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Abstract

Multimodal machine translation (MMT) inte-
grates visual information to address ambigu-
ity and contextual limitations in neural ma-
chine translation (NMT). Some empirical stud-
ies have revealed that many MMT models un-
derutilize visual data during translation. They
attempt to enhance cross-modal interactions to
enable better exploitation of visual data. How-
ever, they only focus on simple interactions be-
tween nouns in text and corresponding entities
in image, overlooking global semantic align-
ment, particularly for prepositional phrases and
verbs in text which are more likely to be trans-
lated incorrectly. To address this, we design
a Text-Image In-depth Questioning method
to deepen interactions and optimize transla-
tions. Furthermore, to mitigate errors arising
from contextually irrelevant image noise, we
propose a Consistency Constraint strategy to
improve our approach’s robustness. Our ap-
proach achieves state-of-the-art results on five
translation directions of Multi30K and Ambig-
Caps, with +2.35 BLEU on the challenging
MSCOCO benchmark, validating our method’s
effectiveness in utilizing visual data and captur-
ing comprehensive textual semantics.

1 Introduction

Multimodal machine translation (MMT) utilizes
modalities beyond text, especially visual data, to
clarify ambiguous words and supplement incom-
plete contexts, thereby improving translation qual-
ity (Huang et al., 2016; Yao and Wan, 2020; Li
et al., 2021b; Guo et al., 2024). Some MMT stud-
ies focus on the extraction of visual information,
which are devoted to extract text-related visual
features for subsequent translation (Yao and Wan,
2020; Ye and Guo, 2022; Lin et al., 2020; Caglayan
et al., 2021). Other studies expect to enhance cross-
modal fusion and alignment to improve translation
quality (Ye et al., 2022; Tayir et al., 2024; Nishihara
et al., 2020; Ye et al., 2023).

Source: a woman rides her 
bike while on her smartphone . 

Target: eine frau fährt
fahrrad , während sie mit ihrem 
smartphone beschäftigt ist .

❌

❌

❌

✅

eine frau fährt ihr fahrrad , während sie
auf ihrem handy fährt .
(A woman rides her bike on her phone.)

NMT:

eine frau fährt ihr fahrrad , während sie
auf ihrem handy fährt .
(A woman rides her bike le on her phone.)

MMT-
VQA:

Eine Frau fährt mit ihrem Fahrrad, 
während sie auf ihrem Smartphone ist.
(A woman rides her bike on her 
smartphone.)

GPT4:

eine frau fährt fahrrad , während sie mit
ihrem smartphone beschäftigt ist .
(A woman rides her bike while using her 

smartphone.)

ConsQA-
MMT:

Figure 1: “On her smartphone” in English conveys
“busy with her phone” in this scenario. The first three
approaches directly translate the preposition “on” to

“auf” in German, inaccurately shifting the meaning to
“located above her phone.” Our method effectively lever-
ages image information to capture correct semantics and
produce a precise translation.

Later, people found no difference in transla-
tion performance of the above models with rel-
evant or irrelevant images and they questioned
that many MMT models’ utilization of images is
inadequate (Wu et al., 2021; Yang et al., 2020;
Barrault et al., 2018; Elliott, 2018). Zuo et al.
(2023) and Li et al. (2022a) attributed this to insuf-
ficient interaction between two modalities, open-
ing up a new research direction. For instance,
Guo et al. (2023a) introduced a progressive trans-
former model with modality difference awareness
to enhance the visual-textual interaction. Futeral
et al. (2023) designed a dual-objective framework,
jointly training MMT and visually conditioned
masked language modeling, allowing better uti-
lization of images in translation. Zuo et al. (2023)
converted the masked source text into question-
answering pairs and jointly trained MMT and Vi-
sual Question-Answering (VQA) to strengthen
cross-modal interaction, enforcing their model to
be sensitive to visual information.

However, these works focus on simple inter-
actions between specific types of words (Nouns,
Characters, Colors) and corresponding entities in
the image, while accurate translation often requires
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attention to overall semantics and contexts. As
shown in Figure 1, the phrase “on her phone” in this
context means “using her phone” but NMT trans-
lates it literally into “auf ihrem Handy” which can
only mean “located above her phone” in German.
NMT translates incorrectly due to the incomplete
context of source text. When paired with an image
showing “the woman is using her phone,” previous
MMT methods still fail to get correct translation.
According to their methods, the model can only
focus on the interaction and alignment of “woman”
“bike” “smartphone” in this example, lacking a
deeper understanding of the relationships between
entities. To address this, we design a Text-Image
In-depth Questioning method, leveraging the exten-
sive knowledge and understanding capabilities of
Large Language Model (LLM). For example in Fig-
ure 1, the question is “What is the woman doing
in addition to riding her bike?” and the answer
is “using her phone”. Our approach enhances
the depth of text-image interaction, providing the
correct translation result.

Furthermore, due to the limitations of visual in-
formation or the misalignment between text and
images, the answers may not be derived from im-
ages. Forcing a strict question-answering loss will
interfere with model training and negatively impact
translation. To address this, we propose a Con-
sistency Constraint strategy that relaxes the strict
requirement for giving correct answers, focusing
on aligning image-to-source and image-to-target se-
mantic distances. The semantic distances are mea-
sured by the accuracy of the question-answering
task.

Our main contributions can be summarized as
follows:

• We design a Text-Image In-depth Question-
ing method to strengthen the interaction be-
tween image and text so that our model can
use comprehensive image information for a
high-quality translation.

