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Abstract

We release a parallel corpus for medical
text simplification, which paraphrases medi-
cal terms into expressions easily understood
by patients. Medical texts written by med-
ical practitioners contain a lot of technical
terms, and patients who are non-experts are of-
ten unable to use the information effectively.
Therefore, there is a strong social demand for
medical text simplification that paraphrases in-
put sentences without using medical terms.
However, this task has not been sufficiently
studied in non-English languages. We there-
fore developed parallel corpora for medical
text simplification in nine languages: German,
English, Spanish, French, Italian, Japanese,
Portuguese, Russian, and Chinese, each with
10, 000 sentence pairs, by automatic sentence
alignment to online medical references for
professionals and consumers. We also pro-
pose a method for training text simplification
models to actively paraphrase complex expres-
sions, including medical terms. Experimen-
tal results show that the proposed method im-
proves the performance of medical text simpli-
fication. In addition, we confirmed that train-
ing with a multilingual dataset is more effec-
tive than training with a monolingual dataset.

1 Introduction

Medical texts contain many technical terms (med-
ical terms), and non-expert patients often cannot
use the information effectively (Cheng and Dunn,
2015). Also, healthcare professionals frequently
use technical terms when communicating with pa-
tients, even though they recognize that they should
avoid them (Charpentier et al., 2021). There-
fore, to facilitate patients’ understanding of med-
ical conditions and treatment methods, and to as-
sist medical practitioners in explaining important
medical information such as findings and diag-
noses to patients, medical text simplification that
paraphrases medical terms into expressions that

are easily understood by patients is expected. In
this background, while medical text simplification
has been actively researched in English (Cao et al.,
2020; Sakakini et al., 2020; Devaraj et al., 2021;
Guo et al., 2021; Luo et al., 2022), it has not been
sufficiently studied in non-English languages.

In medical text simplification, a parallel cor-
pus consisting of pairs of complex sentences writ-
ten for experts and simple sentences written for
general audiences are used to train seq2seq mod-
els such as Transformer (Vaswani et al., 2017).
In English, medical text simplification models are
trained using large-scale parallel corpus for train-
ing (Luo et al., 2022; Bakker and Kamps, 2024).
On the other hand, in Japanese, where only small-
scale evaluation corpora for medical text simpli-
fication exist, text simplification models trained
on other domains have been applied to medi-
cal text simplification (Horiguchi et al., 2024).
For Spanish and French as well, only small-scale
medical text simplification parallel corpora ex-
ist (Grabar and Cardon, 2018; Cardon and Grabar,
2020; Campillos-Llanos et al., 2022), which are
not sufficient for training text simplification mod-
els. Therefore, a large-scale parallel corpus for
medical text simplification is desired.

We utilize the online medical references of the
MSD manual! to construct a large-scale paral-
lel corpus for medical text simplification. This
online medical references contains articles writ-
ten for professionals such as medical practition-
ers, and articles written for the laypeople such as
patients and their families, each of which is avail-
able in nine languages. Therefore, we performed
embedding-based sentence alignment for those ar-
ticle pairs to automatically construct multilingual
parallel corpora for text simplification, MultiMSD
corpus. We then train medical text simplification
models using our corpus and evaluate their perfor-

"https://www.msdmanuals. com
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Reference Sentence Pairs Language

AutoMeTS (Van et al., 2020) 3,300 English
- (Sakakini et al., 2020) 4,554 English
MSD (Cao et al., 2020) 930 English
MedLane (Luo et al., 2022) 14,832 English
Med-EASi (Basu et al., 2023) 1,979 English
PLABA (Attal et al., 2023) 7,643  English
Cochrane-auto  (Bakker and Kamps, 2024) 35,800 English
CLARA-MeD (Campillos-Llanos et al., 2022) 3,800 Spanish
CLEAR (Cardon and Grabar, 2020) 4,596 French
JASMINE (Horiguchi et al., 2024) 1,425 Japanese

Table 1: Parallel corpora for medical text simplification.

mance in each language. In addition, we propose
a method to facilitate the paraphrasing of medical
terms and complex expressions in medical texts.
Experimental results showed that large lan-
guage models outperformed seq2seq models pre-
trained on multilingual data. We also confirmed
that the proposed method improves the perfor-
mance of medical text simplification. In addition,
we confirmed the effectiveness of training on a
multilingual dataset compared to a monolingual
dataset. We release our corpus on GitHub.?

