
Findings of the Association for Computational Linguistics: ACL 2025, pages 9015–9037
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

NeuronMerge: Merging Models via Functional Neuron Groups

Wangyun Gu1,2*, Qianghua Gao2, Lixin Zhang3, Xu Shen2†, Jieping Ye2,
1Zhejiang University, 2Alibaba Cloud, 3Zhejiang Gongshang University,

wangyungu@zju.edu.cn, shenxu.sx@alibaba-inc.com

Abstract
Model merging techniques like task arithmetic,
which combines model parameters through
weighted averaging, have proven effective.
However, the success of task arithmetic relies
on the linearity between model weight differ-
ences and output feature changes, which is
often lacking in conventional fine-tuned mod-
els. In this work, we employ neuron descrip-
tion methods to analyze and classify neurons
based on their functionalities. We theoretically
demonstrate that grouping Multi-Layer Percep-
tron (MLP) neurons by functionality enhances
model linearity. Building on this, we propose a
neuron-based task arithmetic merging method
that consistently improves performance across
various tasks and model scales. Our approach
is complementary to existing merging tech-
niques, achieving superior results in merging
models fine-tuned on fundamental tasks like
Math, Code and Translation.

1 Introduction

In recent years, the scaling up in large language
model (LLM) has greatly escalated data require-
ments and computational expenses for fine-tuning
multi-task models. To address this challenge, re-
searchers have explored methods to combine the
strengths of existing single-task models through
model merging techniques (Yu et al., 2024; Jin
et al., 2023; Matena and Raffel, 2022; Yadav et al.,
2023). A simple and efficient model merging ap-
proach, called task arithmetic (Ilharco et al., 2023)
demonstrates remarkable effectiveness in creating
a multi-task model through a basic weighted com-
bination of parameters of existing models, without
the need for costly retraining processes or addi-
tional data collection.

Recent studies (Ortiz-Jiménez et al., 2023; Zhou
et al., 2024) introduce a concept Linearity which

*This work was done when the author was a research intern
at Alibaba Cloud.

†Corresponding author.

Figure 1: Functional neuron groups: grouping neurons
according to neuron functionalities such as General,
Math, Code and Translation.

refers to the linear relationship between the dif-
ferences in model weights and the differences in
output features caused by fine-tuning, and reveal
its connection with effectiveness of task arithmetic.
Studies show that models exhibiting linearity re-
tain their individual task performance better when
merged using task arithmetic, leading to superior
multi-task models (Ortiz-Jiménez et al., 2023; Tang
et al., 2024; Jin et al., 2024; Liu et al., 2024). How-
ever, conventionally fine-tuned models often lack
this ideal linearity (Ortiz-Jiménez et al., 2023).
To address this issue, Dai et al. (2025) proposes
a training-free method (SubModule Linear) intu-
itively by breaking models into multiple shallower
submodules (e.g., layers, self-attentions, MLPs)
and discovers that these submodules exhibit a level
of linearity that significantly surpasses that of the
overall model, thus achieves SOTA performance
on task arithmetic. But still, according to their anal-
ysis, non-linearity in MLPs is much higher than
in self-attentions, and intuitively naive attempts to
further subdivide self-attentions (Dai et al., 2025)
or MLPs Table 3 lead to performance degradation,
which suggests further in-depth investigations and
finer divisions for MLPs. And the non-linearity in
MLPs remains under-explored within the commu-
nity.

The rapid development of automatic neuron de-
scription methods in recent years (Bills et al., 2023;

9015

(a) Proportions of General, Math, Code and Translation cate-
gories of neurons in Qwen2.5-7B and Llama3.1-8B models.

(b) Cases of functionality descriptions and activation patterns
for different categories of neurons in Qwen2.5-7B.

Figure 2: Neurons exhibit a high degree of functionality in Qwen2.5 and Llama-3.1. (a) Proportions of different
categories of neurons in Qwen2.5-7B and Llama3.1-8B models are shown, and exhibit similar distributions except
that Qwen2.5 has more Translation, Math and Code neurons and less General neurons compared to Llama3.1. (b)
We show case the a exemplars for each of the four neuron functionalities. And the darkness of the background color
indicates the magnitude of neuron activation on that token. The activations demonstrate noteworthy patterns related
to specific functionality.

Choi et al., 2024) provides in-depth analysis of
elements in MLPs (e.g. neurons), by generating
neuron functionality descriptions according to their
activation patterns. One of these (Choi et al., 2024)
achieves human-expert-level performance, which
provides an effective way to classify neurons into
groups for further study.

We observe that neurons exhibit a high degree
of functionality in both LLM series (shown in Fig-
ure 2). Furthermore, theoretical derivation also
demonstrates that grouping MLP neurons accord-
ing to their functionality types (see Figure 1) can
improve model linearity (refer to §2.4 and details
in §B), and therefore improve the performance of
task arithmetic model merging. Inspired by these
observations and analysis, in this paper, to further
improve the linearity of MLPs for task arithmetic
model merging, we propose to grouping the neu-
rons in MLPs by their functionalities (e.g. math,
code, translate) and independently merging param-
eters within each group. However, existing neuron
description methods (Bills et al., 2023; Choi et al.,
2024), while providing valuable functional descrip-
tions, face significant barriers for direct application
in task arithmetic model merging: 1) They focus
on natural language explanations rather than ac-
tionable neuron functionality classification, and 2)
Their computational cost makes large-scale applica-
tion unaffordable. So firstly, we utilize a modified
and more efficient version of the method (Choi

et al., 2024) to analyze and classify neurons ac-
cording to neuron functionality in two SOTA open-
sourced LLM series Qwen2.5 (Qwen Team, 2024)
and Llama-3.1 (AI@Meta, 2024). Secondly, we
merge each group of neurons independently. To be
specific, we merge the General neurons and drop
the parameter differences on other task-specific
groups. Our method shows consistent improve-
ments of performance on merging models fine-
tuned at several fundamental tasks (Math, Code
and Translation) and model scales (7/8/13/14B).

Our contributions are summarized as follows:
• We conduct neuron analysis on SOTA open-

sourced LLM series, and find neurons keep
a high consistent degree of functionalities on
General, Math, Code, Translation before and
after fine-tuning.

• We propose a novel model merge method by
bridging automatic neuron description meth-
ods and finer-granularity task arithmetic. Our
method groups neurons according to their
functionalities, and conducts task arithmetic
for each group independently. We demon-
strate its effectiveness both theoretically and
experimentally.

• Our method achieves superior performance
on different types of foundation models, and
is consistently effective for merging different
down-stream-task fine-tuned models. More

9016

importantly, our method is orthogonal and
complementary to existing model merging
methods.

2 Neuron Functionality Analysis

In this section, we systematically investigate neu-
ron functionalities in a base model and its fine-
tuning variants. We first introduce the basic defi-
nitions of neurons and activation patterns in §2.1.
Building on this foundation, we present a modi-
fied data-driven framework to classify neurons into
task-specific categories by analyzing their activa-
tion patterns efficiently, as detailed in §2.2. In §2.3,
we validate the framework through several key ob-
servations. Finally, in §2.4, we bridge these find-
ings to task arithmetic techniques (Ilharco et al.,
2023), demonstrating how neuron-type-aware pa-
rameter composition improves Linearity for task
vectors. This structured analysis provides both
theoretical insights into neuron functionality and
practical guidelines for optimizing task arithmetic
through neuron functionality classification.

2.1 Preliminary
Introduction to Neurons. In a transformer model,
neurons are part of the MLP layers (Bills et al.,
2023). Each neuron computes a weighted sum of its
inputs, applies an activation function, and produces
an output. The activation function introduces non-
linearity, allowing the model to learn more complex
relationships in the data.
Neuron Activation. The activation of a neuron
refers to the output value produced by the neuron
in response to its inputs, and indicates the degree
to which the neuron is "firing" or contributing to
the overall output of the model. Mathematically,
in modern decoder-only architecture LLMs like
Llama3.1 and Qwen2.5 the activation of a neuron
j can be represented as:

ϕj(z) = SiLU
(
(w1

j)
⊤z

)
· (w2

j)
⊤z, (1)

where z is the pre-MLP value of the residual
stream after RMS Norm. w1

j and w2
j are the d-

dimensional weight vectors for the neuron, where
d is the dimension of residual stream. SiLU
is the Swish-like activation function, defined as
SiLU(x) = x · σ(x), where σ(x) is the logistic
sigmoid function.

2.2 Classification of Neuron Functionality
Neuron Functionality. The functionality of a neu-
ron is determined by its activation pattern across

different input exemplars. By analyzing the acti-
vation values, we can identify the types of inputs
that strongly activate the neuron and thus infer its
functionality. This is often done by selecting the
top k inputs where the neuron’s activation is high-
est as exemplars and generating descriptions based
on these exemplars (Bills et al., 2023).
Classification Method. Inspired by the Transluce
(Choi et al., 2024) framework, we adopt a stream-
lined approach to perform large-scale classification
of neuron functionalities. Instead of generating
descriptive descriptions, our method categorizes
neuron functionality based on the frequency of ac-
tivation across different corpus exemplars directly.

