From Awareness to Adaptability: Enhancing Tool Utilization
for Scientific Reasoning

Wenjing Xie!, Xiaobo Liang!, Juntao Li'*, Wanfu Wang'
Qiaoming Zhu', Kehai Chen?, Min Zhang'
School of Computer Science and Technology, Soochow University
2Harbin Institute of Technology, Shenzhen, China
{wjxie,xbliang3,wfwang}@stu.suda.edu.cn

{1jt,gmzhu,minzhang}@suda.edu.cn,

Abstract

As large language models (LLMs) are increas-
ingly applied to complex scientific problem-
solving, their effectiveness is often limited by
unconscious or failed tool usage. To address
this issue, we introduce the Tool-Awareness
Training (TAT) method, designed to enhance
scientific reasoning. This approach leverages
both forward and backward data generation
strategies to strengthen the model’s conscious
and selective tool utilization in multi-step rea-
soning tasks. Our method unfolds in three
stages: (1) developing tool-knowledge through
backward tooluse data generation (2) enhanc-
ing tool-awareness in multi-step reasoning by
utilizing forward reasoning data, and (3) im-
proving domain adaptability through large-
scale domain-specific data for multi-task learn-
ing. These three stages progressively estab-
lish the foundation for tool learning and sci-
entific reasoning, effectively integrating both,
enabling the model to tackle multi-domain sci-
entific tasks while optimizing tool usage. Our
experimental results demonstrate that TAT sig-
nificantly enhances LLM performance in math-
ematical and scientific reasoning tasks, particu-
larly by improving the model’s tool utilization
capabilities, including proactivity and execu-
tion success rates.

1 Introduction

Recent advancements in large language models
(LLMs) have significantly expanded AI’s capabil-
ities, excelling in complex reasoning tasks and
showing promising potential for scientific research
and discovery (Ma et al., 2024; Kumar et al., 2023;
Rane et al., 2023). However, current studies consis-
tently report that LLMs’ capabilities in scientific
domains are largely confined to a high school level
(Rein et al., 2023; Wang et al., 2023b), thereby
falling short in tackling more complex, specialized

* Corresponding author.

chenkehai@hit.edu.cn

M | Solve the inequality x> — 3x + 2 < 0 and use the solution to calculate the value of
a x? + x~2, where Xis a real number satisfying the inequality.

from sympy.solvers.inequalities import
solve_univariate_inequality
from sympy.core.relational import
StrictLessThan
import sympy as sp
def solution():

X = sp.symbols('x")

inequality = x**2 - 3*x +2 <0

def solution():
def func(x):
return x**2 - 3%x +2
values =1, 1.5, 2] #test 1,1.5 %1 2
results =[]
for val in values:
if func(val) < 0:
results.append(val)
sample_value= 1.5
sample value from the interval (1, 2)
result = sample_value**2 +
sample_value**-2
return result

||i||

solution_set = solve_univariate_inequality
(inequality, x)

x_value = solution_set.args[0]

result = sp.pow(x_value,2) +
sp.pow(x_value,-2)

s result = solution()
result = solution() print(result)

print(result)

P Execution Error:TypeError: Relational can not Exccution Result: 2. 444
be used in Pow —> Function call error — Incorrect Solution without tool usage

Tool usage failure Lack of tool usage

Figure 1: Illustration of two error types: (1) Tool Us-
age failure, reflecting challenges in accurately invoking
unfamiliar or complex functions, and (2) Lack of Tool
Usage,stemming from the failure to proactively leverage
Python libraries for computational optimization.

problems. This limitation underscores the impor-
tance of integrating LLMs with domain-specific
tools, as Python-based solutions (Gou et al., 2023)
coupled with specialized scientific tools (Schick
et al., 2024; Lu et al., 2024a; Yuan et al., 2023).

Existing approaches enhance reasoning through
Chain-of-Thought (Wei et al., 2022), Program-of-
Thought (Chen et al., 2022), and Tool-Integration
(Gou et al., 2023), primarily relying on Python in-
terpreters for computation. However, they overlook
active tool awareness and the use of advanced tools
like Python libraries, as shown in Figure 11. LLMs
struggle with proactive library usage and invoking
complex functions, reducing problem-solving effi-
ciency (Gou et al., 2023). Addressing these gaps
is crucial for improving LLMs’ effectiveness in
advanced scientific reasoning.

Inspired by human learning behavior as detailed
in Section 3, we propose the Tool-Awareness Train-
ing (TAT) framework to enhance the ability of
LLMs to effectively utilize tools in multi-step rea-
soning tasks. TAT combines forward and backward
data generation strategies to guide the model’s tool

8811

Findings of the Association for Computational Linguistics: ACL 2025, pages 8811-8831
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

usage. Initially, we build tool knowledge through
backward data, designing problems around tools to
establish a foundational understanding. Next, we
enhance multi-step reasoning with forward data
that helps the model decide when to use tools.
Finally, large-scale domain-specific data is used
to fine-tune the model through multi-task learn-
ing, optimizing performance across various scien-
tific fields. The core idea of TAT is to teach the
model when and how to apply external tools, espe-
cially specialized Python libraries, empowering the
model to solve complex problems by applying the
right tools at the right time.

The effectiveness of our approach is validated
on scientific, mathematical, and tabular reason-
ing tasks. We evaluate the model’s performance
across several aspects, including accuracy, code ex-
ecutability, and tool usage proficiency. Our results
show that TAT substantially enhances the model’s
accuracy and tool utilization in solving complex
problems requiring tool integration.

2 Related Work

Scientific Reasoning Recent benchmarks have
been proposed to evaluate the scientific problem-
solving capabilities of LLMs (Lu et al., 2022;
Wang et al., 2023b; Arora et al., 2023). Current
research has mainly focused on three prominent
approaches: Chain of Thought (CoT) (Wei et al.,
2022), Program-of-Thought (PoT) (Chen et al.,
2022), and tool-integrated reasoning (Tool-based)
(Gou et al., 2023). CoT leverages natural language
to guide multi-step reasoning, PoT employs pro-
cedural code to optimize computation, while tool-
based approaches aim to integrate the semantic
reasoning strengths of CoT with the precise compu-
tational abilities of PoT, leading to significant im-
provements in the accuracy of solutions produced
by large language models. Despite these advance-
ments, most current tool-based methods simply
combine text and code (Gou et al., 2023; Wang
et al., 2023a) without fully leveraging the model’s
ability to understand and utilize external tools. Our
work aims to address this gap by generating train-
ing data from scratch based on tool information to
foster the model’s tool-awareness and help it learn
how to effectively use tools.

Tool-Augmented Language Models Due to
their reliance on static, parametric knowledge,
LLMs often struggle with complex computations.
Enhancing LLMs with tools can significantly alle-

viate these limitations and improve their reasoning
and generation performance (Wang et al., 2024;
Yuan et al., 2024; Chen et al., 2024; Patil et al.,
2023). Many current studies explore the potential
of LLMs in tool usage: for example, ToolLLlama
(Qin et al., 2023) generates data that stimulates
the model’s ability to use real-world APIs, while
ToolAlpaca (Tang et al., 2023) creates tool usage
data through a model-based toolkit and multi-agent
interactions. While existing approaches offer some
enhancement, they struggle to actively leverage ad-
vanced libraries and fail to improve the model’s
domain knowledge and reasoning. Our work aims
to build on Python toolkits, fostering the model’s
tool awareness, usage and reasoning ability to use
python tools for scientific problem solving.

3 Motivations

This section investigates the dual role of Python
tool in scientific reasoning: its potential to en-
hance complex problems while risking unnecessary
reliance in simpler scenarios. We analyze level-
dependent tool necessity, evaluate library optimiza-
tion strategies, and provide insights into strategic
tool utilization based on task complexity.

Preliminary Study 1: Marginal Effect of Tool
Usage We first analyze 500 problems (Levels 1-
5) sampled from MATH(Hendrycks et al., 2021)
to compare zero-shot CoT and tool-integrated
prompts, assessing tool necessity in complex rea-
soning. Given the base model’s limitations in code
generation, we apply multiple sampling to reduce
errors and evaluate performance using pass@ 10
accuracy, considering a correct result within the
top 10 samples as success.