2 Related Work

Medical text simplification is the task of remov-
ing medical terms from input sentences and para-
phrasing them into expressions that are easier for
patients to understand. Table 1 shows sentence-
level medical text simplification corpora. In En-
glish, parallel corpora ranging from 1,000 to
35,000 sentence pairs have been released, such
as the MedLane dataset (Luo et al., 2022), which
was constructed by manually annotating sentences
collected from the MIMIC-III database, and Au-
toMeTS (Van et al., 2020), which was constructed
by automatically extracting medical sentence pairs
from Wikipedia-derived text simplification paral-
lel corpora. In Japanese, a small-scale medical text
simplification corpus for evaluation, called JAS-
MINE (Horiguchi et al., 2024), has been released.
This is a parallel corpus where the text from pa-
tients’ weblog is paraphrased using medical terms.
In French, CLEAR (Grabar and Cardon, 2018)
was constructed by manually aligning professional
and simplified texts collected from encyclope-
dias, pharmaceutical leaflets, and scientific sum-

2https://github.com/EhimeNLP/MultiMSDcorpus

maries. Cardon and Grabar (2020) subsequently
expanded the parallel corpus by extracting 4,596
sentence pairs from similar sources. Also, In
Spanish, CLARA-MeD (Campillos-Llanos et al.,
2022) was constructed by experts manually align-
ing against professional and simplified text col-
lected from systematic review summaries and
drug leaflets. However, large-scale sentence-level
medical text simplification corpora for training
seq2seq models based on deep learning do not ex-
ist for any language other than English.

As in our study, Cao et al. (2020) determined
that the MSD manual, online medical references,
is a useful language resource in medical text sim-
plification. They have constructed a parallel cor-
pus by collecting professional and consumer ar-
ticle pairs from the MSD manual and manu-
ally aligning them by experts. However, while
this method provides high-quality alignment, it is
costly and limited in scale. Furthermore, they use
only English articles and do not focus on other
languages. In this study, we collect professional
and consumer article pairs from the MSD man-
ual across nine languages and conduct embedding-
based sentence alignment to construct a medical
text simplification parallel corpus with a scale of
10,000 sentence pairs in each language.

3 MultiMSD Corpus

We focus on the MSD Manual of the online medi-
cal reference to construct a large-scale parallel cor-
pus. MSD Manual is the world’s most widely used
source of medical information on all medical top-
ics, with a professional version written for special-
ists such as doctors and healthcare workers, and
a consumer version written for the general public

9249


https://github.com/EhimeNLP/MultiMSDcorpus

Deep venous thrombosis (DVT) is clotting of blood in a deep vein of an extremity (usually calf or thigh) or the pelvis.
Deep vein thrombosis is the formation of blood clots (thrombi) in the deep veins, usually in the legs.

€n

La thrombose veineuse profonde correspond a la formation d’un caillot sanguin dans une veine profonde d’un membre

fr  (habituellement le mollet ou les cuisses) ou le petit bassin.

La thrombose veineuse profonde est la formation de caillots sanguins (thrombi) 21" intérieur des veines profondes,

généralement dans les jambes.

La trombosi venosa profonda consiste nella formazione di un coagulo di sangue in una vena profonda di un arto
it  (solitamente a livello del polpaccio o della coscia) o della pelvi.
La trombosi venosa profonda consiste nella formazione di coaguli di sangue (trombi) all’ interno delle vene profonde,

in genere delle gambe.

