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Abstract

The key to effective alignment lies in high-
quality preference data. Recent research has fo-
cused on automated alignment, which involves
developing alignment systems with minimal
human intervention. However, prior research
has predominantly focused on developing data
generation methods, while insufficient atten-
tion has been paid to quality control mecha-
nisms, which often produce inaccurate and un-
helpful data, leading to unpredictable benefits
during iterative optimization. In this paper, we
present Self-Steering Optimization (SSO), an
algorithm that autonomously generates high-
quality preference data, eliminating manual an-
notation requirements. SSO employs a spe-
cialized optimization objective to build a data
generator from the policy model itself, which
is used to produce accurate and on-policy data.
We demonstrate SSO’s effectiveness through
comprehensive experiments on two series of
models: Llama 3 and Qwen 2. Our evaluation
across diverse benchmarks shows that SSO
consistently outperforms baselines in human
preference alignment and reward optimization.
Further analysis validates SSO as a scalable
framework for preference optimization, bene-
fiting the advancement in automated alignment
techniques.

1 Introduction

The field of Natural Language Processing has
undergone revolutionary advancements driven by
large language models (LLMs). After meticulous
alignment processes, LLMs have demonstrated re-
markable capabilities in following instructions and
understanding human preferences. This leads to
the development of widely acclaimed products like
ChatGPT (OpenAI, 2023), which have captured
significant public attention. However, aligning
LLMs with human preferences is not trivial. De-
spite the existence of Proximal Policy Optimization

* Corresponding authors.

(PPO) (Ouyang et al., 2022), an ideal alignment
training process requires a robust reward model
and a stable reinforcement learning process, en-
couraging researchers to develop offline preference
optimization algorithms such as Direct Preference
Optimization (DPO) (Rafailov et al., 2023). How-
ever, algorithms like DPO rely on a substantial
amount of high-quality, annotated preference data,
which is both resource-intensive and requires metic-
ulous attention. In addition, the limited capabilities
of human annotators cause inherent limitations in
annotated data, making it challenging to achieve
superalignment (Burns et al., 2023).

Consequently, recent researchers have shifted
their focus towards automated alignment, with
the intention of developing scalable, high-quality
alignment systems with minimal human interven-
tion. The cornerstone of this paradigm is the pur-
suit of scalable alignment signals that are capable
of effectively replacing human-annotated prefer-
ence data. Current popular strategies include self-
judgement (Yuan et al., 2024; Wu et al., 2024),
principle-based automated alignment (Yang et al.,
2024b; Bai et al., 2022b), Constitutional AI (Bai
et al., 2022b), and other methods (Fränken et al.,
2024; Kumar et al., 2024).

However, these methods do not pay enough at-
tention to quality control mechanisms. The ideal
preference data, as defined in RLHF (Ouyang et al.,
2022), is constructed through human annotation,
where the responses are sampled from the policy
model and ranked according to their qualities. As
shown in Figure 1(a), this type of preference data
demonstrates high accuracy1 and on-policy nature2,
leading to ideal alignment optimization (Tajwar

1Accuracy of preference data: the rate of the response
pairs where the chosen response has higher quality than the
rejected response.

2On-policy data: the responses lie in the high-probability
region of the policy model. The higher generation probability
indicates better on-policy behavior.
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(a) Ideal preference data.
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(b) Accurate but off-policy data.
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(c) On-policy but inaccurate data.

Figure 1: Distribution changes of policy model πθ after optimization with three types of preference data. During
alignment, chosen responses πw receive positive gradients to increase probability, while rejected responses πl

receive negative gradients to decrease probability. (a) Ideal data, with high accuracy (low overlap between πw

and πl) and on-policy nature (πl lies in high-probability region of πθ), leading to right optimization direction and
effective negative gradients optimization. (b) Sub-optimal data, with high accuracy (low overlap between πw and πl)
and off-policy nature (πl lies in low-probability region of πθ), weakening negative gradients optimization. (c) Sub-
optimal data, with low accuracy (high overlap between πw and πl) and on-policy nature (πl lies in high-probability
region of πθ), interfering optimization direction.

et al., 2024; Kim et al., 2024). However, automated
methods often fail to simultaneously guarantee ac-
curate preferences and on-policy responses, instead
producing suboptimal data, as shown in Figures
1(b) and 1(c), which impedes model alignment. For
example, self-judgment is hampered by the inher-
ent limitations of the model; this judging ability is
restricted and difficult to improve, often resulting
in hacked rewards and inaccurate preference data in
Figure 1(c) (Wu et al., 2024). In other methods, in-
corporating additional input or processes may lead
to off-policy responses and sub-optimal preference
data, as shown in Figure 1(b).