As shown in Figure 2 (left), tool-assisted per-
formance surpasses CoT as problem difficulty in-
creases, showing diminishing returns on simpler
tasks but significant gains on complex ones. How-
ever, tool usage incurs higher computational costs,
with code generation and execution taking 3199.4s
vs. CoT’s 1996.7s. These findings highlight the
marginal effect of tool usage: for simpler tasks,
tools offer little benefit and may introduce errors,
while for complex tasks, they enable symbolic com-
putations beyond CoT’s capabilities, justifying the
additional reasoning cost.

Preliminary Study 2: Optimization of Tool Us-
age This study explores optimizing tool usage in
complex problems by employing In-Context Learn-

8812

100 95
90
78 —e—CoT TOOL
80 75
= 67
:\, 70 7
)
60
g 61 54
S 50
< 51
40
30
30
27
20
level 1 level 2 level 3 level 4 level 5
Difficulty Level

Accuracy (%)

70.00 66.59
60.00 zeroshot_total_acc
ICL_total_acc
50.11
50.00 M zeroshot_tool_acc
46.22 ICL_tool_acc
40.00 38.02
: 38.59
30.00 27.23 daab 27.27
20.39 21.09
20.00
14.68 13.90
10.00 9.89 1163
370
1.60 1.34 115 058
level 1 level 2 level 3 level 4 level 5
Difficulty Level

Figure 2: This figure compares Pass@10 accuracy across difficulty levels (left), highlighting the advantages of CoT
in simpler problems and tool usage in more complex ones. The right side compares Pass@1 accuracy between
Zeroshot and ICL settings, emphasizing tool-driven improvements and overall performance across difficulty levels.

ing (ICL) with explicit SymPy guidance, leverag-
ing tool-integrated few-shot prompts from ToRA
(Gou et al., 2023) (see Table 5). We evaluate per-
formance on the MATH dataset using pass@1 ac-
curacy, where correctness is determined by the first
sampled output.

As shown in Figure 2 (right), tool-assisted accu-
racy improves with task difficulty, demonstrating
the effectiveness of Python libraries in complex
reasoning. Additionally, the proportion of correct
tool-usage samples increases, indicating improved
model proficiency in Python-based computations.
Explicit SymPy guidance significantly enhances
performance in symbolic computation, highlight-
ing its role in tackling complex mathematical rea-
soning tasks.

Conclusion and Insights Based on the above
findings, we conclude that effective tool usage in
scientific problem-solving requires both selective
application and optimization of Python libraries.
The model must determine when to use tools, bal-
ancing the risk of errors in simpler tasks with the
potential for enhanced performance in more com-
plex ones. Additionally, providing explicit guid-
ance on advanced Python libraries, such as SymPy,
can significantly improve performance on challeng-
ing tasks, making the model a more effective as-
sistant in scientific domains. These insights un-
derscore the importance of strategically leveraging
tools and optimizing library usage, laying a founda-
tion for the development of adaptive reasoning sys-
tems capable of effectively utilizing Python tools
across tasks of varying complexity.

Inspiration Inspired by human learning, we de-
construct tool usage into three progressive stages:
knowledge acquisition, where individuals consult
documentation and example code to understand
a tool’s functionality; strategic awareness, where
they decide when to use the tool based on con-
text; and adaptive expertise, where repeated prac-
tice deepens their mastery. Our goal is to instill a
similar learning process in LLMs, fostering their
abilities in Utilization, Awareness, and Generaliza-
tion of tools, making them reliable and accurate
assistants in the scientific domain.

4 TAT Framework

Overview We introduce the TAT framework, a
three-stage paradigm to enhance an LLM’s au-
tonomous tool usage in multi-step reasoning tasks:
Utilization (learning tool usage through examples),
Awareness (developing decision-making for tool
application), and Generalization (improving adapt-
ability across domains). Together, these stages
enable effective tool application, enhancing perfor-
mance in complex scientific tasks.

4.1 Fine-Grained Multi-Step Reasoning
Paradigm

We propose a fine-grained multi-step reasoning
paradigm that integrates natural language multi-
step reasoning with executable code. This approach
decomposes reasoning into explicit sub-tasks, each
paired with code generation. An illustration of
solution paradigm is provided in Figure 3.

8813

1 1
1 1
1 1
!) Diverse domain code-plan solution 1 m X \
! ég Toolinfo Codeanswer | == m — L m problems ode-plan solution 2 Without tool] X '
o (2 o (55 = |

: A ?» O {Em—" |
!) u@n i ode-plan solution 3 Good sampl !
' Toolset Took-Specific Query Backward Problem Forward (" code-plan solution3] |) v :
H Code G G Data llecti ions G i Data tool-use code plan solution sampling and filter 1
1 1
: | |
I % -@- !
1 o= f 1
1 b of I '
)+ @ _— D R e g |
1 a !
1

' Stage1:Tool Utilizati Stage2:Tool Awareness]
o ilizaf . 1

! ErgABLCY on Reasoning i
| 1
1

Problem: To a good approximation, the microwave spectrum of H3°Cl consists of a series of equally spaced lines, separated by 6.26 x 10! Hz. Calculate the bond length of H35CI.

Code Plan:
Step 1: Import ‘numpy" for mathematical operations,
“scipy.constants’ for physical constants and define constants.

“python
import numpy as np

1
1
1
1
1
1
1
1
1
1
I and then compute the reduced mass.
1

| import scipy.constants as const
1

1

1

1

1

1

1

1

1

python
h=consth #Planck’s constant (I's)
Hz=6.26¢l1 # Line spacing in Hz (given)
pi=np.pi #Pi constant

Step 2: Calculate the Moment of Inertia (I) using the
given relationship (2B = frac{h} {4 pi*2 I}).

“python
\ I=h/(4* pi**2 * Hz)

formula (1= sqrt{frac{I} {mu}}).

pyion
1=np.sqrt(I/ mu)

##t# Step 3: Calculate the reduced mass (p) for HC1 using the
formula (mu = frac{m H cdotm_CI}{m H+m CI}).
We will define the masses of hydrogen and chlorine in kilograms

m_H=1.661e-27 #mass of hydrogen in kg
m_Cl=35.0 * 1.661¢-27 # mass of chlorine in kg
mu=(m_H*m_Cl)/(m_H+m_Cl) #reduced mass in kg

#it# Step 4: Calculate the bond length (1) in meters using the

Step 5: Convert bond length from meters to picometers
(1 m = 1e12 pm) and print the result.

bond_length_pm = round(l * 1e12) # bond length in picometers
print(FThe answer is: {bond_length_pm }”)

1
1
1
1
1
1
1
I
1
|
python 1
|
1
1
1
1
1
Extract python code and execute: :

1

1

1

1

P >>> The answer is 129

Figure 3: The workflow of our method consists of three stages: (1) Using tool information to generate backward
data for establishing tool knowledge. (2) Prompting the LLLM to generate tool awareness solution for real-world
problems, building reasoning capabilities. (3) Conducting large-scale sampling of diverse, high-quality reasoning
paths from domain-specific tasks for multi-task fine-tuning. An example of CodePlan is attached.

4.2 Bidirectional Data Generation

Our work focuses on systematically cultivating the
model’s tool-usage capabilities: backward genera-
tion obtains clear supervision signals through code
executability, while forward generation introduces
tool-usage labeling signals to facilitate tool-aware
reasoning of models.

Backward Data Generation This stage estab-
lishes a tool knowledge base by generating su-
pervised data that aligns tool usage with problem-
solving. It consists of three key steps that collabo-
ratively automate the creation of labeled data in an
unsupervised manner. Implementation details are
provided in Appendix A.1.1.

Toolset Collection and Processing: We start
with collecting Python libraries through web crawl-
ing to extract detailed tool information, including
functionality, parameters, and usage. Then we em-
ploy an LLM to optimize this information by as-
signing functional labels (e.g., Algebra, Geometry)
and creating concise descriptions. This structured
data forms the foundation for generating code snip-
pets and queries in subsequent stages.

