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Abstract

In this work, we establish a novel theoretical
connection between supervised fine-tuning and
offline reinforcement learning under the token-
level Markov decision process, revealing that
large language models indeed learn an implicit
Q-function for inference. Through this theoret-
ical lens, we demonstrate that the widely used
beam search method suffers from unacceptable
over-optimism, where inference errors are in-
evitably amplified due to inflated Q-value es-
timations of suboptimal steps. To address this
limitation, we propose Supervised Optimism
Correction (SOC), which introduces a simple
yet effective auxiliary loss for token-level Q-
value estimations during supervised fine-tuning.
Specifically, the auxiliary loss employs implicit
value regularization to boost model confidence
in expert-demonstrated responses, thereby sup-
pressing over-optimism toward insufficiently
supervised responses. Extensive experiments
on mathematical reasoning benchmarks, includ-
ing GSM8K, MATH, and GAOKAO, showcase
the superiority of the proposed SOC with beam
search across a series of open-source models.

1 Introduction

Recent advances in Large Language Mod-
els (LLMs) have demonstrated remarkable suc-
cess across diverse tasks such as instruction follow-
ing (Brown et al., 2020; Zhou et al., 2023; Taori
et al., 2023; Tao et al., 2024; Liu et al., 2025b), code
generation (Liu et al., 2023; Le et al., 2022; Ni-
jkamp et al., 2022; Jiang et al., 2024), and medical
diagnosis (Zhang et al., 2023b; Wang et al., 2023).
Within these developments, complex reasoning ca-
pabilities have attracted increasing attention from
research communities, attributed to their capabil-
ity of enabling LLMs to tackle intricate problem-
solving (Wei et al., 2022; Yao et al., 2022; Kojima
et al., 2022). Despite these achievements, learning
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to reason remains a critical yet challenging task for
LLMs, particularly for smaller models with lim-
ited parameters (Liu et al., 2025a; Zhang et al.,
2025b,a). The inherent complexity stems from in-
efficient exploration of LLMs, as the combinatorial
nature of the vocabulary space results in an expo-
nential growth of potential reasoning paths (Snell
et al., 2024).

A prevalent paradigm for enhancing reasoning
capabilities involves Supervised Fine-Tuning (SFT)
on high-quality demonstration data (Brown et al.,
2020; Yao et al., 2024; Yang et al., 2024a), where
models learn to imitate expert reasoning patterns
through next-token prediction. The complemen-
tary strategies employ search-based decoding tech-
niques during inference (Snell et al., 2024; Xie
et al., 2024b; Ding et al., 2025), such as beam
search, which aims to enhance reasoning by ex-
ploring multiple candidate pathways. However,
there is often an overlooked disconnect between
the local token-level optimization of SFT and the
global sequence-level objectives pursued by search-
based decoding. This disconnect results in a criti-
cal misalignment: while SFT focuses on maximiz-
ing the likelihood of individual token predictions,
search-based decoding operates by scoring entire
sequences, which may not directly align with the
local training objectives of LLMs. By addressing
this gap, we can potentially unlock more robust
reasoning capabilities in LLMs, aligning training
objectives more closely with inference-time goals.

In this work, we employ the token-level Markov
decision process to establish a novel theoretical
connection between SFT and offline Reinforcement
Learning (RL) (Levine et al., 2020; Kumar et al.,
2020; Kostrikov et al., 2021; Lyu et al., 2022). We
theoretically demonstrate that LLMs indeed learn
an implicit Q-function to estimate the expected util-
ity of token sequences during SFT. Through this
lens, we further explore the over-optimism prob-
lem in the widely used beam search method, re-
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Figure 1: Illustration of Supervised Optimism Correction. Guided by an implicit Q-function, beam search suffers
from the over-optimism problem during the decoding process, which confuses LLM for reliable response choice. In
particular, the over-optimism can amplify errors during beam search, leading to the selection of incorrect trajectories
with higher Q-values. To alleviate this problem, SOC introduces an auxiliary loss during SFT to boost model
confidence in expert-demonstrated responses, about which LLM should be sure.

vealing that the search process disproportionately
favors sequences with inflated Q-value estimations.
This over-optimism arises because the beam search
method autoregressively selects tokens with locally
overestimated Q-values, thereby inevitably ampli-
fying errors through cascading suboptimal steps.

To alleviate this problem, we propose Super-
vised Optimism Correction (SOC), which intro-
duces a simple auxiliary loss during SFT to give
supervised responses a state-value bonus. Unlike
prior RL-based methods that require explicit re-
ward modeling, SOC operates purely within the
SFT paradigm by imposing implicit value regular-
ization. This regularization boosts confidence in
expert-demonstrated data while potentially penal-
izing high Q-value estimations for insufficiently
supervised reasoning steps. As a result, the model
learns to autonomously prune low-quality reason-
ing paths during inference without relying on exter-
nal verifiers or reward models. For instance, when
encountering erroneous intermediate steps, the cor-
rected Q-values suppress further exploration of
those branches, mirroring human-like error recog-
nition and recovery patterns, requiring no archi-
tectural modifications or additional inference-time
computations. Our core contributions are summa-
rized as follows:

• We establish a novel theoretical connection be-

tween SFT and offline RL, identifying and for-
malizing the over-optimism problem of implicit
Q-functions for LLM beam search.

