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Abstract

The increasing capability and widespread usage
of large language models (LLMs) highlight the
desirability of automatic detection of machine-
generated text. Existing supervised detectors
often overfit within their training domains, as
they have primarily learned domain-specific
textual features, such as word frequency, syn-
tax, and semantics. In this paper, we introduce
a domain-independent feature, namely the dif-
ference of writing strategy between LLMs and
human, to improve the out-of-domain gener-
alization capability of detectors. LLMs focus
on the preceding range tokens when generat-
ing a token, while human consider multiple
ranges, including bidirectional, global, and lo-
cal contexts. The attention mask influences
the range of tokens to which the model can at-
tend. Therefore, we propose a method called
M-RangeDetector, which integrates four dis-
tinct attention masking strategies into a Multi-
Range Attention module, enabling the model to
capture diverse writing strategies. Specifically,
with the global mask, band mask, dilated mask,
and random mask, our method learns various
writing strategies for machine-generated text
detection. The experimental results on three
datasets demonstrate the superior generaliza-
tion capability of our method.

1 Introduction

Large language models (LLMs), such as Chat-
GPT (OpenAI, 2022), Claude (Anthropic, 2024),
Deepseek (Guo et al., 2025), Qwen (Yang et al.,
2024), and Llama (Dubey et al., 2024), have been
rapidly advancing. The text generated by these
models is becoming increasingly fluent and human-
like, facilitating tasks such as question-answering
and news reporting. However, this progress has
also raised increasing concerns about the misuse
of LLMs, including the spread of misinformation

*Corresponding author: Zhendong Mao.

Figure 1: Illustration of our motivation. Both LLMs
and human are writing the text, "The Eiffel Tower is
a wrought-iron lattice tower on the Champ de Mars
in Paris, France." When reaching the word "Champ",
they exhibit different writing strategies. Left: LLMs
focus solely on the preceding range of tokens. Right: In
contrast, human writing strategies may involve global
planning, local writing, iterative revision, and bidirec-
tional thinking. As a result, human do not only consider
the preceding tokens but may also take into account
words from the global, local, and bidirectional contexts.

and academic dishonesty (Crothers et al., 2023).
This highlights the need for automated detection of
machine-generated text.

Machine-generated text detection is a binary
classification task that determines whether a given
text is authored by human or generated by LLMs.
Early supervised methods (Guo et al., 2023) use
RoBERTa (Yinhan et al., 2019) as an encoder
to obtain token logits or representations for clas-
sification. Due to the growing capabilities of
LLMs in semantic understanding, more recent ap-
proaches (Verma et al., 2023; Sarvazyan et al.,
2024) have replaced RoBERTa with LLMs, and
some methods (Chen et al., 2023; Wang et al.,
2024a) directly use LLMs to generate "machine"
or "human" labels for detection. (Guo et al., 2024)
improves detection accuracy by conducting fine-
grained classification of texts generated by differ-
ent models and human-written texts. These meth-
ods perform exceptionally well in specific training
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domains but struggle in out-of-distribution scenar-
ios. This issue arises because existing methods
primarily capture domain-specific features, such
as word frequency, syntax, semantics, and senti-
ments (Guo et al., 2023; Wang et al., 2023). As
these features can vary across domains, detectors
often struggle with misclassification when applied
to texts from new domains. In contrast, captur-
ing domain-independent features is an effective
method for improving the generalization capability
of machine-generated text detection.

There exists an inherent distinction between the
writing strategies of LLMs and human, specifically
in the range of tokens they attend to when generat-
ing a token, no matter the domain to which a text
belongs. As illustrated in Figure 1, when gener-
ating the token "Champ", LLMs are restricted to
attending only to the preceding range of tokens, due
to their masked attention mechanism. In contrast,
when human write the word "Champ", they may
take into account diverse ranges of words, such as
global, local, and bidirectional contexts, depending
on their intentions.

We propose the M-RangeDetector method to
enhance the generalization capability of machine-
generated text detection by modeling diverse writ-
ing strategies as domain-independent features. For
a given text, we first obtain token representations
using a Proxy LLM and then apply a Multi-Range
Attention module to extract diversified writing strat-
egy features for each token. These features are
concatenated and fed into a classifier to determine
whether the text is machine-generated. Specifically,
the module integrates four distinct attention mask-
ing strategies to constrain different ranges during
the computation of attention scores. The global
mask captures relationships across all positions in
the input sequence, the band mask focuses on local
relationships between tokens on both sides, the di-
lated mask restricts a token’s interaction with other
tokens that are separated by a fixed interval, and the
random mask randomly selects subsets of tokens
from any position. The module can learn writing
strategy features by calculating attention scores for
each token within diverse specified ranges. This
constraint ensures that the calculation of attention
scores focuses on a range that closely aligns with
the range a human would attend to during writing.
Notably, our method does not require fine-tuning
the Proxy LLM for token representation. Instead,
it only requires training the Multi-Range Attention
module and the classifier, which demonstrates that

our approach is a resource-efficient solution for de-
tecting machine-generated text. Our approach out-
performs existing methods across multiple widely
used datasets, including the Ghostbuster dataset,
the M4 monolingual and multilingual datasets, and
the OUTFOX dataset. Our contributions can be
summarized as follows:

• In this paper, we introduce a domain-
independent feature, namely the difference
of writing strategy between LLMs and human,
to improve the out-of-domain generalization
capability of the detector.