Tool-Specific Code Generation: We generate
code cases based on the above toolset to illustrate
the practical application of specific tools. Begin-

ning with a handcrafted seed pool, we iteratively
expand it using few-shot generation combined with
filtering techniques to ensure diversity and reduce
redundancy. This process produces a rich col-
lection of executable code cases that effectively
demonstrate each tool’s usage.

Query and Solution Construction: To maxi-
mize the utility of the generated code cases, we
sample and exclude those without numerical out-
puts to ensure relevance for downstream tasks. The
sampled cases are executed to generate potential
user queries, with the LLM providing a natural
language explanation detailing the reasoning pro-
cess behind tool usage. These explanations, along
with the code, form structured code plan solutions
paired with generated queries, creating a forward
dataset for initial training.

Forward Data Generation This stage focuses
on developing the model’s tool awareness — the
ability to autonomously determine whether and
when to invoke tools during multi-step reasoning.
To achieve this, we implement a three-phase strat-
egy: automated problem labeling combining rule-
based accuracy and LLM self-assessment to filter
tool-dependent tasks, followed by reasoning path
synthesis and verification. Key steps include:
Problem Collection and Labeling: We begin

8814

with collecting real-world problems and labeling
them based on the necessity of tool usage. To dis-
till the model’s tooluse confidence, we use a dual
approach for obtaining tool usage labels:

* Rule-Based Labeling: We compare CoT with
tool-integrated reasoning using multiple sam-
pling and assign a "tool needed" label if the
tool-integrated approach achieves higher ac-
curacy. However, both methods may fail on
complex problems.

e LLM-as-Judge Labeling: In cases where
rule-based metrics are insufficient, we lever-
age the model’s self-confidence to evaluate
tool necessity. A well-designed prompt (see
Table 6) guides the model to reason through
the problem, assess the need for tool usage,
and provide a self-judged decision, including
both a tooluse judgment and an explanation.

Solution Generation: We prompt an LLM to
generate high-quality reasoning paths that incorpo-
rate tool awareness and problem-solving strategies,
including both CoT and CodePlan solutions. While
CoT paths are generated directly, CodePlan solu-
tions are obtained by prompting the LLM to trans-
form CoT-based reasoning into structured format.

Solution Verification and Filtering: The gener-
ated reasoning paths are verified and filtered. Code-
Plan outputs are executed to confirm correctness,
while CoT solutions are compared to expected an-
swers. Errors lead to rejection of the reasoning
path, ensuring only accurate, verified paths are in-
cluded in the training corpus.

4.3 Diverse and High-Quality Reasoning
Paths for Multi-Task Fine-Tuning

After establishing tool utilization and awareness,
we improve the model’s problem-solving abilities
by sampling real-world domain data to create task-
specific fine-tuning datasets. We collect problems
from open-source communities and use tempera-
ture sampling to generate diverse reasoning paths.
These are evaluated for correctness and tool usage,
as defined in Section 5.1. Synthesizing filtered data
into a cross-domain training framework to cultivate
generalization capabilities. Implementation details
are provided in Appendix A.1.1.

4.4 Three-stage Training Framework

Building on the rich data from previous steps, we
propose a three-stage training strategy to progres-

sively enhance and optimize the model’s capabil-
ities. Each stage builds upon the previous one,
ensuring sustained efficiency and effectiveness in
solving complex tasks.

To achieve this, the training objective at each
stage is to minimize the cross-entropy loss over the
training data. Let D = {(x;,y;)} denote a given
QA dataset, where z; represents an input sequence
and y; = (Yi1,¥i2,- -, Y1) is the corresponding
target output sequence. The model parameters are
denoted by 6. The training objective at each stage
can be written as:

T
LO) == Y > logPylyc | z,y<t) (1)

(z,y)eD t=1

Backward Data Training In the first stage, we
leverage backward data training on the base model
to instill tool-knowledge and enhance the model’s
ability to effectively use tools. Specifically, starting
from initial parameters 6, we train the model on
backward-generated data Dyyckward:

01 = arg mein ['backward(e; Dbackward) 2)

Forward Data Training The second stage in-
volves training the model using tool awareness for-
ward data. Here, we take the parameters ¢ ob-
tained from the first stage as initialization and train
on a set of forward-generated data Deorward:

02 = arg mein Eforwa.rd(& Dforward)

3)

with 6 initialized at 6.

Multi-task Learning In the third stage, building
on the model trained in the second stage, we apply
rejection sampling and multi-task learning to fur-
ther enhance adaptability. Let {D,,, }}/_, represent
multiple task datasets, each corresponding to a par-
ticular domain or problem type. We combine these
datasets into a unified multi-task objective:

M T
Emulti—task(a) = Z am(Z Z
m=1 (z,y) €Dy, t=1)]

log Py(ys |, y<t)

where o, are weighting factors for each task. With
09 as the initialization, the model is trained to min-
imize Lmylti-task, resulting in parameters 63:

03 = arg 1’I1111 L multi- tdsk(e {Dm m= 1) &)

8815

5 Experiments

To evaluate the effectiveness of TAT, we conduct a
series of experiments that assess the model’s per-
formance on a range of scientific reasoning tasks.

5.1 Experiment Settings

Evaluation Tasks We evaluate our method on
three reasoning tasks: mathematical, scientific,
and tabular reasoning. For mathematical reason-
ing, we use the MATH (Hendrycks et al., 2021)
and GSMS8K (Chen et al., 2022) datasets, which
test capabilities ranging from basic to advanced
competition-level problems. In scientific reason-
ing, we employ SciBench (Wang et al., 2023b),
derived from college-level textbooks in chemistry,
physics, and mathematics to assess scientific rea-
soning and computational skills. For tabular pro-
cessing, we utilize the DocMath-Eval (Zhao et al.,
2024) benchmark, focusing on subsets DMsimpshort
and DMcompshort, to evaluate numerical reasoning
in financial documents while avoiding the com-
plexity of long contexts or retrieval tasks. Further
details are provided in Appendix A.2.1.

Baseline We compare TAT with three categories
of baseline methods: Closed-source LLMs, which
include OpenAl’s GPT-4 (Achiam et al., 2023),
Anthropic’s Claude-2 (Anthropic, 2023), and
Google’s Gemini-1.5 (Team et al., 2024); Open-
source LLMs, such as Mistral-7B-v0.3 (Nad-
havajhala and Tong, 2024), GLM-4-8B (GLM
et al., 2024), and LLama3-70B (AI, 2024); and
Tool-integrated learning methods, including
TORA (Gou et al., 2023), MAmmoTH2 (Yue et al.,
2024), and MathCoder2 (Lu et al., 2024b). For
general model baselines, we report performance
with CoT prompting, primarily due to challenges in
code generation. In contrast, tool-integrated learn-
ing methods incorporate reasoning mechanisms
specifically tailored to tools, offering more effec-
tive solutions for tasks that require tools. Further
details are provided in Appendix A.2.2.

Evaluation Metrics We assessed the model’s
performance using Answer Accuracy, Code Ex-
ecutability Rate, and a novel metric, Tool Usage
Score. Answer Accuracy represents the model’s
overall problem-solving capability, while Code
Executability Rate evaluates the success rate of
code generation. The Tool Usage Score, detailed
in the appendix A.2.3, is a composite metric that

measures the model’s proactive and effective use
of tools in problem-solving. It combines three
weighted sub-metrics: Tool Proactivity, Tool Uti-
lization Success Rate, and Tool-Driven Accuracy.

5.2 Experiment Results

Answer Accuracy Table 1 compares answer
accuracy across datasets. Our model performs
competitively, excelling in Math (37.7%) and
DMsimpshort (78%), matching or surpassing closed-
source models like Claude2. It also outperforms
open-source models across all datasets, demonstrat-
ing superior performance in various tasks. Further-
more, our model surpasses existing tool-integrated
methods, achieving an impressive average accuracy
of 53.1%. In more complex tasks like Math and
SciBench, it outperforms most open-source base-
lines, highlighting its adaptability to challenging
reasoning tasks. However, its lower accuracy on
SciBench suggests scientific reasoning remains a
challenge, likely requiring more domain-specific
knowledge and advanced reasoning strategies.