• We develop SOC, a lightweight yet effective
method that boosts model confidence in expert-
demonstrated data through an auxiliary value reg-
ularization loss during SFT.

• Extensive experiments demonstrate the effective-
ness of SOC in mathematical reasoning bench-
marks GSM8K, MATH, and GAOKAO, signifi-
cantly improving the performance of open-source
models like Qwen-2-1.5B, Qwen-2.5-3B, and
Qwen-2.5-7B.

2 Preliminaries

2.1 Token-level MDP for LLMs

We start by formulating the token generation pro-
cess of LLMs as a token-level Markov Decision
Process (MDP) (Rafailov et al., 2024b,a; Zhong
et al., 2024, 2022), enabling a structured analysis
of their decision-making dynamics and reasoning
capabilities. An MDP (Sutton and Barto, 1998) is
typically defined by a tuple (S,A,P, R, γ), where
S denotes the state space,A the action space, P the
transition probability function, R the reward func-
tion, and γ ∈ [0, 1] the discount factor, adopting a
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discount factor of γ = 1 throughout the paper. In
our formulation, the state s ∈ S corresponds to the
token generation context at step t, represented as
st = (x0, x1, . . . , xt), which serves as the condi-
tioning context for generating the next token xt+1.
The action space A is defined by the fixed vocab-
ulary from which the next token is selected. The
probability distribution over actions is parameter-
ized by the LLM’s learned policy πθ(at|st), with
at ∈ A at each step t. In addition, the transition
function P (st+1|st, at) models the concatenation
of the current state with the chosen action to form
the subsequent state, i.e. st+1 = (st, at). In the of-
fline RL setting (Levine et al., 2020; Kumar et al.,
2020; Kostrikov et al., 2021), the objective is to
obtain a parameterized policy πθ that maximizes
the expected cumulative reward using an offline
dataset D. This can be formulated as:

max
θ

Est∼D,at∼πθ

[
T∑

t=0

γtR(st, at)

]
, (1)

where the reward function R(st, at) measures the
quality of the generated output. In tasks such as
mathematical reasoning, the reward is often sparse,
with a terminal reward Routcome = 1 indicating the
correctness of the final result, while intermediate
rewards are set to zero. When adopting a discount
factor of γ = 1, the gradient of Equation (1) with
respect to the policy parameters is given by:

Est∼D,at∼πθ

[
T∑

t=0

∇θ log πθ(at|st)R(τ)

]
.

(2)
According to the sparse reward assumption in the
above MDP setting for correct τ :

R(τ) :=

T∑

t=0

γtR(st, at) = Routcome = 1, (3)

then Equation (2) can be simplified to:

Est∼D,at∼πθ

[
T∑

t=0

∇θ log πθ(at|st)
]
. (4)

On the other hand, the pretrained model πθ in the
SFT stage aims to imitate the behavior of the expert
policy π⋆. This can be expressed as

πθ = argmax
θ

E(s⋆,a⋆)∼D [log πθ(a
⋆|s⋆)] . (5)

Note that the optimization problem above is a spe-
cial case of the optimization problem encountered

in offline reinforcement learning. The reward sig-
nal comes from matching the expert’s demonstra-
tions. In addition, to avoid repetitive or suboptimal
outputs, we can maximize the entropy of the pol-
icyH(πθ) simultaneously to encourage exploration
and prevent the policy from becoming overly deter-
ministic, the optimization problem will be written
as

πθ = argmax
θ

E(s⋆,a⋆)∼D [log πθ(a
⋆|s⋆)]

+H (πθ (·|s⋆)) , (6)

which is equivalent to a maximum entropy RL ob-
jective (Ziebart, 2010; Haarnoja et al., 2018) but
with the reward coming from the expert’s actions
rather than an environment-based reward signal.

2.2 Deriving the Q-function as LLM Logits
In the general maximum entropy RL setting, the
fixed-point solution of Equation (6) is given by
(Ziebart, 2010; Rafailov et al., 2024a; Guo et al.,
2021) as:

π⋆(a|s) = exp (Q⋆(s, a)− V ⋆(s)) , (7)

where Q⋆(s, a) is the optimal Q-function, repre-
senting the accumulated reward starting from state
s, taking action a, and following the optimal policy
thereafter. The optimal value function V ⋆(s) is
related to Q⋆(s, a) and is given by:

V ⋆(s) = log
∑

a

exp(Q⋆(s, a)). (8)

By combining Equation (7) and Equation (8) and
taking the logarithm of both sides, we obtain:

π⋆(a|s) = exp(Q⋆(s, a))∑
a′ exp(Q

⋆(s, a′))
. (9)

Thus, the optimal policy is derived from the soft-
max of the corresponding Q-function. On the other
hand, in the context of pretrained models in LLMs,
the policy is also obtained from the softmax of
logits:

πθ(a|s) =
exp(Qθ(s, a))∑
a′ exp(Qθ(s, a′))