• We introduce a Multi-Range Attention module
that integrates four distinct attention masking
strategies, including global, band, dilated, and
random masking, to constrain the attention
computation to different ranges, thereby cap-
turing various writing strategies.

• The experimental results demonstrate that our
method not only exhibits exceptional gener-
alization ability in unseen domains but also
performs well on newly emerging LLMs and
multiple languages.

2 Related Work

LLM-Generated Text Mainstream LLMs, such
as ChatGPT and Llama, primarily employ the au-
toregressive structure within the Transformer archi-
tecture (Vaswani, 2017) for continuous next-token
prediction. This enables the generation of high-
quality text that closely mimics human-like writing
styles (Shlegeris et al., 2022; Mei et al., 2017).

Various Modified Attention Mechanisms In ad-
dition to the standard attention mechanism, several
modified attention mechanisms have been proposed
to improve model efficiency and performance. We
introduce four attention mechanisms to control the
range of token representations attending to other
tokens. Global attention (Yu et al., 2018; Ronen
et al., 2022) captures global contextual information
by computing relationships between all positions
in the input sequence. Band attention (Beltagy
et al., 2020; Li et al., 2020) reduces the compu-
tational cost by focusing on local token relation-
ships, making it suitable for tasks with strong local
dependencies. Dilated Attention (Hoang et al.,
2022) introduces flexibility by selecting tokens in
a skipping manner, allowing the model to capture
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Figure 2: The architecture of M-RangeDetector. Left: We utilize Llama or Qwen as a Proxy LLM to obtain
token representations. Right: We integrate the standard attention mechanism with four distinct attention masking
strategies into a Multi-Range Attention module, composed of global, band, dilated, and random attention masks.
The module is designed to capture distinct writing strategy features.

long-range dependencies efficiently. Random at-
tention (Cattaneo et al., 2020) randomly selects
subsets of tokens from any position.

Machine-Generated Text Detection Existing
methods for detecting machine-generated text can
be classified into zero-shot methods and super-
vised methods. Zero-shot methods rely on statis-
tical features such as entropy, and perplexity for
machine-generated text detection. For instance,
GPT-Zero (Tian, 2023) classifies text based on per-
plexity and burstiness. DetectGPT (Mitchell et al.,
2023) demonstrates that text generated by LLMs
tends to fall within the negative curvature region
of the log-probability function. Binoculars (Hans
et al., 2024) employs two LLMs to compute the log
perplexity of the text, utilizing cross-perplexity to
detect LLM-generated content. These methods are
training-free and easy to use, but their effectiveness
is relatively limited (Taguchi et al., 2024).

Supervised approaches, such as fine-tuning
RoBERTa (Yinhan et al., 2019) with external clas-
sifiers, are widely used to distinguish human-
written text from machine-generated text (Yinhan
et al., 2019; Guo et al., 2023). T5-Sentinel (Chen
et al., 2023) addresses text detection by leveraging
T5’s (Ni et al., 2021) next-token prediction capa-
bilities. DeTeCtive (Guo et al., 2024) introduces
a multi-task auxiliary and multi-layer contrastive
learning framework to learn writing styles from dif-
ferent models and human, enhancing generalization
ability. Ghostbuster (Verma et al., 2023) incorpo-
rates multiple weaker language models (ranging
from unigram models to LLMs) to capture token-
level output probabilities and uses structured search
for feature construction. LLMIXTIC (Sarvazyan

et al., 2024) combines token-level probabilities
from four Llama (Touvron et al., 2023) models for
classification. Recent studies (Verma et al., 2023;
Sarvazyan et al., 2024) have increasingly explored
leveraging LLMs for feature extraction instead of
relying on traditional models like RoBERTa.

3 Method

In this section, we provide a comprehensive
overview of our method. In Section 3.1, we define
the task of detecting machine-generated text and
outline the key steps for utilizing the Proxy LLM
to obtain token representations. In Section 3.2, we
introduce the Multi-Range Attentions module that
integrates four distinct attention masking strategies
to restrict different ranges during attention compu-
tation. The architecture of M-RangeDetector is
given in Figure 2.

3.1 Preliminary
Task Formulation This paper addresses the task
of detecting machine-generated text across diverse
domains, languages, and generators. Given a query
text T consisting of L words, T = {t1, t2, . . . , tL},
our objective is to determine whether the text is
authored by human or generated by LLMs.

Proxy LLM A sequence T is fed into the Proxy
LLM (e.g., Llama or Qwen). The model generates
hidden states for each token at each layer. We focus
on the hidden states from the final layer, denoted
as H = {h1, h2, . . . , hn}, where n represents the
number of tokens after tokenization. These hidden
states serve as high-level representations of the
tokens. The key computational steps and equations
for the hidden state H are as follows:
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First, since the Proxy LLM we use is an autore-
gressive model, we obtain the masked attention
scores Am, formulated as follows:

Am (Q,K, V,M) = Softmax
(
QKT
√
dk

+ fm (M)
)
V , (1)

where Q, K, and V denote the query, key, and
value matrices, respectively, which are obtained
through linear transformations. dk represents the
dimensionality of the key vectors. M is a masking
matrix where all elements in the lower triangle are
set to 1, while those in the upper triangle are 0. The
function fm operates on the elements of matrix M ,
defined as follows:

fm(Mij) =

{
0, if Mij = 1

−∞, otherwise
. (2)

The H is recursively computed through a func-
tion f applied to the attention results at each layer:

H(i) = f
(
A(i)

m , H(i−1)
)
, i = 1, 2, . . . , l, (3)

where l represents the number of layers in the Proxy
LLM, and A

(i)
m denotes the attention output com-

puted at layer i as defined in Eq. 1. The initial
hidden state is set as H(0) = X , corresponding to
the input embeddings. The function f encompasses
essential operations such as multi-head attention,
layer normalization, and residual connections.

