
Findings of the Association for Computational Linguistics: ACL 2025, pages 8602–8616
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

T2DR: A Two-Tier Deficiency-Resistant Framework for Incomplete
Multimodal Learning

Han Lin, Xiu Tang*, Huan Li, Wenxue Cao, Sai Wu, Chang Yao, Lidan Shou, Gang Chen
Zhejiang University,

Hangzhou High-Tech Zone (Binjiang) Blockchain and Data Security Research Institute,
Zhejiang Key Laboratory of Big Data Intelligent Computing.

{22351123, tangxiu, lihuan.cs, 22451028, wusai, changy, should, cg}@zju.edu.cn

Abstract

Multimodal learning is garnering significant at-
tention for its capacity to represent diverse hu-
man perceptions (e.g., linguistic, acoustic, and
visual signals), achieving more natural and in-
tuitive interactions with technology. However,
the frequent occurrence of incomplete data, ei-
ther within a single modality (intra-modality)
or across different modalities (inter-modality),
presents substantial challenges in reliable se-
mantic interpretation and model reasoning. Fur-
thermore, there is currently no robust represen-
tation learning mechanism capable of manag-
ing both intra-modality and inter-modality real-
data deficiencies. To address this challenge, we
present T2DR, a two-tier deficiency-resistant
framework for incomplete multimodal learning,
which comprises two main modules: (1) Intra-
Modal Deficiency-Resistant module (IADR):
To address fine-grained deficiencies, we intro-
duce Intra-Attn to focus on the available data
while avoiding excessive suppression of the
missing regions. (2) Inter-Modal Deficiency-
Resistant module (IEDR): To handle coarse-
grained deficiencies, we propose the shared fea-
ture prediction (SFP) to leverage cross-modal
shared features for preliminary data imputation.
Subsequently, we apply Inter-Attn to allocate
appropriate attention to each modality based
on the results from the capability-aware scorer
(CAS). Extensive experiments are performed
on two well-known multimodal benchmarks,
CMU-MOSI and CMU-MOSEI, across various
missing scenarios for sentiment analysis. Ex-
perimental results show that T2DR significantly
outperforms the SOTA models. Code is avail-
able at https://github.com/LH019/T2DR.

1 Introduction

In modern data analysis, the significance of mul-
timodal data is increasingly prominent. Unlike
unimodal data, multimodal data can capture di-
verse information from heterogeneous sources and
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leverage the complementary of different modalities
for more sufficient information (Wei et al., 2023b).
Nevertheless, the integration process is often com-
promised by the presence of incomplete data (Guo
et al., 2024). This incomplete data may present
as fine-grained (intra-modality), shown by slight
variations or gaps within a single modality (Zhang
et al., 2019), typically arising from interruptions in
data collection or improper data management. It
can also appear as coarse-grained (inter-modality)
(Zhao et al., 2021a), manifested as significant omis-
sions across different modalities, commonly due to
unavailable data sources or failures to acquire mul-
timodal data synchronously. Existing methods for
handling both intra-modal and inter-modal incom-
plete data (Yuan et al., 2023, 2024) typically rely on
randomly masking features derived from complete
data to simulate intra-modal incompleteness, which
fails to faithfully represent the real-world scenar-
ios. Therefore, addressing the issue of fine-grained
and coarse-grained deficiencies is crucial for im-
proving the precision and reliability of multimodal
learning.

Existing methods for addressing incomplete mul-
timodal learning are divided into three main cate-
gories: generative methods (Liu et al., 2023; Xu
et al., 2019; Tang and Liu, 2022), multimodal joint
learning (Qu et al., 2024; Liu et al., 2024b; Zhao
et al., 2021b), and knowledge distillation (Xing
et al., 2022; Poklukar et al., 2022a). Generative
methods such as VIGAN (Shang et al., 2017) use
generative adversarial networks alongside denois-
ing autoencoders to recover and refine incomplete
modalities. Multimodal joint learning methods,
exemplified by DrFuse (Yao et al., 2024), extract
shared information from available modalities to
compensate for missing modalities. Knowledge
distillation approach MMANet (Wei et al., 2023a)
leverages a margin-aware distillation strategy to
help the student network improve its comprehen-
sion of inter-class relationships, enhancing the final
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shared feature representation.
While existing methods have shown promising

results in handling missing modalities, they often
focus on the quality of the imputed features (Zhao
et al., 2021a), with substantial challenges remain-
ing. These include: (1) a lack of dynamic adjust-
ment mechanisms during model training to resist
interference from incomplete data, especially for
imputed features with lower quality, and (2) a pre-
dominant focus on inter-modality incomplete data
scenarios, often overlooking the more common
intra-modality incomplete data, where the miss-
ingness occurs at the raw data level rather than the
processed feature level.

To address the above two challenges, we present
a novel approach — a Two-Tier Deficiency-
Resistant Framework for Incomplete Multimodal
Learning, referred to T2DR, which focuses on
deeper learning from valid data and enhancing its
resistance to various deficiencies. Our main contri-
butions can be summarized as follows:

• We propose T2DR to resist deficiency for
incomplete multimodal learning. For fine-
grained deficiencies, we introduce Intra-Attn
to resist noise disruption by dynimically bal-
ancing the missing parts’ effect with the
model’s global capacity; for coarse-grained
deficiencies, we introduce Inter-Attn to resist
low-quality feature damage by dynamically
distributing attention to each modality.