, (10)

where Qθ(s, a) represents the logits generated by
the pretrained model. These logits implicitly ap-
proximate the optimal Q-function, ensuring that
the parameterized policy πθ closely resembles the
optimal policy π⋆. We will refer to LLM logits as
the implicit Q-function throughout the paper.
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2.3 Beam Search Decoding
Beam search is a heuristic search algorithm widely
used in decoding for LLMs’ test time (Pascual
et al., 2020; Sun et al., 2023; Liu et al., 2025a).
Given a pre-trained language model πθ that gener-
ates tokens in an autoregressive manner, standard
beam search aims to approximate the most prob-
able output sequence by maintaining a fixed-size
set of candidate sequences (beams) at each decod-
ing step. Formally, at each step t, the method ex-
pands all hypotheses by considering the top-k best
candidate tokens according to their accumulated
log-probability scores. This process continues until
an end-of-sequence (EOS) token is generated or
the maximum sequence length T is reached. The
algorithm is presented in Algorithm 1.

Algorithm 1 Standard Beam Search Decoding

Require: Language model πθ(at|st), question in-
put x0, beam width k, maximum sequence
length T

1: Initialize beam set B ← {(s0, v0)}, where
s0 = x0 and score v0 = 0

2: for t = 1 to T do
3: for each (st, vt) ∈ B do
4: Compute next-token probabilities πθ(at |

st) for at ∈ A
5: Select the top-k tokens Atop

t from A
based on the accumulated score:

6: vt+1 = vt + log πθ(at|st)
7: for each at ∈ Atop

t do
8: Compute new state st+1 = (st, at)
9: Add corresponding (st+1, vt+1) to B

10: end for
11: end for
12: end for
13: Return best sequence: argmax(sT ,vT )∈B vT

3 Supervised Optimism Correction

In Subsection 3.1, we first discuss the over-
optimism problem observed in beam search dur-
ing inference. Next, Subsection 3.2 investigates a
potential cause of this issue by analyzing how in-
flated Q-value estimation errors, particularly those
arising from insufficiently supervised states, can
amplify over-optimism through the maximization
operation of beam search. Finally, Subsection 3.3
introduces our proposed Supervised Optimism Cor-
rection (SOC) method, which incorporates an aux-
iliary V loss to better align the response selection

process with expert-demonstrated responses.

3.1 Over-optimism Problem in Beam Search
In this section, we explore the over-optimism prob-
lem in beam search, examining the factors that
contribute to its exacerbation and its impact on re-
sponse quality during inference. Beam search is
widely used to generate sequences based on accu-
mulated log-probability scores. However, over-
optimism can arise when the search dispropor-
tionately favors sequences with inflated Q-value
estimates, leading to suboptimal results. This
phenomenon is also prevalent in traditional rein-
forcement learning contexts (Thrun and Schwartz,
2014; Van Hasselt et al., 2016; Kumar et al., 2020;
Kostrikov et al., 2021; Wen et al., 2024b). To for-
malize this issue, we express the beam search selec-
tion process in terms of the Q-function. At every
intermediate step T , by incorporating Equation (9),
the accumulated log-probability over the sequence
can be expressed as:

T∑

t=0

log π(at|st) =
T∑

t=0

(Q(st, at)− V (st))

(11)

=
T−1∑

t=0

(Q(st, at)− V (st+1)) +Q(sT , aT ) (12)

− V (s0).

This can be further simplified using the Bellman
equation for the value function for all t < T :

Q(st, at) = Est+1 [R(st, at) + γV (st+1)]. (13)

Under the assumptions that the transition dynam-
ics P (st+1|st, at) are deterministic, γ = 1, and
intermediate rewards are zero by default, the accu-
mulated log-probability simplifies to:

T∑

t=0

log π(at|st) = Q(sT , aT )− V (s0). (14)

Since all candidates share the same question input
s0, V (s0) is same and beam search relies heav-
ily on these Q-values of the generated token to
select the top-k candidates at each step, as de-
scribed in Equation 11. However, the process may
include candidates with inaccurate Q-value esti-
mates Q(sT , aT ), which can result from limited
supervision during the fine-tuning stage. When
Q-values are overestimated in insufficiently super-
vised states, this overestimation can amplify errors
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during beam search, leading to the selection of sub-
optimal trajectories with higher Q-values, even if
they are not aligned with the most reliable, well-
supervised paths. Consequently, the final output
is biased toward these less reliable paths. Figure 1
illustrates a case example of the over-optimism
problem. In the next subsection, we investigate
the causes of over-optimism in beam search, with
a particular focus on how Q-value estimation er-
rors contribute to its exacerbation and the resulting
impact on beam search performance.

3.2 Impact of Value Function Estimation
Error on Beam Search Performance

To analyze how the estimation error of Q affect
the sampling process in inference time, we start to
obtain the key observation from the gradient of the
cross-entropy loss. Recall that in SFT stage, the
model is trained to align its predicted distribution
πθ with the target distribution π⋆ by minimizing
the cross-entropy loss (Le et al., 2022; Yang et al.,
2024b):

LSFT = Es∼D

[
−
∑

a

π⋆(a|s) log πθ(a|s)
]
,

(15)
where target distribution π⋆ could be one-hot en-
coding as datasetD indicates the set of high-quality
demonstrations. By incorporating Equation (9) into
the gradient form of LSFT, we can see that the LSFT
minimize the estimation error of implicit Q, i.e.