3.2 Multi-Range Attentions Module
Following the steps outlined in Section 3.1, we ob-
tain token representations. However, a token’s rep-
resentation is generated by the Proxy LLM using
a masking module that relies solely on preceding
tokens. This approach learns contextual informa-
tion from only a single range of tokens. To address
this limitation of the Proxy LLM, we introduce
four different attention masks: Global Mask, Band
Mask, Dilated Mask, and Random Mask, which
are distinct from those used by the Proxy LLM. We
integrate these masks with the standard attention
mechanism to implement four distinct types of at-
tention. As shown in Figure 2, these components
together form the Multi-Range Attention module.
The configurations of attention masks in the pro-
cessing of H are detailed in Algorithm 1.

Specifically, the H from the final layer, obtained
in Section 3.1, are fed into four attention modules
in parallel, yielding four diversified text represen-
tations: r1, r2, r3, r4. The computation of ri is
formulated as follows for i = (1, 2, 3, 4):

ri = AvgPool (Am (Q,K, V,Mi)), (4)

Algorithm 1 The configurations of Global, Band,
Dilated, and Random attention masks during the
processing of H .
Require: Input token representations H , mask type M ∈
{Global, Band, Dilated, Random}, M ∈ Rn×n.

1: Initialize mask matrix M ← 0 ∈ Rn×n

2: ifM = Global Mask then
3: Select global attention tokens G ⊆ {1, 2, ..., n},

where |G| < n
4: Mi,j ← 1 if i ∈ G or j ∈ G
5: Mi,j ← 0 otherwise
6: else ifM = Band Mask then
7: Define band width w
8: Mi,j ← 1 if |i− j| ≤ w
9: else ifM = Dilated Mask then

10: Define dilation rate d
11: Mi,j ← 1 if |i− j| mod d = 0
12: else ifM = Random Mask then
13: Define sparsity ratio r
14: For each row i, randomly select rn indices and set

Mi,j ← 1 for selected j
15: end if
16: return M

where Q, K, and V are obtained by applying a
nonlinear transformation to H , M1,M2,M3,M4

correspond to the Global Mask, Band Mask, Di-
lated Mask, and Random Mask. Am represents the
masked attention, as defined in Equation 1. Avg-
Pool is applied to aggregate the representations of
all n tokens into a single text representation.

Additionally, the H are transformed into a uni-
fied text representation via the AvgPool operation
for subsequent processing, referred to as the raw
text representation rs.

Finally, the four diversified text representations,
along with the raw text representation, are con-
catenated to obtain the fused text representation:
R = {rs, r1, r2, r3, r4}. The fused representation
R is then fed into a classifier to determine whether
the text is machine-generated. After backpropaga-
tion, the classification loss Lf is computed. Mean-
while, to further differentiate the parameters of the
four attention mechanisms in the Multi-Range At-
tention Module, each of r1, r2, r3, r4 is individually
input into a pseudo classifier, whose output does
not play a decisive role. After backpropagation,
the four pseudo-classifiers yield the corresponding
losses L1,L2,L3,L4. Due to the impact of indi-
vidual classification losses, each attention module
undergoes more significant gradient updates, lead-
ing to a more diverse semantic space for each diver-
sified text representation. The final loss function is
computed as:

L = αf · Lf +
∑4

i=1 αi · Li, (5)
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where cross-entropy loss is used for each loss, αf

and αi (for i = 1, 2, 3, 4) are hyperparameters. The
hyperparameters αf and αi are selected based on
validation performance and are discussed in detail
in Appendix B.

Notably, our method does not require fine-tuning
the Proxy LLM. Instead, it only necessitates train-
ing the Differentiated Attentions module and the
classifiers, which involve a minimal number of
parameters. This makes our approach resource-
efficient for detecting machine-generated text.

4 Experiments

We first evaluate the effectiveness of our method
in in-domain and out-of-domain detection sce-
narios with unknown domains. Next, we assess
the model’s performance in detecting machine-
generated text from unseen generators and in multi-
lingual settings. Finally, we explore additional out-
of-domain detection scenarios, including generat-
ing the same text with prompts different from those
used in the training set, using three datasets contain-
ing texts written by non-native English speakers,
and evaluate the robustness of our approach against
paraphrase attacks, as well as its performance in
the authorship attribution task.

4.1 Experimental Setup

4.1.1 Dataset
We utilize four widely recognized and challenging
datasets to conduct comprehensive experiments.

Ghostbuster The Ghostbuster (Verma et al.,
2023) dataset covers three domains and two mod-
els, providing a diverse range of detection scenar-
ios. These include in-domain and out-of-domain
settings, such as unknown domains, unseen genera-
tors, and varied prompts, as well as cases involving
text written by non-native English speakers.

