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Abstract
We study abstraction in an emergent communi-
cation paradigm. In emergent communication,
two artificial neural network agents develop a
language while solving a communicative task.
In this study, the agents play a concept-level
reference game. This means that the speaker
agent has to describe a concept to a listener
agent, who has to pick the correct target objects
that satisfy the concept. Concepts consist of
multiple objects and can be either more specific,
i.e. the target objects share many attributes, or
more generic, i.e. the target objects share fewer
attributes. We tested two directions of zero-
shot generalization to novel levels of abstrac-
tion: When generalizing from more generic to
very specific concepts, agents utilized a com-
positional strategy. When generalizing from
more specific to very generic concepts, agents
utilized a more flexible linguistic strategy that
involves reusing many messages from training.
Our results provide evidence that neural net-
work agents can learn robust concepts based
on which they can generalize using adaptive
linguistic strategies. We discuss how this re-
search provides new hypotheses on abstraction
and informs linguistic theories on efficient com-
munication.

1 Introduction

One of the most fundamental goals of Artificial
Intelligence (AI) and Natural Language Process-
ing (NLP) research is to build models which can
generalize well to unseen data. This is, after all,
one of the crucial abilities observed in human in-
telligence. Abstraction has been argued to be a
necessary first step towards achieving generaliza-
tion (Yee, 2019). But there are also alternative
views such as the exemplar-based model of cat-
egories where generalization is achieved without
abstraction (Ambridge, 2020; Daelemans, 2008).
We believe that understanding abstraction and how
it interacts with generalization, is fundamental to
building well-generalizing models.

Humans naturally use abstraction to solve com-
plex tasks and to communicate about strategies
and solutions. Well-designed AI and NLP systems
cannot only benefit from good abstraction abilities
in, for example, reasoning and solving complex
tasks (e.g. Ho et al., 2019; Zheng et al., 2024),
but interactive systems should also be able to deal
with human language inputs which involve abstrac-
tions (e.g. Lachmy et al., 2022). Many researchers
studying human abstraction argue for a role of lan-
guage therein (see e.g., Yee, 2019; Sloutsky and
Deng, 2019; Gentner and Asmuth, 2019; Lupyan
and Lewis, 2019). The main idea of these accounts
is that the lexicalization of concepts, i.e. having a
label for a concept, helps to acquire and structure
information we obtain about an entity and to ob-
serve commonalities within members of a concept
in the first place. The role of language in abstrac-
tion can also be tested in computational systems.
The goals of the current research are tounderstand
how abstraction and generalization interact and ul-
timately to inform the improvement of AI and NLP
systems towards achieving human-like abstraction
and generalization abilities.

Starting from the assumption that language is
useful for abstraction, we study abstraction in a
communicative setting and investigate how ab-
straction is achieved with the help of linguistic
strategies such as compositionality and the reuse
of previously established messages. To gain in-
sights into the principled mechanisms of abstrac-
tion and the role of language for abstraction, we
use a language emergence scenario. In language
emergence research, the idea is to define a set of
assumptions and then observe how these assump-
tions change a language-like system that emerges
during interaction (see e.g. Lazaridou et al., 2017;
Galke et al., 2022; Rodríguez Luna et al., 2020;
Chaabouni et al., 2020). This modeling framework
is ideal for investigating whether human-like behav-
ior and communication strategies can emerge even
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in a comparatively simple communicative setup
between two artificial neural network agents.

In our model, two artificial neural network
agents solve a reference game, where a speaker
agent has to communicate a target concept to a lis-
tener agent who needs to select the correct target
concept in a context. We operationalize a concept
as a set of target objects following previous work
(Kobrock et al., 2024a,b; Mu and Goodman, 2021).
Our target concepts are designed in a hierarchical
fashion, ranging from very specific concepts con-
sisting of objects where all attributes (e.g., size,
color and shape) are fixed to a certain value, e.g.
‘small blue circle’, to very generic concepts con-
sisting of objects where only one attribute is fixed,
e.g. ‘circle’. We can study abstraction by making
use of this abstraction hierarchy. Here, we are inter-
ested in a specific kind of abstraction, namely the
zero-shot generalization to concepts at novel levels
of the concept hierarchy, or, to concepts at novel
levels of abstraction (following the terminology of
seminal research from Cognitive Psychology by
Rosch et al., 1976). We will not only look at the
generalization performance of the trained models,
but also at the linguistic strategies the agents em-
ploy. Specifically, we investigate the properties
of the emergent protocol and the use of novel vs.
established messages during abstraction.

While previous work in emergent communica-
tion has highlighted the role of compositionality for
generalization (see e.g. Hazra et al., 2021; Kottur
et al., 2017; Lazaridou et al., 2018), in our experi-
ments we disentangle two directions of generaliza-
tion and propose that they require different linguis-
tic strategies. We find that agents use a composi-
tional strategy only when generalizing to specific
concepts, but not when generalizing to generic con-
cepts. These results highlight that compositionality
is not the only way to achieve generalization, which
is in line with recent findings from Chaabouni et al.
(2020) and Kharitonov and Baroni (2020).