• We propose a Consistency Constraint strategy
which aligns the image-to-source and image-
to-target semantic distances, improving over-
all translation accuracy by reducing the nega-
tive impact of irrelevant images.

• Experimental results show that our approach
effectively probes image information and ac-
curately captures textual semantics, achieving
the new state-of-the-art performance.

2 Related Work

MMT has emerged as a rapidly growing research
domain (Elliott et al., 2016). Early investigations
in this field focused on three key areas: text-aware
visual feature extraction techniques (Yao and Wan,
2020; Zhao et al., 2020; Lin et al., 2020; Ye and
Guo, 2022; Fang and Feng, 2022), effective cross-
modal representation learning (Yin et al., 2020;
Caglayan et al., 2021; Fei et al., 2023; Zhao et al.,
2022), and enhancing model robustness through
mitigating noise propagation from irrelevant visual
inputs (Ye et al., 2022; Huang et al., 2023), er-
ror accumulation in cross-modal fusion (Calixto
et al., 2019; Tayir et al., 2024), and semantic drift
during bilingual decoding (Nishihara et al., 2020;
Ye et al., 2023; Liu et al., 2024). However, El-
liott (2018) conducted adversarial experiments and
revealed that replacing irrelevant images had no
significant impact on translation results. Wu et al.
(2021) further pointed out that the performance im-
provement of multimodal models might be due to
regularization effects rather than the utilization of
visual information. Li et al. (2022a) designed an
entity mask probing task, demonstrating that im-
age has little effect on the translation when text is
complete. Long et al. (2024) suggested that visual
information serves a supplementary role in MMT
and can be substituted.

To effectively leverage the auxiliary role of vi-
sual modalities in MMT, Ive et al. (2019) pro-
posed using deliberation networks and structured
visual information to generate draft translations,
which are then refined based on the visual con-
text. Yang et al. (2020) and Su et al. (2021) en-
hanced cross-modal interaction and visual atten-
tion through mechanisms like bidirectional and co-
attention networks. Guo et al. (2023b) introduced
a modality difference-aware module that progres-
sively fuses visual features layer by layer to bridge
modality gaps. Hatami et al. (2024) focused on
ambiguous sentences that benefit from visual cues,
enhancing both multimodal and text-only transla-
tion approaches. Futeral et al. (2023) proposed
a new framework with lightweight adapters and
guided self-attention, jointly training MMT and vi-
sual masked language models. Zuo et al. (2023)
converted the text, previously masked in the detec-
tion task, into question-answer pairs and trained
MMT with VQA. Bowen et al. (2024) proposed
a MMT architecture named GRAM to train mod-
els on multimodal datasets with masked sentences,
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improving visual context utilization. Recently, an
emerging paradigm (Long et al., 2021; Li et al.,
2022b; Zhu et al., 2023) employed text-conditioned
generative or retrieval models to synthesize and in-
tegrate visual features into translation process.

These studies laid the foundation for image-text
alignment in MMT, while our work advances cross-
modal interaction mechanisms to enhance transla-
tion accuracy and robustness.

3 Method

In this section, we first introduce the framework
and the basic loss function implemented in our
MMT task (§3.1). Next, we introduce our proposed
ConsQA-MMT, shown in Figure 2, which features
the Text-Image In-depth Questioning method (§3.2)
and the Consistency Constraint strategy (§3.3). Fi-
nally, we outline our method’s overall training ob-
jective (§3.4).

3.1 Framework and Losses for MMT
MMT uses visual information to improve the trans-
lation quality between two textual languages. The
input includes source text x = (x1, x2, . . . , xn)
where xi is the i-th word, and an image v for
supplementing context and eliminating ambigu-
ity. The output is the translated sentence ŷ =
(ŷ1, ŷ2, . . . , ŷm) in the target language.

Our approach adopts an encoder-decoder archi-
tecture which is widely used in current multimodal
learning. In the encoder phase, a traditional four-
layer Transformer encoder is used to obtain text
representation hx. For the image v, a pre-trained
vision model MAE (He et al., 2022) is utilized
to obtain the visual representation hv, which has
been proven to achieve significant success in im-
age encoding tasks (Zuo et al., 2023). The encoder
processes are fomulated by

hx = TextEncoder(x), (1)

hv = ImageEncoder(v). (2)

Then, we use a single-head attention to obtain
image representation hattn that are correlated with
text, where the query derives from hx, and the key
and value are both hv:

hattn = Softmax
(
Q(hx)K(hv)

⊤
√
dk

)
V (hv), (3)

where dk is the dimension of hx or hv.
After that, we use a cross-modal gated fusion

mechanism, to produce the text-image joint repre-
sentation H . In contrast to previous approaches,

we employ the hyperbolic tangent (tanh) activa-
tion function instead of the sigmoid function. The
fusion mechanism is expressed by

H = hx + λhattn, (4)

λ = Tanh(W1hx +W2hv), (5)

where W1 and W2 are learnable variables, and λ
controls the mixing ratio of visual information.

In the decoder phase, H is decoded to produce
the target sentence ŷ. The model is trained end-
to-end on parallel corpora containing textual and
visual data, optimizing the loss between the pre-
dicted translation ŷ and the ground truth y. The
MMT loss is formally defined as:

LMMT = −
∑|y|

i=1
log p(yi|y<i, x, v). (6)

To mitigate the risk of over-reliance on visual
inputs, we integrate the NMT loss into the training
process and employ a KL divergence term to regu-
larize the difference between the NMT and MMT
losses, and thus obtain the following loss:

LMT =
LMMT + LNMT

2
+LKL, (7)

LKL =

|y|∑

i=1

KL [p(yi|y<i, x) ∥ p(yi|y<i, x, v)] . (8)

The KL divergence term also ensures the model
maintains strong generalization and translation per-
formance, even when visual information is unavail-
able.