∇θLSFT = Es∼D

[
−
∑

a

π⋆(a|s)
πθ(a|s)

∂πθ(a|s)
∂θ

]

=Es∼D



∑

a

(
Q̃θ(s, a)− Q̃⋆(s, a)

)

︸ ︷︷ ︸
estimation error

∂Qθ(s, a)

∂θ


 ,

(16)
where Q̃(s, a) ∈ [0, 1] refers to normalized value
function for each action a. We give the detailed
proof in Appendix B. Intuitively, the learned policy
πθ is derived from the softmax of Qθ(s, a), so es-
timation errors in Qθ(s, a) will lead to deviations
from the optimal policy π⋆, and the policy may
favor suboptimal actions, leading to insufficiently
supervised action and misguide to the suboptimal
state. This error could inevitably be amplified dur-
ing inference since the beam search takes action
based on the estimated Qθ(s, a) as shown in Equa-
tion (11).

3.3 V Loss for Optimism Correction
Based on the analysis in the previous subsection,
one approach to mitigating the over-optimism prob-
lem is to reduce the impact of estimation error. To
this end, we propose an auxiliary objective V loss,
defined as:

LV = Es∼D

[
− log

∑

a

expQθ(s, a)

]
. (17)

Intuitively, this auxiliary loss serves to boost the
overall implicit value function for high-quality, la-
beled data. By elevating the value estimates as-
sociated with supervised trajectories, the model
is more likely to preferentially select these trajec-
tories during inference, thereby counteracting the
bias introduced by overestimated Q values in in-
sufficiently supervised states. Overall, our total
objective in the training stage can written as:

Loverall = LSFT + λ · LV (18)

with a tuning hyperparameter λ.

3.4 Effect of the V Loss Update
To gain a mechanistic understanding of the V loss,
we analyze the gradient of its objective function:

∇θLV = Es∼D

[
−
∑

a

Q̃θ(s, a)
∂Qθ(s, a)

∂θ

]
.

(19)
This expression reveals how the update is guided
by the weighted sum of the Q-function gradients
for labeled data, where Q̃θ(s, a) acts as an implicit
weighting factor influencing parameter adjustments.
We provide an illustrative example for the update
effect between LSFT and LV in Figure 2. Specif-
ically, since

∑
a Q̃θ(s, a) = 1 for all state s, A

larger Q̃θ(s, a) for a specific action increases the
magnitude of its corresponding gradient contribu-
tion, thereby resulting in a more substantial update
for Qθ(s, a). Consequently, actions with higher
Q̃θ(s, a) experience a more significant increase in
their Q values during optimization. Compared to
the SFT update for a supervised action, the update
magnitude induced by the V loss is different. In
particular, when Q(s, a) is close to Q⋆(s, a), the
gradient from the SFT objective tends to be small,
as shown in Equation (16), potentially resulting in
only minimal updates. In contrast, the V loss con-
tinues to increase Q(s, a) for the supervised action,
thereby compensating for the estimation gap along
the supervised trajectories with appropriated λ.
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4 Theoretical Analysis

In this section, we provide a theoretical analysis of
our objective.

Theorem 4.1 (Contraction of Value Differences).
Let Vθ(s) be the approximate value function of state
s. Suppose that the value function is always pos-
itive for any state s. If the objective in SFT in-
cludes a additional term in Equation (17), then
after one step of gradient descent with learning
rate α ∈ [0, 1], the gap between adjacent states’
values contracts, i.e.,

|V ′
θ(st)− V ′

θ(st+1)| ≤ |Vθ(st)− Vθ(st+1)|, ∀t,

where V ′ denotes the updated value function after
one optimization step.

We provide a detailed proof in Appendix A. The-
orem 4.1 states that the auxiliary loss encourages
the implicit value function of neighboring states to
become closer. To further illustrate the benefit of
this regularization, consider the policy evaluation
problem in a token-level MDP with sparse rewards,
where the agent only receives a reward at the end
of the trajectory while all intermediate rewards are
zero. In this setting, the optimal value function
satisfies the Bellman equation:

V ⋆(st) = r (st, π
⋆(at|st)) + V ⋆(st+1). (20)

Since the reward is zero for all intermediate states,
it follows that:

V ⋆(st) = V ⋆(st+1),∀t (intermediate states).
(21)

Thus, in sparse reward settings, the optimal gap
between the values of adjacent states is naturally
small. By minimizing this gap during training, the
auxiliary loss guides the learned value function to
better reflect the underlying structure of the sparse
reward MDP, rather than artificially transforming
the sparse reward into a dense one, thereby facilitat-
ing more stable and efficient policy evaluation for
sparse reward. Moreover, in sparse reward settings,
value information needs to propagate over many
steps. By encouraging smoother value estimates
between adjacent states, the auxiliary loss effec-
tively reduces variance in value updates, which can
lead to more robust value estimation (Schulman
et al., 2015, 2017).