2 Method

2.1 General Setup

We use an emergent communication paradigm (e.g.
Lazaridou et al., 2018; Chaabouni et al., 2019) and
build on the concept-level reference game devel-
oped in previous work (Mu and Goodman, 2021;
Kobrock et al., 2024a). We train two artificial
neural network agents, one speaker and one lis-
tener agent. Over several iterations, these agents

develop a communication system by solving the
following task: The speaker agent S has to com-
municate a concept, i.e. a set of target objects
T = {t1, ..., tg}, to the listener agent L whose task
is to identify the correct targets among a set of
distractors D = {d1, ..., dg}. We call the set of
target objects the concept and the set of distractor
objects the context. The listener’s task is to identify
the target concept in a certain context given a mes-
sage generated by the speaker. The message is a
vector of symbols generated by the speaker neural
network which does not have a pre-specified mean-
ing. Rather, the meaning of a message emerges
over several interactions between the agents and
is defined by its usage (see e.g. Lazaridou et al.,
2017). Concepts vary in specificity, ranging from
specific, where all attributes are shared among the
target objects, to generic, where only one attribute
is shared among the targets. Contexts can range
from being fine, where all but one attributes are
shared between targets and distractors, to being
coarse, where no attribute is shared between targets
and distractors. Both agent networks are trained
in a Reinforcement Learning paradigm with the
Gumbel-Softmax relaxation (Jang et al., 2017) on
a joint loss that depends on whether the listener
correctly identifies the targets and distractors given
the speaker-generated message.

2.2 Zero-shot Conditions and Hypotheses

We test the zero-shot generalization abilities of
the trained networks in two conditions (see Fig-
ure 1): The first condition, “to specific”, tests
whether agents are able to generalize to the most
specific concepts when having seen more generic
concepts during training. In this condition, we
expect the emerging communication system to en-
code more generic concepts (such as “blue” or “cir-
cle”). For a successful zero-shot generalization,
these more generic concepts would need to be com-
bined to describe a specific concept (such as “blue
circle”). Here, agents will need to combine previ-
ously learned attributes compositionally to describe
a more specific concept. The second condition, “to
generic”, tests whether agents are able to gener-
alize to the most generic concepts when having
seen more specific concepts during training. In this
condition, we expect the emerging communication
system to encode more specific concepts (such as
“blue circle” or “orange circle”). For a successful
zero-shot generalization, agents will need to ab-
stract away from contextually irrelevant features
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and find the common attribute that all targets share
(e.g. “circle”).

2.3 Dataset

The agents are trained on six symbolic datasets de-
veloped in previous work (Kobrock et al., 2024a).
These datasets contain all possible concepts, rang-
ing from specific to generic, and contexts, ranging
from fine to coarse, for a given number of attributes
and values. For example, dataset D(3,4) contains
all possible concepts and contexts given that ob-
jects in this dataset have three attributes and each at-
tribute can take four different values. If we think of
the three attributes as shape, color and size, an ex-
ample for a specific concept would be “small blue
circle” and an example for a generic concept would
be “square”. In a fine context, objects belonging to
the concept “small blue circle” would need to be
discriminated against objects that are also small and
blue. In a coarse context, distractor objects do not
share any attributes with the target concept. This
also means that there are more possible contexts
for specific concepts than for generic concepts and
the datasets reflect this relationship. We use a scal-
ing factor of 10 to construct the datasets, i.e. each
concept is included in a dataset 10 times.1 This
ensures that the datasets contain enough training
data.

For the zero-shot dataset generation, we manip-
ulate the training, validation and test splits of the
data. In the “to specific” condition, the test split
contains all most specific concepts available, i.e.
those where all attributes are shared among the
targets. The training and validation splits are com-
posed of the remaining concepts which are more
generic with 75% of the data used for training and
25% of the data used for validation. In the “to
generic” condition, the test split contains all most
generic concepts available, i.e. those where only
one attribute is shared among the targets. The train-
ing and validation sets contain the remaining more
specific concepts with 75% of the data used for
training and 25% of the data used for validation.
Dataset sizes can be inspected in Tables 10 and
11 in Appendix D and are comparable between
zero-shot conditions.

1We use this scaling factor only to construct the train and
validation dataset splits. The zero-shot test is performed on a
test split that contains the novel concepts only once.

2.4 Architecture and Training
A communication game between a speaker S and
a listener L is defined as G = (TS , DS , TL, DL),
where TS = {tS1 , ..., tSg } and DS = {dS1 , ..., dSg }
are the inputs to the speaker, i.e. sets of game size
g targets and distractors, and TL and DL are the
analogously defined inputs to the listener. For these
inputs, TS ̸= TL and DS ̸= DL hold, i.e. the tar-
gets and distractors presented to the speaker differ
from the targets and distractors presented to the
listener to ensure communication of higher-level
concepts (Mu and Goodman, 2021; Kobrock et al.,
2024a). In each round of the game, S generates
a message m = (sj)j≤M , where sj is a symbol
from vocabulary V and M is the maximal mes-
sage length2, based on the inputs TS and DS . L in
turn, receives m and an input XL = {xL1 , ..., xLi },
where i = 2 · g which contains the targets TL and
distractors DL shuffled. L then predicts a label
yLi ∈ {0, 1} (0: distractor, 1: target) for each ob-
ject xLi in its input (see e.g. Mu and Goodman,
2021; Kobrock et al., 2024a; Ohmer et al., 2022).
We visualize the setup in Figure 2.

For the implementation3, we use the EGG
framework for emergent communication games
(Kharitonov et al., 2019, MIT license). Both agents
are implemented in a similar fashion: Feed-forward
layers with 64 units serve as embedding layers for
the input objects. The speaker targets and distrac-
tors are embedded separately and then concate-
nated into a joint embedding. The listener input
objects are processed by just one embedding layer.
For message encoding and decoding, both speaker
and listener networks use single-layer Gated Recur-
rent Units (GRU, Cho et al., 2014) with a hidden
layer size of 128 that can deal with sequential in-
puts of varying lengths. A speaker-listener pair is
trained with binary cross entropy loss

LBCE(S,L,G) = −
∑

i

log pL(yLi |xLi , m̂), (1)

where m̂ ∼ pS(m|TS , DS) and pL(yLi |xLi , m̂) =
ReLU(GRUL(m̂) · embed(xLi )) maximizing the
probability that the listener correctly identifies tar-
gets and distractors with a label yi ∈ {0, 1} (0:
distractor, 1: target) for each object xi. To ensure
differentiability for backpropagation, we use the

2The end-of-sequence symbol 0 can be used to terminate a
message before M is reached.