M4 The M4 (Wang et al., 2023) dataset consists
of M4-monolingual and M4-multilingual, encom-
passing data from eight models, six domains, and
nine languages. The OOD detection scenarios
in M4-monolingual and M4-multilingual include
cases involving unknown models and domains. Ad-
ditionally, M4-multilingual also includes scenarios
with unknown languages.

OUTFOX The machine-generated text in the
testing data is paraphrased using OUTFOX (Koike
et al., 2024) or DIPPER (Krishna et al., 2024).

TuringBench The TuringBench (Uchendu et al.,
2021) dataset is designed for the authorship attri-
bution task, which involves classifying texts into
20 distinct categories. Further details about these
datasets can be found in Appendix A.

4.1.2 Evaluation metrics
In line with existing works, we employ Accuracy
(Acc), the F1-score, and Average Recall (AvgRec)
as our primary evaluation metrics. Accuracy is sim-
ple and effective for evaluating overall performance
but fails to reflect minority class performance in
imbalanced datasets. The F1-score considers both
the precision and recall of the model, evaluating
overall model performance by computing the har-
monic mean of these two. AvgRec, the average
recall for human-written (HumanRec) and machine-
generated (MachineRec) text.

4.1.3 Baseline methods
We primarily compare our method with the Ghost-
buster approach, which uses larger parameter
LLMs for feature extraction, while we utilize
smaller parameter LLMs. Additionally, we com-
pare our method with DeTeCtive, which employs a
multi-layer contrastive framework to learn the dif-
ferences in writing styles between machines and hu-
man, whereas we focus on learning writing strate-
gies. Furthermore, we perform a comprehensive
comparison with several widely adopted methods.

Ghostbuster Ghostbuster (Verma et al., 2023)
integrates multiple weaker language models, rang-
ing from unigram models to Davinci with 17.5
billion parameters, to capture token-level proba-
bilities as text features. It employs a structured
search approach for feature construction and is the
state-of-the-art model on the Ghostbuster dataset.

DeTeCtive DeTeCtive (Guo et al., 2024) em-
ploys multi-level contrastive learning to cap-
ture the differences in writing styles between
machine-generated and human-written texts for AI-
generated text detection. It is the state-of-the-art on
both the M4 monolingual and multilingual datasets.

RoBERTa Directly fine-tuning RoBERTa (Yin-
han et al., 2019) with an external classifier is a
common approach for implementing binary classi-
fication tasks (Guo et al., 2023).

T5-Sentinel T5-Sentinel (Chen et al., 2023) ad-
dresses text detection by leveraging T5’s next-token
prediction capabilities.
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In-Domain Out-of-Domain

Model All News Creative Student News Creative Student Average
Domains Writing Essays Writing Essays

Binoculars (Hans et al., 2024) 92.7 97.4 92.4 87.9 97.4 92.4 87.9 92.6
DetectGPT (Mitchell et al., 2023) 57.4 56.6 48.2 67.3 56.6 48.2 67.3 57.4
FastDetectGPT (Bao et al., 2023) 90.8 92.5 88.5 91.2 92.5 88.5 91.2 90.7
GPTZero (Tian, 2023) 93.1 91.5 93.1 83.9 91.5 93.1 83.9 89.5

RoBERTa (Guo et al., 2023) 98.1 99.4 97.6 97.4 88.3 95.7 71.4 85.1
T5 − Sentinel (Chen et al., 2023) 96.6 97.8 95.6 96.2 89.6 95.6 87.9 91.0
Ghostbuster (Verma et al., 2023) 99.0 99.5 98.4 99.5 97.9 95.3 97.7 97.0
M − RangeDetector (Ours) 99.8 100.0 99.5 100.0 98.6 99.0 97.7 98.4

Table 1: The F1 scores in both In-Domain and Out-of-Domain scenarios on the Ghostbuster dataset. The
Out-of-Domain condition refers to using two of the three domains (news, creative writing, or student essays) as
the training set while the remaining domain is used as the test set. Other results are derived from the (Verma et al.,
2023). The best number is highlighted in bold, while the second-best one is underlined. The results shown above
are obtained under the zero-shot setting. In contrast, the following results are based on supervised methods.

DetectGPT DetectGPT (Mitchell et al., 2023)
utilizes probability curvature to detect whether a
text is generated by LLMs. It observes that text
sampled from LLMs tends to occupy the region
of negative curvature in the model’s logarithmic
probability function.

Binoculars Binoculars (Hans et al., 2024) de-
termines whether a text is machine-generated by
computing the ratio between the raw perplexity and
cross-perplexity, thus mitigating the influence of
prompt words on perplexity and enhancing detec-
tion accuracy and robustness.

GPT-Zero GPT-Zero (Tian, 2023) is a commer-
cial model that classifies text based on perplexity
and burstiness.

4.1.4 Implementation details

In all experiments for our method, we freeze the
Proxy LLM and only train the parameters of the
Multi-Range Attention module and the classifier.
It is worth noting that, with the exception of the
experiments in Section 4.5, all other experiments
are conducted using Llama-3 with a 1 billion (B)
parameter size as the Proxy LLM. All experiments
use the AdamW optimizer with a cosine annealing
learning rate schedule. The peak learning rate is set
to 3× 10−5, with a linear warm-up of 2000 steps
and weight decay set to 1× 10−5. The maximum
input token length is set to 512. We train for 20
epochs on a single NVIDIA A800 GPU, with a
batch size of 64. For all comparison experiments,
we either directly use the reported results from
(Verma et al., 2023) and (Guo et al., 2024) or train
and test using their open-source code with default
settings, reporting the final results.