Code Execution ratio Table 2 shows code ex-
ecutability across all datasets. High executabil-
ity rates (90%+) are observed in simpler tasks
like GSM8K, while complex tasks like Math yield
lower rates (60%+), emphasizing the need for bet-
ter Python tool integration. Our model outperforms
baselines across all datasets, achieving the high-
est code executability rates by effectively handling
task complexity. This highlights the importance
of training models to understand and effectively
utilize tools, especially in scenarios requiring ad-
vanced computational reasoning.

Tool Usage Score The Tool Usage Score in Table
2 reflects the extent to which each method utilizes
tools in its reasoning process. Our method demon-
strates selectively low tool usage scores in cer-
tain datasets (0.0 in DMgimpshort and DMcompshort)
while maintaining high tool usage in more complex
datasets such as Math and SciBench, as shown in
Figure 4. This suggests that our approach priori-
tizes tool efficiency, leveraging external tools only
when necessary, rather than applying them indis-
criminately. In contrast, TORA achieves consis-
tently high tool usage scores (44.7 in DMsimpShort»
30.6 in DMcompshort) due to its reliance on SymPy-
enhanced data. On the other hand, MAmmoTH?2-
8B and MathCoder2-8B exhibit significantly lower
tool usage scores (e.g., 13.6 avg in MAmmoTH2-
8B, 14.2 avg in MathCoder2-8B) because they lack

8816

Models GSMSK | Math | SciBench | DMsimpshort | DMcompshort | AVG
Closed-Source Models

Claude? 85.2 32.5 13.9 74.5% 72.07 55.6

GPT-4-Turbo 94.2 51.8 42.4 82.5 81.0 70.4

Gemini-1.5-Flash 86.2 54.9 46.61 78.0 69.5 67.0
Open-Source Models

Mistral-7B-v0.3 459 16.5 4.6 40.0 28.0 27.0

GLM-4-8B 84.0 30.4 7.9t 44.0 34.0 40.1

Llama3-70B 80.1 44.0 22.8¢% 73.5 63.5 56.8

Tool-integrated Learning Methods

TORA-7B 68.8 40.1 4.1% 13.0t 10.0t 27.2

MAmmoTH2-8B 70.4 35.8 6.0t 3.0t 1.97 23.4

MathCoder2-8B 69.9 38.4 2.6t 5.0t 3.57 23.9

Ours 79.7 37.7 16.2 78.0 54.0 53.1

Table 1: Answer Accuracy across five evaluation sets for various models and tool-integrated methods. Results
marked with { indicate re-implementations, while the remaining results are drawn directly from existing literature.

Models GSMSK Math SciBench DMgimpshort DMcompshort ~ Average
TORA 99.5/21.9 84.4/52.9 72.9/45.8 59.0/44.7 78.0/30.6 78.8/39.2
MAmmoTH2-8B 91.6/0.0 65.9/31.3 76.4/36.6 65.5/0.0 52.5/0.0 70.4/13.6
MathCoder2-8B 98.3/0.0 64.1/35.7 85.7/35.2 92.0/0.0 94.5/0.0 86.9/14.2
Ours 99.2/29.9 87.8/48.1 89.1/32.6 100.0/0.0 100.0/0.0 95.2/22.1

Table 2: Code Executability Rate and Tool Usage Score across five evaluation sets for Vanilla tool learning method.

specific data augmentation strategies for tool-based
reasoning. Overall, our model’s ability to selec-
tively and efficiently use tools highlights its aware-
ness of when tool integration is beneficial, ulti-
mately leading to more robust task performance
across datasets.

Tool Usage Count Across Methods on Different Datasets

[MAmMmoTH2 [MathCoder2 [TORA E Ours

100000

11047 13125
10000 5641 [T

1000 527 465 516

100
2 38

10
;
1

math

Tool usage Count
»
&

scibench

Datasets

gsm8k

Figure 4: Comparison of tool usage on three datasets
(Docmath is not shown due to its low tool frequency).

6 Further Analysis

6.1 Ablation of Multi-stage

Table 3 presents a multi-stage ablation study high-
lighting the contributions of each stage to model
performance. Stage 1 (Tool Initialization) estab-
lishes tool usage capabilities, achieving high code
executability (93.9% on GSMS8K) but low task ac-
curacy (41.1% on GSM8K), indicating reliance on
execution without strong reasoning ability. Stage
2 (Reasoning Initialization and Tool Awareness)
introduces two approaches: full tool use, which
enhances execution and benefits complex tasks
(35.6% on MATH), and awareness-based tool use,
which selectively applies tools, improving simple
task accuracy (DMsimpshort: 81.9%) while reducing
unnecessary tool reliance (GSM8K tool score: 77.1
— 29.2). This suggests that full tool use boosts ex-
ecution, while awareness-based tool use enhances
efficiency by integrating reasoning. Stage 3 (Multi-
task Finetuning) integrates these improvements,
achieving the highest overall accuracy (GSMS8K:
79.7) with a well-balanced tool usage strategy. This
structured training approach optimally combines

8817

Models GSMSK Math SciBench DMsimpshort DM compshort Average

Stage 1(tool initialization) 41.1/93.9/34.7 20.3/61.3/48.5 6.2/62.2/28.0 ~ 34.5/90.5/37.7 13.0/95.0/35.1 23.0/80.6/36.8
Stage 2(full tooluse) 74.7/99.2/77.1 35.6/84.5/56.4 17.1/90.2/34.9 66.0/99.5/37.4 22.0/99.5/0.0 43.1/94.6/41.2
Stage 2(awareness tooluse) 77.1/98.9/29.2 29.9/78.6/28.7 13.1/83.6/26.3 81.9/99.5/0.0 55.3/100.0/0.0 51.5/92.1/16.8
Stage 3(multi-task finetuning) 79.7/99.2/29.9 37.7/87.8/48.1 16.2/89.1/32.6 78.0/100.0/0.0 54.0/100.0/0.0 53.1/95.2/22.1

Table 3: Performance of the multi-stage training approach, including task accuracy, code executability rate, and tool
usage score across different models and evaluation datasets.

Models GSMSK Math SciBench DMsimpshort DM ompShort Average

Tool-zeroshot 42.8/94.2/0.0 12.6/76.4/28.0 3.3/32.2/24.4 48.5/77.0/0.0 22.0/74.0/0.0 25.8/70.8/10.5
Tool-ICL 50.5/97.9/46.1 22.0/52.6/46.5 6.6/67.9/28.8 56.5/76.5/0.0 31.0/74.0/0.0 33.3/73.8/24.3
RAG 26.0/80.3/41.6 7.5/57.0/30.6 3.6/55.3/27.6 0.0/92.0/24.3 0.0/89.5/33.4 7.4/74.8/31.5
ours 79.7/99.2/29.9 37.7/87.8/48.1 16.2/89.1/32.6 78.0/100.0/0.0 54.0/100.0/0.0 53.1/95.2/22.1

Table 4: Performance of the different tool knowledge integration methods, including task accuracy, code executability

rate, and tool usage score on evaluation datasets.

reasoning and tool utilization for robust perfor-
mance across diverse tasks.

6.2 Comparison of Tool Knowledge
Integration Methods

The comparison of few-shot ICL, RAG-based, and
our fine-tuning approach highlights the advantage
of integrating tool knowledge during training rather
than relying on retrieval at inference. In our RAG
implementation, the model retrieves relevant doc-
umentation to infer necessary functions, guiding
tool usage dynamically. However, as shown in
Table 4, RAG-based retrieval struggles with com-
plex documentation, leading to accuracy degrada-
tion. This contrast emphasizes two key aspects
of tool utilization: training-based approaches en-
able autonomous tool selection by directly associ-
ating queries with relevant tools, while inference-
time retrieval aids generalization to unseen tool
calls through contextual adaptation. By decoupling
tool retrieval from execution, our fine-tuned model
demonstrates superior adaptability in handling com-
plex reasoning tasks, outperforming retrieval-based
methods in both accuracy and efficiency.