3All code and analysis scripts are avail-
able at https://github.com/kristinakobrock/
zero-shot-abstraction.
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Figure 1: Examples for speaker inputs for training and testing in the two zero-shot test conditions “to specific” and
“to generic”. Each input consists of targets (i.e., concepts) in the green bounding box and distractors (i.e., context).
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prediction and training

Figure 2: Architecture: Speaker and listener neural
networks receive separate inputs where target objects
satisfy the same target concept (here “blue”) and dis-
tractor objects (i.e., the context) share the same number
of attributes with the target concept (here 0). They are
trained on successful communication, i.e. when the
listener identifies the correct target objects.

straight-through Gumbel-Softmax trick (Jang et al.,
2017) with temperature τ = 2 and a decay rate of
0.99. These and other hyperparameters were de-
termined in a grid search that we conducted for all
parameters over the different dataset sizes aiming
for maximal validation accuracy. We train with
batch size 32 and learning rate 0.001. For our sim-
ulations, we use game size 10, i.e. 10 target objects
form a concept and 10 distractor objects form the
context. The maximum message length M is de-
fined as the total number of attributes in a dataset
plus the End of Sequence (EOS) symbol 0. The
vocabulary size for each dataset corresponds to the
total number of attribute values present. We estab-

lish a minimal vocabulary size for each dataset as
the sum of the number of attribute values plus one
additional symbol. This minimal vocabulary size
is then scaled by a factor of f = 3, as suggested by
Ohmer et al. (2022) to ensure a sufficiently large
communication channel (Chaabouni et al., 2020).

3 Results

We trained the models on six symbolic datasets
with varying numbers of attributes and values. In
a dataset D(n, k), objects have n attributes which
each can take k different values. For all metrics,
we report means and standard deviations over five
individual runs per dataset.

3.1 Generalization Performance
We evaluate the agents’ performance on the test
datasets to assess their zero-shot generalization
abilities.4 Accuracies are calculated as a percent-
age over the objects that the listener classifies as
targets or distractors. An accuracy of 0.9 means
that 90% of the objects, i.e. 18 objects with a game
size of 10, have been classified correctly as targets
or distractors. Or, in other words, two objects have
been misclassified.

Table 1 summarizes the mean test accuracies
over the five runs conducted on each dataset for
both conditions. All zero-shot test accuracies are
>=0.63 indicating that the listeners correctly iden-
tify more than 60% of the 20 objects as targets or

4Training and validation accuracies for both conditions
are >=0.97 indicating that the agents have learned the task
and achieved high performance on both the training and the
validation data splits - a necessary prerequisite for a valid
interpretation of the zero-shot test accuracies (see Tables 4
and 5 in Appendix A).
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to specific to generic

D(3,4) 0.92 ± 0.02 0.71 ± 0.04
D(3,8) 0.85 ± 0.01 0.68 ± 0.07
D(3,16) 0.82 ± 0.03 0.63 ± 0.03
D(4,4) 0.95 ± 0.00 0.82 ± 0.02
D(4,8) 0.95 ± 0.01 0.82 ± 0.07
D(5,4) 0.96 ± 0.01 0.84 ± 0.06

Table 1: Zero-shot test accuracies for both conditions.

distractors. This corresponds to a number of 12
correctly identified objects. Agents achieve higher
performance in the “to specific” condition com-
pared to the “to generic” condition in all datasets.
Comparing test accuracies between datasets, gen-
eralization performance is better for datasets with
more attributes. Specifically, on datasets with at
least four attributes, agents achieve generalization
accuracies of 0.82 or higher in both conditions.
This means that speakers choose expressions to
describe the held-out concepts at novel levels of
abstraction that enable listeners to classify at least
16 of the 20 objects correctly.

3.2 Concept reference

We investigate the emergent mappings between
concepts and messages during training with the
Normalized Mutual Information (NMI) score cal-
culated over messages M and concepts C:

NMI(C,M) =
H(M)−H(M |C)

0.5 · (H(C) +H(M))
, (2)

The NMI score is maximal (i.e., 1.0) if for all mes-
sages and concepts seen during training, every mes-
sage maps to exactly one concept and vice versa.
In other words, a maximal score indicates that the
agents developed a protocol that includes only one-
to-one mappings between messages and concepts,
i.e. no ambiguity. We expect high but not maximal
NMI scores which would indicate that the agents
have learned a structured but not unambiguous map-
ping between concepts and messages. The mean
NMI scores calculated for messages and concepts
during training in five runs range between 0.84 and
0.95 in the “to specific” condition, i.e. when trained
on more generic concepts, and between 0.77 and
0.87 in the “to generic” condition, i.e. when trained
on more specific concepts (see Table 2). This indi-
cates that a structured communication protocol has
emerged in both conditions, while more ambiguity

arises when training the agents on more specific
concepts in the “to generic” condition.

to specific to generic

D(3,4) 0.93 ± 0.03 0.87 ± 0.04
D(3,8) 0.95 ± 0.01 0.82 ± 0.02
D(3,16) 0.87 ± 0.01 0.77 ± 0.02
D(4,4) 0.94 ± 0.01 0.87 ± 0.05
D(4,8) 0.84 ± 0.03 0.83 ± 0.03
D(5,4) 0.87 ± 0.02 0.83 ± 0.04

Table 2: NMI scores for both conditions.