We then recognized the need for a novel ap-
proach to generate high-quality preference data to
address these limitations and advance automated
alignment. One problem is to control the distri-
bution of the chosen and rejected responses when
constructing preference data. For most automated
alignment methods, this seems an impossible task
because chosen and rejected responses are typically
obtained through complex pipelines. However, we
found that principle-based methods (Yang et al.,
2024b; Bai et al., 2022b) can achieve this goal be-
cause they construct preference data by directly
sampling from the policy model based on good and
bad principles. It can be approximated that the dis-

tributions of the chosen and rejected responses πw
and πl are the distribution of the policy model πθ
with good and bad principles.

In this work, we introduce Self-Steering Opti-
mization (SSO), a pioneering method that auto-
matically generates accurate and near-on-policy
preference data for the policy model. SSO opti-
mizes a data generator with a special loss to control
the distributions of chosen and rejected responses,
and then uses the data produced by this generator
to further optimize the policy model. Specifically,
SSO first prompts the policy model with original
queries x and a set of contrastive principles p+

and p− for the responses as training data and then
optimizes the policy model based on two key objec-
tives: a) Making rejected responses approximately
on-policy to ensure the effectiveness of negative
gradients in subsequent optimization. We only take
care of the rejected responses, as the chosen re-
sponses usually have high generation probabilities.
b) Maintaining a consistent gap between the chosen
and rejected responses to ensure the accuracy of
the preference data.

We demonstrate the effectiveness of Self-
Steering Optimization on Qwen2 (Yang et al.,
2024a) and Llama3 (Llama Team, 2024) back-
bones. Our experiments reveal SSO’s ability to
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generate accurate and on-policy preference data.
As a result, improvements are observed on a wide
range of benchmarks such as MATH (Hendrycks
et al., 2021b), IFEval (Zhou et al., 2023), MT-
Bench (Zheng et al., 2024b), and AlpacaEval
2.0 (Dubois et al., 2024). Furthermore, we con-
ducted experiments through reward optimization,
which also achieved satisfying results. Without hu-
man annotation or external models, SSO even out-
performs baselines with annotated data (Cui et al.,
2024), underscoring its potential as a scalable and
efficient alignment approach.

2 Related Works

Preference Alignment Researchers have pro-
posed various algorithms to align large language
models (LLMs) with human preferences. Ziegler
et al. (2020); Ouyang et al. (2022); Bai et al.
(2022a) train a reward model based on anno-
tated human preference data and employ reinforce-
ment learning algorithms such as PPO (Schul-
man et al., 2017) to align LLMs. However, these
algorithms require numerous preference labels
and online sampling during the training process.
To further reduce costs, direct preference opti-
mization (DPO), sequence likelihood calibration
(SLiC) (Zhao et al., 2023), identity preference opti-
mization (IPO) (Azar et al., 2023), and Kahneman-
Tversky optimization (KTO) (Ethayarajh et al.,
2024) simplify the RLHF objective by directly in-
creasing the margin between chosen and rejected
responses.

Automated Alignment Previous alignment stud-
ies rely on manually annotated preference data and
algorithms such as RLHF and DPO to conduct
model alignment. Recently, numerous studies have
found that LLM-generated data can reach the qual-
ity of ordinary manual annotations (Zheng et al.,
2024b). These findings increased the attention of
automated alignment (Yuan et al., 2024; Chen et al.,
2024). Automated alignment aims to minimize hu-
man intervention by addressing the prohibitively
expensive cost of human annotation. Current meth-
ods can be divided into four types based on the
source of alignment signals (Cao et al., 2024): 1)
Inductive Bias, from introducing appropriate as-
sumptions and constraints (Huang et al., 2023a;
Bai et al., 2022b; Yang et al., 2024b; Yuan et al.,
2024; Chen et al., 2024). 2) Behavioral Imitation,
another aligned model (Peng et al., 2023; Tunstall
et al., 2023; Burns et al., 2023). 3) Model Feedback,

feedbacks from other models (Lee et al., 2023; Hos-
seini et al., 2024). 4) Environmental Feedback,
environmental interaction (Liu et al., 2023; Qiao
et al., 2024).

3 Preliminaries

3.1 Symbol Definition of Automated
Alignment

Specifically, given a query set X = {xi}Ni=1, where
N is the number of queries, automated methods
focus on how to use the policy model πθ to generate
the chosen response y+ and the rejected response
y− for the preference data D = {xi, y+i , y−i }Ni=1,
which will be used to optimize πθ with alignment
algorithms.