- VRESEIRIUAAE (DVT) & 1, PR G (BRI 8 & 72 OKINE) 3 7= 138 D VB C I MEASEIE 3 B 6 RE T b B,
I IR AR I, SRS IR T AR (MIE D A 7= £ 0)DIBR E N BHE T, @I CRAE L £ T,

Table 2: Corpus examples in English (en), French (fr), Italian (it), and Japanese (ja). The examples in each
language are semantically aligned, with the first sentence being complex and the second sentence being simple.

such as patients and their families. The articles on
each topic are available in 11 languages in the pro-
fessional version and 12 in the consumer version.
This study focuses on nine languages (German,
English, Spanish, French, Italian, Japanese, Por-
tuguese, Russian, and Chinese) supported in both
the professional and consumer versions. We then
automatically construct a parallel corpus of medi-
cal text simplification (MultiMSD corpus) by con-
ducting embedding-based sentence alignment for
professional and consumer article pairs. Table 2
shows examples from the MultiMSD corpus.

3.1 Pre-processing of Article Pairs

In the MSD Manual, professional and consumer
articles on the same topic are linked. The same
articles in each language corresponding to each
other are also linked. Based on the structures of
these web pages, we collected article pairs of com-
plex and simple articles in nine languages and used
them for corpus construction. Then, we applied
sentence segmentation using Stanza® (Qi et al.,
2020) for each article to split into sentence units.
For Japanese, where many errors in sentence seg-
mentation were observed, such as line breaks in
the middle of sentences, we applied rule-based
sentence segmentation®*.

3.2 Embedding-based Sentence Alignment

For a given article pair, let sentences in the profes-
sional article D be denoted as S{ (1 <1 < |D¢)
and sentences in the consumer article D® be de-
noted as S7 (1 < j < [D?]). We also consider

3https://github.com/stanfordnlp/stanza
4https://github.com/wwwcojp/ja_sentence_
segmenter

converting the sentence into a d-dimensional vec-
tor by the sentence embedding model (-).

We formulate the problem of sentence align-
ment for a given article pair as a weighted match-
ing problem on a complete bipartite graph based
on sentence embeddings. That is, the bipartite
graph consists of the complex side D¢ and the
simple side D?, with sentence embedding (SY)
and (S H ) as nodes. Moreover, the edges between
nodes have weights ¢(e(55), £(S7)). This weight
is represented as the matrix ® € [0, 1]IP°IxIP°,
In this study, cosine similarity between vectors is
used as the weight ®(-).

Sentence alignment A € {0, 1 | is ob-
tained by selecting the most similar sentence from
the opposite side for each sentence on one side.
We use two methods: asymmetric sentence align-
ment, which emphasizes recall, and symmetric
sentence alignment, which emphasizes precision.

}IDCIXIDS

Asymmetric Sentence Alignment. In asym-
metric sentence alignment, for each sentence SY
on the complex side, the most similar sentence
Sj from the simple side is selected as ;7 =
argmaxy, ®; , and the sentences are aligned as
A; ; = 1. Similarly, for each sentence S5 on the
simple side, the most similar sentence .S{ from the
complex side is selected as i = arg max; Py ;,
and A; ; = 1. However, to prevent alignment er-
rors, if ¢(e(S57),e(S57)) < 0, then A; ; = 0. All
other sentence pairs are assigned A; ; = 0, mean-
ing that those sentences are not aligned.