Let C = {c1, c2, . . . , cN} denote the set of N
distinct categories. For each category ci, we curate
M representative corpus exemplars, resulting in
a total of N ×M exemplars. Each exemplar is
forwarded by a target LLM, and for each MLP
neuron j, we record its activation values across all
tokens in the input sentence.

For a given exemplar s belonging to category
ci, and for each token t in s, let ϕj(s, t) represent
the activation value of neuron j. To summarize
the neuron’s activation for the entire sentence, we
define:

aj(s) = max
t
|ϕj(s, t)|.

Here, aj(s) captures the highest absolute activa-
tion value of neuron j across all tokens in exemplar
s. This process is applied uniformly across all lay-
ers of the LLM.

After computing aj(s) for all exemplars s ∈ S,
where S is the complete set of N ×M exemplars,
we identify the top-k exemplars that elicit the high-
est activations for neuron j:

Sk(j) = Top-k ({aj(s) | s ∈ S}) .
The functionality category of neuron j is as-

signed based on the most frequent category among
the top-k activated exemplars. Formally, the func-
tionality category Category(j) is determined as:

Category(j) = argmax
ci∈C

|{s ∈ Sk(j) | s ∈ ci}| .
(2)

In this equation, |·| denotes the cardinality of the
set, and argmax identifies the category ci with the
highest representation within Sk(j).

By aggregating the maximum activation values
of each neuron across a diverse set of categorized

9017

Figure 3: Neuron classification results in layer 0 for
Qwen2.5-7B and three fine-tuned models, shown as bar
charts for different categories of neurons. Base model
is Qwen2.5-7B, gsm8k_sft, code_sft, translate_sft are
Qwen2.5-7B fine-tuned variants on Math, Code, Trans-
lation dataset respectively. Purple bar is the number of
intersection neurons for each functionality category.

exemplars and selecting the top-k activations, we
effectively classify neuron functionalities based on
the predominant category present in these high-
activation instances. This method facilitates a scal-
able and interpretable analysis of neuron functions
without relying on direct descriptive generation.
Classification Settings. In practice, we classify
neuron functionalities into four distinct categories:
General, Math, Code, and Translation. And the tar-
get LLMs are Qwen2.5-7B and three fine-tuned
models based on Qwen2.5-7B trained on three
datasets respectively: gsm8k (Cobbe et al., 2021),
code alpaca (Chaudhary, 2023) and a zh↔ en trans-
lation dataset (Xu et al., 2024a) (for training details,
see §4.1). To facilitate this classification, we con-
structed a corpus comprising a total of 1, 200 exem-
plars, evenly distributed across the four categories.
Specifically, we randomly selected 300 exemplars
from each of the following sources. For the general
category, we used data from CommonCrawl in Red-
Pajama (Weber et al., 2024). For the mathematics
category, we sourced exemplars from Proof-file-2
(Azerbayev et al., 2024). The coding examples
were drawn from Python dataset in StarCoder (Li
et al., 2023). The translation category utilized the
en↔zh dataset from Xu et al. (2024a).

Each text in these exemplars was processed with
a maximum input length of 512 tokens, truncating
any content that exceeded this limit to ensure uni-
formity across inputs. To identify sentences that
most strongly activate each neuron, we selected the
top-k sentences exhibiting the highest activation

Figure 4: Knock-out code neurons in Qwen2.5-7B
(layer 13) will lead to a greater decline in coding ability
than random neuron knock-out. The horizontal coordi-
nate indicates the knock-out proportion. Performances
are tested on HumanEval (Chen et al., 2021).

values, where k = 10.

2.3 Classification Result.

From Figure 3, we can observe that after fine-
tuning, the distribution of neuron functionality cat-
egories remains largely consistent across Qwen2.5-
7B and its fine-tuned variants, demonstrating high
distributional uniformity. Specifically, in all four
models, the proportion of neurons overlapping
within each category (depicted by the purple bar) is
substantially high. This suggests that most neurons
retain their functionality types before and after fine-
tuning regardless of down-stream tasks, which cor-
responding with the findings in Wang et al. (2022).
The results presented correspond to the classifica-
tion results of the first layer (Layer 0). Additional
classification results across other layers and de-
tailed case studies are available in the §A.1, all of
which exhibit similar patterns consistently.

Cosine similarity of neurons provides another
evidence that verify the consistency above. We
analyzed the cosine similarity between the weight
vectors of the positional corresponding neurons
in base and fine-tuned models. It revealed that
the corresponding neurons exhibit an exceptionally
high cosine similarity of up to 0.999 (for details,
see §A.3), indicating highly similar parameter pat-
terns. This suggests why neurons preserve their
functionalities after fine-tuning, as similar weights
lead to similar activations (Jacot et al., 2018) and
consistent maximally activated sentences.

To validate the effectiveness of our neuron
functionality classification, we performed ablation
experiments by selectively deactivating neurons
based on their classified categories. Specifically,
we knock-out the parameters of neurons associ-

9018

Figure 5: The framework for neuron grouping and merging in LLM. It consists of three main steps: 1) Neuron
Grouping Based on Functionality, which classifies neurons into different categories; 2) Merging for MLP Layers,
where General neurons are merged by SubModule Linearity while others are discarded to focus on the Base model’s
parameters; and 3) Merging for Attention and Embedding Layers, where different methods can be utilized as
complementary approaches including DARE or SubModule Linearity in our main experiments.

ated with different functionalities in the base model
in varying proportions (20%, 40%, · · · , 100%) and
evaluated the performance on corresponding tasks.
As a control, we also conducted random ablations
in which an equivalent number of neurons were
randomly deactivated, repeating each random abla-
tion 3 times and averaging the performance. The
ablation results, depicted in Figure 4, demonstrate
that neuron ablation based on the Code category
leads to a significant degradation in model perfor-
mance (tested on HumanEval (Chen et al., 2021))
compared to random ablation. For Math and Trans-
lation categories, the results exhibit consistency,
see the §A.2. This stark contrast underscores the
relevance of neuron classifications to the model’s
task performance and reinforces the validity of our
classification methodology and indicates that neu-
rons w.r.t. their functions play a key role in model
performance for corresponding tasks.

2.4 Task Arithmetic and Linearity
Task arithmetic (Ilharco et al., 2023) is a simple
and efficient model merging strategy. It combines
model weights by a simple weighted average. This
approach gives the merged model multi-task per-
formance without needing extra training or data.

Task vector for task t is defined as the difference
between the fine-tuned and the pre-trained weights,
namely, τt = θt − θ0. Task arithmetic involves a
linear combination of the task vectors added to the
pre-trained model weights θ0. The merged weights
can be expressed as

θmerge = θ0 +
T∑

t=1

αtτt, (3)

where αt is the weight corresponding to τt.
Linearity (Ortiz-Jiménez et al., 2023) is benefi-

cial for task arithmetic performance. We theoreti-
cally investigate the sources of non-linearity arising
from MLP in §B. We prove a theorem to estimate
the non-linearity with ReLU activation function for
simplification. The theorem reveals two primary
components contributing to non-linearity: firstly,
the second-order terms arising from task vectors,
which is negligible under task arithmetic setting;
secondly, the change of neuron activation state be-
fore and after fine-tuning causes non-linearity.

If we group neurons based on their function-
alities—such as Math neurons, which activate
strongly in response to a Math dataset—their ac-
tivation states will remain stable since the norm
of the task vector ∥τ∥2 is small under task arith-
metic setting. So the non-linearity from the second
source will be reduced, thereby enhancing the per-
formance of task arithmetic.

3 Neuron Grouping and Merging
In this section, we present our approach for task
arithmetic based on neuron functionalities. Our
proposed framework, depicted in Figure 5 and Al-
gorithm 1 in Appendix, involves several key steps.
Initially, we classify neurons across all layers of the
base model according to their functionalities and
assign them into groups. Subsequently, for MLP
layers, we perform a separate task arithmetic for
each group of neurons independently. Finally, we
address the merging of the remaining parameters
(e.g. self-attention and embeddings). In the follow-
ing sections, we provide a detailed explanation of
each step in our methodology.

9019

Neuron Grouping Based on Functionality. Let
D = {Dt; t = 1, 2, · · · , T} be a collection of
datasets for T tasks, with θ1, ..., θT representing the
parameters of models fine-tuned from base model
θ0 using the corresponding datasets. The parame-
ters resulting from the merging process are denoted
by θmerge.

We conduct a functionality classification of neu-
rons within each MLP layer of the base model θ0.
The detailed methodology for this classification is
elaborated in section 2, and we keep the same nota-
tion throughout. We establish a total of N = T +1
categories: for each task, there is a corresponding
category ci, along with an additional category c0
designated for task-agnostic classifications namely
General. To enhance the robustness and general-
ization of the classification, all N ×M exemplars
in S are sourced from external datasets that are
highly relevant for the respective tasks. Based on
Equation (2), the classification result for neuron
j in layer l is determined as Categoryl(j), where
l ∈ {1, 2, ..., L}, and L is the number of total lay-
ers of the base model. Consequently, we group
neurons for every layer:

gl(t) = {j : Categoryl(j) = t}, t = 0, · · · , T.