3.3 Generalization strategies
When agents generalize to novel concepts in the
zero-shot test, there are two conceivable strategies.
Firstly, agents might reuse messages that have been
successfully used during training also on the test
dataset. Secondly, agents might invent novel mes-
sages to describe the novel concepts in the test
dataset. We define reuse rates and novelty rates, re-
spectively, to investigate the use of these strategies
in our simulations. Next, we lay out our predictions
for the reuse and novelty rates of agents trained in
the “to specific” and “to generic” conditions.

In the “to specific” condition, we expect a high
novelty rate and a lower reuse rate. However, we
hypothesize that this strategy can only be effec-
tive if the agents use compositionality to combine
learned meanings into novel messages.5 An alter-
native strategy would be that the agents mainly
reuse messages that have been uttered during train-
ing and do not produce many novel messages (i.e.,
high reuse rate and low novelty rate). But we hy-
pothesize that this strategy is not the most prevalent
strategy because it leads to the production of un-
derinformative messages in certain contexts, i.e.
messages that do not provide enough information
for the listener to unambiguously identify the tar-
get concept (e.g. Engelhardt et al., 2006; Deutsch
and Pechmann, 1982; Grice, 1975). For example,
a message that has been used to refer to the con-
cept “blue circle” during training might be used
to refer to a “small blue circle” during testing. In
some contexts, e.g. when all blue circles are small
blue circles, this is efficient. In other contexts,
however, e.g. when small blue circles need to be
discriminated from large blue circles, this strategy
is underinformative and not effective.

5See section 3.4 for an investigation of the messages’ com-
positionality.
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In the “to generic” condition, we expect a low
novelty rate and a higher reuse rate. If the speaker
agents produce novel messages to refer to novel
concepts, they might come up with a highly effi-
cient mapping, but they also run into the risk that
the listener might not work out what the novel mes-
sage refers to. This is due to the fact that the agents
cannot draw on a compositional strategy when com-
municating only a single relevant attribute. How-
ever, if the speaker agents reuse messages from
training, this will result in overinformative mes-
sages, i.e. messages that provide more information
than necessarily required for the listener to unam-
biguously identify the target concept in certain con-
texts, e.g. when producing “small blue circle” in
reference to a CIRCLE that needs to be discrimi-
nated against other shapes (e.g. Grice, 1975; De-
gen et al., 2020; Rubio-Fernandez, 2021). In other
contexts, however, reused messages are highly ef-
ficient: As concepts are presented in a variety of
contexts during training, there are communicative
situations (namely coarse contexts) in which the
speaker agent can choose to communicate only a
single relevant attribute and rely on context to re-
solve ambiguity. This might lead to the emergence
of messages that encode the meaning of generic
concepts such as CIRCLE already during training,
even though they are never explicitly presented.
Reusing these messages during testing will thus be
highly efficient.

To test these predictions, we look at the mes-
sages generated during testing on the novel con-
cepts. First, we define the set of test concepts Ctest

and the set of test messages Mtest. These are the
messages produced and the concepts described dur-
ing interactions on the test data split. Next, we
define a message-concept ratio as the ratio between
the number of test messages and the number of
test concepts Mtest/Ctest. The resulting ratio is
1.0 if the number of messages is equal to the num-
ber of novel concepts, or, in other words, if for
each novel concept, the agents produce one mes-
sage during testing. Scores lower than 1.0 indicate
that the agents produce fewer distinct messages
than there are novel concepts. We calculate the
ratios to ensure comparability between the “to spe-
cific” and “to generic” conditions because the test
sets contain different amounts of novel concepts
(see Tables 6 and 7 in Appendix B). We define the
reuse and novelty rates by looking at the overlap
between messages used during training and valida-
tion Mtrainval and messages used when generaliz-

ing to the test data split Mtest.6 We define novel
messages as those messages that have been pro-
duced during testing but have not been produced
during training and validation, i.e. the set differ-
ence Mtest −Mtrainval. We calculate the novelty
rate as the ratio between the number of novel mes-
sages and the total number of unique messages used
during testing |Mtest −Mtrainval|/|Mtest|. We de-
fine reused messages as those messages that have
been used in training and validation and then reused
in testing, i.e. the intersection of the two sets of
messages Mtrainval∩Mtest and calculate the reuse
rate |Mtrainval ∩Mtest|/|Mtest|. If reuse rate and
novelty rate are balanced, this means that agents
invent equally many new messages as they reuse
old messages from training. If the percentages shift
to one or the other extreme, this means that agents
reuse more old messages than they invent new ones
or vice versa.

In the “to specific” condition, we find that ratios
between distinct messages and novel concepts in
the test set range between 0.23 and 0.92 (see Ta-
ble 3). The dataset with the highest ratio close to
1.0 is D(4,4) with a score of 0.92, where almost
for each novel concept, a distinct message is pro-
duced. Strikingly, there are many datasets with
a low message-concept ratio, which suggests that
one message is used to refer to many concepts. As
test accuracies are generally high (see Table 1), this
does not impact generalization performance, but
rather reflects the emergence of a very efficient lan-
guage, where many concepts can be described with
a small set of messages. As accuracies are not max-
imal, though, some objects are being misclassified
by the listener. This suggests that this small set of
messages can be underinformative. One reason for
high message-concept ratios that we will test later
in section 3.4 is that the emerging language might
be very structured. A structured language allows
the agents to use previously established meanings
and combine them in a compositional fashion to
novel meanings. As the novel meanings are gen-
erated on the fly, the agents might vary which pre-
viously established meanings they use, how they
combine them and in which order, leading to a
large amount of novel messages. Indeed, when
looking at the reuse and novelty rates, we find that
agents trained in the “to specific” condition invent
at least 34% new messages during testing (see Ta-
ble 3). For half of the datasets, the novelty rate even

6Both sets contain only unique message counts.
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exceeds the reuse rate, suggesting that the agents
come up with more new messages than they reuse
old messages.