Symmetric Sentence Alignment. In symmet-
ric sentence alignment, a sentence is aligned only
when the most similar sentence from the complex
side and the most similar sentence from the sim-
ple side match. That is, 4; ; = 1 is set for sen-
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English Japanese Avg.
0 Precision Recall Fl1 0 Precision Recall Fl1 F1

mBERT (+) 0.90 0.812 0.728 0.768 0.90 0.567 0.250 0.347 0.558
mBERT (—) 0.95 0.877 0.564 0.687 0.55 0.174 0.586 0.269 0.478
XLM-R (+») 0.95 0.716 0.673 0.694 0.95 0.575 0.400 0.472 0.583
XLM-R (—) 095 0.281 0.772 0412 0.95 0.173 0.536 0.262 0.337
LaBSE («+») 0.60 0.833 0.866 0.850 0.70 0.871 0.864 0.867 0.859
LaBSE (—) 0.70 0.883 0.782 0.829 0.70 0.816 0.873 0.844 0.837
mES5 (+) 0.90 0.840 0911 0.874 0.90 0.725 0.877 0.794 0.834
mE5 (—) 0.95 0.949 0.649 0.771 0.95 0.888 0.723 0.797 0.784

Table 3: Evaluation of sentence alignment in English and Japanese. <> represents symmetric sentence alignment,
while — represents asymmetric sentence alignment. Threshold 6 is the cosine similarity that achieved the highest
F-score on the validation data, and the average value is the mean F-score in English and Japanese.

tence pairs such that (i = arg max;, @5 ;) A (j =
arg maxy, ®; 1), and A; ; = 0 for all other sen-
tence pairs. Furthermore, similar to asymmetric
sentence alignment, if ¢(e(S5),e(S7)) < 0, we
set A; ; = 0 to prevent alignment errors.

3.3 Construction of Parallel Corpora

In this study, four sentence embedding models
based on BERT (Devlin et al., 2019) correspond-
ing to the nine languages are used for sentence
alignment. The settings of each sentence embed-
ding method followed the original paper’s settings.

« mBERT’ (Devlin et al., 2019): Multilin-
gual sentence embedding pre-trained with
the masked language modeling task using
Wikipedia in 104 languages. The special to-
ken [CLS] at the beginning of the sentence
was used.

e XLM-R® (Conneau et al., 2020): Multilin-
gual sentence embedding pre-trained with the
masked language modeling task using Com-
mon Crawl in 100 languages. The [CLS] to-
ken was used.

» LaBSE’ (Feng et al., 2022): Multilingual
sentence embedding obtained by fine-tuning
the multilingual masked language model with
the translation ranking task (Guo et al,
2018). The [CLS] token was used.

5https://huggingface.co/google—bert/
bert-base-multilingual-cased

6https://huggingface.co/FacebookAI/
x1lm-roberta-base

7https://huggingface.co/
sentence-transformers/LaBSE

» mE5S® (Wang et al, 2024): Multilingual
sentence embedding obtained by contrastive
learning (Wang et al., 2022) of the multi-
lingual masked language model followed by
fine-tuning with tasks such as question an-
swering (Bajaj et al., 2018), information re-
trieval (Fan et al., 2019) and natural language
inference (Gao et al., 2021). Average pooling
of token embeddings was used.

To evaluate the performance of sentence align-
ment, we randomly extracted 20 article pairs with
correspondences in English and Japanese. For
these article pairs, the authors manually anno-
tated sentence alignment, and obtained 373 and
401 sentence pairs, respectively. Then, we divided
them into 10 article pairs each for validation and
evaluation. Since the distribution of cosine sim-
ilarity is different for each embedding model, we
used the validation data to adjust alignment thresh-
old 6 € {0.50,0.55, ...,0.95} for each model.

Table 3 shows the performance on the evalua-
tion data with the threshold that achieved the high-
est F-score on the validation data. The table shows
that mES5 («+) achieved the highest performance
in English and LaBSE (++) in Japanese. However,
when comparing the average performance of mES
and LaBSE in both languages, LaBSE performs
better than mE5. Therefore, we adopted symmet-
ric sentence alignment based on LaBSE’s multi-
lingual sentence embedding and set the threshold
6 = 0.7, which achieved the highest F-score on
the validation set. We applied this method to the
article pairs in Section 3.1 and automatically con-

8https://huggingface.co/intfloat/
multilingual-e5-base
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de en es it ja pt ru zh