3.2 Text-Image In-depth Questioning
To improve the utilization of visual information in
translation, we integrate Visual Question Answer-
ing (VQA) as an auxiliary task, jointly training it
with MMT. In our work, the VQA task is built to re-
ceive questions from textual modality, and uses vi-
sual information to predict answers. The VQA task
heavily relies on visual information and requires a
deeper understanding of images and complex rea-
soning (Amara et al., 2024; Antol et al., 2015). By
leveraging a multi-task learning strategy, VQA can
fill the gap in MMT’s visual information processing
and foster better cross-modal interaction.

A key challenge in joint training is the lack of
a suitable dataset that can align VQA’s deep im-
age analysis with MMT’s translation needs. MMT
training data consists of (source language, image,
target language) triples, while VQA training data is
structured as (question, image, answer) pairs. The
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a woman 
rides her bike 
while on her 
smartphone.

eine frau 
fährt fahrrad , 
während sie
mit ihrem
beschäftigt ist.

What is the 
woman doing 
in addition to 
riding her 
bike?

Was macht die 
Frau 
zusätzlich zum
Fahrradfahren?

using her phoneihr Telefon benutzen

Question Generation

Text
Encoder

Text
Encoder

&

x 𝜙

+

fv

&

x

+

MMT
Decoder

VQA
Decoder

𝐿!"#

𝐿!"#

𝐿$%&'
𝑫𝒊𝒔% 𝑫𝒊𝒔

𝒂𝒔𝒓𝒄

𝒂𝒕𝒈𝒕

𝒂'𝒔𝒓𝒄

𝒂'𝒕𝒈𝒕

𝐿--.

eine frau fährt fahrrad , 
während sie mit ihrem
beschäftigt ist.

𝒚#:

eine frau fährt fahrrad , 
während sie mit ihrem
beschäftigt ist.

𝒚 :

𝒔𝐨𝐮𝐫𝐜𝐞	𝐭𝐞𝐱𝐭		𝒙		target	𝐭𝐞𝐱𝐭		𝒚

MMT

VQA
𝒔𝐨𝐮𝐫𝐜𝐞	𝐪𝐮𝐞𝐬𝐭𝐢𝐨𝐧

𝐬𝐨𝐮𝐫𝐜𝐞	𝐚𝐧𝐬𝐰𝐞𝐫𝐭𝐚𝐫𝐠𝐞𝐭	𝐚𝐧𝐬𝐰𝐞𝐫

𝐭𝐚𝐫𝐠𝐞𝐭	𝐪𝐮𝐞𝐬𝐭𝐢𝐨𝐧

𝒉𝒙
𝑯

𝑯𝒒𝒔𝒓𝒄 𝑯𝒒𝒕𝒈𝒕

𝒉𝒗

Image 𝒗

Consistency
Constraint

Cross-modal Gated Fusion

𝜙

✅

Figure 2: Overview of our ConsQA-MMT model. ConsQA-MMT consists of three components: question generation,
MMT and VQA. We generate in-depth question-answer pairs that capture key information from the source text.
Through a joint training approach, we leverage VQA to probe information within the images, thereby enhancing the
translation process.

existing manually constructed dataset, Multi30K-
VQA (Zuo et al., 2023), focuses on simple word-
level questions which often do not correspond to
the primary sources of translation errors. Further-
more, these datasets fail to explore comprehensive
alignment between modalities, functioning more
like image captions than fully leveraging VQA’s po-
tential for deep exploration on visual data. This lim-
itation highlights the need for a more comprehen-
sive dataset to effectively bridge MMT and VQA
tasks, enabling the resolution of complex transla-
tion errors.

In-depth QA Pairs Generation We utilize the
GPT4o-mini (Achiam et al., 2023) large language
model to generate QA pairs based on the source
text, which serve as the training dataset for the
VQA subtask. These QA pairs are generated solely
from the source text without reference to image
information, as introducing visual data during gen-
eration would introduce irrelevant redundancy to
the translation process. The answers are specific
phrases extracted from the source text. The ques-
tions are asked in relation to these answers.

Figure 3 illustrates our design process of gener-
ating in-depth QA pairs using GPT4o-mini, con-
sisting of three main parts: 1. Task Description:
This part clarifies the task and provides background
information to guide the model. The objective
is to generate reading comprehension questions

from English sentences, focusing on testing the un-
derstanding of challenging vocabulary or phrases
within their context. Each sentence is paired with
one question to evaluate comprehension, particu-
larly targeting difficult words or phrases. 2. Output
Specification: This part defines the content and
format requirements for the model’s output: (1)
The answer should be a word or phrase likely to be
mistranslated in the original sentence. (2) The ques-
tion should be answerable using image information.
(3) Question types should vary, covering topics
such as “characters, verbs, places, phrases, times”
across different sentences. These requirements en-
sure the model produces diverse and in-depth QA
pairs. 3. Examples: This part provides several
well-designed sample inputs and corresponding ex-
pected outputs to guide the model in learning the
desired pattern.

The final generated in-depth QA pairs dataset
is shown in Figure 3, with more detailed cases
provided in Figure 6.