In the “to generic” condition, we observe
message-concept ratios of distinct test messages
to novel concepts that are very close to 1.0, indi-
cating that the agents produce almost exactly one
message for each novel concept. These agents also
reuse more messages than invent new ones (see Ta-
ble 3). There are two kinds of messages that can be
reused from training with high communicative suc-
cess: The first kind of messages have encoded all
relevant attributes of a target concept during train-
ing. These are necessarily overinformative when
produced during testing, but might still lead to a
high number of objects being classified correctly by
the listener. The second kind of messages have not
encoded all relevant attributes during training, but
were underinformative during training and required
the context to resolve ambiguity (see Kobrock et al.,
2024a). These messages would be just on the ap-
propriate level of reference during testing. We have
seen in section 3.2 that such ambiguous messages
emerge in the “to generic” condition. This might
explain the highly efficient reuse of messages in
the “to generic” condition.

3.4 Compositionality
In the previous section, we hypothesized that
agents in the “to specific” condition use a com-
positional strategy, whereas agents trained in the
“to generic” condition do not rely on composition
but rather reuse messages from training to describe
novel concepts. To test the compositionality in the
emerging languages, we use topographic similarity
(also called “topographic ρ”, Brighton and Kirby,
2006). The idea behind this metric is that emerging
languages should exhibit structure. Specifically,
regarding the mapping between meanings (in our
case concepts) and messages, messages which are
highly similar to each other should refer to concepts
which are also highly similar to each other. This
relationship can be measured with the topographic
similarity metric (e.g., Ohmer et al., 2022; Lazari-
dou et al., 2018; Brighton and Kirby, 2006; Mu
and Goodman, 2021). We calculate topographic
similarity between messages and concepts by first
calculating two distance vectors: one containing
the pairwise Hausdorff distances between concepts
and one containing the pairwise Edit, specifically
Levenshtein, distances between messages (as in
Mu and Goodman, 2021). Then we correlate these

Figure 3: To specific: Topographic similarity scores
calculated on messages from the train and test splits.

Figure 4: To generic: Topographic similarity scores
calculated on messages from the train and test splits.

two distance vectors by using Spearman correlation
to obtain the topographic similarity score between
0 and 1.0. The higher the score, the more composi-
tional are the messages.

We find that the mean compositionality scores
over five runs for concepts and messages seen dur-
ing training range between 0.06 and 0.49 for the
“to specific” condition, and that they range between
0.19 and 0.44 for the “to generic” condition. When
looking at the topographic similarity scores calcu-
lated on the sets of messages and concepts from the
test data split, we see a diverging picture: For the
“to specific” condition, compositionality scores are
higher during testing, suggesting that the agents use
a highly compositional strategy when describing
very specific concepts. In Appendix C, we present a
qualitative analysis of the messages that shows that
agents use established symbol-attribute mappings
and compositionally combine these symbols into
novel messages. For the “to generic” condition, on
the other hand, we observe a drop of composition-
ality scores almost towards zero. This means that
agents do not use a compositional strategy when
being tested on the most generic concepts.

4 Discussion

In this study, we set out to investigate the linguistic
strategies agents use to generalize to concepts at
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to specific to generic
Mtest/Ctest reuse rate novelty rate Mtest/Ctest reuse rate novelty rate

D(3,4) 0.84 ± 0.06 0.54 ± 0.07 0.46 ± 0.07 0.98 ± 0.03 0.80 ± 0.19 0.20 ± 0.19
D(3,8) 0.68 ± 0.06 0.45 ± 0.07 0.55 ± 0.07 0.93 ± 0.02 0.83 ± 0.07 0.17 ± 0.07
D(3,16) 0.23 ± 0.03 0.45 ± 0.07 0.55 ± 0.07 0.93 ± 0.02 0.75 ± 0.06 0.25 ± 0.06
D(4,4) 0.92 ± 0.04 0.44 ± 0.08 0.56 ± 0.08 0.97 ± 0.05 0.74 ± 0.14 0.26 ± 0.14
D(4,8) 0.58 ± 0.11 0.66 ± 0.12 0.34 ± 0.12 0.90 ± 0.10 0.93 ± 0.06 0.07 ± 0.06
D(5,4) 0.89 ± 0.03 0.65 ± 0.09 0.35 ± 0.09 0.98 ± 0.02 1.00 ± 0.00 0.00 ± 0.00

Table 3: The ratio of messages and concepts for the test data split Mtest/Ctest. Percentage of reused and novel
messages from the total set of unique messages Mtest.

novel levels of abstraction. The main interest of
this research lies in investigating which strategies
emerge as a function of the two different zero-shot
test conditions in an interactive agent-based model
and compare them to human-like communication
strategies. Our results should be interpreted under
this perspective, i.e. all differences we observe
are emergent features of the model. We interpret
the results on the agent-level and treat the differ-
ences between conditions as differences in linguis-
tic strategies the agents are using. Because we
use the exact same modeling setup in both condi-
tions, the differences we observe have to be due
to differences between conditions. Our main find-
ing is that the abstraction abilities and linguistic
strategies differ depending on the direction of the
zero-shot generalization: When the agents gener-
alize to very specific concepts, they make use of a
compositional strategy and invent novel messages
by combining established symbols in new ways.
When they generalize to very generic concepts, the
agents’ strategy is mostly characterized by reusing
already established messages that might have been
ambiguous during training and are sufficiently in-
formative during testing.

We observe lower performance when testing
zero-shot generalization to very generic concepts
than zero-shot generalization to very specific con-
cepts. One explanation for this is that agents in
the “to specific” condition make use of composi-
tionality as their main strategy for generalization
as shown by the compositionality scores and the
qualitative analysis of the messages. Intuitively,
combining learned symbols for attributes like “cir-
cle” or “blue” into a message “blue circle” is easier
to achieve with a finite lexicon than abstracting to
novel generic concepts. If a language does not en-
code specific concepts, novel meanings can always
be generated by combining established meanings.