5 Experiments

In this section, we empirically demonstrate the ef-
fectiveness of SOC on the mathematical reasoning

action action

error error

Expert Samples Erroneous Samples SFT SOC

Figure 2: An illustrative example of gradient update
magnitude on Q-value estimation in SFT and SOC.
(Left) In SFT, small gradient updates lead to insufficient
supervision, causing persistent overestimation errors
and favoring suboptimal actions (red spots). (Right)
SOC mitigates overestimation by aligning estimated
values with expert demonstrations (green spots), reduc-
ing errors, and improving decision-making in inference
times.

ability of LLMs. In Subsection 5.1 and 5.2, we
introduce the datasets and setup of our experiments.
We present the results of LLMs scaling from 1.5B
to 7B parameters in Subsection 5.3 and provide an
ablation study in Subsection 5.4.

5.1 Datasets

We conduct experiments on mathematics prob-
lem datasets: (1) GSM8K (Cobbe et al., 2021),
which consists of 8.8K high quality linguistically
diverse grade school math word problems split
into 7.5K training set and 1.3K test set, and
(2) MATH (Hendrycks et al.), which consists of
problems from mathematics competitions with 5
difficulty level with 7.5K training set and 5.0K test
set. (3) We additionally include a recently released
dataset STEP-DPO-10K (Lai et al., 2024) as the
training dataset.

In the experiments, we adopt a filtered STEP-
DPO-10K and a filtered MATH dataset as the train-
ing set. Although the STEP-DPO-10K is curated
to demonstrate a step-level preference of solutions,
we only chose the full and preferred samples and
regard them as supervised demonstrations as they
are correct and complete question and answer pairs,
consisting of 10.3K samples. Correspondingly, we
chose the samples with the highest difficulty level
(level 5) as the training dataset of MATH, which
consists of 2.8K samples. Hereafter, we refer to
the filtered STEP-DPO-10K and the filtered MATH
as DATA-α and DATA-β. As many previous works,
we use the GSM8K, MATH-500 (Lightman et al.,
2023), and GaoKao2023En (Liao et al., 2024) test
sets for evaluation.
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Table 1: Results (accuracy % of pass@1) on mathematical reasoning tasks. We report the results of each model
sampling with beam search (beam width of 5) and greedy decoding. For results of GSM8K and MATH-500, models
are prompted with 4-shot demonstrations; for GAOKAO-EN, it is zero-shot. There is no sampling process in both
beam search and greedy decoding, and therefore, the results are deterministic.

MODEL
GSM8K MATH-500 GAOKAO-EN

BEAM GREEDY BEAM GREEDY BEAM GREEDY

Qwen-2-1.5B-Base 56.1 48.7 25.6 23.6 19.5 15.8
+SFT(DATA-β) 54.9 56.4 24.0 20.2 17.7 16.1
+SFT(DATA-β)+SOC 56.0(+1.1) 55.6 25.4(+1.4) 21.6 18.2(+0.5) 17.1
+SFT(DATA-α) 69.1 64.6 25.0 24.0 23.9 22.3
+SFT(DATA-α)+SOC 69.4(+0.3) 64.3 26.6(+1.6) 24.4 27.3(+3.4) 23.4

Qwen-2.5-3B-Base 51.5 77.0 40.8 45.0 31.4 41.8
+SFT(DATA-β) 52.5 76.3 40.0 43.4 30.1 41.3
+SFT(DATA-β)+SOC 75.4(+22.9) 69.4 41.6(+1.6) 36.0 30.4(+0.3) 31.7
+SFT(DATA-α) 79.2 81.7 49.6 49.6 34.8 46.5
+SFT(DATA-α)+SOC 83.5(+4.3) 80.8 54.4(+4.8) 48.4 46.5(+11.7) 43.9

Qwen-2.5-7B-Base 58.7 85.3 8.8 54.6 33.0 47.3
+SFT(DATA-β) 79.9 84.0 41.0 47.2 44.9 44.2
+SFT(DATA-β)+SOC 83.7(+3.8) 83.5 41.4(+0.4) 48.4 45.7(+0.8) 44.2
+SFT(DATA-α) 54.7 87.3 41.4 56.0 28.6 51.9
+SFT(DATA-α)+SOC 87.9(+33.2) 86.7 60.4(+19.0) 53.4 51.4(+22.8) 49.1

5.2 Experimental Setup

In our experiments, we train a series of Qwen base
models, Qwen-2-1.5B-Base, Qwen-2.5-3B-Base,
and Qwen-2.5-7B-Base. We conduct SFT with
high-quality math demonstrations to activate the
base models’ math reasoning ability to handle math
problems. The DATA-α and DATA-β datasets are
used independently as two distinct training settings
to show the robustness of our method.