Joint Training to Probe In-depth Visual Infor-
mation Through the generated QA pairs, we aim to
guide the model’s attention toward key information
in the text that is easy to be mistranslated. The
VQA task is then used to explore the context in
the image related to this key information, thereby
assisting the subsequent translation process.

The VQA process aligns with the MMT frame-
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Reading comprehension questions about sentences in some English texts to 
test students‘ understanding of difficult vocabulary or phrases in relation 
to the meaning of the sentences. In the following, I will give you some 
English sentences for translation. Please ask one question for each sentence.

The requirements for the questions are: 
1. The answer should be a word or phrase likely to be mistranslated in the 

original sentence. 
2. The question should be answerable using image information.
3. Question types should vary, covering topics such as "characters, verbs, 

places, phrases, times" across different sentences.
……

Examples：
Text: [ 'Two young, white men are standing outside near many bushes.’, 
'Several men with hard hats are operating a huge pulley system.’ ……]

QA pair: { 'Where are the two young white men outside?’, 'near many 
bushes’ }, { 'What are several men with hard hats operating?’, 'a huge pulley 
system’ } ……

What are two men 
doing at the stove?

preparing food.

What are an elderly 
father and his grown 
son preparing for?

a camping trip.

Figure 3: GPT4o-mini is used to generate in-depth QA pairs from the source text for translation. The left part of the
figure illustrates the prompt template we use, consisting of Task Description, Output Specification, and Examples.
The right part displays examples of the generated QA pairs, which are subsequently used in the VQA sub-task.

work in §3.1, using a unified encoder-decoder ar-
chitecture. The inputs (questions in source lan-
guage qsrc and images v) are encoded by shared-
parameter text and image encoders to generate rep-
resentations, respectively. These representations
are then fused using a shared mechanism to pro-
duce the multimodal vector Hqsrc. This shared ar-
chitecture facilitates deeper alignment between tex-
tual and visual information, enabling the model to
better capture semantic relationships. Specifically,
the VQA task enriches MMT with visual insights
through image analysis, while MMT’s text com-
prehension capabilities assist VQA in generating
precise answers, creating a synergistic effect. Fur-
thermore, parameter sharing streamlines the model
architecture, enhances parameter efficiency, and
optimizes the training process.

The final output of the decoder is processed by a
linear transformation and a softmax function, gen-
erating the output probabilities for each possible
vocabulary and the predicted answer:

â = VQA(q, v) = VQA_Decoder(Hq). (9)

During training, the cross-entropy loss function is
used to optimize the VQA model given the true
answer a:

LVQA = −
∑|a|

i=1
log p(ai|q, v). (10)

3.3 Consistency Constraint Strategy
During the joint training of VQA and MMT, the
model’s focus on image information is significantly
strengthened. However, when the image is irrele-
vant to the text, this increased attention can be detri-

mental, introducing redundant information that in-
terferes with the translation. In the VQA subtask,
questions derived from the source text may not
always have corresponding answers in the image.
Forcing the model to learn from these mismatches
can lead to overfitting, where the VQA subtask
dominates the main MMT task, ultimately reduc-
ing translation accuracy.

To address this issue, we propose a Consistency
Constraint strategy. In the shared semantic space,
sentences with equivalent meanings in different lan-
guages are placed close to each other. Images serve
as pivot information to narrow the gap between
different languages, and when the text and image
are not perfectly aligned, its position should main-
tain equal distance from both the source and target
languages. Thus, the distance between the visual
representation and the source text Dist(v, x) should
match the distance to the target text Dist(v, y), i.e.,

Dist(v, x) = Dist(v, y). (11)

We quantify this semantic distance using the ac-
curacy of the question-answering task, ensuring
the model’s ability to answer questions in both the
source and target languages is consistent. In prac-
tice, based on the questions in source language §3.2,
we add the corresponding questions in target lan-
guage qtgt. The inputs (x, v, qsrc, qtgt) are first
processed to get the fused representations Hqsrc

and Hqtgt. These fused features are then passed
through the MMT and VQA decoders to produce
the predicted translation ŷ and answers âsrc, âtgt.
The consistency means that predicted answers for
the same image and the same question should have
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similar semantics, regardless of language. So we
achieve this by constraining the distance between
predicted answers to match the distance between
ground truth answers. We calculate the distance be-
tween ground truth answers in different languages
using the cosine similarity formula, denoted as Dis.
Similarly, we compute the distance between the
model’s predicted answers in different languages
using the same method, denoted as D̂is. There-
fore, the consistency constraint is formulated by
the following loss function:

Dis = 1− asrc · atgt
∥asrc∥ · ∥atgt∥

, (12)

D̂is = 1− âsrc · âtgt
∥âsrc∥ · ∥âtgt∥

, (13)

Lcons =
∑|x|

i=1
|D̂is−Dis|. (14)

This consistency constraint strategy is proven
through extensive experiments to achieve further
improvement in translation results, especially when
images are irrelevant.

Moreover, we design a stepwise parameter up-
date strategy to dynamically adjusts the weight of
the consistency loss. At beginning, its weight is set
to 0. Starting from the e0 th epoch, the weight is
β0. The formula is:

β = 0 if e ≤ e0, else β0, e0 ∈ [0, 20], (15)

where e represents the current training epoch. The
strategy prevents early-stage interference while en-
suring late-phase optimization effectiveness. (Ab-
lation studies in Appendix B validate this strategy).