However, if a language does not encode generic
concepts, a compositional strategy is not an option.
Novel meanings, however, cannot be established
in a zero-shot generalization, so the only chance
the agents have is to recur to already established
meanings. But previously learned words that en-
code specific meanings are only useful to a certain
extent, making the “to generic” direction of zero-
shot generalization a harder task for our trained
agent models which is reflected in the accuracies.

This idea is supported by evidence we obtained
from an in-depth analysis of the emerging protocols.
First, we have shown that NMI scores are high but
not maximal in both conditions, suggesting a large
number of one-to-one mappings in the emergent
mapping between concepts and messages. We have
observed that more ambiguity emerges when train-
ing the agents in the “to generic” condition. This
ambiguity likely is what enables the agents to per-
form fairly well on the generalization task, where
we observe that they mostly reuse messages from
the training phase to refer to novel concepts. Ambi-
guity and the use of messages that rely on context
to resolve ambiguities that remain after interpret-
ing a message can lead to an efficient strategy that
agents rely on mainly in coarse context conditions
(see Kobrock et al., 2024a).

Second, we have shown that agents employ dif-
ferent strategies for generalizing to the most spe-
cific than to the most generic concepts. Specifi-
cally, agents come up with more novel messages
that are produced by compositionally combining
symbols that have been associated with a fixed con-
cept attribute during training, when being tested on
the most specific concepts. Agents trained in the
“to generic” condition, on the other hand, mostly
reuse entire messages the meanings of which have
been established during training. These agents thus
make use of the ambiguity of concept-message
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mappings that has emerged during training, accept-
ing that these messages may be overinformative
when describing the most generic concepts. Our
findings are in line with results from Chaabouni
et al. (2020) who found that compositionality is a
sufficient but not a necessary condition for general-
ization.

A fruitful direction for research building on
our results would be to further investigate the
non-compositional strategy in abstraction to more
generic concepts. This might be done by relat-
ing our results in the “to generic” condition to the
phenomenon of overgeneralization in children ac-
quiring language. Overgeneralization, or overex-
tension, happens when a child uses a familiar label,
for example “boot” to refer to an unfamiliar ob-
ject, like SANDAL (see e.g. Gelman et al., 1998;
Rescorla, 1980; Ferreira Pinto and Yang, 2021).
This is similar to what our agents do when they
use familiar messages to refer to novel concepts in
the “to generic” condition. Future research could
benefit from integrating both lines of research to
develop new hypotheses on children’s acquisition
of concepts and overgeneralization as a pragmatic
strategy for successful and efficient communica-
tion even if the correct label is not known (see e.g.
Gershkoff-Stowe et al., 2006).

Another direction for future research is to inves-
tigate the role of communicative pressures during
the emergent communication in our setting. Recent
research in the field is dedicated to understanding
better how efficient emergent communication sys-
tems emerge as a function of informativeness and
utility, and highlights the role of communicative
pressures for the emergence of an efficient solution
that generalizes well (e.g. Gualdoni and Boleda,
2024; Tucker et al., 2022b,a). In our study, we
do not use any communicative pressures except
for keeping the maximum message length quite
small (corresponding to the number of attributes in
a dataset). As suggested by one of our reviewers,
it would be interesting to test the effect of commu-
nicative pressures, such as a cost on the message
length or an informativeness pressure as in Tucker
et al. (2022b), in our setup. For example, in the “to
generic” condition, where we observe that agents
mostly reuse messages from training that might be
overinformative during testing on the most generic
concepts, a communicative pressure might lead to
shorter and less overinformative messages.

Related to both research directions outlined
above, another fruitful avenue will be to investi-

gate specifically the pragmatic processes involved
in selecting an efficient message for an unfamiliar
referent and investigate whether, for example, rea-
soning about the listener’s likely interpretation of
a message helps speakers to identify a well-suited
message, improving the agents’ performance in the
zero-shot test (see Zarrieß and Schlangen, 2019,
for a related approach).

In summary, we have shown that the success-
ful linguistic strategy for generalization depends
on whether agents have to generalize from generic
(low information) concepts to specific (high infor-
mation) concepts or vice versa. Our results add
to existing evidence that language in the form of
labels is important for abstraction in humans. Our
findings go beyond this research indicating a role of
compositional messages and novel vs. established
labels depending on the abstraction process. This
work has important ramifications for linguistic the-
ories on the role of compositionality and ambigu-
ity in efficient communication and generalization:
While previous work has highlighted the role of
compositionality in generalization, we do not find
evidence that abstraction to more generic concepts
benefits from a compositional strategy in the same
way as generalization to more specific concepts.
Instead, generalization to more generic concepts,
i.e. abstraction, benefits from reusing ambiguous
messages from the emerging protocol. These re-
sults in the “to generic” condition are in line with
two linguistic phenomena: First, the widening of
meanings in diachronic language change where
previously specific meanings are used for more
generic concepts (see e.g. Wood, 2009; Díaz-Vera,
2022), and second the overgeneralization of famil-
iar labels to unfamiliar objects of the same category
in language acquisition (see e.g. Gershkoff-Stowe
et al., 2006; Gelman et al., 1998).