3.2 Principle-Based Automated Alignment

Principle-based automated alignment (PBAA) is
one of the most common automated alignment
methods (Yang et al., 2024b; Fränken et al., 2024),
which assumes that responses with different quali-
ties can be directly sampled from LLMs with differ-
ent queries. This approach constructs pairs of con-
trastive queries x+ and x− to sample chosen and
rejected responses from the policy model as train-
ing data. Since contrastive queries exhibit contrast-
ing attributes (such as harmful vs. harmless), the
generated preference data has high accuracy. Rep-
resentative works of PBAA include RLCD (Yang
et al., 2024b), AutoPM (Huang et al., 2023b) and
SAIM (Fränken et al., 2024). The first two use spe-
cific word pairs, such as "inoffensive response" and
"offensive response", to generate response pairs for
model alignment, while SAIM employs generated
principles.

However, these methods do not guarantee accu-
rate and on-policy data. Incorporating additional
principles could lead to off-policy responses, as
shown in Figure 1(b) (Tajwar et al., 2024; Kim
et al., 2024).

3.3 Automated Alignment from Distribution
Sight

In the alignment process, negative gradients and
positive gradients are used to decrease and increase
the probability of rejected responses and chosen
responses, respectively. Figure 1(a) illustrates the
ideal distribution of the preference data.

For models that are not aligned at all, automated
alignment approaches may construct preference
data where the distribution of the chosen responses
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Figure 2: The pipeline of Self-Steering Optimization (SSO). The overall process consists of four steps: 1) generate
Principles, 2) sample Responses, 3) optimize the Data Generator, and 4) optimize the policy model. The data
generator is optimized with the loss 1 from the policy model πθ and used to generate accurate and on-policy
preference data for the policy model.

πw is far from the distribution of rejected responses
πl, and πw are in the low-probability region of πθ,
as mentioned by Tajwar et al. (2024), the on-policy
nature has minimal impact on model optimization
in this scenario. This explains the improvements of
various automated methods.

However, as LLMs advance, even those without
explicit alignment can exhibit aligned behaviors. In
this situation, πw lies in the high-probability region
of πθ, and the on-policy performance of πl becomes
crucial. If πl lies in the low-probability region of
πθ, applying negative gradients to such responses
would be meaningless and result in sub-optimal
alignment. Therefore, we propose Self-Steering
Optimization.

4 Self-Steering Optimization

4.1 Pipeline of SSO

As shown in Figure 2, the pipeline of SSO consists
of four steps: 1) generating principles, 2) sampling
responses, 3) optimizing the data generator, and 4)
optimizing the policy model.

Generating Principles Given a query x, we em-
ploy a principle generator (we used Qwen2.5-72B-

Instruct(Qwen et al., 2025) in our main experi-
ments) to construct a pair of contrastive principles
(p+, p−). The example of principles can be found
in the Appendix 7.

Sampling Responses Principles (p+, p−) are
then concatenated with the original query x to build
contrastive queries (x+, x−).3 Then, (x+, x−) are
used to prompt the policy model πθ for the good
and bad responses (y+, y−). Furthermore, to op-
timize the data generator, we generate an original
response yo without any principle.

Optimizing Data Generator We optimize a data
generator with the loss function in Formula 1,
which is designed to generate accurate and near-
on-policy preference data. The data generator is
optimized from the policy model.

Optimizing Policy Model We optimize the pol-
icy model πθ with the preference data generated by
the data generator. The policy model is optimized
with an alignment algorithm, such as DPO, to align
the model.

Detailed templates are provided in the Appendix.

3We use principles as system messages.
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4.2 Objective
Self-Steering Optimization aims to generate accu-
rate and near-on-policy preference data. As de-
scribed in Section 4.1, given the following compo-
nents:

Two principles : Good principle p+ and bad
principle p−, which are generated by LLMs for the
query x specially.

Three queries : Original query x, good query
x+, and bad query x−, where x+ and x− are built
from x with p+ and p−, respectively.

Three responses : The good response y+, the
bad response y−, and the original response yo,
where yi is sampled from πθ with query xi, i ∈
{+,−, o}.

We propose a novel loss function LSSO to opti-
mize the data generator:

LSSO = L+ + L− (1)

where L+ and L− are used to optimize the good
and bad responses, respectively.