For the fine-tuned models, we retain the same
group results because we observed that the clas-
sification performance remained consistent before
and after fine-tuning in §2.3.
Merging for MLP layers. We further merge
the MLP layers of the base model and fine-tuned
models based on the established neuron groupings.
Specifically, in accordance with the task arithmetic
framework, we utilize the task vectors to merge neu-
ron groups. For the task-agnostic group gl(0), we
adopt the approach proposed by Dai et al. (2025),
calculating T weights αt for each layer’s gl(0) neu-
ron group to merge the task vectors from the fine-
tuned models. For more details of SubModeule
Linear, please refer to §C.3. In contrast, for the
other groups gl(i) where i ∈ {1, 2, ..., T}, all task
vectors are discarded, which means all the coeffi-
cients are setting to zero. Formally, denote the op-
eration of SubModule Linear as α = SubLin(f),
which means calculating the merge coefficient α
from the submodule f . Then for a neuron j, we
can write

θmerge,l(j) = θ0,l(j) +
T∑

t=1

αt,l(j)τt,l(j),

where θ0,l(j) is the weight of neuron j in layer l of
the base model, τt,l(j) is the task vector of neuron
j in layer l of the t-th fine-tuned model and αt,l(j)
is the coefficient for merging with

αt,l(j) =

{
0 if j /∈ gl(0),

SubLin(gl(0)) if j ∈ gl(0).

Merging for Attention and Embedding layers.
For parameters unrelated to neuron groupings, such
as those in the attention and embedding layers, var-
ious integration strategies are applicable. In our
study, we evaluated both DARE (Yu et al., 2024)
and the Submodule Linear method (Dai et al., 2025)
(denote by NeuronMerge1 and NauronMerge2 re-
spectively) to merge these parameters.

4 Experiments
4.1 Experiments Setup

Basic Settings. We adopt Qwen2.5-7B (Qwen
Team, 2024) and Llama-3.1-8B (AI@Meta, 2024)
as our backbone models. We follow the settings
outlined in Dai et al. (2025) and fine-tune the mod-
els on three tasks: math, coding, and translation.
We utilize the GSM8K dataset (Cobbe et al., 2021)
for the math task, the Code Alpaca dataset (Chaud-
hary, 2023) for the coding task, and the zh↔ en
dataset from (Xu et al., 2024a) for the translation
task. During the training phase, we implement the
FastChat template (Zheng et al., 2023) for prompt
design, performing fine-tuning over 2 epochs with
a batch size of 128 and a learning rate of 2× 10−6.
For the evaluation phase, we employ the GSM8K
test set for math, HumanEval (Chen et al., 2021)
for coding, and the resources provided in Xu et al.
(2024a) for translation. Besides merging neurons
in MLP layers as proposed in this paper, we tested
both the "Submodule Linearity" technique (Dai
et al., 2025) and the "DARE" (Yu et al., 2024) for
attention layers.
Algorithm Implementation Details. In practice,
the classification settings for neurons are based on
the methodology outlined in section 2. We have
classified all layers of the base model, and the clas-
sification results for each layer can be found in
§C.1 and we also show some cases of neurons in
§D.10. In the setting of merging the two models,
we only select the corresponding two categories,
merging the category of the third task into the gen-
eral category c0. When applying DARE to the
attention layers, we use the same hyperparameters
as those specified for DARE in §C.3.

9020

Methods Math
& Coding

Math
& Translate

Coding
& Translate

Math & Coding
& Translate

Fine-tuned Model 71.48 81.43 77.02 76.64

Task Arithmetic 69.73 81.71 74.81 75.36

DARE 69.84 82.31 75.11 76.10
NeuronMerge1 71.12 ±0.36 82.62 ±0.16 75.44 ±0.21 76.82 ±0.11

SubModule Linearity 69.18 82.19 74.77 75.42
NeuronMerge2 70.80 ±0.33 82.70 ±0.20 74.90 ±0.16 76.21 ±0.23

Table 1: Results of Qwen2.5-7B. Math&Coding represents the result of merging the Math SFT model and the
Coding SFT model and other columns are like-wise. Here the values in each column are the means of the merged
model on the corresponding tasks. For example, in the first column, the value is the average of the scores on GSM8K
and HumanEval for the merged model, and so on. For each setting, we replicated for 5 times with different sample
seeds and compute the mean value and standard deviation of five results. The best and second-best results are
highlighted in bold and underlined, respectively.

Methods Math
& Coding

Math
& Translate

Coding
& Translate

Math & Coding
& Translate

Fine-tuned Model 47.71 71.55 62.25 60.50

Task Arithmetic 47.41 70.45 61.93 59.04

DARE 46.81 70.27 61.96 58.26
NeuronMerge1 47.24 ±0.14 70.39 ±0.21 62.89 ±0.26 59.94 ±0.20

Submodule Linearity 47.13 70.43 62.65 59.37
NeuronMerge2 47.73 ±0.28 70.69 ±0.29 63.00 ±0.16 59.88 ±0.22

Table 2: Results of Llama-3.1-8B. The details of this table are the same as Table 1. For more detailed results, please
refer to the Appendix C.

4.2 Main Results
We compare our method with several baseline meth-
ods. Task Arithmetic (Ilharco et al., 2023), in-
volves a straightforward weighted combination of
task vectors and weights to merge models. DARE
(Yu et al., 2024), builds upon the Task Arithmetic
framework by incorporating random dropout of pa-
rameters within the task vectors. This mechanism
aims to mitigate conflicts between different task
vectors during the merging process. Submodule
Linearity (Dai et al., 2025), leverage the linear
properties at the submodule level when integrating
fine-tuned models with task arithmetic.

We present the results of fine-tuned models
merged in different approaches, with Qwen2.5-
7B and Llama-3.1-8B serving as the foundational
models. The results are shown in Tables 1 and
2, respectively. Each entry reflects the average
evaluation metrics obtained in related tasks. It

is evident that our method outperforms the base-
lines in most settings, both in the two SOTA open-
sourced foundation models in Qwen2.5-7B and
Llama-3.1-8B, the proposed method achieves an
improvement of around 1%. And also in the case of
Math-Translate merge for Qwen2.5-7B, and Math-
Coding merge, Coding-Translate merge for Llama-
3.1-8B, the performances surpass the original fine-
tuned models. For more results of Qwen2.5-14B
and Llama-2-13B (Touvron et al., 2023), please
refer to §C.2. From these results, we have three ob-
servations: 1) The proposed Neuron Merge method
are superior on different types of foundation mod-
els. 2) Merging models based on corresponding
functional groups of neurons are consistently effec-
tive for both closed-QA (math) and open-QA tasks
(code/translate), especially in the case of merg-
ing Math and Code models. 3) The performance
gains on both "NeuronMerge1" vs. "DARE" and

9021

Math neuron \ Code neuron Choose Code Model Merge Drop
Choose Math Model 70.42 69.95 69.94

Merge 70.21 69.89 70.63
Drop 70.52 70.64 70.80

Table 3: Comparison of Math and Code Neurons across different merging options. For each type of neuron
(Math and Code), three strategies are considered: (1) Choose Model — retain parameters from one specific model,
(2) Merge — combine models using SubModule Linearity, and (3) Drop — retain Base model parameters. The
numbers represent the average scores for GSM8K and HumanEval. The best performance was achieved when both
task-specific neurons were set to "Drop", as indicated in bold. The underlined number is the performance of naively
merging with finer granularity, which is insufficient to improve the task arithmetic further.

Task Arithmetic Random grouping Our Method

Math 78.77 75.73 78.80
Coding 61.59 60.98 62.80

Avg 69.73 68.36 70.80

Table 4: Comparison of model performance between random neuron grouping and our proposed method across
Math and Coding tasks. The performance metrics illustrate the advantages of targeted neuron classification over
random assignment.

"NeuronMerge2" vs. "SubModule Linear" indicat-
ing that our method is orthogonal and complemen-
tary to the merging methods for other components
in LLMs (i.e. attention and embedding layers).

4.3 Ablation Study

To validate the effectiveness of our neuron merg-
ing method, we compare our approach with other
options for the grouped neurons as well as random
neuron grouping. Furthermore, we examine the
stability of our neuron functionality classification
method by testing the hyper-parameter top-k, which
determines the number of top-activated sentences
selected for neuron functionality classification.
Different neuron merging approaches In the ex-
periment of merging math and code models, our
approach drops the task vectors for Math neurons
and Code neurons. Actually, there are several alter-
native options for each neuron functionality cate-
gories, including weighted merging with weights
calculated by SubModule Linear and direct replace-
ment using the neurons in corresponding fine-tuned
models. We evaluated math and code metrics on
Qwen2.5-7B while exploring these different op-
tions, as shown in Table 3. Our findings indicate
that, although all options show competitive scores,
the highest performance metrics are achieved when
the "task vector" for both neuron classes com-
pletely dropped. This results align with the concept
of "spurious forgetting" identified in Zheng et al.
(2025), where performance drops in models are
attributed to misalignment in task-specific adapta-
tions rather than true knowledge loss. The observed

improvement when discarding task-specific neu-
rons suggests conflicts of "task vectors" (Yu et al.,
2024), and resemblance to the "Freeze" strategy,
e.g. freezing certain parameters during training
could preserve their knowledge while mitigating
alignment issues (Zheng et al., 2025). Please refer
to §D.8 for more discussion.