We utilize the accuracy on the test set of GSM8K,
MATH-500, and GaoKao2023En as the evaluation
metric. Specifically, LLMs are prompted with a few
shots CoT of math problem solutions and output
format requirements, such as generating the final
answer in the boxed{}. LLMs predict the solutions
with beam search and we compare the predicted an-
swer with the ground truth answer to calculate the
accuracy. Following the previous work (Yang et al.,
2024b), we use the same few shots CoT prompt and
set the maximum generation length as 2048. Also,
we apply the chat template for structural format
during the training, which consists of some special
tokens like <|im_start|> and <|im_end|>. For
evaluation, we use two kinds of CoT prompts (refer
to Appendix C for details), one consists of the spe-
cial tokens of SFT, and another does not. We report
the better results of SFT models among the two

prompts and use the same prompt for SOC, which
ensures a fair comparison and reliable results re-
garding the impact of prompts.

5.3 Main Results

The goal of our empirical results is to show the ef-
fectiveness of SOC by improving the performance
of beam search. In the main experiments, we SFT
the base models by DATA-α and DATA-β with aux-
iliary loss of SOC. The results are shown in Table
1. SOC significantly improves the beam search per-
formance over SFT on both training datasets, eval-
uated on three benchmarks. Despite its simplicity,
SOC consistently improves the performance of SFT
models in beam search decoding and gains even
more than 20 percent accuracy improvement in
several settings by generating more confident and
reliable reasoning steps during the beam search.

From the results of the base models, we find that
beam search has far worse performance than greedy
decoding (refer to the example in Subsection 5.4).
This issue stems from inaccurate Q-value estima-
tion. It exerts an insignificant impact on greedy
sampling if it does not alter the action of each in-
dividual step. However, it significantly degrades
beam search results because it influences evaluation
of the entire sequence and gets amplified during
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GSM8K MATH-500

Beam Width Beam Width

Figure 3: Performance of Qwen-2.5-7B-Base, SFT, and
SOC across different beam widths. SOC consistently
outperforms Base model and SFT across various beam
widths on both benchmarks, showcasing better perfor-
mance with less computation demand for the inference.

the inference process. By mitigating the impact of
value function estimation error with optimism cor-
rection, SOC improves the performance of beam
search and significantly alleviates this issue.

5.4 Ablation
Beam Search Width To investigate the impact
of the beam search width on performance and
how SOC corrects the over-optimism in various
searching spaces, we compare the Base, SFT, and
SOC across different beam widths. The results
are shown in Figure 3. We observe that: (1) on
GSM8K, SFT fails to improve the performance of
the Base model on beam search, instead, slightly de-
grading it. In contrast, SOC significantly enhances
performance, highlighting its superiority. (2) on
MATH-500, Base model has a limited perfor-
mance compared to its accuracy of greedy decod-
ing (54.6%) as shown in Table 1, demonstrating
the harmful effect of the over-optimism problem
on beam search. (3) on both benchmarks, SOC con-
sistently outperforms Base model and SFT across
beam widths ranging from small to large, validating
that after optimism correction, the correct reason-
ing candidate consequences are favored in the beam
search process even with small searching space.
The results exhibit that, with supervised optimism
correction, beam search can find better responses in
fewer search branches, thereby reducing the search
space and inference cost.

Impact of λ In the main experiments, we set the
hyperparameter λ in Equation (17) to 0.2 in the
results of Table 1. To further analyze the impact
of λ on the performance of SOC, we conduct an
ablation study by varying λ and evaluating its effect
on the performance of SOC. The results are shown
in Table 2.

We range λ in {0.1, 0.2, 0.3} for 7B model

with DATA-β and DATA-α, and 3B model with
DATA-α, to analyze how λ affects the performance
of SOC for different datasets and models. In gen-
eral, we find that the performance is not sensitive to
the value of λ. Comparing 7B model with DATA-β
and DATA-α, we find that SOC is more effective
and robust on DATA-α than DATA-β, which can be
due to the larger (4times) dataset size of DATA-α.
On DATA-α, 7B model gains more improvement
than 3B model for all the λ values and for both the
best performance is achieved with λ=0.1.

We observe that SOC achieves the best perfor-
mance when λ is set to 0.2, which is consistent
across different base models and datasets. This
indicates that a moderate value of λ effectively bal-
ances the influence of the auxiliary V loss, leading
to optimal performance improvements.

6 Related Work

6.1 RL for LLM

Previous studies have demonstrated that RL en-
hances the performance of LLMs by optimizing
reward feedback. These approaches typically in-
volve RL from Human Feedback (RLHF) (Sti-
ennon et al., 2020; Rafailov et al., 2024b; Liu
et al., 2025b) to align LLMs with human prefer-
ence, self-correction (Kumar et al., 2024), or di-
rect fine-tuning for reasoning ability from the base
model (Guo et al., 2025). These techniques en-
able LLMs to generate more aligned, accurate, and
coherent responses. While our work follows a sim-
ilar analysis, particularly in the context of offline
RL (Kumar et al., 2020; Lyu et al., 2022; Qing et al.,
2024; Zhang et al., 2023a; Wen et al., 2024a,b), we
focus on the overestimation problem during SFT.
We draw inspiration from offline RL to examine
this problem within the SFT stage, offering a novel
perspective on how overestimation impacts the op-
timization process.