6.3 Impact of Tool Usage Frequency

Our approach generates diverse reasoning paths
via temperature sampling with an initialized model.
We examine tool dependency across math, science,
and table reasoning by analyzing 20 reasoning
paths per domain, categorizing samples into five
groups based on tool usage, and measuring task ac-
curacy. As shown in Figure 5, math and table tasks
peak at moderate tool usage, while SciBench shows
a consistent positive correlation between tool use

Accuracy vs. Tool Usage Frequency Groups

Accuracy

T T T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0
Group Index (Tool Usage Frequency Increasing)

Figure 5: Analysis of task accuracy based on tool usage
frequency across three domains.

and accuracy, underscoring its reliance on tools.
These findings highlight the need for calibrated
tool dependency to optimize performance.

7 Discussion and Conclusion

Our work highlights the importance of selective
tool use and optimized Python libraries in enhanc-
ing LLMs’ scientific reasoning. The TAT frame-
work fosters tool awareness and refines reasoning
process, enabling LLMs to tackle complex scien-
tific problems effectively. Our experiments reveal
tool usage patterns, demonstrating TAT’s impact
on tool application.

Future research will focus on expanding data
scale and domain coverage, improving data quality,
bridging distribution gaps, and refining sampling
and filtering strategies to enhance the generaliza-
tion and diversity of tool-assisted reasoning.

8818

Limitations

Our method currently encounters several limita-
tions:

(1) Tool Initialization stage Data Mismatch: The
data used in the tool initialization stage differs from
the data in the later stages, potentially affecting
the effectiveness of training. We aim to optimize
the reverse problem generator to better match real-
world task distributions.

(2) Dependency on Strong Model Supervision
in Second Stage: The second stage relies on strong
model supervision signals, which can be costly. We
plan to develop a more cost-effective solution by
using open-source models to generate data for this
stage.

(3) Suboptimal Tool Selection Preferences: Cur-
rent tool selection relies on rule-based heuristics
and confidence-based distillation, which have limi-
tations. Exploring more effective modeling of tool
selection preferences is a promising future direc-
tion.

(4) Limited Data Generation and Sampling: Data
generation and sampling currently rely solely on
the training dataset’s problem samples. To enhance
model performance and scalability, we plan to ex-
pand the sampling data sources to include a broader
range of real-world scientific problems.

(5) Limited Domain Applicability: While the
TAT framework enhances Python-based scientific
reasoning, its scope is limited to mathematics, sci-
ence, and table reasoning. Future work should
extend its application to domains like coding, fi-
nance, and engineering, integrating diverse tools to
improve adaptability and robustness.

Acknowledgements

We want to thank all the anonymous reviewers
for their valuable comments. This work was sup-
ported by the National Science Foundation of
China (NSFC No. 62206194), the Natural Sci-
ence Foundation of Jiangsu Province, China (Grant
No. BK20220488), and the Young Elite Scientists
Sponsorship Program by CAST (2023QNRCO001).

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Meta Al 2024. Llama 3 model
https://github.com/meta-1lama/llama3/
blob/main/MODEL_CARD.md. GitHub Repository.

card.

Anthropic. 2023. Claude 2. https://claude.ai. Ver-
sion 2.0.

Daman Arora, Himanshu Gaurav Singh, et al. 2023.
Have llms advanced enough? a challenging problem
solving benchmark for large language models. arXiv
preprint arXiv:2305.15074.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Zhi-Yuan Chen, Shiqgi Shen, Guangyao Shen, Gong Zhi,
Xu Chen, and Yankai Lin. 2024. Towards tool use
alignment of large language models. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 1382—1400.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, et al.
2021. Finga: A dataset of numerical reasoning over
financial data. arXiv preprint arXiv:2109.00122.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,

35:16344-16359.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han-
lin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Ji-
adai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie
Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu,
Lucen Zhong, Mingdao Liu, Minlie Huang, Peng
Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shu-
dan Zhang, Shulin Cao, Shuxun Yang, Weng Lam
Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan
Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu,
Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan
An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li,
Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan
Wang. 2024. Chatglm: A family of large language
models from glm-130b to glm-4 all tools. Preprint,
arXiv:2406.12793.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

8819

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://claude.ai
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793

Varun Kumar, Leonard Gleyzer, Adar Kahana, Khem-
raj Shukla, and George Em Karniadakis. 2023.
Mycrunchgpt: A chatgpt assisted framework
for scientific machine learning. arXiv preprint
arXiv:2306.15551.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. Advances in Neural Information
Processing Systems, 35:2507-2521.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2024a. Chameleon: Plug-and-play
compositional reasoning with large language models.

Advances in Neural Information Processing Systems,
36.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024b. Mathcoder2: Better math reasoning
from continued pretraining on model-translated math-
ematical code. arXiv preprint arXiv:2410.08196.

Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo,
Zhiqing Sun, Joshua B Tenenbaum, Daniela Rus,
Chuang Gan, and Wojciech Matusik. 2024. Llm and
simulation as bilevel optimizers: A new paradigm to
advance physical scientific discovery. arXiv preprint
arXiv:2405.09783.

Sanjay Nadhavajhala and Yingbei Tong. 2024. Rubra-
mistral-7b-instruct-v0.3.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1—
16. IEEE.

Nitin Liladhar Rane, Abhijeet Tawde, Saurabh P Choud-
hary, and Jayesh Rane. 2023. Contribution and per-
formance of chatgpt and other large language models
(Ilm) for scientific and research advancements: a
double-edged sword. International Research Jour-
nal of Modernization in Engineering Technology and
Science, 5(10):875-899.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th

ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505-3506.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2023. Gpga: A
graduate-level google-proof q&a benchmark. arXiv
preprint arXiv:2311.12022.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301.

Gemini Team, Petko Georgiev, Ving lan Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. 2023a. Math-
coder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint
arXiv:2310.03731.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yangiao Zhu,
Jieyu Zhang, Satyen Subramaniam, Arjun R Loomba,
Shichang Zhang, Yizhou Sun, and Wei Wang.
2023b. Scibench: Evaluating college-level scientific
problem-solving abilities of large language models.
arXiv preprint arXiv:2307.10635.

Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried,
and Graham Neubig. 2024. What are tools anyway?
a survey from the language model perspective. arXiv
preprint arXiv:2403.15452.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung,
Hao Peng, and Heng Ji. 2023. Craft: Customiz-
ing llms by creating and retrieving from specialized
toolsets. arXiv preprint arXiv:2309.17428.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Ren Kan, Dongsheng Li, and De-
qing Yang. 2024. Easytool: Enhancing llm-based
agents with concise tool instruction. arXiv preprint
arXiv:2401.06201.

8820

https://doi.org/10.57967/hf/2656
https://doi.org/10.57967/hf/2656

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen.
2024. Mammoth2: Scaling instructions from the web.
arXiv preprint arXiv:2405.03548.

Yilun Zhao, Yitao Long, Hongjun Liu, Ryo Kamoi,
Linyong Nan, Lyuhao Chen, Yixin Liu, Xiangru
Tang, Rui Zhang, and Arman Cohan. 2024. Docmath-
eval: Evaluating math reasoning capabilities of llms
in understanding long and specialized documents. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 16103—-16120.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual con-
tent in finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3277-3287, Online. Association for
Computational Linguistics.

8821

https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254

A Appendix

A.1 Training Details
A.1.1 Training Data Generation

Table 7 presents the detailed training data statistics
and Table 8 and Table 9 presents the examples of
training data.

Stage 1: Backward This stage focuses on tool
selection and initialization, equipping the model
with the ability to identify, understand, and explain
the use of tools. The process is divided into the
following steps:

Tool Information Collection: We begin by iden-
tifying the relevant Python toolkits for the target
domain through an in-depth analysis of problem
types and their Python-based solutions in existing
datasets. To collect these tools:

* Web Scraping: Using web scraping tech-
niques, we extract comprehensive information
for each tool, including functionality descrip-
tions, required parameters, and usage details.
This ensures a broad and inclusive dataset cov-
ering all necessary tools.