Article pairs 1,540 1,544 1,556 1,542 1,550 1,580 1,562 1,561 1,544
Sentence pairs 16,163 8,871 15,743 16,546 14,973 14349 17,384 17,757 12,834
Vocab sige 4436 15420 22267 21,906 22726 14452 24,588 46,119 17,400
OCaDSIZE 97132 12,939 18346 17.942 19369 12,619 19415 36,078 15,019

Ave. characiers 14435 1245215029 14586 149.13 5078 13650 148.56 3583
& 14191 12144 14879 146.65 14459 5041 135.00 138.73  34.95
A G 2219 2217 2669 2602 2691 3067 2490 2212 2257
Ve WOTAS 90026 2234 2684 2645 2634 3098 2509 2104 2217
Train 13343 7249 13,025 13.616 12361 11,793 14314 14,610 10,532

valid 1304 720 1268 1363 1222 1,147 1413 1472 1,059

Test 1516 812 1450 1567 1390 1409 1,657 1675 1243

Table 4: Statistics of MultiMSD. Vocab size, Avg. characters, and Avg. words are shown, with upper values for

complex and lower for simple sentences.

structed a medical text simplification parallel cor-
pus in multiple languages.

3.4 Post-processing

The sentence pairs obtained in the previous section
contained the following types of noise, which were
automatically removed:

» Sentence pairs containing sentences that are
too short (5 characters or fewer)

* Duplicate sentence pairs

* Sentence pairs where the complex sentence
and the simple sentence are identical

After this post-processing, we constructed a med-
ical text simplification parallel corpus for training,
consisting of the nine languages.

3.5 Analysis of Corpus

Table 4 shows the statistics of the parallel corpus
constructed in this study. We tokenized the sen-
tences using Stanza® (Qi et al., 2020) and calcu-
lated the vocabulary size and the average number
of words per sentence for each language.

Difference in Number of Sentence Pairs The
number of article pairs collected from the MSD
Manual is almost uniform across each language,
but the number of sentence pairs varies signifi-
cantly. For example, the number of sentence pairs
in English is 8,871, while in Russian, it reaches
17,757, a nearly two-fold difference. The dif-
ference in the number of sentence pairs across
languages may be attributed to variations in the

cosine similarity distribution of multilingual sen-
tence embedding.

Average Sizes The articles in the consumer ver-
sions of MSD Manual are written in expressions
that are easy to understand for patients and the
general public. As a result, the vocabulary size of
simple sentences is consistently smaller than that
of complex sentences in all languages. However,
the average number of characters and words are al-
most the same between complex and simple sen-
tences. This suggests that although technical terms
and complex expressions are simplified, they are
supplemented by simple expressions to retain the
meaning of the sentences.

4 Proposed Method

The conservative behavior of text simplification
models is one of their traditional challenges (Ka-
jiwara, 2019). To address this problem, we pro-
posed a method to actively paraphrase terminol-
ogy in this section.

We propose a method that weights the cross-
entropy loss of the correct words in the reference
sentence not included in the input sentence to pro-
mote the paraphrasing of medical terms and com-
plex words in the input sentence that are written
for experts. When the loss of a word is increased,
the system is trained to actively output that word,
so that more simple words contained in reference
sentences written for the general public are ex-
pected to be output. In this method, if the correct
word w in the reference sentence is not included in
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de en es fr it ja pt ru zh
Input 8.66 1843 11.89 1048 991 11.13 1053 795 1393
mono 3626 32.11 3430 40.20 37.26 46.65 3042 3556 39.59
MBART multi  34.83 40.73 39.57 39.72 39.01 4571 3569 37.78 41.44
mono* 41.63 38.84 39.09 43.53 40.54 46.56 37.46 3940 41.99
multi*  41.69 4228 4279 43.69 4324 4870 38773 40.84 41.94
mono 3578 36.83 3637 41.61 36.77 46.15 36.26 38.49 41.03
multi  37.64 3933 3959 39.78 3838 47.60 3897 38.77 42.16
Llama mono* 43.88 4240 4291 45.64 4491 4895 4557 4241 46.94
multi* 4235 44.68 44.18 4479 43.04 50.02 4331 43.25 47.00
0-shot 40.16 42.17 4195 40.81 41.24 4521 41.09 39.29 40.73
5-shot 4030 4237 43.32 40.65 41.68 47.12 4235 4048 43.58

Table 5: Results of SARI scores (* indicates proposed method, bold indicates best performance for each language).

the input sentence X, its cross-entropy loss L(w)
is multiplied by the weight 6. Finally, the word
loss L' (w) is as follows.