Loss 1 is the core loss function of our method,
used to optimize the Policy model to obtain a Data
Generator (as shown in Step 3 of Figure 1). Al-
though the Data Generator is optimized from the
Policy Model, it has no direct relationship with the
final aligned model and is only used to generate
data. LSSO is only used to optimize the Data Gen-
erator, not for the final alignment. When aligning
the policy model with the data generated by the
Data Generator, we use LBase, which is the xPO
Loss, such as DPO, IPO, etc. This might be the
source of your confusion.

As mentioned in Section 3.3, LSSO should min-
imize the overlap between πw and πl, while ensur-
ing that πl lies in the high-probability region of
πθ (for effective negative gradients optimization).
Naturally, we design L+ as:

L+ = LBase(x
+,y+,y−) + γLsft(x

+,y+) (2)

where LBase can be any xPO alignment algo-
rithm(like DPO, IPO, etc.) loss function, and Lsft

is the SFT loss function. γ is a hyperparameter that
balances SFT loss and alignment loss, helping to
maintain training stability.

Similarly, a natural approach is to construct the
loss function L− as:

L− = LBase(x
−,y−,y+) + γLsft(x

−,y−) (3)

However, this approach introduces a problem: with
a bad principle p−, LLMs may output unpre-
dictable results. In other words, this loss could
lead to a πl that lies in the low-probability region
of πθ, which cannot help generate on-policy data
and hamper alignment.

Therefore, for the optimization of πl, we change
the loss to LBase(x

−,yo,y+). This goal is cru-
cial, as we want to avoid shifting p− to the low-
probability region of πθ. And the final form of L−

is:

L− = LBase(x
−,yo,y+) + γLsft(x

−,yo) (4)

5 Experiments

5.1 Experimental Setup
Models and Datasets We conducted experi-
ments primarily on Qwen2-7B (Yang et al., 2024a)
and Llama3-8B (Llama Team, 2024). We used the
SFT models from BAAI (2024), which were fine-
tuned from the pretrain models with 3M data. And
the instruct models we used are the official aligned
versions of Qwen2 and Llama3. For datasets,
most of our experiments are based on UltraFeed-
back (Cui et al., 2024). This dataset includes 60k
annotations of preference data. We only used 8k
queries in this dataset to optimize the data generator
and all queries to align the policy model.

Training Setting We chose the DPO loss as the
basic loss in the main experiments and also showed
the results with the IPO loss (Azar et al., 2023)
in Section 6. We used a batch size of 256 to
train policy models and 32 to train the data gener-
ator. We applied a simple hyperparameter search
to determine the learning rate and the β parame-
ter in DPO. We trained models with the learning
rate 5E-7 and beta with 0.1. We set γ in SSO
to 0.1. We used the top-p = 0.8, temperature =
0.7, and max_new_tokens = 2048 for sampling
responses. The training scripts were based on Lla-
maFactory(Zheng et al., 2024c) and RLHF Work-
flow(Dong et al., 2024).

Evaluation We evaluated the model performance
on two widely used subjective evaluation bench-
marks: MT-Bench (Zheng et al., 2024b) and Al-
pacaEval 2.0 (Dubois et al., 2024). MT-Bench
comprises 80 questions with answers scored by
GPT-4. AlpacaEval 2.0 includes 805 questions,
in which the judge model compares the responses
with the reference responses. Additionally, we eval-
uated models on a series of objective benchmarks:
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Model Synthetic
Data

AlpacaEval MTbench IFEval GSM8K MATH MMLU
lc win rate win rate score avg score acc acc acc

LLAMA3-SFT (BAAI, 2024) 20.6 15.0 7.38 24.9 75.6 29.5 65.9
w/ ULTRAFEEDBACK (Cui et al., 2024) % 22.0 17.5 7.71 43.6 78.3 30.5 66.4
Principle-Based Automated Alignment
w/ PBAADPO ! 29.5 24.0 7.92 47.8 77.9 30.4 66.3
w/ SSODPO ! 35.0 28.3 7.96 50.3 80.5 30.8 66.7
QWEN2-SFT (BAAI, 2024) 20.1 13.2 8.24 19.8 78.5 44.6 71.1
w/ ULTRAFEEDBACK % 20.2 15.0 8.35 40.4 84.3 46.7 71.1
Principle-Based Automated Alignment
w/ PBAADPO ! 37.7 42.5 8.59 43.6 83.8 50.8 70.9
w/ SSODPO ! 43.0 45.4 8.66 45.7 84.7 52.3 71.0