Limitations

We would like to discuss how our experimental
set-up featuring two agents with fixed speaker and
listener roles resembles and differs from human
communication and language evolution. For exam-
ple, as one reviewer pointed out, human languages
typically evolve in larger populations and seminal
research on modeling language evolution has also
focused on agent populations (Steels, 2000). Fur-
thermore, we model communication only in one
direction, where one agent has the speaker role
and one agent has the listener role throughout the
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entire experiment. On the other hand, we model
many of the key characteristics of human language,
such as the evolution through interaction in refer-
ence situations, and there are several reasons why
we believe that the here presented set-up is the
ideal testbed to investigate our research question.
Our experimental setup follows a typical Gricean
sender-receiver model of communication which is
a model that also underlies much work in (experi-
mental) Linguistics (see e.g. Winters et al., 2018
for a language evolution experiment with dyads of
human participants who have fixed speaker/listener
roles). For that reason, we believe this approach
is appropriate to study human-like communication.
While it might be interesting to develop a more
human-like version of our setup, we do not believe
that this is necessary in our current experiments
for two main reasons: First, while authors in the
emergent communication field have argued for the
use of populations of agents (e.g. Chaabouni et al.,
2022), they have not found an advantage of popu-
lation size for generalization. Previous work has
also found that introducing populations or flexible
role agents (i.e. agents which sometimes have the
speaker and sometimes the listener role), does not
change the results of the dyadic setup with fixed
roles (see Ohmer et al., 2022). Second, one of
the main reasons brought forward for using pop-
ulations of agents is that this might help to make
emergent languages compositional and to show that
compositionality might be needed for successful
generalization (and in this sense make emergent
languages more comparable to human language,
see e.g. Galke et al., 2022). However, we show that
compositionality already emerges in our dyadic
setup and that compositionality aids in generaliza-
tion to specific concepts. We believe that the com-
paratively simple setup is a strength of our research
that highlights that certain features of human-like
communication already emerge when building on
only few central characteristics of human commu-
nication.

The experiments presented here have been con-
ducted as a proof-of-concept on symbolic data. On
the one hand, these datasets are an ideal testbed
for our hypotheses because they have been de-
signed and constructed specifically for the purpose
of studying concepts at different levels of abstrac-
tion. Using symbolic data has the advantage of
total control over the manipulation and data with-
out noise. On the other hand, we acknowledge that
this is also a crucial limitation of our work. Fu-

ture research needs to show whether the linguistic
strategies we identify and the differences between
generalizing to more specific or more generic con-
cepts via compositionality or abstraction hold also
for more naturalistic data. A validation on a more
natural dataset is planned for future work and is
expected to improve the generalizability of these
results.
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A Training and validation accuracies

We present the training and validation accuracies
for the “to specific” and “to generic” conditions
in Table 4 and Table 5, respectively. For the in-
terpretation of the zero-shot test accuracies, it is
important that we achieve high training and valida-
tion accuracies in both conditions.

training validation

D(3,4) 1.00 ± 0.00 0.98 ± 0.01
D(3,8) 0.99 ± 0.00 0.98 ± 0.01
D(3,16) 0.97 ± 0.00 0.96 ± 0.01
D(4,4) 1.00 ± 0.00 1.00 ± 0.00
D(4,8) 0.98 ± 0.01 0.97 ± 0.01
D(5,4) 0.99 ± 0.00 0.99 ± 0.00

Table 4: To specific: Training and validation accuracies.

B Number of test concepts and messages

The zero-shot test datasets differ between condi-
tions in the number of concepts presented due to
there being more specific concepts than generic
concepts in our datasets. In Table 6 and Table
7, we present the numbers of concepts in the test
data splits Ctest, as well as the number of unique
messages used during testing Mtest, for the “to
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training validation

D(3,4) 0.98 ± 0.01 0.97 ± 0.02
D(3,8) 0.97 ± 0.00 0.97 ± 0.00
D(3,16) 0.96 ± 0.01 0.96 ± 0.01
D(4,4) 0.99 ± 0.01 0.98 ± 0.01
D(4,8) 0.97 ± 0.01 0.97 ± 0.02
D(5,4) 0.98 ± 0.01 0.98 ± 0.01

Table 5: To generic: Training and validation accuracies.

specific” and “to generic” condition, respectively.
From these two values, we calculate the message-
concept ratio Mtest/Ctest reported in the main pa-
per.

Ctest Mtest Mtest/Ctest

D(3,4) 64 54.0 ± 3.6 0.84 ± 0.06
D(3,8) 512 348.8 ± 28.5 0.68 ± 0.06
D(3,16) 4096 948.6 ± 123.7 0.23 ± 0.03
D(4,4) 256 236.2 ± 9.6 0.92 ± 0.04
D(4,8) 4096 2380.8 ± 437.7 0.58 ± 0.11
D(5,4) 1024 911.0 ± 34.9 0.89 ± 0.03

Table 6: To specific: Number of concepts and messages
for the test split and their ratio.

Ctest Mtest Mtest/Ctest

D(3,4) 12 11.8 ± 0.4 0.98 ± 0.03
D(3,8) 24 22.2 ± 0.4 0.93 ± 0.02
D(3,16) 48 44.4 ± 0.8 0.93 ± 0.02
D(4,4) 16 15.6 ± 0.8 0.97 ± 0.05
D(4,8) 32 28.8 ± 3.1 0.90 ± 0.10
D(5,4) 20 19.6 ± 0.5 0.98 ± 0.02

Table 7: To generic: Number of concepts and messages
for the test split and their ratio.

C Example protocols and qualitative
analysis

In this section, we show examples of the messages
the agents used to refer to concepts during test-
ing for both conditions. We also conduct a short
qualitative analysis.

In Table 8 and Table 9, we show for each dataset
one randomly picked example of a concept that
the agents have seen during testing. The concept
is a specific concept in the “to specific” test case.
This means that all attributes are fixed to a specific

value, e.g. (1,1,2) for D(3,4). These concepts are
presented in a randomly sampled context condition.
We define the context condition as the number of
shared attributes between target concept and ob-
jects in the context, i.e. distractors. For example
for D(3,4), there is one shared attribute between tar-
get concept and objects in the context. This means
that the higher the context condition, the closer
the context is to the target concept, i.e. the more
specific a message has to be to be sufficiently dis-
criminative in a certain context. The messages end
with the EOS symbol that terminates the message,
i.e. “0”. These are examples from the interactions
that have been gathered during testing.

