 GPU hours using 25 A800 (80G) GPUs.
We will release a user-friendly training framework
along with the complete benchmark dataset in the
future.
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Algorithm 1 Training Pipeline of FinRipple

Training Process:

Input: KG s G* = {G*,...,G"}, News data N* = {N! ..., N™}, Pretrained LLM backbone fj,

Adapters g
Output: Updated LLM backbone parameters 6*

1: for each time step ¢ do

2:  Initialize an empty set I = {}, collect the KG G' = {C", R'} and news data N* = {n!,... n! }.
3: for each article nJ € Ntdo
4: Inject the corresponding KG G into the adapter gy

b 9o(GY), 5 = g+ fo
5: Inference the impact Y;“At based on nz

A
VAL o f2(nh), I+ TUY
6: Compute the CAPM residuals:
€8 = R — BRI, E(RIY™) = Ry + Bi(RIT — Ry)
7: Calculate the reward at time ¢:
FHAL | AL ) min(ZtJrAt t+At)
AL t+AL i € t+AL _ t+At
R(Z )= ”Zt+AtH [ t+AtH A H€t+At||1 where Z; Z Y

8: end for
9: Update 6 based on accumulated rewards.

¢ f 0 (] t) i t t

0 < 0+ alE; |Vglog f (at|nj)mAt where A; = R — V (n})
90ld n j

10: end for

Inference Process:
Input: new event e,,.,, and the corresponding KG G'new,

1: Inject G'e» into the frozen adapter g:

96 + go(G')
2: Use the fine-tuned LLLM backbone fy« to predict the impact of the new event:

Yt = fo- (Gt"ew, €new) Where Y represents the predicted impact of e,,.,, on the companies C?.

3: Output the predicted impact matrix Y.
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