* Toolset Repository Creation: The collected
information is saved into a repository, form-
ing the basis for subsequent processing and
generation tasks.

Tool Information Filtering and Processing: To
ensure the collected data is structured, concise, and
directly applicable to reasoning tasks:

* Documentation Refinement: We use large lan-
guage models (LLMs) to process the raw doc-
umentation. For each Python function or tool:
1) Labeling: Functional labels (e.g., "Alge-
bra," "Geometry," "Number Theory") are as-
signed based on the tool’s purpose and usage
context.2) Description Simplification: Com-
plex and verbose documentation is rewritten
into clear and concise summaries. This step
ensures easy interpretability and efficient use
of the tool information.

¢ Irrelevant API Removal: Non-functional or
unrelated APIs are filtered out, resulting in a
clean, task-specific tool library.

Code Case Generation: To demonstrate the
practical application of the tools, we generate ex-
ample code snippets that illustrate their usage. The

output of this step is a large collection of diverse,
executable code snippets that effectively showcase
each tool’s functionality

* Few-Shot Seed Pool: A small pool of hand-
crafted examples is initially created to seed
the generation process.

* Iterative Expansion: Using LLMs in a
few-shot setup, we iteratively expand this
pool by generating additional code snippets.
Similarity-based filtering ensures diversity
and avoids redundancy during each iteration.

* In-Context Learning (ICL): Randomly se-
lected examples from the seed pool are used as
in-context examples to enhance the generation
quality in subsequent iterations.

Query and Code Plan Generation: To inte-
grate the generated code snippets into a reasoning
framework:

* Single-function Sampling: We focus on
single-function usage examples and exclude
those with non-numerical outputs to maintain
relevance for reasoning tasks.

* Query Generation: Using LLMs(like
Qwen2.5-7B-instruct model), the sampled
functions are executed, and their results are
analyzed to generate potential user queries.
These queries simulate real-world problem
statements that can be addressed using the
functions.

* Natural Language Explanations: For each
sampled case, the LLM generates a natural
language explanation detailing: 1) The reason-
ing process behind the tool’s usage. 2) How
the tool addresses the problem and produces
the observed output.

* Code Plan Creation: The explanations are
combined with the code execution paths to
form structured code plan samples, creating
cohesive datasets that link tool outputs with
problem-solving contexts.

Automated QA Pair Creation: The generated
code snippets, explanations, and structured code
plans are then leveraged to create high-quality sci-
entific QA pairs:

8822

* Code Validation: Each generated sample is
validated to ensure correctness and compati-
bility across diverse tools, minimizing noise
in the dataset.

 Scalability Across Domains: The backward
data generation process is designed to scale
effectively across multiple domains by lever-
aging tool diversity and automated processes.

This backward data generation approach auto-
mates the creation of labeled data with minimal
human intervention, ensuring high-quality and con-
sistent training datasets while reducing dependency
on manual annotation.

Stage 2: Forward The second stage focuses on
generating tool-aware forward data by address-
ing real-world problems in the target domain.
This process leverages large language models
(LLMs) to produce high-quality solutions through
in-context learning, facilitating reasoning aligned
with domain-specific challenges. The implementa-
tion details are outlined below:

* Problem Collection and Preparation: We
utilize datasets such as MATH (Hendrycks
et al., 2021) and GSM8K (Chen et al., 2022),
which include problems paired with their cor-
responding CoT solutions for mathematical
reasoning. Relevant problem sets are col-
lected from FinQA (Chen et al., 2021) and
TAT-QA (Zhu et al., 2021) in tabular rea-
soning. In scientific reasoning domains with
limited large-scale datasets, such as scientific
problem solving, we employ SciBench (Wang
et al., 2023b) few-shot examples as seed data
to prompt GPT-4omini to generate new sci-
entific problems. Solutions are generated us-
ing three reasoning strategies: CoT, PoT, and
CodePlan. To ensure robustness, a majority
voting mechanism is applied, where the most
frequent result across methods is selected as
the final solution.

* Tooluse Labeling: Each problem is systemati-
cally labeled based on its dependency on tools,
ensuring precise guidance for the model’s
decision-making in tool invocation.

— Rule-Based Labeling: We compare the
performance of CoT and tool-integrated
reasoning on multiple sampling solutions
using LLaMA-3-8B Instruction model.

If tool-enhanced reasoning achieves a
higher accuracy rate—measured by solu-
tion correctness—the problem is labeled
as "tool needed."

— LLM-as-Judge Labeling: We design a
structured prompt (Table 6) that instructs
LLaMA-3-8B to analyze each problem
and determine the necessity of tool usage,
providing a natural language explanation
to justify its decision.

* Solution Generation via In-Context Learn-
ing: Using GPT-4omini, we generate step-
by-step solutions for CoT reasoning. For
problems requiring tool assistance, few-shot
examples are used to prompt LLM to form
structured code plans: 1) CoT Decomposition:
For mathematical datasets (Math/GSM&8K),
we design prompts that guide the model to
break down the standard CoT solution into
fine-grained steps and generate corresponding
code snippets for each step. 2) Structured Out-
put:The generated reasoning paths are com-
bined with executable code snippets to create
cohesive code plan datasets. This approach
emphasizes precision by integrating logical
reasoning with tool execution.

* Code Execution and Validation: The CoT
solution is directly extracted, and all generated
code is executed to ensure correctness. Only
samples with verified outputs are retained, fil-
tering out flawed reasoning paths to ensure
the dataset comprises high-quality problem-
solving examples.

Stage 3: Multi-Task Fine-Tuning In this stage,
we can theoretically access a vast array of open-
source problems from the internet to enhance
dataset diversity and expand training volume, ulti-
mately improving model performance. However,
to optimize computational efficiency and time, we
primarily reuse the domain-specific datasets col-
lected in Stage 2, leveraging rejection sampling to
filter and enhance the solution set. Specifically, we
use the training sets from MATH (Hendrycks et al.,
2021) and GSMS8K (Chen et al., 2022) for mathe-
matical reasoning, incorporate LLM-generated sci-
entific problems as described in Stage 2, and utilize
training data from FinQA (Chen et al., 2021) and
TAT-QA (Zhu et al., 2021) for tabular reasoning.
To generate a diverse set of candidate reason-
ing paths, we employ temperature sampling with a

8823

temperature of 0.9 and top,, of 0.8, setting the max-
imum output length to 2048 tokens. Temperature
sampling introduces controlled randomness, en-
couraging the generation of varied reasoning trajec-
tories while maintaining response quality. Correct
responses are sampled, with a focus on challenging
queries. Specifically, we apply our Stage 2 model
to all collected problems, generating an average of
20 samples per question. Each sampled response
undergoes execution and evaluation based on both
correctness and tool utilization. Finally, only ver-
ified correct responses are retained after filtering,
ensuring a high-quality dataset for fine-tuning.

A.1.2 Training Settings

We utilize Meta-Llama-3-8B-Instruct (Al, 2024)
as the backbone to train our model. We em-
ploy alignment framework!, DeepSpeed (Rasley
et al.,, 2020) library, Zero Redundancy Opti-
mizer (ZeRO) (Rajbhandari et al., 2020) Stage
3, FlashAttention (Dao et al., 2022), and the
bfloat16 (BF16) and tfloat32 (TF32) mix computa-
tion precision on 8§ NVIDIA A100 GPUs.