3.4 Training Objective
Based on the above, the overall loss function for
our model training is divided into three parts: (1)
machine translation loss LMT ; (2) VQA auxiliary
task loss LVQA; (3) consistency constraint loss
Lcons. To balance the contribution of these three
losses to model optimization, we introduce hyper-
parameters α and β, which control the weight of
each loss:

L = LMT + α · LVQA + β · Lcons. (16)

4 Experiments

4.1 Datasets and Metrics
We evaluate our methods on four standard
benchmarks: Multi30K (Elliott et al., 2016)
English-German (En-De), English-French (En-Fr),

English-Czech (En-Cs), AmbigCaps (Li et al.,
2021a) English-Turkish (En-Tr) and four test
sets: Test2016, Test2017 (Elliott et al., 2017),
Test2018 (Barrault et al., 2018) and MSCOCO (Lin
et al., 2014). Furthermore, we constructed two
new in-depth questioning datasets to help learn
the VQA task, based on the Multi30K and Am-
bigCaps datasets, named Multi30K-DQA 1 and
AmbigCaps-DQA 1, respectively. More details are
in Appendix A.1.

To evaluate the quality of translations, we use
4-gram BLEU (Papineni et al., 2002) and ME-
TEOR (Denkowski and Lavie, 2014). Higher
BLEU and METEOR scores indicate better per-
formance. More details are in Appendix A.2.

4.2 Implementation Details

In the preprocessing phase, we applied the byte pair
encoding (BPE) algorithm (Sennrich et al., 2016)
to generate shared vocabularies for both the source
and target languages. The English-German vocabu-
lary contains 9,760 tokens, the English-French vo-
cabulary has 10,368 tokens, and the English-Czech
vocabulary includes 11,344 tokens. During train-
ing, we set the learning rate to 0.001 and limited the
maximum batch size to 2,048 tokens. A learning
rate warm-up strategy was used with 4,000 warm-
up steps. To prevent overfitting, we applied a 0.3
dropout rate and implemented early stopping after
10 epochs with no validation improvement (Zhang
et al., 2020). The weight parameters α and β0 were
set to 0.2 and 0.1, respectively. The text encoder
has four layers, while each decoder has six layers.
During testing, we averaged the last ten epochs’
checkpoints for evaluation. All experiments were
conducted using three GPUs and the fairseq frame-
work (Ott et al., 2019).

4.3 Results

Table 1 compares our method with existing MMT
approaches on English-to-German and English-to-
French translation, using BLEU and METEOR
scores as evaluation metrics. Across all test sets and
both language directions, ConsQA-MMT achieves
the highest BLEU and METEOR scores, demon-
strating its superior performance. This suggests
that our method is more effective in generating
higher-quality translations, compared to existing
methods. Although the MSCOCO test set dif-
fers significantly from the training set, resulting in

1https://github.com/YvonneYue/ConsQA-MMT
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Models
English->German English->French

Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO
BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

Transformer (Vaswani et al., 2017) 41.02 68.22 33.36 62.05 29.88 56.64 61.80 81.02 53.46 75.62 44.52 69.43
MM Self-attn (Yao and Wan, 2020) 41.50 58.52 32.51 51.33 29.10 48.48 61.44 75.77 54.56 71.62 44.59 65.08
PLUVR (Fang and Feng, 2022) 40.30 - 33.45 - 30.28 - 61.31 – 53.15 – 43.65 –
Selective Attn (Li et al., 2022a) 41.93 68.55 33.60 61.42 31.14 48.48 62.48 81.71 54.44 76.46 44.72 71.20
MDA-MNMT (Guo et al., 2023a) 42.00 59.43 34.08 52.54 30.38 49.60 62.36 77.20 54.09 72.09 46.48 66.71
VALHALLA (Li et al., 2022b) 42.60 69.30 35.10 62.80 30.70 50.46 63.10 81.80 56.00 77.10 46.40 71.30
SAMMT (Guo et al., 2023b) 42.50 - 36.04 - 31.95 - 62.24 - 54.89 - 46.43 -
MMT-VQA (Zuo et al., 2023) 42.55 69.00 34.58 61.99 30.96 57.60 62.24 81.77 54.89 76.53 45.75 71.21
E2H-MNMT (Ye et al., 2023) 42.84 60.16 35.60 55.00 30.56 50.91 63.36 77.29 56.35 72.76 47.04 67.36
RG-MMT-EDC (Tayir et al., 2024) 42.00 60.20 33.40 53.70 30.00 49.60 62.90 77.20 55.80 72.00 45.10 64.90
ConVisPiv (Guo et al., 2024) 42.64 60.56 34.84 54.62 29.69 50.12 62.56 77.09 55.83 73.18 46.61 67.67

ConsQA-MMT (Ours) 44.16 70.01 37.58 64.39 34.30 60.27 64.80 82.91 58.31 78.42 48.51 72.02

Table 1: The BLEU and METEOR scores on the Multi30K dataset of the English-to-German and the English-to-
French translation direction. The previous best results are underlined.The best results are highlighted in bold.

Models
Average Test2016 Test2017 MSCOCO

BLEU METEOR COMET BLEU METEOR COMET BLEU METEOR COMET BLEU METEOR COMET

Qwen-vl-plus (Bai et al., 2023) 22.83 53.73 69.17 25.21 57.25 71.44 23.62 54.26 70.07 19.67 49.68 66.00
GPT4o (OpenAI and et al., 2024) 38.06 67.68 73.28 41.80 71.7 74.82 38.88 68.38 74.90 33.52 62.96 70.12
ConsQA-MMT (Ours) 38.68 64.89 72.29 44.16 70.01 75.47 37.58 64.39 72.49 34.30 60.27 68.90

Table 2: Comparison results between our model and MLLMs on the Multi30K dataset of the English-to-German
translation direction.