Random neuron grouping. We randomly grouped
the neurons of Qwen2.5-7B into three categories:
General, Math, and Code, ensuring that each group
size is the same as the result of neuron functionality
classification. We discarded the parameter deltas
from the Math and Code groups. The results are
presented in Table 4. It can be seen that the perfor-
mance of the merged model was inferior compared
to our method. This indicates that merging neurons
based on their functionalities leads to a more coher-
ent and effective integration of their contributions
within the model.

The number of Top-Activated sentences. Since
we classify the neuron functionality with top k
highest-activated sentences where k = 10. We
ablate k on the Qwen2.5-7B model on math and
coding tasks, with the results presented in the Table
9 in §D.1. In these experiments, we varied the top
k parameter from 10 to 40 to evaluate its impact
on the performance of merged models. The results
indicate that, regardless of k, the performance of
the merged model remains quite stable. And k =
10 is a reasonable choice while keeping a lower
computation and storage overhead.

9022

5 Related Works
Task Arithmetic and Linearity Recent advances
in large language models have spurred interest in
efficient model merging techniques. Weight inter-
polation methods (Frankle et al., 2020; Izmailov
et al., 2018) improve generalization and multi-task
performance by averaging parameters, while task
arithmetic (Ilharco et al., 2023) integrates models
through weighted parameter differences, inspiring
variants like (Yang et al., 2024; Yu et al., 2024; Ya-
dav et al., 2023). Though fine-tuned models deviate
from NTK theory predictions (Jacot et al., 2018),
preserved parameter linearity remains critical for ef-
fective task arithmetic (Ortiz-Jiménez et al., 2023).
Recent work enhances linearity via constrained pa-
rameter updates or selective linearization (Jin et al.,
2024), with submodule-level linearity enabling su-
perior block-wise task arithmetic performance (Dai
et al., 2025).
Neuron and Interpretability Growing interest in
large model interpretability has evolved from ana-
lyzing attention mechanisms (Elhage et al., 2021)
to probing MLP modules. Early work studied
MLP activations through key-value memory frame-
works (Geva et al., 2021), while later efforts ad-
dressed neuron superposition challenges (Black
et al., 2022) via sparse autoencoders (Bricken et al.,
2023; Gao et al., 2024). Despite high training costs
for autoencoders, neuron-centric approaches (Choi
et al., 2024) remain prevalent, with interpretabil-
ity insights directly enhancing task performance
(Nikankin et al., 2024).

6 Conclusion
In conclusion, this work advances the understand-
ing of neuron functionalities in state-of-the-art
LLMs. We demonstrate that neurons maintain con-
sistent performance across various tasks, both be-
fore and after fine-tuning. Our novel model merg-
ing method, which integrates neuron analysis with
task arithmetic, showcases significant effectiveness
and superior performance across different founda-
tional models. Notably, our approach is orthogonal
and complementary to existing methods, highlight-
ing its potential for broader applicability in future
research.

Limitations
This work has several limitations. First, the classifi-
cation of neurons may lack precision, as we relied
on top-activated examples and categorized them by
data type, potentially overlooking nuanced func-
tionalities. Additionally, we did not analyze the

role of attention mechanisms in conjunction with
neuron functionalities, highlighting a critical area
for further exploration in future research.

Acknowledgements
This work was supported in part by the National
Natural Science Foundation of China under Grant
U23A2064 and in part by the National Natural Sci-
ence Foundation of China under Grant 12031005.

References
AI@Meta. 2024. The llama 3 herd of models. Preprint,

arXiv:2407.21783.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.
2024. Llemma: An open language model for mathe-
matics. Preprint, arXiv:2310.10631.

Steven Bills, Nick Cammarata, Dan Moss-
ing, Henk Tillman, Leo Gao, Gabriel Goh,
Ilya Sutskever, Jan Leike, Jeff Wu, and
William Saunders. 2023. Language mod-
els can explain neurons in language models.
https://openaipublic.blob.core.windows.
net/neuron-explainer/paper/index.html.

Sid Black, Lee Sharkey, Leo Grinsztajn, Eric Win-
sor, Dan Braun, Jacob Merizian, Kip Parker, Car-
los Ramón Guevara, Beren Millidge, Gabriel Al-
four, and Connor Leahy. 2022. Interpreting neu-
ral networks through the polytope lens. Preprint,
arXiv:2211.12312.

Trenton Bricken, Adly Templeton, Joshua Batson,
Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell,
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas
Schiefer, Tim Maxwell, Nicholas Joseph, Zac
Hatfield-Dodds, Alex Tamkin, Karina Nguyen,
Brayden McLean, Josiah E Burke, Tristan Hume,
Shan Carter, Tom Henighan, and Christopher
Olah. 2023. Towards monosemanticity: Decom-
posing language models with dictionary learning.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2023/monosemantic-
features/index.html.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,

9023

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2310.10631
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://arxiv.org/abs/2211.12312
https://arxiv.org/abs/2211.12312
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Dami Choi, Vincent Huang, Kevin Meng, Daniel D
Johnson, Jacob Steinhardt, and Sarah Schwettmann.
2024. Scaling automatic neuron description. https:
//transluce.org/neuron-descriptions.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Rui Dai, Sile Hu, Xu Shren, Yonggang Zhang, XinMei
Tian, and Jieping Ye. 2025. Leveraging submodule
linearity enhances task arithmetic performance in
llms. In The Thirteenth International Conference on
Learning Representations.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M.
Roy, and Michael Carbin. 2020. Linear mode
connectivity and the lottery ticket hypothesis. In
Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 3259–3269.
PMLR.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel
Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan
Leike, and Jeffrey Wu. 2024. Scaling and evaluating
sparse autoencoders. Preprint, arXiv:2406.04093.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are
key-value memories. Preprint, arXiv:2012.14913.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and
Ali Farhadi. 2023. Editing models with task arith-
metic. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry P. Vetrov, and Andrew Gordon Wilson. 2018.
Averaging weights leads to wider optima and better
generalization. In Proceedings of the Thirty-Fourth
Conference on Uncertainty in Artificial Intelligence,
UAI 2018, Monterey, California, USA, August 6-10,
2018, pages 876–885. AUAI Press.

Arthur Jacot, Clément Hongler, and Franck Gabriel.
2018. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in
Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pages 8580–8589.

Ruochen Jin, Bojian Hou, Jiancong Xiao, Weijie J. Su,
and Li Shen. 2024. Fine-tuning linear layers only is
a simple yet effective way for task arithmetic. CoRR,
abs/2407.07089.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and
Pengxiang Cheng. 2023. Dataless knowledge fu-
sion by merging weights of language models. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Starcoder: may
the source be with you! Preprint, arXiv:2305.06161.

Tian Yu Liu, Aditya Golatkar, and Stefano Soatto. 2024.
Tangent transformers for composition, privacy and
removal. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

9024

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://transluce.org/neuron-descriptions
https://transluce.org/neuron-descriptions
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
http://proceedings.mlr.press/v119/frankle20a.html
http://proceedings.mlr.press/v119/frankle20a.html
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/2012.14913
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
http://auai.org/uai2018/proceedings/papers/313.pdf
http://auai.org/uai2018/proceedings/papers/313.pdf
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://doi.org/10.48550/ARXIV.2407.07089
https://doi.org/10.48550/ARXIV.2407.07089
https://openreview.net/forum?id=FCnohuR6AnM
https://openreview.net/forum?id=FCnohuR6AnM
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://openreview.net/forum?id=VLFhbOCz5D
https://openreview.net/forum?id=VLFhbOCz5D

Michael Matena and Colin Raffel. 2022. Merg-
ing models with fisher-weighted averaging. In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9,
2022.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and
Yonatan Belinkov. 2024. Arithmetic without algo-
rithms: Language models solve math with a bag of
heuristics. Preprint, arXiv:2410.21272.

Guillermo Ortiz-Jiménez, Alessandro Favero, and Pas-
cal Frossard. 2023. Task arithmetic in the tangent
space: Improved editing of pre-trained models. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

George Stoica, Daniel Bolya, Jakob Bjorner, Pratik
Ramesh, Taylor Hearn, and Judy Hoffman. 2023.
Zipit! merging models from different tasks without
training. arXiv preprint arXiv:2305.03053.

Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han
Hu, Bo Du, Yixin Chen, and Dacheng Tao. 2024.
Parameter-efficient multi-task model fusion with
partial linearization. In The Twelfth International
Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou,
Zhiyuan Liu, and Juanzi Li. 2022. Finding skill
neurons in pre-trained transformer-based language
models. In Proceedings of EMNLP.

Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan
Oren, Shane Adams, Anton Alexandrov, Xiaozhong
Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams,
Ben Athiwaratkun, Rahul Chalamala, Kezhen Chen,
Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré,
Irina Rish, and Ce Zhang. 2024. Redpajama: an open
dataset for training large language models. Preprint,
arXiv:2411.12372.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Has-
san Awadalla. 2024a. A paradigm shift in machine
translation: Boosting translation performance of
large language models. In The Twelfth International
Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net.

Zhengqi Xu, Ke Yuan, Huiqiong Wang, Yong Wang,
Mingli Song, and Jie Song. 2024b. Training-free
pretrained model merging. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5915–5925.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A.
Raffel, and Mohit Bansal. 2023. Ties-merging:
Resolving interference when merging models. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guib-
ing Guo, Xingwei Wang, and Dacheng Tao. 2024.
Adamerging: Adaptive model merging for multi-task
learning. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Junhao Zheng, Xidi Cai, Shengjie Qiu, and Qianli Ma.
2025. Spurious forgetting in continual learning of
language models. In The Thirteenth International
Conference on Learning Representations.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

Zhanpeng Zhou, Zijun Chen, Yilan Chen, Bo Zhang,
and Junchi Yan. 2024. On the emergence of cross-
task linearity in pretraining-finetuning paradigm.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

9025

http://papers.nips.cc/paper_files/paper/2022/hash/70c26937fbf3d4600b69a129031b66ec-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/70c26937fbf3d4600b69a129031b66ec-Abstract-Conference.html
https://arxiv.org/abs/2410.21272
https://arxiv.org/abs/2410.21272
https://arxiv.org/abs/2410.21272
http://papers.nips.cc/paper_files/paper/2023/hash/d28077e5ff52034cd35b4aa15320caea-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d28077e5ff52034cd35b4aa15320caea-Abstract-Conference.html
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://openreview.net/forum?id=iynRvVVAmH
https://openreview.net/forum?id=iynRvVVAmH
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2411.12372
https://arxiv.org/abs/2411.12372
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
https://openreview.net/forum?id=nZP6NgD3QY
https://openreview.net/forum?id=nZP6NgD3QY
https://openreview.net/forum?id=fq0NaiU8Ex
https://openreview.net/forum?id=fq0NaiU8Ex
https://openreview.net/forum?id=ScI7IlKGdI
https://openreview.net/forum?id=ScI7IlKGdI
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://openreview.net/forum?id=qg6AlnpEQH
https://openreview.net/forum?id=qg6AlnpEQH

A More Results of Neuron Analysis

A.1 Additional Neuron Functionality
Classification Results

In Figure 6, results for every 5 layers and the last
layer (layer 27) are shown. The distribution of
neuron categories remains largely consistent across
base and fine-tuned models, demonstrating high
distributional uniformity. In addition, the propor-
tion of neurons that overlap within each category
(depicted by the purple bar) is substantially high
for almost all layers. This findings highlight that
most neurons retain their functionalities after fine-
tuning for all layers with both closed-QA (math)
and open-QA tasks (code/translate).

A.2 Additional Neuron Knock-out Results

In Figure 7, knocking-out Code, Math, Transla-
tion neuron categories respectively in Qwen2.5-7B
(layer 13) will consistently lead to a greater decline
in corresponding abilities compared with random
knock-out. This result indicates that grouping neu-
rons with respect to their functions plays a key role
in model performance for corresponding tasks.

A.3 Neuron Activation Cosine-Similarity
Analysis

To quantify the high consistency of neurons in base
and different fine-tuned models in the same posi-
tion, we analyzed the cosine similarity between the
weight vectors of corresponding neurons. Specif-
ically, fix layer L, for the i-th neuron in the base
model and the i-th neuron in the fine-tuned model ,
the cosine similarity cos_sim(wbase

i , wft
i) is calcu-

lated as:

cos_sim(wbase
i , wft

i) =
wbase
i · wft

i

∥wbase
i ∥2∥wft

i ∥2
,

where wbase
i and wft

i are the weight vectors of base
neuron and fine-tuned neuron, respectively (each
representing a row or column of the weight matrix
in MLP).

To better illustrate the closeness of the fine-tuned
model to the base model, we compared the cosine
similarities between the base-ft models and the
base-CPT(continue pre-trained) models across all
three matrices in the MLP. We selected Qwen2.5-
Coder-7B (Hui et al., 2024) as the CPT model cor-
responding to Qwen2.5-7B. Our analysis revealed
that the corresponding neurons exhibit an excep-
tionally high cosine similarity of up to 0.999 across

all layers between Qwen2.5-7B and our code fine-
tuned models (Figure 8), indicating near-identical
parameter patterns. whereas the similarity between
the CPT model and the base model is only around
0.4. This shows that the neuron parameters change
very little after the fine-tuning, and also explains
why the neuron functionality remains largely un-
changed.

Moreover, due to the extremely high cosine sim-
ilarity, methods for adjusting the positions of neu-
rons such as Zipit (Stoica et al., 2023) and MuDSC
(Xu et al., 2024b) are unnecessary in our setting.

B Analysis of Non-linearity for ReLU
MLPs

In this section, we discuss the definition of linearity
and the sources of non-linearity of MLP layer with
ReLU activations. From this, we conclude that
grouping based on maximum activation values can
help enhance linearity.

Definition 1. (Linearity). Let f be a submodule
of LLM, θ0 and θ be parameters of f before and
after fine-tuning respectively. We call θ exhibits
linearity, if the differences in model weights caused
by fine-tuning are linearly related to the differences
in output features caused by fine-tuning for any
input x ∈ X , i.e.

f(x; θ0 + ατ) ≈ f(x; θ0) + α∆f(x; θ0 + τ)
(4)

where τ = θ−θ0 is the differences in model weights
before and after fine-tuning, and ∆f(x; θ0 + τ) =
f(x; θ0 + τ)− f(x; θ0) is the differences in model
output features before and after fine-tuning.

Remark 1. If we define g(α) := f(x; θ0 + ατ)−
f(x; θ0), the definition of linearity in equation (4)
is equivalent to g(α) is a linear function for α ∈
[0, 1].

We consider the MLP module with ReLU ac-
tivation function for simplicity. The analyze for
SwiGLU MLP is similar. Let d be the dimension
of residual stream, n be the number of neurons in
a MLP layer. A MLP layer of the base model can
be expressed as

f(x; θ0) = W2ReLU(W1x)

=
n∑

i=1

ReLU(w1i · x)w2i, (5)

where W1 ∈ Rn×d,W2 ∈ Rd×n are up and
down projection matrix, respectively, and w1i ∈

9026

(a) Layer 5 (b) Layer 10 (c) Layer 15

(d) Layer 20 (e) Layer 25 (f) Layer 27

Figure 6: Neuron functionality classification results for Qwen2.5-7B across different layers, shown as bar charts for
different categories of neurons. Base model is Qwen2.5-7B. gsm8k_sft, code_sft, translate_sft are Qwen2.5-7B
fine-tuned variants on Math, Code, Translation dataset respectively. Purple bars are the number of intersection
neurons for each functionality category. Results for every 5 layers and the last layer (layer 27) are shown.

(a) Code neuron knock-out (b) Math neuron knock-out (c) Translation neuron knock-out

Figure 7: Knock-out neuron categories in Qwen2.5-7B (layer 13 shown) will lead to a greater decline in correspond-
ing abilities compared with random knock-out. The horizontal coordinate indicates the knock-out proportion.

Rd, w2i ∈ Rd(i-th row/column of W1,W2) are
the weight of neuron i. The output of f(x; θ0)
can be viewed as a linear combination of w2i, i =
1, · · · , n and the coefficient are the activation of
the neuron ReLU(w1i · x).

Under the aforementioned notation, we can de-
rive the following theorem.

Theorem 1. Consider a MLP layer with ReLU
activation function in (5), and further assume that

sign(w1i · x+ τ1i · x) = sign(w1i · x), ∀x ∈ X,
(6)

where τ1i is the task vector with respect to w1i.
Then we have

g(α) = C1α+ C2α
2, (7)

where C1, C2 are constants only depending on
x,W1,W2 and τ and independent of α.
Remark 2. The assumption (6) is reasonable due
to the extremely high cosine similarity between w1i

and w1i + τ1i observed in A.3.
Remark 3. By Remark 1, we expect g(α) to be
a linear function of α. So we find two sources of
non-linearity.

(1) The first comes from (7), which is a quadratic
term C2α

2. As shown in the proof below, C2

is the product term of τ1 and τ2. Under the set-
ting of task arithmetic, τ1, τ2 are small. Thus
C2 is negligible.

(2) The second comes from our assumption. Since
the inputs x in the base model and the fine-
tuned model are not perfectly identical, the

9027

Figure 8: Mean Cosine similarity of neurons across
different layers in the Qwen2.5-7B model. The solid
lines represent the similarity between the Qwen2.5-7B
model and our fine-tuned model, while the dashed lines
indicate the cosine similarity between the Qwen2.5-7B
and the Qwen2.5-Coder-7B models. Notably, the cosine
similarity between our fine-tuned model and the base
model reaches as high as 0.999, whereas the similarity
between the CPT model and the base model is only
around 0.4.

pre-activation after fine-tuning may not share
the same sign as base model.