Our goal for the qualitative analysis was to check
whether specific symbols have been associated with
a specific attribute during training. For this purpose,
we constructed a mapping between fixed attributes
and symbols uttered during training based on the
mutual information score defined in section 3.2.
This mapping is position-sensitive, i.e. we find the
symbol with the highest mutual information for an
attribute at a certain position in the concept. The
two rightmost columns show the symbols which
have been associated with a specific attribute in a
specific position as well as the respective mutual
information score. For example for D(3,4), the
symbol associated with a value 1 in the first posi-
tion of the target concept is “4”. This symbol is
not communicated in the message from this exam-
ple. The symbols associated with values 1 and 2 in
the second and third position of the target concept,
however, are encoded in the messages, i.e. “14”
and “11”.

In the to specific condition, we generally observe
quite high mutual information scores for symbols
being associated with certain attributes. In addition,
we observe a high tendency of these symbols being
included in the speaker agents’ actual messages.

In the “to generic” condition, the test dataset
contains only generic concepts, i.e. concepts with
only one fixed attribute. Attributes which are not
fixed and thus irrelevant to the target concept are
represented as _ in Table 9. By definition, generic
concepts can only appear in coarse contexts, i.e.
when 0 attributes are shared between the target
concept and the objects in the context. Again, we
randomly selected one example from the test inter-
actions. We conducted the same qualitative analy-
sis as for the “to specific” condition. However, as
we have seen in the quantitative analyses presented
in the main paper that in the “to generic” condition,
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fixed indices fixed values context
condition

message symbol symbol MI

D(3,4) (1,1,1) (1,1,2) 1 [11,14,14,0] 4 0.7340
14 1
11 0.7465

D(3,8) (1,1,1) (3,0,4) 1 [18,14,8,0] 13 0.4077
15 0.5491
18 0.3100

D(3,16) (1,1,1) (0,14,13) 2 [31,40,20,0] 27 0.0724
40 0.1166
13 0.0471

D(4,4) (1,1,1,1) (0,0,2,0) 0 [2,13,9,14,0] 14 0.6409
9 0.3386
13 0.3141
2 0.8785

D(4,8) (1,1,1,1) (3,7,0,5) 1 [22,10,7,19,0] 22 0.4357
10 0.4502
12 0.1765
19 0.6663

D(5,4) (1,1,1,1,1) (3,2,1,2,1) 4 [10,15,4,12,14,0] 15 0.3144
14 0.3086
10 0.9573
12 0.2455
4 0.1043

Table 8: To specific: One random example for a specific concept from the test data per dataset, the context condition
in which it was presented (in number of shared attributes) and the message that was used to refer to the concept.
The two rightmost columns present the results of a qualitative analysis where we sampled symbols that have been
associated with attributes of the target concept during training.

fixed indices fixed values context
condition

message symbol symbol MI

D(3,4) (1,0,0) (1,_,_) 0 [14,14,2,0] 14 0.3181
D(3,8) (1,0,0) (1,_,_) 0 [12,1,13,0] 8 0.2446
D(3,16) (0,0,1) (_,_,2) 0 [18,13,28,0] 18 0.0665
D(4,4) (0,1,0,0) (_,1,_,_) 0 [13,13,6,6,0] 9 0.0002
D(4,8) (0,0,1,0) (_,_,3,_) 0 [24,10,8,8,0] 25 0.0918
D(5,4) (0,0,0,1,0) (_,_,_,0,_) 0 [7,7,9,14,14,0] 2 0.0143

Table 9: To generic: One random example for a generic concept from the test data per dataset, the context condition
in which it was presented (in number of shared attributes) and the message that was used to refer to the concept.
The two rightmost columns present the results of a qualitative analysis where we sampled symbols that have been
associated with attributes of the target concept during training.

agents mostly reuse messages from training, we
do not expect to see the same pattern as in the “to
specific” condition. Indeed, the mutual informa-
tion between single symbols and attributes is rather
small with the highest value being 0.31. In line
with this observation, we do not find a consistent
position-sensitive attribute-symbol mapping for the

“to generic” condition. And the symbols with the
highest mutual information are not consistently in-
cluded in the messages.

These qualitative findings support the main con-
clusion from the quantitative analyses, namely that
agents use different strategies for generalizing “to
specific” or “to generic” concepts. In the “to spe-
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cific” condition, position-sensitive symbol-attribute
mappings emerge during training and are success-
fully used for generalizing via composition.

D Dataset sizes

Tables 10 and 11 show the sizes of the datasets.

training validation test total

D(3,4) 810 270 64 1144
D(3,8) 3060 992 512 4564
D(3,16) 11880 3936 4096 19912
D(4,4) 7320 2432 256 10008
D(4,8) 52080 17344 4096 73520
D(5,4) 55350 18432 1024 74806

Table 10: To specific: Number of unique concepts in
each dataset for each dataset split.

training validation test total

D(3,4) 780 308 12 1036
D(3,8) 3435 1429 24 4376
D(3,16) 15606 7945 48 19504
D(4,4) 7429 2683 16 9871
D(4,8) 55972 21339 32 73248
D(5,4) 56140 19507 20 74643

Table 11: To generic: Number of unique concepts in
each dataset for each dataset split.

E Computational Budget

We ran the experiments reported in this paper on
a High-Performance-Computing Cluster (HPC3)
on a single gpu core, using up to 400GB memory.
We estimate the computing time for reproducing
all results reported here, including generating the
datasets and training the models on the six datasets
for five runs at <72h with comparable resources.
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