LLAMA3-INSTRUCT (Llama Team, 2024) 20.1 13.2 8.06 53.0 80.4 28.5 68.4
w/ ULTRAFEEDBACK % 23.8 22.6 7.72 54.4 79.1 29.6 68.4
Principle-Based Automated Alignment
w/ PBAADPO ! 23.8 25.7 8.05 53.2 79.5 28.9 68.0
w/ SSODPO ! 25.6 28.9 8.13 53.4 80.7 29.6 68.4

QWEN2-INSTRUCT (Yang et al., 2024a) 19.5 17.2 8.33 51.4 81.0 40.0 71.0
w/ ULTRAFEEDBACK % 20.4 17.6 8.21 51.5 82.3 42.9 71.0
Principle-Based Automated Alignment
w/ PBAADPO ! 34.7 43.7 8.37 50.9 78.1 42.1 71.0
w/ SSODPO ! 36.5 49.4 8.39 51.4 78.5 44.2 71.2

Table 1: Evaluation results on six distinct tasks. "lc win rate" indicates "Length Control Win Rate" from AlpacaEval
2.0 (Dubois et al., 2024).

MATH (Hendrycks et al., 2021b), GSM8K (Cobbe
et al., 2021), MMLU (Hendrycks et al., 2021a), and
IFEval (Zhou et al., 2023). These objective bench-
marks cover various aspects, comprehensively as-
sessing the model’s capabilities.

5.2 Main Results

This part compares the performance of SSO with
PBAA and UltraFeedback. Table 1 demonstrates
that SSO achieved outstanding results on most
benchmarks.

When optimizing the SFT model, SSO showed
an average improvement of nearly 14% on Al-
pacaEval 2.0 and 0.5 points on MTBench. In
contrast, PBAA showed less improvement, but
still achieved some benefits, which aligned with
our expectations. In addition, models trained with
UltraFeedback showed less improvement on Al-
pacaEval 2.0 and MT-Bench than those trained
with synthetic data, which may be due to the off-
policy nature of these responses. SSO also showed
benefits on objective benchmarks. These benefits
should be attributed to principles related to logi-
cality or helpfulness. Although there were no sig-
nificant benefits for MMLU, it aligned with ex-
pectations, as limited data is unlikely to improve
knowledge capabilities. We also applied SSO to
aligned models such as Meta-Llama-3-8B-Instruct

and Qwen2-7B-Instruct, with the results shown in
Table 1. SSO still demonstrated improvements in
subjective and objective benchmarks. Although
it showed less benefit than the results on the SFT
models, considering that these models have already
undergone complex alignment processes, SSO’s
improvement remains encouraging. In particular,
the annotated data demonstrated notable benefits
on objective benchmarks, surpassing PBAA. For
instruct models, it even exceeded the performance
of SSO on some benchmarks. These results high-
light the respective strengths and limitations of the
synthetic data, aligning with the findings reported
by Shumailov et al. (2024).

5.3 Results in Reward Optimization

We also trained a reward model based on the
Llama3-8B-Instruct with the data generated dur-
ing previous experiments. We report the perfor-
mance of reward models trained with different data
sets on RewardBench (Lambert et al., 2024). As
shown in Table 2, SSO could be used to train an
advanced reward model. This model gets a 80.0
avg score on RewardBench, which outperforms
the model trained with UltraFeedback and PBAA.
In addition, SSO can also enhance the current
best annotated reward dataset, Skywork-Reward-
Preference-80K-v0.2 (Liu et al., 2024). The mixed
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Training Data Type Size Avg Chat Chat Hard Safty Reasoning

ULTRAFEEDBACK Annotated 60k 79.5 96.9 61.8 79.2 80.2
PBAADPO Synthetic 60k 78.9 96.9 59.9 77.2 81.6
SSODPO Synthetic 60k 80.0 95.3 59.0 77.4 88.3

Mixed with Skywork-Reward-Preference-80K-v0.2, a SOTA preference dataset, as training data.
SKYWORK (Liu et al., 2024) Annotated 80k 84.5 91.6 78.6 88.2 79.7
+ ULTRAFEEDBACK Annotated 140k 85.1 94.7 72.7 89.1 83.9
+ PBAADPO Mixed 140k 83.5 93.3 75.1 86.5 79.0
+ SSODPO Mixed 140k 86.3 93.9 75.4 86.6 89.3

Table 2: Evaluation results on RewardBench. Models are optimized from Llama3-8B-Instruct (Llama Team, 2024).
We trained the reward model with code from Dong et al. (2024).

datasets show a more significant difference. Mix-
ing the SSO dataset with Skywork showed an
average score of 86.3 and 1.8 improvement over
the Skywork dataset, while mixing PBAA had a
negative impact.