L'(w) = {ié;w)’

w ¢ X,
w e X.

5 Experiments

Through experiments on text simplification in the
medical domain, we validate the usefulness of the
MultiMSD corpus constructed in this study.

5.1 Model

We used mBART? (Tang et al., 2020), pre-trained
on multilingual data, and Llama'® (Grattafiori
et al.,, 2024), an open-source large language
model. We fine-tuned the models in a monolingual
(mono) setting, where the dataset for each lan-
guage was used, and in a multilingual (multi) set-
ting, the dataset for all nine languages was used. In
the multilingual setting, we combined the datasets
for each language and then randomly shuffled
them to avoid biasing the data in the batch toward
a specific language. Fine-tuning was stopped after
3 epochs using early stopping based on the cross-
entropy loss on the validation data. We used two
RTX A6000 GPUs for both training and inference.

5.1.1 mBART

The batch size was set to 32, dropout rate to 0.1,
learning rate to 10~*, and maximum sequence

9https://huggingface.co/facebook/
mbart-large-50

10https://huggingface.co/meta—llama/Llama—3.
1-8B-Instruct

length to 256, and the optimization method was
AdamW (Loshchilov and Hutter, 2019).

5.1.2 Llama

We used LoRA (Low-Rank Adaptation) (Hu et al.,
2022) for fine-tuning. The LoRA rank was set
to r = 4, the scaling factor to @« = 8, the
dropout rate to 0.05, and the target modules
were [g_proj, k_proj, v_proj, o_proj, gate_proj,
up_proj, down_proj]. We then set the batch size to
8, gradient accumulation to 4 steps, learning rate
to e — 5, and maximum sequence length to 256.
Furthermore, we conducted text simplification
using in-context learning in both zero-shot and
few-shot settings. For few-shot, five random ex-
amples were selected from the validation data of
each language. We used the following sentence as
instructions, translated into each language:

You are an expert in paraphrasing complex sentence into
simple sentence. Please rephrase the following sentence
into simple sentence while keeping their original meaning.

5.2 Dataset

In the MSD manual, each language article is a
translation of the English article. Therefore, when
randomly splitting the dataset for each language
into sentence pair units for training, validation,
and test set, sentence pairs in a translation relation-
ship may be mixed, making it difficult to evaluate
fairly in a multilingual (multi) setting. In the Mul-
tiMSD corpus, articles in a translation relationship
between different languages are linked (Section
3.1). We use this property to split the data by ar-
ticle pair units in a translation relationship rather
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AR S E RS R H# LB R T b & — VR R 2 &SN AL DI HR D

Input WEIRIGE I I N5,

(Baths and soaks are used when therapy must be applied

to large areas, such as with extensive contact dermatitis or atopic dermatitis.)

Llamamulti*

AR, JRNHFEORERBGIZIE. 7 M E—EEER)DERICHEHINET,

(Baths and soaks are used to treat large areas of dermatitis (e.g., atopic dermatitis).)

ABRIRIT B & EIE IRWEDTD T IEDILD > TV BIGE IV E S,

Llamas_gpt

(Baths and when soaking are used when inflammation has spread to large parts of the body.)

Table 6: Examples of text simplification output with “$%fifl i & 2¢ (contact dermatitis)” and “7 b & — M 5 g

# (atopic dermatitis)” as technical terms.

than by random sentence pair units. In this study,
we split 128 article pairs in each language for val-
idation and another 128 for test set (Table 4).