Remark 4. To suppress sign-flip non-linearity, we
prioritize neurons with persistently high activations
on a specific dataset Dt, where w1i ·x≫ 0 ensures

w1i · x+ τ1i · x > 0, ∀x ∈ Dt,

through the norm dominance ∥w1i∥ ≫ ∥τ1i∥. As a
result, these neurons

g(t) = {i : w1i · x≫ 0,∀x ∈ Dt}

form a group that exhibits high linearity on the
datasets Dt.

Now we start to prove Theorem 1.

Proof of Theorem 1. Denote x+ := ReLU(x) for
ease of notation, now consider function g(α) :=
f(x; θ0 + ατ)− f(x; θ0), we have

g(α) =
n∑

i=1

(w1i · x+ ατ1i · x)+(w2i + ατ2i)

−
n∑

i=1

(w1i · x)+w2i

=
n∑

i=1

[(w1i · x+ ατ1i · x)+(w2i + ατ2i)

− (w1i · x+ ατ1i · x)+w2i]

+
n∑

i=1

[(w1i · x+ ατ1i · x)+w2i − (w1i · x)+w2i]

= α
n∑

i=1

(w1i · x+ ατ1i · x)+τ2i

+
n∑

i=1

(
(w1i · x+ ατ1i · x)+ − (w1i · x)+

)
w2i,

where τ1i, τ2i are the task vectors with respect to
w1i, w2i.

Note that α ∈ [0, 1] and the assumption (6), we
can infer that w1i · x + ατ1i · x and w1i · x have
the same sign. Then the first term of g(α) can be
written as

I1 := α
n∑

i=1

(w1i · x+ ατ1i · x)+τ2i

= α
n∑

i=1

(w1i · x+ ατ1i · x)1{w1i·x+ατ1i·x>0}τ2i

= α
n∑

i=1

(w1i · x+ ατ1i · x)1{w1i·x>0}τ2i

= α
n∑

i=1

(w1i · x)+τ2i + α2
n∑

i=1

(τ1i · x)1{w1i·x>0}τ2i

=: αC1(x;W1, τ2) + α2C2(x;W1, τ1, τ2),

where C1, C2 are constants independent of α and
1{A} is the indicator function, which equals 1 if
event A happens and equals 0 otherwise.

For the second term, we have

I2 :=
n∑

i=1

(
(w1i · x+ ατ1i · x)+ − (w1i · x)+

)
w2i

= α
n∑

i=1

(τ1i · x)1{w1i·x>0}w2i

=: αC3(x;W1,W2, τ1),

where C3 is a constant independent of α.
In conclusion, we have

g(α) = I1 + I2 = (C1 + C3)α+ C2α
2.

C More Results in Merging Models

C.1 The Number of Neurons of each Category
In this section, we represent the number of Math,
Code and Translate neurons in each layer of
Qwen2.5-7B and Llama3.1-8B in Figure 9a and
Figure 9b, respectively. The pattern of Qwen2.5-
7B differs significantly from that of Llama3.1-8B.
Qwen2.5-7B contains more Translate neurons in
the shallow layers, which may be attributed to its
training on a larger amount of Chinese data.

C.2 Detailed Results in Experiments
In this section, we represent the detailed results of
Tables 1 and 2 in Tables 5 and 6. We also present
the detailed results on larger models Qwen2.5-14B
and Llama2-13B for Math and Coding tasks in Ta-
ble 7. For each setting, we replicated for 5 times

9028

(a) Qwen2.5-7B. (b) Llama3.1-8B.

Figure 9: The number of neurons in each layer.

with different sample seeds and compute the mean
value of five results. The best and second-best
results are highlighted in bold and underlined, re-
spectively. For the hyperparameters of DARE and
Task Arithmetic, we search for the best setting and
the specific values are listed in Appendix C.3.

C.3 More Details About The Baseline

For Task arithmetic, We explored the hyperparam-
eter merging weights α ∈ [0.1, 0.2, . . . , 0.9] and
selected the best results for reporting in the table.

For DARE, we fixed the merging weights α = 1
and explored the dropout probability drop_ratio ∈
[0.6, . . . , 0.9], reporting the best results in the table.

For the Submodule Linearity, we utilize the At-
tn/MLP Level approach. This means that each
Attention Layer and MLP Layer has its own coeffi-
cients when it comes to merging the models. Fol-
lowing the recommendations of Dai et al. (2025),
we sample 30 data for each task.

The optimal hyperparameters corresponding to
the best results in Table 1 and 2 obtained in practice
are reported in Table 8.

D More Ablation and Discussion on
Different Settings

D.1 Ablation on The number of
Top-Activated sentences

We varied the top k parameter from 10 to 40 to
evaluate its impact on the performance of merged
models. The results in Table 3 indicate that, regard-
less of k, the performance of the merged model
remains quite stable. And k = 10 is a reasonable
choice while keeping a lower computation and stor-
age overhead.

D.2 Ablation on more Combinations of Model
Merge Methods

We attempt more combinations of model merging
methods for both Attention parameters and general
neurons.

In Table 10, we apply Task Arithmetic to Atten-
tion and SubModule Linearity to general neurons
on Qwen2.5-7B, comparing with Task Arithmetic
as baseline. Our approach, when combined with
Task Arithmetic in the attention layers, consistently
outperforms the baseline method.

In Table 11, we explore different methods for
general neurons. All experiments involve merging
the Math and Code models of Qwen2.5-7B. Our
approaches consistently outperform the baseline
methods, irrespective of the techniques employed.
As illustrated in the table, the scores for experi-
ments 1 to 4 range from 70.92 to 71.54, demonstrat-
ing consistent improvements over the three base-
line methods (Task Arithmetic, DARE, and Sub-
Lin), which score between 69.18 and 69.84. Addi-
tionally, our main methods (NeuronMerge1 and
NeuronMerge2) show comparable performance,
yielding scores of 71.12 and 70.80, respectively.

In Table 12, we explore various options similar
to those presented in Table 3 for the Llama3.1-8B
model. The results indicate a significant perfor-
mance gap between the "drop" merging strategy
and the other approaches.

D.3 Ablation on Neuron Grouping with
Threshold

In this ablation experiment, we restrict that the task
specific neurons have to be statistically significant
based on top activated sentences. We define the

9029

Method
Qwen2.5-7B

Merging Two Models
Math Coding Avg Math Translate Avg

Fine-tuned Model 75.89 67.07 71.48 75.89 86.96 81.43

Task Arithmetic 78.77 61.59 69.73 76.65 86.77 81.71

DARE 77.48 62.20 69.84 77.79 86.82 82.31
NeuronMerge1 78.95±0.33 63.29±0.51 71.12 ±0.36 78.73 ±0.29 86.51 ±0.05 82.62 ±0.16

Submodule Linearity 77.14 61.22 69.18 77.57 86.80 82.19
NeuronMerge2 78.80±0.33 62.80±0.43 70.80±0.33 78.89±0.36 86.57±0.03 82.70±0.20

Method
Qwen2.5-7B

Merging Two Models Merging Three Models
Coding Translate Avg Math Coding Translate Avg

Fine-tuned Model 67.07 86.96 77.02 75.89 67.07 86.96 76.64

Task Arithmetic 62.80 86.62 74.81 78.84 60.97 86.28 75.36

DARE 63.41 86.81 75.11 78.17 63.41 86.72 76.10
NeuronMerge1 64.26±0.41 86.61±0.02 75.44±0.21 79.91 ±0.42 63.79±0.02 86.76±0.51 76.82±0.11

Submodule Linearity 62.68 86.86 74.77 79.53 60.73 86.00 75.42
NeuronMerge2 63.17±0.33 86.63±0.02 74.90±0.16 79.19±0.27 62.67±0.70 86.77±0.04 76.21±0.23

Table 5: Detailed experimental results on Qwen2.5-7B.

category of neurons as following instead of (2):

Category(j)

=





argmax
ci∈C

{s ∈ Sk(j) | s ∈ ci}

if max(Sk(j))−max2(Sk(j)) ≥ m

General otherwise

where maxi means the i-th maximum element.
We test this framework using three different

threshold values for m : 1, 2, · · · 8. Table 13 sum-
marizes the impact of these thresholds on neuron
grouping and the corresponding performance met-
rics. Despite some fluctuation, the Math scores
generally decrease while the Coding scores gradu-
ally increase as m increases from 1 to 8.

D.4 Automatically Neuron Classification
Based on LLM

We also attempted to leverage LLM to automati-
cally classify all the neurons, as demonstrated by
Choi et al. (2024). For each neuron, we selected the
top 10 activated sentences, as described in section 2.
Additionally, we calculated the 0.9 percentile of the
absolute activation values across all 1, 200 exem-
plars. We then utilized Qwen2.5-72B-Instruct to
identify tokens from these top 10 samples that ex-
ceeded this percentile, which aided us in classifying
the neurons. For each sentence, we asked the LLM
to determine its category and provide a relevance
score from 1 to 5. Finally, we aggregated the scores
of the 10 sentences across the various categories
and selected the category with the highest score as

the classification for that neuron. For a detailed
prompt, please refer to Appendix E.