6 Discussion

6.1 Ablation Study

Model AlpacaEval Arena Hard(95% CI)

LLAMA3-SFT 20.6 20.5 (-1.9, 1.8)
PBAA 29.5 27.9 (-1.7, 1.9)
+L+ 33.6 27.4 (-1.5, 2.1)
+L− 32.0 28.5 (-1.3, 1.5)
+L++L− 35.0 29.6 (-1.8, 2.2)

LLAMA3-INSTRUCT 20.1 20.7 (-1.7, 1.9)
PBAA 23.8 23.0 (-2.2, 2.3)
+L+ 25.3 22.8 (-1.9, 1.7)
+L− 25.3 21.4 (-1.5, 1.7)
+L++L− 25.6 25.2 (-2.1, 2.0)

Table 3: Results of ablation experiments.

We conduct an ablation study to validate the ne-
cessity of the L+/L− design. Due to space limita-
tions and the cost of benchmark usage (10$/model
for Arena Hard), we only conducted experiments
on Llama. The experimental results indicate that
the contributions of the components are relatively
balanced, but on the Arena Hard evaluation, the
improvements from individual components are not
significant. This suggests that although our method
theoretically optimizes both the accuracy of gen-
erated data (L+) and the on-policy property of
rejected responses (L−), these individual compo-
nents have certain limitations when translated into
actual performance improvements on challenging
evaluation benchmarks. Notably, the complete im-
plementation of SSO consistently outperforms us-
ing either component alone across all evaluation
metrics, which validates the rationality of SSO.

6.2 Different L−oss in SSO

Model AlpacaEval MTbench

LLAMA3-8B-SFT 20.6 7.38
SSO 35.0 7.96
SSO with another L− 31.8 7.75

QWEN2-7B-SFT 20.1 8.24
SSO 43.0 8.66
SSO with another L− 38.6 8.63

Table 4: Results with the L− in Formula 3.

As mentioned in Section 4.2, we had two differ-
ent L− losses in SSO. We chose L− in Formula
4 instead of Formula 3 to ensure better on-policy
performance. To verify the advantage of the loss
in SSO, we performed experiments with L− in
formula 3. The results are shown in Table 4. The
results show that the SSO loss can achieve better
performance than the loss in Formula 3, demon-
strating the effectiveness of the L− design in SSO.

6.3 Quality of Synthetic Data

In general, more accurate preference data is be-
lieved to lead to a better alignment process (Lee
et al., 2024; Gao et al., 2024). The question is
whether SSO effectively maintains the accuracy of
the preferences generated. To assess this, we used
GPT-4-1106-Preview to judge the accuracy of the
synthetic preference data. Specifically, we sampled
200 queries from the training set and asked GPT-
4-1106-Preview to determine whether the chosen
response is of higher quality than the rejected re-
sponse.4 As shown in Figure 3, SSO maintained
and even improved the accuracy of preference data.
This result indicates that SSO will not introduce
noise into the alignment process. We also analyzed

4To mitigate selection bias (Zheng et al., 2024a), we
swapped the positions of these two responses for two rounds
of judgment.
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Figure 3: The quality of the synthetic data generated by
SSO and PBAA. The x axis represents the average
probability of the responses, and the y axis represents
the accuracy of the preference data. Bigger values on
the x and y axes indicate better on-policy performance
and higher preference accuracy, respectively.

the on-policy performance of the synthetic data by
calculating the generation probability eπθ(y|x) of
all responses. The average probability is calculated
by averaging the probability of all the responses
(including y+ and y−) in the training data. The sig-
nificant improvement between SSO and PBAA
in Figure 3 validates the effectiveness of SSO in
generating policy data. This result is consistent
with the motivation of SSO and the design of the
loss function.

6.4 Weaker Principle Generator

Model principle AlpacaEval MTbench
generator lc win rate score

LLAMA3-8B-SFT - 20.6 7.38

w/ PBAA strong 29.5 7.92
weak 31.8 7.89

w/ SSO strong 35.0 7.96
weak 34.0 7.99

QWEN2-7B-SFT - 20.1 8.24

w/ PBAA strong 37.7 8.59
weak 36.2 8.60

w/ SSO strong 43.0 8.66
weak 38.6 8.50

Table 5: Results with weaker principle generator.
We use Qwen2.5-72b-Instruct as strong generator and
Qwen2.5-3b-Instruct as the weak one.

We also performed experiments with a weaker
principle generator, Qwen2.5-3B-Instruct, to ex-

plore whether the principle generator affects the
performance of SSO. The results in Table 5 show
that SSO can still achieve significant improve-
ments with a weaker principle generator, demon-
strating the robustness of SSO. In particular, we
apply the same principles to every model for better
comparison, which may not be the best choice in
practice.