Models Test2016 Test2018
BLEU METEOR BLEU METEOR

Transformer (Vaswani et al., 2017) 32.70 32.34 27.62 29.03
Doubly-ATT (Arslan et al., 2018) 33.25 32.28 29.12 29.87
MM Self-attn (Yao and Wan, 2020) 33.12 32.01 28.75 29.51
Gated Fusion (Yin et al., 2020) 33.77 32.24 29.43 29.41
MDA-MNMT (Guo et al., 2023a) 33.80 32.49 29.94 30.03
ConsQA-MMT (Ours) 34.71 45.01 30.25 39.05

Table 3: The BLEU and METEOR scores on the
Multi30K dataset of the English-to-Czech translation
direction. Same formatting as Table 1.

slower improvements on both metrics, our method
still outperforms previous approaches with +2.35
BLEU and +2.67 METEOR.

We also conducted experiments in the English-
to-Czech translation direction. As shown in Ta-
ble 3, ConsQA-MMT achieves the highest BLEU
and METEOR scores, demonstrating the strong ap-
plicability of our method in achieving higher trans-
lation quality across various translation directions
and test sets.

Table 4 presents the translation results on the
AmbigCaps dataset for English-to-Turkish and
Turkish-to-English directions. Our method also
achieves state-of-the-art performance.

Furthermore, we compared our method with
MLLMs, shown on Table 2. We found that MLLMs
achieve similar performance to our method at the
semantic level (COMET) but perform worse at the
lexical level (BLEU). MLLMs also have certain
limitations: (1) Data leakage risk: their training
likely includes Multi30K test data. (2) Output is-

Models Turkish->English English->Turkish
BLEU METEOR BLEU METEOR

Transformer (Vaswani et al., 2017) 36.29 66.97 28.84 55.06
Imagination (Elliott and Kádár, 2017) 38.11 69.25 - -
Selective Attn (Li et al., 2022a) 38.30 69.31 - -
IVA-MMT (Ji et al., 2022) 39.40 70.22 - -
ConsQA-MMT (Ours) 42.12 71.30 29.24 55.87

Table 4: The BLEU and METEOR scores on the Am-
bigCaps dataset of the English-to-Turkish and Turkish-
to-English translation direction.

sues: they often return meaningless content (e.g.,
GPT-4o often returned error messages such as “I’m
unable to accurately translate your sentence based
on image context.” and “I’m sorry, but I can’t
help with identifying or classifying elements in a
photo.”). Fine-tuning MLLMs could help but is
beyond this work’s scope. We believe it is a mean-
ingful direction for future research.

5 Analysis

5.1 Mitigate the Impact of Irrelevant Images

To further investigate the effectiveness of our pro-
posed consistency constraint strategy in handling
irrelevant images, we conducted an adversarial
experiment on the Test2016 test set, as shown
in Figure 4. The x-axis represents the confus-
ing rate, indicating the proportion of images re-
placed by random irrelevant images, while the y-
axis shows the BLEU score. The red line represents
the MMT-VQA model, the green line represents
our ConsQA-MMT model, and the blue line repre-
sents our model without the consistency constraint
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Models
Test2016 Test2017 Test2018 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

ConsQA-MMT(Ours) 44.16 70.01 37.58 64.39 35.98 60.75 34.30 60.27

w/o in-depth questioning 43.77(↓0.39) 70.01(↓0) 36.35(↓1.23) 64.10(↓0.29) 35.71(↓0.27) 60.90(↑0.15) 31.67(↓2.63) 58.71(↓1.56)

w/o Lcons 43.71(↓0.45) 69.92(↓0.09) 36.96(↓0.62) 64.26(↓0.13) 35.13(↓0.85) 60.93(↑0.18) 32.94(↓1.36) 59.42(↓0.85)

w/o LNMT + LKL 43.47(↓0.69) 69.68(↓0.33) 37.43(↓0.15) 64.32(↓0.07) 33.21(↓2.77) 58.59(↓2.16) 33.35(↓0.95) 59.64(↓0.63)

Table 5: Results of ablation experiments on the Multi30K dataset of English-to-German translation direction.
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Figure 4: By replacing a certain proportion of images in
the test set with random irrelevant images, we validate
the contribution of the consistency constraint strategy.

strategy. As the proportion of irrelevant images
increases, the blue line declines significantly, but
its overall score remains higher than that of MMT-
VQA, demonstrating that our method effectively
enhances the model’s sensitivity to image informa-
tion and improves overall translation performance
through enhanced interaction. With the consistency
constraint strategy, the decline in the green line be-
comes more gradual, and the overall score is further
improved, showing that the consistency constraint
strategy effectively mitigates the negative impact
of irrelevant images on translation results and im-
proves overall translation accuracy.

5.2 Ablation Study

To verify the advantages of our method from differ-
ent perspectives, we conduct ablation experiments
in English-to-German translation direction. Experi-
ment results on Test2016, Test2017, Test2018 and
MSCOCO test sets are shown in Table 5.

Text-Image In-depth Questioning Method
In-depth questioning is designed to enhance the
model’s alignment and understanding of com-
prehensive semantics. Removing QA pairs and
the VQA branch loss causes a significant perfor-
mance drop (BLEU: -2.63, METEOR: -1.56 on
MSCOCO), highlighting its importance, especially
for MSCOCO which consists of 461 examples from

the out-of-domain image-text data pairs with am-
biguous verbs. The absence of this questioning
leads to a substantial decline in translation quality.