Due to the substantial costs associated with an-
alyzing neurons in each layer using this approach,
we opted not to employ LLM-based classification
in our main experiment.

In this section, we randomly sampled 100 neu-
rons from Qwen2.5-7B and compared the results
with our sample-type-based classification. As
shown in Figure 10, 72 out of the 100 neurons
were classified into the same category.

Figure 10: Classification results on 100 random sampled
neurons in Qwen2.5-7B with LLM based method and
sample type based method.

9030

Method
Llama3.1-8B

Merging Two Models
Math Coding Avg Math Translate Avg

Fine-tuned Model 57.01 38.41 47.71 57.01 86.09 71.55

Task Arithmetic 55.19 39.63 47.41 55.04 85.85 70.45

DARE 53.37 40.24 46.81 54.73 85.82 85.70
NeuronMerge1 52.77±0.15 41.70±0.34 47.24±0.14 55.10 ±0.44 85.68 ±0.02 70.39 ±0.21

Submodule Linearity 55.37 38.90 47.13 55.02 85.84 70.43
NeuronMerge2 54.50±0.54 40.97±0.51 47.73±0.28 55.68±0.58 85.71±0.02 70.69±0.29

Method
Llama3.1-8B

Merging Two Models Merging Three Models
Coding Translate Avg Math Coding Translate Avg

Fine-tuned Model 38.41 86.09 62.25 57.01 38.41 86.09 60.50

Task Arithmetic 37.80 86.06 61.93 50.72 40.85 85.54 59.04

DARE 37.80 86.12 61.96 48.29 40.85 85.63 58.26
NeuronMerge1 39.75±0.51 86.04±0.03 62.89±0.26 50.99 ±0.42 42.57±0.40 86.27 ±0.06 59.94±0.20

Submodule Linearity 39.26 86.04 62.65 50.52 42.68 84.90 59.37
NeuronMerge2 40.00±0.33 86.01±0.03 63.00±0.16 50.93±0.51 42.88±0.51 85.84±0.03 59.88±0.22

Table 6: Detailed experimental results on Llama3.1-8B.

Method
Qwen2.5-14B Llama2-13B

Math Coding Avg Math Coding Avg

Fine-tuned Model 77.71 67.07 72.39 47.91 20.12 34.02

Task Arithmetic 83.55 65.24 74.40 45.41 23.78 34.60

DARE 84.15 64.63 74.39 41.55 24.39 32.97
NeuronMerge1 84.99 65.65 75.32 43.05 26.95 35.00

Submodule Linearity 83.52 65.65 74.59 46.85 23.37 35.11
NeuronMerge2 83.67 67.07 75.37 45.17 25.12 35.15

Table 7: Detailed experimental results on Qwen2.5-14B and Llama2-13B for Math and Coding tasks.

D.5 Discussion on Potential Data Leakage

We provide a detailed list of datasets used in our
experiments in Table 14. To prevent potential
data leakage, we replace the translation dataset
with WMT24 and calculate the intersection-over-
union ratio between the set of translation neurons
SWMT24 and the previously identified neruon set
SWMT17−20, which is found to be 0.71. This
demonstrates that our neuron classification does
not rely on the fine-tuning dataset.

D.6 Comparison with more Baselines

In the context of Qwen2.5-7B for mathematics and
code tasks, we have added performance metrics
for TIES-Merging and PCB-Merging to our com-
parisons in Table 15, and our methods outperform
these baselines.

D.7 Discussion on Cost-Performance Tradeoff

We provide a quantification of computational and
storage costs. Taking our experiments on Qwen2.5-
7B as an example, we detail the computational
and storage costs for neuron classification as fol-
lows: 1) Computational Cost: For classifying
neurons, it takes approximately 65s (1min) in-
ference time on a single A100 GPU to get com-
plete 28-layer model activations on 1,200 sam-
ples. 2) Storage Cost: We need to compute ac-
tivation values for 4 categories × 300 sentences
× 512 tokens. However, for each neuron, we
only store the maximum activations of the top 10
sentences, leading to a total storage requirement
of: 10× number of neurons× number of layers =
10 × 18944 × 28 = 5.3M data points. At BF16
precision, this amounts to approximately 10.6 MB
of storage space.

To further analyze the performance gain versus

9031

Hyper-parameters Math
& Code

Math
& Translate

Coding
& Translate

Math & Coding
& Translate

Qwen2.5-7B
Task Arithmetic 0.4 0.6 0.6 0.5

DARE 0.6 0.7 0.6 0.8
Llama3.1-8B

Task Arithmetic 0.5 0.6 0.6 0.5
DARE 0.6 0.6 0.6 0.7

Table 8: The optimal hyperparameters corresponding to the best results obtained in practice for baslines.

Top k 10 20 30 40
Avg 70.80 70.79 70.87 70.70

Table 9: Ablation result of Top-k sentences used to classify the neruon functionalities. The numbers in the table are
the average scores on GSM8K and HumanEval.

time cost of each method compared to the base-
line (i.e. Task Arithmetic), we calculate the ’per-
formance gain’ / ’normalized time cost’ of each
method and list the results in the following tables.
Specifically, ’performance gain’ is computed by
subtraction of performance on each method and
that of Task Arithmetic, and ’normalized time cost’
is computed by division of the time cost of each
method and that of Task Arithmetic. All experi-
ments are conducted on Qwen2.5-7B with a single
A100 GPU. Since DARE, Task Arithmetic, and
TIES-Merging require a grid search of hyperparam-
eters, we multiplied the time cost for a single run
by the number of hyperparameter searched. The
results of Math & Translate and Math & Code are
listed in the Tables 16 and 17.

From these two tables, we have three obser-
vations: 1) From the view of performance, the
proposed method achieves more consistent gains
than the most efficient method SubModule Lin-
earity (NeuronMerge2 vs. SubModule Linearity).
2) From the view of time cost, the newly added
’neuron classify’ step in the proposed method in-
troduces an affordable fraction of additional time
cost (e.g. 65s vs. 1020s/375s). 3) From the view
of performance gain vs. time cost, the proposed
method achieves a good balance between perfor-
mance and cost compared with other methods (e.g.
1.187/2.626 vs. 0.116/-1.584).

D.8 Discussion on the Merging Strategy

Our initial approach aimed to optimize merging by
adopting parameters from task-specific SFT mod-
els for neurons with specific functions—such as

employing Math SFT model parameters for math
neurons. However, experimental results indicated
that this strategy, while promising, did not yield
the anticipated optimal performance. We hypothe-
size this arises from the phenomenon of "spurious
forgetting" (Zheng et al., 2025) and the effects of
orthogonal updates in the model parameters. This
suggests that while functional neurons are impor-
tant, their coexistence can lead to performance con-
flicts across tasks due to misalignment, thus neces-
sitating their removal to maintain overall model
coherence. Our findings demonstrate that general
neurons, which represent shared patterns across
tasks, can effectively harmonize the alignment of
different SFT models. Additionally, adopting a
freeze strategy by merging general neurons and
discarding updates for neurons with predominant
orthogonal interactions has proven to enhance per-
formance. This analysis highlights the intricate
dynamics of neuron functionality in SFT model
merging and underscores the need for a nuanced
approach to balancing the contributions of both
specific and general neurons in optimizing model
performance.

D.9 Discussion on Dynamic Tasks

In our paper, we assumed that all tasks are known
and fixed in advance, following the assumption
commonly applied in related research areas like
Task Arithmetic, etc. If the introduction of dy-
namic tasks is necessary, we only need to compute
the activations for additional 300 data correspond-
ing to each new task. These values can then be
combined with the previously cached activations

9032

Method
Qwen2.5-7B

Merging Two Models
Math Coding Avg Math Translate Avg Coding Translate Avg

Task Arithmetic 78.77 61.59 69.73 76.65 86.77 81.71 62.80 86.62 74.81
Task Arithmetic + NeuronMerge 79.06 62.20 70.62 79.20 86.35 82.78 63.78 86.53 75.15

Table 10: Results of applying Task Arithmetic and the combined approach of Task Arithmetic with NeuronMerge
on the Qwen2.5-7B model, showcasing performance across various tasks including Math, Coding, and Translation.
Higher scores are highlighted in bold. Our approach, when combined with Task Arithmetic in the attention layers,
consistently outperforms the baseline method.

Method Attention Operation General Neurons Operation Average Performance

Task Arithmetic - - 69.73
DARE - - 69.84
SubLin - - 69.18

NeuronMerge1 DARE SubLin 71.12
NeuronMerge2 SubLin SubLin 70.80
experiment 1 DARE Task Arithmetic 71.05
experiment 2 SubLin Task Arithmetic 71.14
experiment 3 DARE DARE 71.54
experiment 4 SubLin DARE 70.92

Table 11: To further analyze the effectiveness of the proposed method, we conducted 4 experiments on Math&Code
model merging task with different merge operations on general neuron group on Qwen2.5-7B. For example,
experiment 1 adopted DARE on attention layers, and Task Arithmetic on general neurons in MLP layers. From the
table, we can observe that experiments 1-4 scores range from 70.92-71.54, with consistent improvements compare to
3 baselines (Task Arithmetic, DARE, SubLin) which range from 69.18-69.84, and comparable to our main methods
(NeuronMerge1 and NeuronMerge2, with scores 71.12 and 70.80 respectively).

to determine the Top-K sentences, which will fa-
cilitate the reclassification of neurons. And the
refreshed classification results can be used further
to merge the fine-tuned models. And also, if real
data is unavailable in dynamic task scenarios, we
suggest using LLM to synthesize task-relevant data
with acceptable cost. This helps to further improve
the generalizability of our method.