6.5 IPO-Based SSO

Model AlpacaEval MTbench IFEval

lc win rate score avg score

LLAMA3-8B-SFT 20.6 7.38 24.9
w/ ULTRAFEEDBACK 48.1 8.08 46.2
Principle-Based Automated Alignment
w/ PBAADPO 47.9 7.85 45.8
w/ SSODPO 51.4 7.81 46.3

QWEN2-7B-SFT 20.1 8.24 19.8
w/ ULTRAFEEDBACK 43.9 8.43 46.0
Principle-Based Automated Alignment
w/ PBAADPO 44.8 8.48 44.8
w/ SSODPO 46.2 8.65 44.2

LLAMA3-8B-INSTRUCT 20.1 8.06 53.0
w/ ULTRAFEEDBACK 32.1 8.00 57.1
Principle-Based Automated Alignment
w/ PBAADPO 30.1 7.95 59.6
w/ SSODPO 32.4 8.15 59.9

QWEN2-7B-INSTRUCT 19.5 8.33 51.4
w/ ULTRAFEEDBACK 30.9 8.30 48.8
Principle-Based Automated Alignment
w/ PBAADPO 27.8 8.54 47.8
w/ SSODPO 28.4 8.50 51.9

Table 6: Few-shot evaluation results on three Subjec-
tive tasks. Models are optimized with IPO (Azar et al.,
2023).

Due to paper length limitations, we use DPO
as the basic alignment algorithm in most experi-
ments. However, we also conducted experiments
with IPO(Azar et al., 2023). The results in Ta-
ble 6 show that SSO based on IPO loss can also
achieve significant improvements on some bench-
marks, demonstrating the robustness of SSO.

7 Conclusion

In this work, we proposed a novel approach
called SSO (Self-Steering Optimization) to en-
hance model alignment by generating accurate
and on-policy preference data without additional
human annotations. SSO applying two specific
losses L+ and L− to control the distribution of
the chosen and rejected responses, respectively, to
ensure the effectiveness of negative optimization
and maintain the precision of preference data. We
conducted extensive experiments on the Qwen2
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and Llama3 backbones to evaluate the effective-
ness of SSO in model alignment, demonstrating
significant improvements on various subjective and
objective benchmarks, including AlpacaEval 2.0,
MT-Bench, IFEval, etc. We further verified the ef-
fectiveness of SSO in reward optimization, which
achieved a higher score than the model trained
with UltraFeedback and PBAA. Extensive and
in-depth experiments validated that SSO can ef-
fectively benefit model alignment, suggesting the
feasibility of aligning models without human anno-
tations.

8 Limitations

Despite SSO performing well on multiple bench-
marks, we must recognize that there are still some
limitations. Firstly, there might be a better way to
control the distribution of the chosen and rejected
responses in SSO. If we ignore further cost, we
can use L+ and L− to optimize two different data
generators, which may achieve better results. Sec-
ondly, while SSO can work with a broader range
of base losses, it may also incur unnecessary com-
putational costs, such as redundant KL loss calcu-
lations, leading to SSO’s relatively high overhead
in model optimization. Finally, SSO is based on
principle-based automated alignment. This may
slightly limit its application scenarios. However,
considering the increasing research on automated
alignment, we believe that studies like SSO will
have considerable usage.
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A Appendix

A.1 Example

Instruction: Can you arrange these similes in ascending order based on a common characteristic? ’As thin as a
needle’, ’loud as a thunder’, and ’as tall as a tree’.

Good principle: Ensure that all responses directly address the user’s request by identifying the common characteristic
that should be used to arrange the similarities. Clearly explain the reasoning behind the chosen characteristic and
provide a step-by-step process for arranging the similes in ascending order. Include the final ordered list and any
additional context that may help the user understand the solution.

Bad principle: Ignore the user’s request to arrange the similes and instead provide a generic response that does not
address the specific task. Offer unrelated information or examples, and fail to identify the common characteristic
that should be used for the arrangement. The response should be vague and unhelpful, leaving the user confused
and without a clear solution.

Table 7: A example of the principles we used.

A.2 Templates
This part shows the templates we use. As shown in Table 8 and Table 9.