The training process is divided into three stages,
with each stage configured to address specific tasks
and optimize performance:(1) Stage 1 - Tool Ini-
tialization: In this stage, we use a dataset of 255K
samples to initialize the tools. The model trains for
1 epoch, with a batch size of 3 and a gradient accu-
mulation step of 8. The initial learning rate is set to
2e-5 and the warm-up ratio is 0.03 to facilitate sta-
ble convergence during early training.(2) Stage 2 -
Reasoning Initialization: In this stage, the model
undergoes 4 epochs of training using a dataset of
30K samples for inference initialization. Similar
to Stage 1, the batch size is 3, with gradient accu-
mulation steps of 8 and a starting learning rate of
7e-6. The warm-up ratio remains at 0.03.(3) Stage
3 - Sampling stage: In the final stage, the model is
trained on a dataset of 300K samples. To mitigate
catastrophic forgetting, the learning rate is reduced
to 5e-6, and the model trains for 1 epoch. Gradient
accumulation steps are again set to 8, with a batch
size of 3.

A.1.3 Three-Stage Training Instruction
Design

To prevent catastrophic forgetting in multi-task

learning, we designed a three-stage training instruc-

tion framework that ensures task continuity. The

1https://github.com/huggingface/
alignment-handbook

first two stages serve as preparatory tasks, focusing
on tool selection and initialization (Stage 1) and
integrating tool usage through multi-step reasoning
(Stage 2). These stages establish the core knowl-
edge of the model. The third stage emphasizes
multi-task learning, with instructions tailored to
specific tasks but still linked to the first two stages,
ensuring the model effectively applies previously
learned knowledge. This design guarantees that
the model retains its core capabilities while adapt-
ing to new tasks, promoting consistency and effec-
tive knowledge transfer between tasks. The design
of the instructions for the different task stages is
shown in the table 10

A.2 Evaluation Details
A.2.1 Evaluation Datasets

Table 11 summarizes the statistical details and ex-
amples of the five datasets used in the evaluation
experiments, illustrating the size of the evaluation
data and the domains involved in the tasks. These
datasets cover a range of difficulty levels (from
high school to college-level scientific problems)
and diverse fields (including mathematics, physics,
chemistry, and finance). Specifically, these datasets
ensure a thorough assessment of the model’s per-
formance across various reasoning scenarios and
highlight its generalization capabilities in diverse
scientific tasks.

Dataset ‘ #Samples ‘ Fields

Math 5000 Pre-Algebra, Inter-Algebra,
Algebra, Probability, Number
Theory, Calculus, Geometry

GSMS8K 1319 Pre-Algebra

SciBench 580 Chemistry, Physics, Mathe-
matics

DMsimpshort 200 Financial

DMcompShort 200 Financial

Table 11: Statistics of the datasets used in the evaluation
experiments, including test question counts, scenarios,
and covered fields.

A.2.2 Evaluation Baselines

We select powerful closed-source models such as
GPT-4 (Achiam et al., 2023), Claude-2 (Anthropic,
2023), and Gemini-1.5 (Team et al., 2024) as base-
lines to represent the current state-of-the-art model
capabilities. In addition, we choose Mistral-7B
(Nadhavajhala and Tong, 2024), GLM-4 (GLM
et al., 2024), and LLaMA3-70B (A, 2024) as
open-source model baselines to reflect the general-

8824

https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook

Symbolic to Numeric Usage Ratio Across Stages

w »

Symbolic/Numeric Ratio
N

1
base_model

stagel stage2 stage3

Stage

Figure 6: Shift towards symbolic computation: in-
creased usage of symbolic functions as the model
progresses in mathematical reasoning task.

purpose reasoning ability of LLMs within the open-
source community. Given the inherent challenges
that general models face when using tools, partic-
ularly in Python code generation, we employ CoT
prompting to generate solutions.

In addition to general-purpose models, we also
evaluate several tool-integrated learning methods
as comparison baselines to our approach which
including:

* ToRA (Gou et al., 2023): By combining natu-
ral language reasoning and external computa-
tional tools, this approach uses imitation learn-
ing to improve the performance of LLMs on
mathematical problems.

e MAmmoTH2 (Yue et al., 2024): Based on
web-scraped corpora, this model builds in-
struction datasets to enhance the model’s sci-
entific reasoning ability.

e MathCoder2 (Lu et al., 2024b): A technique
that employs high-quality mathematical pre-
training datasets to generate tool-based rea-
soning data, enhancing mathematical problem-
solving.

While these tool-integrated approaches focus on
generating high-quality reasoning data to improve
the model’s reasoning ability, they do not explicitly
address tool awareness or the optimized utilization
of Python libraries in solving complex problems,
which is a core focus of our work.

A.2.3 Evaluation Metric

Tool Usage Score The Tool Usage Score is a
composite metric designed to assess the proactiv-
ity and effectiveness of a model’s tool usage in

Heat map of toolkit usage frequency at each stage.
16000

£
E 0 38 0 0 14000
o
g
12000
Y
g @ 731 6 7 10000
o 2
g - 8000
>
g o 3 0 0 - 6000

sympy

- 4000
12008 | 14768 | 16171 | 16099 - 2000
-0

base stagel stage2 stage3

Figure 7: Visualization of the tool usage frequency
at each stage on math dataset using a heatmap.

problem-solving scenarios. It is derived from three
weighted sub-metrics: (1)Tool Proactivity: The
frequency at which the model actively chooses to
utilize tools for solving problems, expressed as the
proportion of all tasks (N) where tools were used
(NT):Proactivity= %(2) Tool Utilization Success
Rate: This evaluates the correctness and efficiency
of tool use, calculated as the ratio of successful tool
executions (STE) to total tool invocation attempts
(TEA).Utilization= %(3) This metric measures
the proportion of correct answers achieved with the
assistance of tools, combining the model’s reliance
on tools and their effectiveness in solving tasks:
ToolDriven Acc= Y4 « AL, where CAT is the
number of correct answers achieved using tools,
CA is the total number of correct answers, and N
is the total number of task.

To facilitate comparisons, the Tool Usage Score
is calculated as a weighted average of these three
sub-metrics:Tool Usage Score = w; - Proactivity +
wy - Utilization + w3 - ToolDriven Acc,,we assigned
wy = 0.3, wy = 0.3, ws = 0.4 for computation in
our experiments.

A.2.4 Additional Tool Analysis

This section provides a detailed analysis of tool us-
age across different training stages. As indicated in
Figure 7, Sympy is the primary tool, with increas-
ing usage highlighting its importance for complex
tasks. This correlates with improved performance
in GSM8K and Math tasks (Table 1), where sym-
bolic computation is key. In contrast, mpmath and
scipy are minimally used, suggesting tasks don’t
heavily rely on precise numerical computations.
Numpy sees a notable spike in stage 1, likely due
to tasks requiring efficient array operations.

8825

By analyzing the distribution of symbolic (e.g.,
solve, simplify) and numerical (e.g., sqrt, cos, tan)
computation functions, we observe a shift in the
model’s computational focus, indicating a transi-
tion toward symbolic capabilities for addressing
advanced mathematical problems.

By comparing the distribution and proportion of
symbolic computation functions (e.g., solve, sim-
plify in sympy) with numerical computation func-
tions (e.g., sqrt, cos, tan in numpy or math), we
observe a transition in the model’s computational
capabilities. The proportion curves of function
calls across different stages, shown in Figure 6
demonstrate a clear shift from numerical to sym-
bolic computation. This trend indicates the model’s
growing ability to handle complex mathematical
expressions and equations, suggesting a gradual
shift towards symbolic capabilities for advanced
mathematical challenges.

8826

Prompt for Tool-Integrated Zeroshot

Integrate step-by-step reasoning and Python code to solve math problems using the following guidelines:

- Analyze the question and write functions to solve the problem; the function should not take any arguments.
- The format of the solution should be the following:

Begin with question analysis: step-by-step reasoning here

Let’s write Python code to solve:

“python
def solution():
Define variables name and value based on the given context

Do math calculation to get the result

return result

return result
result = solution()
print(result)

Prompt for Tool-Integrated ICL

Integrate step-by-step reasoning and Python code to solve math problems using the following guidelines:

- Analyze the question and write functions to solve the problem; the function should not take any arguments.

- Present the final result in LaTeX using a ‘\boxed{}’without any units.

- Utilize the ‘pi’ symbol and ‘Rational’ from Sympy for 7w and fractions, and simplify all fractions and square
roots without converting them to decimal values.