D.10 Cases for Different Categories of
Neurons

In this section, we show some cases of activa-
tion pattern for different categories of neurons in
Qwen2.5-7B. For a given neuron, we calculated
the 0.9 percentile of the absolute activation val-
ues across all 1, 200 exemplars and displayed the
tokens from the top 10 highly activated samples
that exceed this percentile. The tokens in the
same quotes represent consecutive activation val-
ues greater than the 0.9 percentile. We found that
neurons in shallow layers tend to activate on a sin-
gle, discrete token while neurons in deep layers
tend to activate on a consecutive context. We show

some cases of neurons in Figure 11.

E All the prompts used in our method

In this section we provide the prompt we used to
classify the neurons based on LLM in Figure 12.

9033

(a) Math Neuron.

(b) Code Neuron.

(c) Translation Neuron.

Figure 11: More activation cases for different categories of neurons.

9034

Math neuron \ Code neuron Choose Code Model Merge Drop
Choose Math Model 44.71 45.17 46.66

Merge 44.01 44.40 45.64
Drop 44.00 45.45 47.73

Table 12: Comparison of Math and Code Neurons across different merging options. For each type of neuron
(Math and Code), three strategies are considered: (1) Choose Model — retain parameters from one specific model,
(2) Merge — combine models using SubModule Linearity, and (3) Drop — retain Base model parameters. The
numbers represent the average scores for GSM8K and HumanEval. The best performance was achieved when both
task-specific neurons were set to "Drop", as indicated in bold.

m 1 2 3 4 5 6 7 8
Math 78.80 77.85 77.15 77.56 77.05 76.67 76.56 76.66

Coding 62.80 62.32 62.68 63.29 63.41 63.29 64.26 63.65
Avg 70.80 70.08 69.92 70.42 70.23 69.98 70.41 70.16

Table 13: Impact of different thresholds m on model performance across Math and Coding tasks. The numbers in
the table are the average scores of GSM8K and HumanEval.

General Math Code Translation

Neuron Classification RedPajama Com-
monCrawl (train)

Proof-file-2 (train) Python in Star-
Coder (train)

WMT17-WMT20

Fine-tuning – GSM8k (train) CodeAlpaca (train) WMT17-WMT20
Test – GSM8k (test) HumanEval (test) WMT22

Table 14: Dataset Splits used in our main experiments.

Method Math Coding Average

Fine-tuned Model 75.89 67.07 71.48
Task Arithmetic 78.77 61.59 69.73
TIES-Merging 77.18 62.80 69.99
PCB-Merging 76.88 63.41 70.15

DARE 77.48 62.20 69.84
NeuronMerge1 78.95 63.29 71.12

Submodule Linearity 77.14 61.22 69.18
NeuronMerge2 78.80 62.80 70.80

Table 15: Qwen2.5-7B Performance Metrics. In above tables, Math means merged model performance on GSM8k
and Coding means merged model performance on HumanEval. The best and second-best results are highlighted in
bold and underlined, respectively.

Method Time Cost Average Performance (∆) ∆ / Normalized Time Cost

Task Arithmetic 0s + 120s * 9 = 1080s 81.71% -
TIES-Merging 0s + 1020s * 4 = 4080s 82.29% (+0.58%) 0.154

DARE 0s + 255s * 4 = 1020s 82.31% (+0.60%) 0.635
NeuronMerge1 65s + 300s * 4 = 1265s 82.62% (+0.91%) 0.777

SubModule Linearity 0s + 375s = 375s 82.19% (+0.48%) 1.382
NeuronMerge2 65s + 375s = 440s 82.7% (+0.99%) 2.43

Table 16: Performance-Cost tradeoff on Math & Translate tasks for merged models on Qwen2.5-7B. The Time Cost
consists of two components: neuron classification and merging, which includes the time taken for a single merge
multiplied by the time required for grid search hyperparameters.

9035

Method Time Cost Average Performance (∆) ∆ / Normalized Time Cost

Task Arithmetic 0s + 120s * 9 = 1080s 69.73% -
TIES-Merging 0s + 1020s * 4 = 4080s 69.99% (+0.26%) 0.069

DARE 0s + 255s * 4 = 1020s 69.84% (+0.11%) 0.116
NeuronMerge1 65s + 300s * 4 = 1265s 71.12% (+1.39%) 1.187

SubModule Linearity 0s + 375s = 375s 69.18% (-0.55%) -1.584
NeuronMerge2 65s + 375s = 440s 70.80% (+1.07%) 2.626

Table 17: Performance-Cost tradeoff on Math & Coding tasks for merged models on Qwen2.5-7B.

Algorithm 1 Merging Modules with Neuron Merge
Input:
T fine-tuned models with L MLP layers θi = {θi,1, θi,2, · · · , θi,L}, i = 1, 2, · · · , T ;
Pre-trained model MLP layers θ0 = {θ0,1, θ0,2, · · · , θ0,L};
Datasets for neuron classification d0, d1, · · · , dT .
Output:
Merged model MLP layers θmerge = {θmerge,1, θmerge,2, · · · , θmerge,L}.

1: for l = 1 to L do
2: n = number of neurons
3: /* Step 1: Classify neurons in each layer */
4: categoriesl ← ClassifyNeurons(θ0,l, d0, d1, . . . , dT) {Classification done by Equation (2)}
5: /* Step 2: Group neurons by category */
6: for c = 0 to T do
7: Neuronsc ← {j ∈ [n] : categoriesl(j) = c}
8: gl(c) ← ({θ0,l(j) : j ∈ Neuronsc}, {θ1,l(j) : j ∈ Neuronsc}, . . . , {θT,l(j) : j ∈

Neuronsc})
9: end for

10: /* Step 3: Merge neurons based on groups */
11: for j = 1 to n do
12: if j ∈ Neurons0 then
13: αt,l(j)← SubLin(gl(0))
14: else
15: αt,l(j)← 0
16: end if
17: /* Update the weights of the merged model */
18: θmerge,l(j)← θ0,l(j) +

∑T
t=1 αt,l(j) · [θt,l(j)− θ0,l(j)]

19: end for
20: end for
21: return θmerge

9036

Prompt for LLM based Neuron Classification

Evaluation Instructions:
Role
You are an AI researcher specializing in analyzing specific neurons within neural networks and their responses to certain text fragments.

Your primary task is to identify which domain the neuron is most related to based on its activation patterns.

Skills
1. **Neuron Analysis**: Meticulously examine each neuron’s information, to determine its strongest association with a particular domain.
2. **Contextual Assessment**: Evaluate the neuron’s response based on activation patterns, such as trigger keywords (e.g., {{

highly_activated_token}}).
3. **Domain Identification**: Select the most relevant domain from the following options:

- A. Mathematics: Concepts, terminology, and operations related to mathematics.
- B. Programming: Code snippets, programming languages, and computational algorithms.
- C. Translation: Activate on cross-linguistic tokens with the same semantics and on translation instructions.
- D. Others: Domains not covered by the above categories, such as general knowledge, pronouns and other common words, etc.

Constraints
1. **Sequential Dependency**: Neuron activations are influenced solely by the sequence of words preceding the activation point. Your judgment

must only consider words before the activation and disregard any subsequent words.
2. **Token-Based Analysis**: The analysis must focus on the activation patterns of individual tokens and their impact on the neuron’s

functionality, rather than analyzing the overall semantics of entire sentences.
3. **Activation Pattern Interpretation**: Infer the neuron’s characteristics based on activation patterns to determine its associated domain.
4. **Scoring Mechanism**: For each neuron, provide:

- **Selected Domain**: [Choose from A-D]
- **Relevance Score**: [1-5] based on the following guidelines:
- **1**: Minimal relevance
- **2**: Low relevance
- **3**: Moderate relevance
- **4**: High relevance
- **5**: Very high relevance

- **Explanation**: Brief reasoning supporting the score.
5. **Reply Requirements**: Only output ’Selected Domain’, ’Relevance Score’, and ’Explanation’. Do **NOT** reply with any other information

or copy any examples text in Prompt.

Use these insights to discern pattern strongly associated with particular domains.
Neuron Analysis
Excerpt and Activation Example:
- Excerpt 1: " boto", ".Session", "=tf", "_letters", "igits", "added", ".valid", "added", "added", "import", "from time import time", "import

", ".pyplot", " =", "(sys", " =", "for i", " range", "Num", "Num", " i", " range", "Num", "’", " i", " range", ".pyplot", ".pyplot", ".
pyplot"

Conclusion:

Figure 12: This is the prompt we used in the LLM based classification.

9037