Method M4-monolingual M4-multilingual
AvgRec F1 AvgRec F1

Binoculars (Hans et al., 2024) 89.89 89.89 80.63 82.43

RoBERTa (Guo et al., 2023) 88.70 88.44 80.01 84.44
T5− Sentinel (Chen et al., 2023) 84.01 81.08 76.21 68.99
DeTeCTive (Guo et al., 2024) 98.44 98.38 93.42 93.05
M −RangeDetector 98.42 98.41 97.06 96.98

Table 2: Experimental results on M4-monolingual and
M4-multilingual.

4.2 Main Results and Analysis

We conduct extensive experiments on the Ghost-
buster dataset to assess the generalization ability
of M-RangeDetector across unknown domains.
As shown in Table 1, we compare performance
in both In-Domain and Out-of-Domain detection
scenarios. Our method achieves an F1 score of
99.8% (All domains) and 98.4% (Average), out-
performing the previous best approach by 0.8%
and 1.4%, respectively. We further validate the su-
periority of our method on the M4-Mono dataset,
which covers a broader range of domains and gen-
erators. As shown in Table 2, our method achieves
an F1 score of 98.41%, matching the highest re-
sult attained by DeTeCTive. This result further
demonstrates the generalization ability of our ap-
proach in OOD scenarios, including both unknown
domains and newly emerging LLMs. Additionally,
compared to the DeTeCTive method, our method
not only demonstrates strong performance in En-
glish but also achieves an F1 score of 96.98% on
the M4-multilingual dataset, exceeding DeTeCTive
by 3.93%. This result highlights the generaliza-
tion capability of our approach in OOD scenarios,
including unseen languages. Overall, the compre-
hensive experimental results confirm the general-
ization ability of our method in OOD detection sce-
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Model Prompts Claude Lang8 TOEFL 11 TOEFL 91
(F1) (F1) (Acc.) (Acc.) (Acc.)

Binoculars 48.4 46.0 94.5 100.0 64.8
DetectGPT 70.8 64.2 98.6 100.0 63.7
FastDetectGPT 94.6 84.0 90.2 90.9 64.8
GPTZero 96.1 75.6 99.2 100.0 92.3

RoBERTa 97.4 87.8 98.6 98.1 96.7
T5− Sentinel 94.6 84.1 98.9 99.6 97.8
Ghostuster 99.5 92.2 95.5 99.9 74.7
M −RangeDetector 99.7 96.5 99.9 100.0 100.0

Table 3: The additional generalization results in-
clude diverse prompting strategies, the unseen generator
Claude, and three datasets containing texts written by
non-native English speakers. All configurations remain
identical to those in (Verma et al., 2023).

Attacker Detector Non-attacked DIPPER OUTFOX

AvgRec F1 AvgRec F1 AvgRec F1

Binoculars 49.3 33.0 55.4 45.2 89.1 89.0
FastDetectGPT 75.1 74.6 88.2 88.2 94.9 94.9

RoBERTa 90.8 90.7 94.3 94.4 73.9 68.3
T5− Sentinel 99.0 98.9 96.1 96.1 94.8 94.8
OUTFOX 96.5 96.4 82.4 79.0 61.8 39.4
DeTeCTive 99.1 99.1 97.7 97.5 97.0 96.9
M −RangeDetector 99.4 99.4 99.2 99.2 99.1 99.1

Table 4: The results of our approach against para-
phrase attacks, including DIPPER attack and OUT-
FOX attack on the OUTFOX dataset.

narios, including unknown domains, newly emerg-
ing LLMs, and unseen languages. We compare
our method against all participating approaches in
the SemEval competition1, which focuses on the
M4 dataset, to thoroughly demonstrate the supe-
rior performance of our method on the M4 dataset.
Detailed results are provided in Appendix C.

4.3 More comprehensive experiments
As shown in Table 3, we further conduct additional
generalization experiments, evaluating model per-
formance under diverse prompting strategies and
assessing its ability to detect texts generated by
the unseen generator, Claude. We further eval-
uate model accuracy on three datasets of texts
written by non-native English speakers. In all
cases, our method achieves state-of-the-art per-
formance, demonstrating its strong generaliza-
tion across machine-generated texts with diverse
prompts and human-written texts from different
linguistic backgrounds.

We evaluate the robustness of our approach
against paraphrase attacks using the OUTFOX
dataset. As shown in Table 4, in the non-attacked
text detection scenario, our method achieves the
highest accuracy among all approaches, with both
AvgRec and F1 scores reaching 99.4%. Under

1SemEval-2024, Task 8: https://www.codabench.org/
competitions/1752

Method M4-monolingual
AvgRec F1

M −RangeDetector 98.42 98.41
w/o All Attentions 92.14 92.20
w/o AvgPool 97.82 97.85
w/o Global Attention 96.75 96.83
w/o Band Attention 96.15 96.24
w/o Dilated Attention 96.66 96.74
w/o Random Attention 96.25 96.28
w/o Pseudo Classifier 97.63 97.68

Table 5: Ablation studies for the Multi-Range Attention
module and the Pseudo Classifiers.