6.2 Search-based methods of LLMs

Search-based methods during test-time computa-
tion are crucial for enabling models to improve
their output quality (Snell et al., 2024; Liu et al.,
2025a). These methods include beam search (Snell
et al., 2024), Best-of-N (BoN) sampling (Brown
et al., 2024), and lookahead-search methods, like
MCTS (Zhang et al.; Xie et al., 2024a), generate
sequences of k steps and evaluate which paths to re-
tain for further exploration. Among these methods,
beam search is a simple and widely used search
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Table 2: Results (accuracy % of pass@1) on mathematical reasoning tasks. We report the results of each model
sampling with beam search (beam width of 5), to show the impact of different λ on the performance of SOC.

MODEL GSM8K MATH-500 GAOKAO-EN AVERAGE

Qwen-2.5-7B-Base 58.7 8.8 33.0 33.5
+SFT(DATA-β) 79.9 41.0 44.9 55.3
+SFT(DATA-β)+SOC(λ=0.1) 79.7 41.4 44.7 55.3(+0.0)
+SFT(DATA-β)+SOC(λ=0.2) 83.7 41.4 45.7 56.9(+1.6)
+SFT(DATA-β)+SOC(λ=0.3) 81.4 41.2 46.0 56.2(+0.9)
+SFT(DATA-α) 54.7 41.4 28.6 41.6
+SFT(DATA-α)+SOC(λ=0.1) 86.6 60.8 52.7 66.7(+25.1)
+SFT(DATA-α)+SOC(λ=0.2) 87.9 60.4 51.4 66.6(+25.0)
+SFT(DATA-α)+SOC(λ=0.3) 87.2 57.6 52.2 65.7(+24.1)

Qwen2.5-3B-Base 51.5 40.8 31.4 41.2
+SFT(DATA-α) 79.2 49.6 34.8 54.5
+SFT(DATA-α)+SOC(λ=0.1) 82.6 55.4 47.3 61.8(+7.3)
+SFT(DATA-α)+SOC(λ=0.2) 83.5 54.4 46.5 61.5(+7.0)
+SFT(DATA-α)+SOC(λ=0.3) 84.0 51.4 49.4 61.6(+7.1)

method without extra reward models or verifiers.
Li (2024) first investigates the positive-incentive
effects of noise and pioneers a series of studies
on leveraging structured randomness to support
task performance, offering valuable insights for
test-time exploration strategies. Arora et al. (2022)
provides a theoretical and empirical analysis of
exposure bias in text generation and Wang et al.
(2022) demonstrates that self-consistency can im-
prove the performance of LLMs, using random
sampling (noise) to explore multiple reasoning tra-
jectories and then aggregating them. In this work,
we examine how search procedures, particularly
beam search, may suffer from over-optimism due
to implicit maximization of Q-values during infer-
ence. Our work focuses on refining beam search
techniques by addressing the over-optimism prob-
lem, which can lead to inflated Q-value estimates
and amplified reasoning errors, particularly in long-
horizon or sparse-reward settings.

7 Conclusion

In this paper, we formulate LLMs as token-level
MDPs and establish a theoretical equivalence be-
tween SFT and offline RL, where LLMs implicitly
learn a Q-function. We further show that beam
search, a widely used decoding method, relies
on this implicit Q-function but suffers from over-
optimism due to value estimation errors. Based

on that, we propose SOC, a simple auxiliary loss
applied during SFT. Despite its simplicity, SOC
is theoretically proven to effectively correct opti-
mism, leading to more reliable guidance in infer-
ence time. Extensive experiments on mathematical
reasoning benchmarks demonstrate that SOC sig-
nificantly enhances reasoning performance across
state-of-the-art open-source models.

Limitations

Although we conduct a comprehensive analysis
of the over-optimism problem and the proposed
method SOC, certain limitations remain, along
with potential future research directions to ex-
plore: (1) While this work mainly focuses on the
over-optimism problem of LLMs, it is valuable to
investigate the issue of multi-modal models such as
Visual Language Models (VLMs). (2) Investigating
whether other search-based methods of LLMs en-
counter this issue is another direction and important
to the development of test-time computation.

Ethical Considerations

We believe this work contributes to the develop-
ment of LLMs in the field of NLP. It is worth men-
tioning that all the experiments are conducted using
open-source models and datasets, ensuring no po-
tential social concerns.
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A Proof of Theorem 4.1

Theorem A.1 (Contraction of Value Differences).
Let Vθ(s) be the approximate value function of state
s. Suppose the value function is always positive for
any state s. If the objective in SFT includes a addi-
tional term in Equation (17), then after one step of
gradient descent with learning rate α ∈ [0, 1], the
gap between adjacent states’ values contracts, i.e.,

|V ′
θ(st)− V ′

θ(st+1)| ≤ |Vθ(st)− Vθ(st+1)|, ∀t,
where V ′ denotes the updated value function after
one optimization step.