5.3 Inference and Evaluation

In mBART, we generated output sentences using
beam search with beam size 5 and max_length =
256. In Llama, we generated output sentences us-
ing greedy search with max_new_tokens = 256.
Text simplification performance was automati-
cally evaluated using SARI (Xu et al., 2016) with
EASSE!! (Alva-Manchego et al., 2019) package.

5.4 Application of the Proposed Method

In monolingual (mono) and multilingual (multi)
settings of mBART and Llama, we applied the
proposed method in Section 4 and experimented
with weights 0 = {2,4,8}. Then, we selected re-
sults for the threshold that maximized the average
of SARI and BLEU (Papineni et al., 2002).

5.5 Results

Proposed method significantly improves simpli-
fication performance Experimental results are
shown in Table 5. The models with the proposed
method significantly improved SARI scores, with
Llama (mono*) and Llama (multi*) achieving the
highest performance for all languages.

Large language models achieve high perfor-
mance Comparing mBART and Llama, Llama
showed higher performance in monolingual and
multilingual settings, confirming the effectiveness
of fine-tuning large language models. In the set-
ting of in-context learning without parameter up-
dates, Llama with five examples (5-shot) outper-
formed Llama without examples (0-shot).

Training with multilingual data is effective
When analyzing the detailed results for each lan-

"https://github.com/feralvam/easse

Grammar Meaning Simplicity

mBART,,, iti% 4.7 4.2 4.0
< Llama;ono 4.7 4.4 3.9
o Llama,,; 4.7 43 4.0
A Llamayuui 46 42 4.0

Reference 4.5 4.1 4.2

mBART,,, iti% 4.7 4.4 35
::,3’ Llama,,ono 4.8 4.6 3.6
S Llama,,;; 4.9 4.5 3.7
&' Llamas 49 44 3.8

Reference 49 4.4 4.2

Table 7: Results of human evaluation.

guage, it was observed that, in most languages,
models trained with the multilingual dataset
(multi) tended to outperform models trained with
the monolingual dataset (mono). This result sug-
gests that fine-tuning with multilingual data shares
linguistic knowledge of other languages and im-
proves text simplification models’ performance.

6 Analysis

6.1 Examples of Medical Text Simplification

Table 6 shows examples of medical text simplifi-
cation in Japanese. This example includes tech-
nical terms such as “#%fifl ¢ § % (contact der-
matitis)” and “7 b~ ¥ — M 5§ % (atopic der-
matitis).” Llama (multi*), applying the proposed
method, paraphrases these into the general term
“HZ J§ % (dermatitis)”, followed by the specific
examples, “Bil Z 1. 7 M=K EE g,
atopic dermatitis).” On the other hand, Llama
(5-shot), which does not update the parameters,
uses the very generalized term “ZJiE (inflamma-
tion).” However, “&JiF (inflammation)” is a term
for broad symptoms that is not limited to the skin,
which may lead to a reduction in understanding or
potential misinterpretations.
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English Japanese

Input 513 432
Reference 485 328
mMBART ;1% 459 367
Llama,,;, 050 498 372
Llama,,, ;¢ 486 358
Llama, 4+ 490 320
Llamag_gp0¢ 463 223
Llamas_gp,o¢ 452 228

Table 8: Number of medical term types in output sen-
tences of medical text simplification model.

6.2 Human Evaluation

We conducted human evaluation of the grammar,
meaning, and simplicity of output sentences in or-
der to assess the quality of the medical text sim-
plification model. In addition, we conducted hu-
man evaluation of reference sentences. English
and Japanese were the target languages, and 100
sentences were randomly selected from the test set
and evaluated. In English, we employed three an-
notators using Amazon Mechanical Turk'?, who
have a background as a healthcare professional
and hold Master certification with a past approval
rate of 95%. In Japanese, we employed three uni-
versity students who are native Japanese speakers.
Table 7 shows the average scores of the three
annotators. Llama (multi*), applying the pro-
posed method, achieved high simplicity in both
languages, consistent with the automatic evalua-
tion results. For grammar and meaning, all models
scored satisfactorily compared to the Reference.