DIPPER and OUTFOX attacks, our method main-
tains exceptional performance, achieving AvgRec
and F1 scores of 99.2% and 99.1%, respectively.
In contrast, other methods experience significant
performance degradation under attack. These re-
sults demonstrate the superior robustness of our
approach across various attack scenarios. We
conducte additional experiments on the GenAI
workshop dataset (Wang et al., 2025) to validate
our method’s effectiveness in detecting text gen-
erated by recent LLMs. To evaluate whether M-
RangeDetector has learned fine-grained features
for distinguishing between generators, we con-
ducted an authorship attribution experiment on the
TuringBench dataset. Detailed results are provided
in Appendix D.1 and D.2.

4.4 Ablation study
To systematically evaluate the contribution of each
component in our method, we conduct a series of
ablation studies on the M4-monolingual dataset,
as summarized in Table 5. After removing Avg-
Pool, the model achieves an F1 score of 97.85%,
which is only 0.6% lower than the full model (M-
RangeDetector). However, when we remove the
multi-range attention module (w/o All Attentions),
the performance drops by 6% compared to M-
RangeDetector. This demonstrates that the multi-
range attention module, which captures distinct
writing strategies, plays a crucial role in enhancing
the model’s generalization capability, rather than
relying on the ProxyLLM hidden states used in ex-
isting methods. To further investigate the effective-
ness of the various attention mechanisms within the
module, we systematically remove Global Atten-
tion, Band Attention, Dilated Band Attention, and
Random Attention individually. The observed per-
formance degradation across all cases underscores
the critical role of each attention mechanism within
the module. Notably, after removing the pseudo-
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Figure 3: The experimental results assessing the im-
pact of Proxy LLM scale and type. We used LLaMA
and Qwen models of varying sizes, evaluated across
out-of-domain scenarios on the Ghostbuster dataset.

classifier, we observe a noticeable decline in perfor-
mance, suggesting that the pseudo-classifier plays
a role in enhancing the diversity of the semantic
space for each diversified text representation.

4.5 Impact of Proxy LLM Scale and Type

To investigate whether different architectures of the
Proxy LLM significantly impact the performance
of our method, we conduct comprehensive experi-
ments on the Ghostbuster dataset in out-of-domain
scenarios, assessing the average F1 score across
three settings using the Llama-3 and Qwen-2.5
model series. The Llama-3 models feature param-
eter sizes of 1B, 3B, and 8B, while the Qwen-2.5
models comprise 1.5B, 7B, and 14B. As shown
in Figure 3, the results indicate that the Proxy
LLM, whether based on Llama or Qwen, surpasses
the previous SOTA model, Ghostbuster, which uti-
lizes davinci with 17.5 billion parameters. Fur-
thermore, the minimal performance gap between
Llama and Qwen indicates that architectural differ-
ences among LLMs have a negligible impact on
the effectiveness of our method.

Additionally, we investigate whether scaling up
LLMs improves detection performance. A horizon-
tal comparison reveals that increasing model size
has a negligible impact, indicating that model scale
is not a critical factor in determining the effective-
ness of our method.

4.6 Exploratory on Attention Score

We perform an analysis of the attention scores from
different attention in the Multi-Range Attention
module. We introduce a special token, Ts, at the
end of the original text and assign it global atten-
tion, enabling Ts to interact with all tokens (simi-
larly to the [ CLS ] token in BERT (Devlin, 2018)).
We only analyze the attention scores between Ts

Figure 4: The figure compares θ value distributions
between human-written and machine-generated texts
across four attention mechanisms, using box plots to
highlight the differences.

and other tokens. We define the breadth of atten-
tion, denoted as θ, to calculate the proportion of
preceding tokens attended to when generating the
last token. Specifically, the breadth of attention
is the ratio of the number of tokens with attention
scores greater than 3 × 10−5 to Ts relative to the
total number of tokens. A larger θ value indicates
that the model attends to a broader range of tokens.
The value of θ is computed as follows:

θ =
∑N

j=1 I(Ai,j>3×10−5)

N (6)

where Ai,j is the attention score assigned by the
model to token i when attending to token j, to-
ken i is Ts, N is the total number of tokens, I(·)
is the indicator function, which equals 1 if the
condition inside holds true and 0 otherwise. A
random sample of 1000 instances is drawn from
the Ghostbuster dataset for experimentation. Each
sample is processed through the model and com-
puted using Equation 6, yielding four θ values. The
results are then visualized using box plots. As
shown in Figure 4, the within-group results in-
dicate that, across all four diversified attentions,
the θ for human-written text is lower than that for
machine-generated text. We hypothesize that this
discrepancy arises because human writing tends to
focus on a limited number of key tokens, while
machine-generated text, due to the central role
of the attention mechanism in LLMs, exhibits a
broader attention pattern. In the between-group
results, we observe that the four attention mech-
anisms yield distinct distributions of the θ value
within the same category. This suggests that the
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four attention masks have learned different token
representation patterns.