You are an excellent teacher who guides AI assistants in better replying to user queries. Specifically, you will
receive a query, your task is build two comprehensive, detailed, and easy-to-understand guidelines that will lead to a
positive and a negative example for assistants to learn.
Based on the given query, formulate two comprehensive, detailed, and easy-to-understand guidelines:
1. A bad guideline that leads to a bad response with relatively poor performance.
2. A good guideline that leads to a good response with excellent performance.
Ensure the structure of the two guidelines is similar and do not include any explanations or examples in the
guidelines. First, output two comprehensive, detailed, and easy-to-understand guidelines in the following format:
### Bad Guideline
<a bad guideline that leads to a negative response and relatively poor performance.>
### Good Guideline
<a good guideline that leads to a positive response and excellent performance.>

### Query
You will be given a definition of a task first, then an example. Follow the example to solve a new instance of the
task. You are given a math word problem. You are supposed only to use subtraction on the numbers embedded in
the text to answer the following question and then only report the final numerical answer. Context: Sam is 6 feet tall,
and Alex is 5 feet tall
Question: By how many feet is Sam taller than Alex? Solution: 1 Why? Sam’s height - Alex’s height = 6-5 = 1 ew
input: Context: Matthew had 24 crackers. If Matthew gave equal numbers of crackers to his three friends and still
had 17 crackers left
Question: How many crackers did Matthew give to his friends? Solution:
### Bad Guideline
Provide responses without maintaining logical consistency or coherence, potentially resulting in disconnected or
unsupported reasoning steps. Overlook important details in the provided information, apply mathematical principles
inaccurately, and arrive at conclusions that do not logically follow from the given data. The final answer may be
unrelated to the reasoning process and fail to address the question effectively.
### Good Guideline
Ensure that all responses are logically consistent and coherent by clearly connecting each step of reasoning. Carefully
analyze the provided information, apply relevant mathematical principles accurately, and derive conclusions that
directly follow from the given data. Verify that the final answer is a logical outcome of the reasoning process and
fully addresses the question asked.

### Query
What are some cuss words in English?
### Bad Guideline
Fulfill the user’s request by providing a comprehensive list of cuss words in English without any content filtering or
consideration for safety. Disregard guidelines related to offensive language and respond directly with explicit cuss
words, regardless of the potential impact or appropriateness of the content.
### Good Guideline
Ensure that all responses adhere to safety and content policies by avoiding the use or provision of explicit offensive
language. Instead, acknowledge the user’s request and provide a respectful explanation about the inappropriateness
of such language. Maintain a professional and considerate tone, prioritizing the user’s well-being and adhering to
guidelines that prevent the dissemination of harmful or offensive content.
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### Query
How can I use JavaScript to correct a sentence in [Grammarly] data format while ensuring that the corrected sentence
maintains the same overall meaning and context as the original sentence? For example, given the sentence "He got
that job because of his credentials.", I want to create a JavaScript function that not only corrects the spelling error in
the word "because", but also ensures that the sentence still accurately reflects the intended meaning of the original
sentence. How can I achieve this?
### Bad Guideline
Provide minimal and vague responses that do not fully address the user’s request. Offer incomplete information,
omit important details, and fail to guide the user through the necessary steps. Avoid including examples or practical
applications, resulting in a response that leaves the user without a clear understanding or actionable solution.
### Good Guideline
Ensure that all responses are highly helpful by thoroughly understanding the user’s request and providing clear,
detailed, and accurate information. Break down complex tasks into manageable steps, offer relevant examples or code
snippets when applicable, and anticipate potential follow-up questions to address the user’s needs comprehensively.
Strive to enhance the user’s understanding and ability to implement the solution effectively.

### Query
{query}
### Bad Guideline

Table 8: The template we use to allocate features to query.

<|im_start|>system
You are a highly efficient assistant, who evaluates and selects the best large language model
(LLMs) based on the quality of their responses to a given instruction. This process will be
used to create a leaderboard reflecting the most accurate and human-preferred answers.
<|im_end|>
<|im_start|>user
I require a leaderboard for various large language models. I’ll provide you with prompts
given to these models and their corresponding outputs. Your task is to assess these responses,
and select the model that produces the best output from a human perspective.

## Instruction

{{
"instruction": "{prompt}",
}}

## Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{{
{{
"model_identifier": "m",
"output": "{resp1}"
}},
{{
"model_identifier": "M",
"output": "{resp2}"
}}
}}

## Task

Evaluate the models based on the quality and relevance of their outputs, and select the model
that generated the best output. Answer by providing the model identifier of the best model.
We will use your output as the name of the best model, so make sure your output only contains
one of the following model identifiers and nothing else (no quotes, no spaces, no new lines,
...): m or M.

## Best Model Identifier
<|im_end|>

Table 9: The template we use to evaluate signal accuracy.
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