Proof. Recall that the auxiliary objective is to
minimize − log V (s). After one step of gradi-
ent descent, the updated value function becomes
V ′(s) = V (s) + α · 1

V (s) . Now, we can compute
the difference between the updated values for any
adjacent states st and st+1:
∣∣V ′(st)− V ′(st+1)

∣∣

=

∣∣∣∣V (st)− V (st+1) + α

(
1

V (st)
− 1

V (st+1)

)∣∣∣∣

≤
∣∣∣∣1−

α

V (st)V (st+1)

∣∣∣∣ · |V (st)− V (st+1)|

≤ |V (st)− V (st+1)| .
(22)

The last inequality holds since we assume the
value function is always positive and learning rate
α ∈ [0, 1]. Thus, we see that after one step of gra-
dient descent, the gap between the updated value
functions of adjacent states is no greater than the
original gap.

B The Derivation for Estimation Error

We provide a proof sketch for proof of Equa-
tion (16). We start from SFT objective, which is
given by:

LSFT = Es∼D

[
−
∑

a

π∗(a|s) log πθ(a|s)
]
.

(23)
To compute its gradient, we first differentiate the
softmax function:

πθ(a|s) =
exp

(
Qθ(a|s)

)
∑

a′ exp
(
Qθ(a′|s)

) . (24)

Taking the gradient with respect to the logits
Qθ(a|s), we obtain:

∂πθ(a|s)
∂Qθ(a′|s)

= πθ(a|s)
(
I[a = a′]− πθ(a

′|s)
)
.

(25)

Next, we differentiate the loss function:

∇θLSFT = Es∼D

[
−
∑

a

π∗(a|s)∂ log πθ(a|s)
∂θ

]
.

(26)
Since

∂ log πθ(a|s)
∂θ

=
1

πθ(a|s)
∂πθ(a|s)

∂θ
, (27)

we obtain:

−
∑

a

π∗(a|s)
∑

a′

1

πθ(a|s)
∂πθ(a|s)
∂Qθ(a′|s)

∂Qθ(a
′|s)

∂θ
.

(28)
Substituting the gradient of πθ(a|s):

−∑
a π

∗(a|s)∑a′ (I[a=a′]−πθ(a′|s)) ∂Qθ(a
′|s)

∂θ .
(29)

Rearranging the terms, we obtain:

∇θLSFT=Es∼D
[∑

a (πθ(a|s)−π∗(a|s)) ∂Qθ(a|s)
∂θ

]
.

(30)
We finish the proof by replacing π with normalized
Q̃, which is equivalent and unambiguous.

C Prompt for Evaluation

Here we provide the prompt for evaluation in our
experiments. Following previous work (Yang et al.,
2024b), we use CoT with few-shots demonstrations
to prompt LLMs to solve mathematical problems.
The two kinds of templates are shown in Figure 4
and Figure 5.
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<|im_start|>system
Please reason step by step, and put your final answer within
\boxed{}.<|im_end|>
<|im_start|>user
There are 15 trees in the grove. Grove workers will plant trees in
the grove today. After they are done, there will be 21 trees. How
many trees did the grove workers plant today?
There are 15 trees originally. Then there were 21 trees after some
more were planted. So there must have been 21 - 15 = 6. The
answer is 6.

If there are 3 cars in the parking lot and 2 more cars arrive, how
many cars are in the parking lot?
There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The
answer is 5.

Leah had 32 chocolates and her sister had 42. If they ate 35, how
many pieces do they have left in total?
Originally, Leah had 32 chocolates. Her sister had 42. So in total
they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39.
The answer is 39.

Jason had 20 lollipops. He gave Denny some lollipops. Now Jason
has 12 lollipops. How many lollipops did Jason give to Denny?
Jason started with 20 lollipops. Then he had 12 after giving some
to Denny. So he gave Denny 20 - 12 = 8. The answer is 8.

Janet’s ducks lay 16 eggs per day. She eats three for breakfast
every morning and bakes muffins for her friends every day with
four. She sells the remainder at the farmers' market daily for $2
per fresh duck egg. How much in dollars does she make every day
at the farmers' market?<|im_end|>
<|im_start|>assistant

Figure 4: Template 1 for prompt.

Question: There are 15 trees in the grove. Grove workers will
plant trees in the grove today. After they are done, there will be
21 trees. How many trees did the grove workers plant today?
Answer: There are 15 trees originally. Then there were 21 trees
after some more were planted. So there must have been 21 -
15 = 6. The answer is 6.

Question: If there are 3 cars in the parking lot and 2 more cars
arrive, how many cars are in the parking lot?
Answer: There are originally 3 cars. 2 more cars arrive. 3 + 2 =
5. The answer is 5.

Question: Leah had 32 chocolates and her sister had 42. If they
ate 35, how many pieces do they have left in total?
Answer: Originally, Leah had 32 chocolates. Her sister had 42.
So in total they had 32 + 42 = 74. After eating 35, they had 74
- 35 = 39. The answer is 39.

Question: Jason had 20 lollipops. He gave Denny some lollipops.
Now Jason has 12 lollipops. How many lollipops did Jason give
to Denny?
Answer: Jason started with 20 lollipops. Then he had 12 after
giving some to Denny. So he gave Denny 20 - 12 = 8. The
answer is 8.

Question: Janet’s ducks lay 16 eggs per day. She eats three for
breakfast every morning and bakes muffins for her friends
every day with four. She sells the remainder at the farmers'
market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers' market?
Answer:

Figure 5: Template 2 for prompt.
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