5 Conclusion

In this study, we propose the different writing
strategies between LLMs and human as domain-
independent features for enhancing generalization
in machine-generated text detection. We introduce
a novel approach called M-RangeDetector, which
incorporates a Multi-Range Attention module to
learn different writing strategies for classification.
The module incorporates four distinct attention
masking strategies to constrain different ranges dur-
ing the computation of attention scores. Specifi-
cally, it employs global, band, dilated, and random
masking strategies to capture the contextual repre-
sentations of tokens across various token ranges,
including global, local, and bidirectional ranges.
Our method achieves state-of-the-art performance
on three widely used benchmarks. Experimental
results demonstrate that our approach not only ex-
hibits exceptional generalization ability in unseen
domains but also performs well on newly emerging
LLMs and across multiple languages.

Limitations

Despite its effectiveness, M-RangeDetector has cer-
tain limitations. While contextual representations
from tokens across diverse ranges differ signifi-
cantly between human and LLMs, the results of the
Authorship Attribution experiment indicate that al-
though our method can reliably detect whether a
text is machine-generated, it is not capable of accu-
rately identifying the specific LLM that produced
it. Furthermore, we have not conducted a detailed
analysis of the specific contributions of different
masking strategies to the model, nor have we inves-
tigated whether incorporating additional masking
strategies can capture a broader range of writing
strategies. In the future, we aim to develop more
generalizable models for the Authorship Attribu-
tion task and further explore the impact of various
attention masking strategies on the performance of
our method. We will continue to advance research
in machine-generated text detection tasks.
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A Dataset Details

A.1 GhostBuster Dataset
The Ghostbuster dataset (Verma et al., 2023) serves
as a benchmark for detecting AI-generated text
across various domains. It spans three distinct
domains: student essays, creative writing, and
news articles, and includes two generative models,
ChatGPT (OpenAI, 2022) and Claude (Anthropic,
2024). The dataset features five detection scenar-
ios: In-Domain, Out-of-Domain, Prompts, Claude,
and non-native English speakers. In the In-Domain
scenario, data from all three domains (ChatGPT)

are used for training and evaluated on a test set
from the same distribution. News, Creative Writ-
ing, and Student Essays represent single-domain
training and testing on the corresponding test set.
In the Out-of-Domain scenario, two of the three
domains (news, creative writing, or student essays)
are used for training, with the remaining domain
reserved for testing. The Avg reports the average
results of the three individual out-of-domain exper-
iments. The Prompts scenario tests text generated
from prompts different from those used in training,
essentially an out-of-domain detection challenge.
The Claude scenario involves training on ChatGPT-
generated texts and testing on Claude-generated
texts to test the unseen model detection. Finally,
the non-native English speakers category includes
three datasets: Lang8, TOEFL-11, and TOEFL-91,
which are written by non-native speakers, testing
the ability to detect texts written by different lin-
guistic backgrounds.

A.2 M4

The M4 (Wang et al., 2023) dataset is a large-
scale, multi-domain, multi-model, and multilin-
gual collection. It includes text from sources
such as Wikipedia, WikiHow (Koupaee and Wang,
2018), Reddit (Fan et al., 2019), arXiv, and Peer-
Read (Kang et al., 2018). Using human-written
prompts, models like ChatGPT (OpenAI, 2022),
davinci-003 (Radford, 2018), Llama (Touvron
et al., 2023), FLAN-T5 (Chung et al., 2024),
Cohere (Küchler et al., 2024), Dolly-v2, and
BLOOMz(Muennighoff et al., 2022) generate con-
tent in nine languages, including English, Chinese,
and Russian. In the monolingual scenario, the
test set features unseen domains and unseen AI-
generated texts from GPT-4 (Achiam et al., 2023),
which are further paraphrased by OUTFOX (Koike
et al., 2024) to increase detection difficulty. In the
multilingual scenario, the test set introduces novel
languages not present in the training or validation
sets, with AI-generated texts also paraphrased.

A.3 TuringBench

The dataset within TuringBench (Uchendu et al.,
2021) comprises 200,000 samples across 20 dis-
tinct labels, including human-written texts and out-
puts from various AI text-generators such as GPT-1,
GPT-2, GPT-3, GROVER, CTRL, XLM, XLNET,
and others. The dataset was constructed by col-
lecting 10,000 news articles, primarily in the do-
main of politics, from sources like CNN. These
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articles, ranging from 200 to 400 words, were used
to prompt AI text-generators to produce an addi-
tional 10,000 articles each, resulting in a total of
200,000 articles. The dataset supports two bench-
mark tasks: the Turing Test (TT), which is a binary
classification problem to differentiate between hu-
man and machine-generated texts, and Authorship
Attribution (AA), a multi-class classification prob-
lem aimed at identifying the specific neural lan-
guage model that generated the texts.

B Hyperparameters Settings

We outline our hyperparameter settings for the
weighted loss function. Our overall loss function is
defined as:

L = αf · Lf +

4∑

i=1

αi · Li

To ensure numerical stability and effective opti-
mization, we first constrain the sum of all five hy-
perparameters to equal 1. This prevents any indi-
vidual loss term from dominating excessively while
maintaining a balanced gradient.

αf +
4∑

i=1

αi = 1.

Through empirical analysis, we found that Lf plays
a more crucial role in optimization than Li. To re-
flect this importance, we set αf = 0.5 and evenly
distributed the remaining weight among Li, as-
signing αi = 0.125 for i = 1, 2, 3, 4. Further-
more, to validate the stability of these choices,
we conducted additional experiments by varying
αf within the range of 0.3, with corresponding
adjustments to αi. Our results indicate that set-
ting αf = 0.5 ± 0.1, αi = 0.125 ± 0.025 for
i = 1, 2, 3, 4 yields higher detection performance.
Based on these findings, we ultimately set αf =
0.5, αi = 0.125.