Here are some examples you may refer to:

Question: Convert the point (0, —3+/3, 3) in rectangular coordinates to spherical coordinates. Enter your answer
in the form (p, 8, ¢), where p > 0,0 < 6 < 27,and 0 < ¢ < 7.

Solution:

To convert the point (z,y,z) in rectangular coordinates to spherical coordinates (p,0,¢), we
use the following formulas: rho = sqrt(x**2 + y**2 + z**2) theta = atan2(y, x) phi = acos(z/rho) Let’s write a
function:

T Tpython
from sympy import sqrt, atan2, acos, pi
def rectangular_to_spherical():
X, Yy, z =0, -3*sqrt(3), 3
rho = sqrt(x**2 + yxx2 + z*x*2)
theta = atan2(y, x)
phi = acos(z/rho)
return rho, theta, phi
spherical_coordinates = rectangular_to_spherical()
print(spherical_coordinates)
T T Toutput
(6, -pi/2, pi/3)

The required form of the answer is (p, 8, ¢), where p > 0, 0 < 6 < 27, and 0 < ¢ < 7. Since our initial output has

6 = —m /2, which doesn’t meet the condition for #, we add 27 to adjust its value.
3
Hence, the spherical coordinates for the point (0, —3+/3, 3) are | (6, ?ﬂ’ g) .

(Other examples omitted...)

Table 5: Prompt for Tool-Integrated Zeroshot and ICL settings

8827

Prompt for Tooluse Labeling

You are a scientific expert and required to assess whether the given problem requires tool assistance based on golden
solution. Please analyze the problem and its provided solution based on the following criteria:

1. High-complexity Calculations or Large-scale Data Operations: If manual derivation could lead to errors or would
take excessive time, tool assistance may be needed.

2. Advanced Functions/Algorithms: If the solution involves complex functions (e.g., Algebra, Number Theory,
Calculus) or advanced algorithms (e.g., Geometry, Probability, Graph Theory), tools can improve efficiency.

3. Visualization: If the solution benefits from visualizations for result verification or analysis, tool assistance (e.g.,
graphing, plotting) may be helpful.

Please analyze the given problem solution, determine if tool assistance (including calculators or code) is required,
and provide a brief explanation.

Finally, respond in the following format: "Answer: Yes/No Explanation: <Your Explanation>."

Problem:

Solution:
Table 6: Prompt for Tooluse Labeling
Dataset | Samples Fields Problem Source
Stage 1 255k sympy;scipy;numpy;mpmath Self-generated
Stage 2 30k reasoning MATH/GSMS8K/TATQA train and generated scientific problems

Stage 3 300k Chemistry; Physics; Mathematics;Table | MATH/GSM8K/TATQA train and generated scientific problems

Table 7: Statistics of the generated train datasets.

8828

Stage 1: Backward Data Example for Tool Initial

Question: Calculate the definite integral of the function f(z) = 2 fromx=0tox = 1.

CodePlan Solution:

Step 1: Define the variable x and the function f(x) = x? using SymPy. Compute the definite integral of
the function from x = 0 to x = 1 using the integrate function. Print the result to obtain the solution.

“python

from sympy import integrate, symbols

Define the variable and function

x = symbols(\'x\")

expr = X**2

Perform definite integration from @ to 1
result = integrate(expr, (x, 0, 1))
print("The answer is: {}".format(result))

Stage 2: Forward data Example for multi-step reasoning Initial

Question:what was the mathematical range for all four groups in 12/2010 , assuming investments of $100
initially in 2008?

CodePlan Solution:

Step 1: Extract the values for each group at the end of the specified period (12/2010).We need to extract
the cumulative total return values for Valero common stock, S&P 500, old peer group, and new peer group
from the table for the date 12/2010.

“python

Values for each group at 12/2010
valero_2010 = 35.01

sp500_2010 = 91.67

old_peer_2010 = 88.41
new_peer_2010 72.84

Step 2: Calculate the range for each group.The range is calculated as the difference between the maximum
and minimum values of the four groups at the specified date (12/2010). We will use NumPy to facilitate this
calculation.

T Tpython

import numpy as np

Create an array of the values

values = np.array([valero_2010, sp500_2010, old_peer_2010, new_peer_2010])
Calculate the range\nrange_value = np.max(values) - np.min(values)

Step 3: Print the calculated range value.

“python
Print the result
print(f'The answer is: {range_value}')

Table 8: Examples of the generated train datasets (Part 1).

8829

Stage 3: Task specific data Example for multi-task finetuning

Question: A hot metal cube of mass (m = 1.5kg) is dropped into a calorimeter containing (0.2kg) of water at an initial
temperature of (20°C). The cube has an initial temperature of (100°C). Assuming no heat is lost to the surroundings,
calculate the final equilibrium temperature of the system. The specific heat capacity of water is (c,,=4186 J/(kg-°C)) and
the specific heat capacity of the metal is (¢,,,= 500 J/(kg-°C)). The unit of the answer is °C.

CodePlan Solution:

Step 1: Import necessary libraries and Define the constants and initial conditions

T Tpython

import numpy as np

m=1.5 # mass of the metal in kg

m_w = 0.2 # mass of the water in kg

c_w = 4186 # specific heat capacity of water in J/(kg-°C)

c_m = 500 # specific heat capacity of metal in J/(kg-°C)

Initial temperatures

T_initial_m = 100 # initial temperature of the metal in °C
T_initial_w = 20 # initial temperature of the water in °C

Step 2: Set up the equation for heat transfer

* T “python
mx c_m* (T_initial_m - T_f) = m_w * c_w *x (T_f - T_initial_w)

Step 3: Rearrange the equation to solve for T’

* T python

from sympy import symbols, Eq, solve

T_f = symbols('T_f")

heat_equation = Eq(m * c_m * (T_initial_m - T_f),
mw *x c_w * (T_f - T_initial_w))

T_final = solve(heat_equation, T_f)[0]

Step 5: Output the result

“python
result = round(T_final, 1)
print(f'The answer is: {result} unit(°C)')\n

Table 9: Examples of the generated train datasets (Part 2).

8830

Stage

Instruction

Stage 1

You are a Python programming expert skilled in solving problems with appropriate libraries
and functions. For the given task, identify and apply the most suitable Python tools, providing
a clear explanation of the reasoning and implementation steps.

Stage 2

You are a reasoning expert with strong programming skills, specializing in step-by-step
problem-solving. You excel at integrating natural language reasoning with Python code and
using python libraries for optimized calculations. Your goal is to generate a step-by-step
code plan that combines reasoning with Python code implementations, each wrapped in
triple backticks, to deliver a precise and verifiable solution.

Math Task for Stage 3

You are an expert in Mathematics and Python programming, with deep expertise in algebra,
calculus, geometry, number theory, and probability. You excel at leveraging Python libraries
and integrating step-by-step mathematical reasoning with Python code for efficient and
precise calculations. Your task is to generate a comprehensive and accurate code plan
for the given mathematical problem, combining step-by-step reasoning with Python code
implementations for each step.

Scientific Task for Stage 3

You are an expert in scientific reasoning and Python programming, with advanced knowledge
in Physics, Chemistry, and Mathematics. You excel at leveraging Python libraries and
integrating step-by-step scientific reasoning with Python code for complex computations.
Your task is to generate a comprehensive and accurate code plan for the given scientific
problem, uniting step-by-step reasoning with Python code implementations for each step.

Table Task for Stage 3

You are an expert in financial analysis and Python programming, skilled in interpreting
finance-specific documents involving text and tables. You excel at leveraging Python li-
braries and integrating step-by-step table reasoning with Python code for accurate numerical
computations. Your task is to generate a comprehensive and accurate code plan for the given
table reasoning problem, blending step-by-step reasoning with Python code implementations
for each step.

Table 10: Instructions for multi-Stage Training. The first two stages of initialization tasks contain only one
instruction, while the third stage of multi-task fine-tuning designs domain-specific instructions for different domain

data.

8831