Furthermorewe conducted experiment to distin-
guish the contributions of source and target ques-
tions. Our experiments show that source questions
drive most of the performance gains, shown in Ta-
ble 6. Our ablation studies demonstrate that imple-
menting with only source questions still achieves
a significant performance improvement in compar-
ison with prior works We infer the key reason is:
source QA pairs help the model capture the seman-
tics of the source text and the alignment between
source text and image, which is the key to transla-
tion. Target QA pairs assist in determining whether
the answer to the source question can be derived
from the image, preventing the model from learning
the alignment of irrelevant image-text information.
It is worth noting that the source and target QA
pairs are only provided during training and are not
used during inference, considering the fairness of
evaluation and the practicality of the translation.

Consistency Constraint Strategy The consis-
tency constraint strategy is designed to reduce the
impact of irrelevant images on translation results.
To assess its contribution, we remove the consis-
tency loss term and observe a gradual decrease in
scores across all test sets, demonstrating its impor-
tance in maintaining stable translations across dif-
ferent datasets and preventing performance degra-
dation.

NMT Loss and KL Divergence Constraint
LNMT + LKL is designed to maximize the use of
available information. As shown in the third row of
Table 5, Its removal results in performance degra-
dation across all test sets, with the largest drops
on Test2016 and Test2018. LNMT + LKL plays a
crucial role in improving translation accuracy and
fluency.

Overall, the ablation study confirms the necessity
of these components for achieving state-of-the-art
performance.
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Models
Test2016 Test2017 Test2018 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

ConsQA-MMT(Ours) 44.16 70.01 37.58 64.39 34.30 60.27 35.98 60.75

only source QA 43.71 69.92 36.96 64.26 32.94 59.42 35.13 60.93

only target QA 42.68 69.13 36.14 63.35 32.42 58.47 34.26 59.94

Table 6: Results of our model trained separately on target questions and source questions.

SRC🇬🇧 : A baseball player blowing a bubble with bubblegum.
REF🇩🇪 : Ein baseballspieler macht eine kaugummiblase.
NMT🇩🇪 : Ein baseballspieler macht eine blase (bubble).
MMT-VQA 🇩🇪 : Ein baseballspieler macht eine blase mit kaninchen (rabbit).
ConsQA-MMT🇩🇪 : Ein baseballspieler macht eine kaugummiblase (bubblegum).✅

SRC🇬🇧 : A group of small planes sitting on top of a tarmac.
REF🇩🇪 : Eine gruppe kleiner flugzeuge auf einem rollfeld.
NMT🇩🇪 : Eine gruppe kleiner flugzeuge auf einem Asphalt (asphalt).
MMT-VQA 🇩🇪 : Eine gruppe von kleinen planken (planks) sitzt auf einem ziellen gipfel (target hilltop).
ConsQA-MMT 🇩🇪 : Eine gruppe kleiner flugzeuge (planes) auf einem rollfeld (tarmac).✅

SRC🇬🇧 : Two men racing horses down a racing track.
REF 🇩🇪 : Zwei männer reiten auf einer pferderennbahn.
NMT🇩🇪 : Zwei männer rennpferde auf einer rennstrecke (racehorses on a racetrack).
MMT-VQA 🇩🇪 : Zwei männer rennen auf pferden ein rennen (running on a horse).
ConsQA-MMT🇩🇪 : Zwei männer reiten auf einer pferderennbahn (racing horses down a racing track).✅

Figure 5: Some qualitative example comparisons between our proposed ConsQA-MMT method and the existing
similar method, MMT-VQA. The result demonstrates that our method exhibits superior semantic understanding and
translation accuracy.

5.3 Case Study

To highlight the superiority of our approach, we
select three examples from the MSCOCO test set
for English-to-German translation.

In the first example, MMT-VQA mistrans-
lates “bubblegum” as “kaninchen” (rabbit), while
ConsQA-MMT correctly translates it as “kaugum-
miblase” (bubblegum), demonstrating its better
contextual understanding and translation precision.

In the second example, MMT-VQA mistrans-
lates “planes” as “planken” (planks) and “tarmac”
as “ziellen gipfel” (target hilltop). ConsQA-MMT
accurately translates them as “flugzeuge” (air-
planes) and “rollfeld” (tarmac), showing its ability
to handle specialized terms.

In the final example, MMT-VQA’s translation
“rennen auf pferden ein rennen” is both grammat-
ically and semantically flawed, ambiguously con-
veying the idea of “running on a horse”. ConsQA-
MMT gives a more accurate translation: “retten auf
einer pferderembahm,” clearly conveying the idea
of “riding horses on a racecourse,” aligning per-
fectly with the original context. This demonstrates
ConsQA-MMT’s superior grammatical and seman-

tic accuracy, effectively conveying the intended
meaning of the source text.

6 Conclusion

We proposed an effective and robust multimodal
machine translation model, ConsQA-MMT, with
novel cross-modality interaction mechanisms. We
designed a text-image in-depth questioning method
that enhances the interaction and alignment of the
two modalities through refined question-answer
pairs and joint training. The proposed consistency
constraint strategy reduces the influence of irrele-
vant images on translations by relaxing loss con-
straints on VQA branches. Moreover, incorporat-
ing text-only translation constraints improves trans-
lation accuracy and fluency. Collectively, ConsQA-
MMT significantly enhances the overall quality of
multimodal machine translation and achieves state-
of-the-art performance.