C SemEval Competition Results

As shown in Table 2 in Section 4.2, we compare our
model with Detective on AvgRecall and F1 scores.
The results demonstrate that our method achieves
SOTA performance in both monolingual and multi-
lingual tasks, with a 3.93% improvement over De-
tective in the multilingual task. To further highlight
the capabilities of our approach, we also compared
it with the results of all participants in the SemEval
competition, where the final ranking was based on

Team Prec Recall F1-score Acc

M-RangeDetector 98.19 98.63 98.41 98.42
dianchi 96.21 99.19 97.68 97.53
Genaios 96.11 98.03 97.06 96.88
USTC-BUPT 95.75 96.86 96.30 96.10
mail6djj 94.87 97.18 96.02 95.76
howudoin 93.48 98.12 95.74 95.42
idontknow 94.57 95.42 94.99 94.72
baseline 93.36 84.02 88.44 88.47

Table 6: The results of Monolingual

Team Prec Recall F1-score Acc

M-RangeDetector 99.10 95.05 97.03 96.98
USTC-BUPT 94.93 97.53 96.21 95.99
FI Group 94.28 98.00 96.10 95.85
KInIT 92.95 97.86 95.34 95.00
priyansk 90.70 98.14 94.28 93.77
L3i++ 92.47 94.00 93.23 92.87
QUST 90.45 90.98 90.71 90.27
baseline 73.45 99.30 84.44 80.89

Table 7: The results of Multilingual.

the accuracy (Acc) of the Machine-Generated Text
detection task. As shown in Tables 6 and 7 (due to
space limitations, we only present the results of the
top six participants and the baseline, for detailed
results, refer to (Wang et al., 2024b)), our method
also achieves SOTA performance in terms of accu-
racy (Acc). In the monolingual task, our method
outperforms the top-ranked model by 0.84%, and
in the multilingual task, it surpasses the top model
by 0.99%. These results further demonstrate that
our method achieves SOTA performance among all
existing methods.

model Macro-F1 Acc

Binoculars 76.51 76.76
RoBERTa 70.34 72.56
T5-Sentinel 69.20 71.12
M-RangeDetector 86.10 86.34

Table 8: Performance comparison of our approach and
baseline methods on the GenAI workshop dataset.

Rank Team Macro-F1 Acc

1 Advacheck 83.07 83.11
2 Unibuc-NLP 83.01 83.33
3 Fraunhofer SIT 82.80 82.89
- Baseline 73.42 74.89

Table 9: Partial leaderboard results for the English sub-
task in the GenAI workshop.
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Method Precision Accuracy Recall F1

Random Forest 58.93 61.47 60.53 58.47
SVM (3-grams) 71.24 72.99 72.23 71.49
WriteprintsRFC 45.78 49.43 48.51 46.51
Syntax-CNN 65.20 66.13 65.44 64.80
N-gram CNN 69.09 69.14 68.32 66.65
N-gram LSTM 66.94 68.98 68.24 66.46
OpenAI Detector 78.10 78.73 78.12 77.41
BertAA 77.96 78.12 77.50 77.58
BERT-Multinomial 80.31 80.78 80.21 79.96
RoBERTa-Multinomial 82.14 81.73 81.26 81.07
DeTeCtive 84.04 82.75 82.59 83.05
Ours 85.39 86.08 85.77 85.41

Table 10: The results of Authorship Attribution task on
TuringBench dataset.

Figure 5: Confusion Matrix for Authorship Attribution
on the TuringBench Dataset.

D Additional Experiments Results

D.1 GenAI Workshop Dataset

As shown in Table 8, our method achieves a Macro-
F1 score of 86.10% and an Accuracy of 86.34% on
the GenAI workshop dataset, outperforming other
baseline methods (Best) by 10%. Additionally,
as shown in Table 9, our model outperforms all
teams in the GenAI workshop, ranking 1st on the
English Subtask leaderboard and surpassing the
top-ranked model by 3%. These results underscore
the robustness of our method in detecting text from
newer LLMs, maintaining strong and consistent
performance even on the latest datasets.

D.2 The Authorship Attribution Task

The author attribution task requires not only de-
termining whether a text is written by human or

generated by LLMs, but also further identifying
which generator generated the text. This consti-
tutes a multi-class classification problem. To fur-
ther evaluate the effectiveness of our method in the
author attribution task, we conducted comprehen-
sive experiments on the TuringBench dataset. The
results, shown in Figure 10, demonstrate that our
approach outperforms other methods, SOTA perfor-
mance across multiple metrics, including Precision
(84.56%), Accuracy (84.18%), Recall (83.67%),
and F1 score (83.23%). However, the confu-
sion matrix results in Figure 5 indicate that our
method can distinguish whether a text is machine-
generated. Nonetheless, there are still significant
misclassifications within models from the same
family (e.g., GPT). This is because while human
and machine writing strategies differ greatly, writ-
ing strategies among machines can be quite similar,
making it challenging for our method to accurately
identify specific LLMs. In future work, we will
further investigate the potential of our approach in
author attribution tasks.
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