6.3 Analysis of Types of Technical Terms

To evaluate the medical text simplification model’s
ability to paraphrase technical terms, we counted
medical term types in the input, reference, and out-
put sentences. For English, we used the Medical
Subject Headings (MeSH)'? as the medical terms
dictionary and tokenized each sentence using Scis-
pacy (Neumann et al., 2019). For Japanese, we
used J-MedDic'* (Ito et al., 2018) and tokenized
each sentence with MeCab'® (Kudo et al., 2004),
which loaded the medical dictionary'.

From Table 8, we confirm that Llama (multi*)

12https ://www.mturk. com/

13https ://www.nlm.nih.gov/mesh/meshhome.html
14https ://sociocom.naist. jp/manbyou-dic/
Bhttps://taku910.github.io/mecab/

SNOW  MultiMSD

32.88 35.68
34.72 35.80

BART
SimpleBART

Table 9: Experimental results in Japanese. These
scores are SARI, which evaluates text simplification
models trained on our MultiMSD in the medical do-
main or SNOW in other domains, on the JASMINE
corpus in the medical domain.

effectively reduces the number of medical term
types in both English (490) and Japanese (320),
with results similar to the reference sentences (En-
glish: 485, Japanese: 328). This shows the pro-
posed method’s effectiveness in promoting the
output of correct words in reference sentences that
are not included in the input sentences. In ad-
dition, Llama (0-shot) and Llama (5-shot) have
fewer types of technical terms than other models.
In-context learning without parameter updates ac-
tively paraphrases technical terms according to the
given instructions, but it should be noted that over-
simplification is possible, as in Table 6.

6.4 Comparison with Other Corpora

Since there is no training parallel corpus for med-
ical text simplification in Japanese, previous re-
search (Horiguchi et al., 2024) has evaluated text
simplification models trained in other domains,
SNOW (Maruyama and Yamamoto, 2018; Katsuta
and Yamamoto, 2018) for the medical domain.
In this section, we improve the performance of
medical text simplification in Japanese by training
with our MultiMSD corpus. Pre-trained seq2seq
models and hyperparameters followed the pre-
vious research (Horiguchi et al., 2024) and au-
tomatically evaluate SARI (Xu et al., 2016) on
JASMINE!S (Horiguchi et al., 2024), an exist-
ing evaluation corpus for medical text simplifi-
cation in Japanese. Table 9 shows that for both
BART (Lewis et al., 2020) and SimpleBART (Sun
et al., 2023) models, training on the Japanese por-
tion of our MultiMSD corpus achieved higher per-
formance than training on SNOW in other do-
mains for Japanese medical text simplification.

7 Conclusion

In this study, we automatically constructed par-
allel corpora for training consisting of nine lan-
guages by embedding-based sentence alignment

https://github.com/EhimeNLP/JASMINE
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from professional and consumer article pairs in
the online medical references to facilitate research
on medical text simplification in non-English. We
compared 4 types of multilingual sentence embed-
dings: mBERT, XLLM-R, LaBSE, and mES5. We
found that mES was useful for sentence alignment
in English medical texts, while LaBSE was useful
for Japanese. Evaluating the performance of the
text simplification models using the corpus con-
structed in this study, we found that the large lan-
guage model Llama outperformed mBART, which
was pre-trained on multilingual data. Further-
more, we confirmed that the proposed method of
weights the loss of correct words in reference sen-
tences not included in input sentences improves
the performance of medical text simplification.

Limitations

The output sentences of automatic text simplifica-
tion may contain hallucinations, which could lead
to the risk of misinterpretation if patients take the
information into account. Therefore, the outcomes
of this research should be used appropriately under
the supervision of a healthcare professional.
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