Limitations

Although our model has achieved encouraging per-
formance, there is still much room for improve-
ments. Our model relies on the question-answer

9282



pairs dataset and thus is limited by its quality. The
generative capabilities of GPT4o-mini, though ef-
fective for our current framework, may not fully
exploit the potential of larger and more advanced
language models. We will work on to explore inte-
grating LLMs with stronger reasoning and contex-
tual understanding abilities, further investigating
the optimal performance boundaries of our model.
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A Details of Dataset and Metrics

A.1 Datasets
The Multi30K dataset is a widely used benchmark
for MMT, consisting of 31,014 images, each paired
with an English description and manual translations
in German, French, and Czech. The training set
includes 29,000 text-image pairs, and the validation
set contains 1,014 pairs. Evaluation is conducted
on four test sets: Test2016, Test2017, Test2018,
and MSCOCO, with 1,000, 1,000, 1,071, and 461
instances, respectively.

We built the in-depth questioning dataset based
on the Multi30K dataset, which includes transla-
tion QA pairs in English-German, English-French,
and English-Czech. Taking English-German as an
example shown in Figure 6, it includes 29,000 En-
glish and 29,000 German question-answer pairs
generated by LLM and manually filtered.

A.2 Metrics
Our experiment uses BLEU and METEOR for
machine translation evaluation. BLEU (Bilingual
Evaluation Understudy) measures n-gram overlap
between translations and references, focusing on
overall quality but lacking sensitivity to word order
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five people are sitting in a 
circle with instruments .

-How many people are sitting 
in a circle with instruments? 
-five.

ConsQA-
MMT:

MMT-VQA:
-Who is sitting in the circle? 
-People.

fünf personen sitzen mit
instrumenten im kreis .

-What is a man doing as he 
leans into a car? 
-talk to the driver.

-Who is leaning into the car? 
-Man.

a man leans into a car to talk to the 
driver , as a man on a bicycle looks on .

ein mann lehnt sich in ein auto , um 
mit dem fahrer zu reden , während ein
mann auf einem fahrrad zusieht .

-What color jacket is a 
boy wearing while 
pouring water on a man? 
-red.

-What color is the 
boy's jacket? 
-Red.

a boy in a red 
jacket pouring water on 
a man in a white shirt.

-What is a man in a 
white shirt doing on 
a busy street? 
-rides a bicycle.

-Who is riding the 
bicycle? 
-Man.

-What are the man and 
woman surrounded by? 
-boats.

-Who is sitting on the 
ground? 
-Man, woman.

a man in a white 
shirt rides a bicycle on 
a busy street .

a man and a woman are sitting on 
the ground and surrounded by boats .

in junge in einer roten jacke , der 
wasser auf einen mann in einem
weißen hemd gießt .

in mann in einem weißen
hemd fährt auf einer
belebten straße fahrrad .

in mann und eine frau 
sitzen von booten
umgeben auf dem boden .

Source:

Target:

Figure 6: This figure shows the comparison between our in-depth question-answering dataset and existing question-
answering datasets. Our in-depth QA is not limited to simple nouns such as people and colors.

and synonyms. METEOR (Metric for Evaluation
of Translation with Explicit Ordering) incorporates
semantic and structural matching, better capturing
fine-grained linguistic consistency.

BLEU calculates n-gram precision for n = 1 to
4, applies a brevity penalty (BP) for short transla-
tions, and computes the score as:

BLEU = BP × exp

(
N∑

n=1

wn logPn

)
, (17)

where BP is the brevity penalty, Pn is the n-gram
precision, wn is the weight for each n-gram, and
N is typically set to 4.

METEOR matches words using exact, stem, and
synonym matching, computes precision, recall, and
F-score, and introduces a penalty for word order
differences. Its score is:

METEOR = Pfrag ×Fmean × (1−Penalty), (18)

where Pfrag is the precision of word form match-
ing, Fmean is the mean F-score, and Penalty is the
penalty term. Through this calculation, METEOR
can more comprehensively reflect the linguistic
consistency between the generated translation and
the reference translation. METEOR provides a
more comprehensive evaluation of linguistic con-
sistency.

B Impact Analysis of Dynamic Weight
Update Strategy

Figure 7 demonstrates the impact of introducing
consistency loss at different training epochs on
the BLEU scores for the Test2016, Test2017, and
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Figure 7: The impact of introducing consistency loss
at different training epochs on the BLEU scores for the
Test2016, Test2017, and MSCOCO datasets.

MSCOCO datasets. The results reveal distinct op-
timization patterns based on dataset characteris-
tics. For Test2016 and Test2017, which exhibit
high text-image correlation, the best performance is
achieved when consistency loss is introduced later
in the training process—specifically at epoch 10 for
Test2016 (BLEU: 44.37) and epoch 15 for Test2017
(BLEU: 37.74). This delayed introduction allows
the model to establish robust text representations
before enforcing visual-textual alignment. In con-
trast, for MSCOCO, which contains more complex
visual information, the optimal performance oc-
curs when consistency loss is introduced earlier, at
epoch 5 (BLEU: 34.33). This early introduction
facilitates better noise filtering and visual concept
grounding, which is crucial for datasets with in-
tricate visual content. These findings underscore
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the importance of tailoring the timing of consis-
tency loss introduction to the specific characteris-
tics of the dataset, with high-correlation datasets
benefiting from mid-to-late phase introduction and
complex visual datasets requiring early-phase intro-
duction for optimal performance. The results also
validate the effectiveness of consistency loss in sce-
narios with weak text-image correlation, highlight-
ing its role in enhancing model robustness across
diverse multimodal translation tasks.
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