• Facing coarse-grained deficiencies, to resist
zero-information in missing modalities, we
introduce the shared feature prediction (SFP)
method, utilizing existing modalities to pre-
dict shared information across modalities to
fill in the gaps. To resist the negative impact of
low-quality predicted features, we employ the
capability-aware scorer (CAS), a task-driven
modality capability-aware technique, dynami-
cally computing weights for effective supervi-
sion in Inter-Attn.

• We conduct comprehensive evaluations of our
method across multiple datasets. To investi-
gate fine and coarse-grained incomplete data
in multimodal learning, we conduct multi-
modal sentiment analysis on CMU-MOSI and
CMU-MOSEI. To verify its effectiveness in
unimodal learning, we also conduct classifica-
tion tasks using CARER for text, ESC-50 for
acoustic, and ImageNet for visual. Our results

demonstrate that T2DR achieves state-of-the-
art performance, consistently outperforming
existing models and confirming its robustness
in handling incomplete multimodal data.

2 Related Work

To tackle deficiencies in multimodal learning, we
enhance the model’s adaptability by using Missing
Modality Prediction for a robust end-to-end sys-
tem, Weight Allocation to perform dynamic super-
vision within each data entry, and Modality Fusion
to leverage modality complementarity for richer
semantic features.

Missing Modality Prediction. Missing modal-
ity prediction leverages the intrinsic dependencies
across modalities to fill in missing entries. Current
dominant methods typically design a unified rep-
resentation to preserve the expression of shared
features, which generally follow three research
lines: (1) explicit disentanglement of shared and
modality-specific information, utilizing shared in-
formation from available modalities for comple-
tion (Yao et al., 2024; Wang et al., 2023); (2) di-
rect construction of a unified shared representation,
minimizing reliance on specific modalities (Lau
et al., 2019; Nawaz et al., 2024); (3) knowledge
distillation via teacher networks, learning modality-
specific and shared features (Wei et al., 2023a).
However, these methods often rely on complex net-
works and learning objectives to ensure the qual-
ity of the unified representation. They lack post-
processing steps to alleviate the inevitable impact
of missing modalities on feature quality.

Weight Allocation. Weight allocation assigns
varying importance to samples or features based
on expectations. In sample-based allocation meth-
ods, weighted summation (Wan et al., 2023; Ah-
madianfar et al., 2022) and weighted cross-entropy
loss (Legate et al., 2023; Rezaei-Dastjerdehei et al.,
2020) assign proper weight to each sample. In
feature-based allocation methods, masked multi-
head attention in Transformer (Vaswani et al., 2017)
allocates the entire weight on the token before the
current position to avoid accessing future informa-
tion. Furthermore, some methods (Li et al., 2022;
Sergio and Lee, 2021) addressing incomplete data
allocate zero weight on the missing parts to miti-
gate the adverse effects of noisy data. While these
methods have performed weight adjustment within
features, they still remain limited to whether or not
the part is allocated weight.
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Figure 1: Processing pipeline of T2DR for multimodal sentiment analysis. T2DR performs two-stage resistance
for incomplete multimodal data: (1) in the fine-grained stage, multimodal data {x1, x2, . . . , xm} are filtered by Intra-
Attn according to {m1,m2, . . . ,mm} and then processed to produce modality-specific features {h1, h2, . . . , hm} in
a unified latent space; (2) in the coarse-grained stage, shared feature prediction (SFP) enhances these features with
richer semantics {f1, f2, . . . , fm}. An advanced fusion module combines these features through capability-aware
scorer (CAS) and Inter-Attn for reliable prediction.

Modality Fusion. Modality fusion combines het-
erogeneous data to achieve a comprehensive under-
standing of the sample. Transformer-based fusion
methods often fall into three categories: (1) Fusion
Token approaches (Tan and Bansal, 2019; Nagrani
et al., 2021) employ bidirectional cross-attention
to align and exchange information across modali-
ties, ultimately extracting fusion token embeddings
to serve as the fusion representation. However,
considering the limited operable steps, this strat-
egy has not been widely applied to multimodal fu-
sion. (2) Co-attention strategies (Feng et al., 2021;
Zou et al., 2022; Chen et al., 2021), like FTran-
sUNet (Ma et al., 2024) and MCSAN (Sun et al.,
2021), combine self-attention and cross-attention
to capture intra-modal and cross-modal informa-
tion. However, these methods struggle to scale
with more than two modalities, as the exponential
growth in required computational modules leads to
a significant surge in in complexity and resource
demands. (3) Concatenation-based Attention (Liu
et al., 2024a; Yao et al., 2024), commonly applied
in scenarios involving more than two modalities,
such as MFM-Att (Fang et al., 2023) and UNITER
(Chen et al., 2020), reorganizes tokens or concate-
nates multimodal features vertically and horizon-
tally to generate fused features. However, these
methods still lack targeted solutions for incomplete
multimodal data.

3 Method

3.1 Model Overview
In this section, we formulate the problem definition
and present an overview of our proposed solution.

Definition. Given m modalities of a data instance
X = {x1, x2, . . . , xm} and a set of mask vectors
M = {m1,m2, . . . ,mm} indicating the data com-
pleteness, we train a model T2DR(X,M) → Y .
The label Y signifies the corresponding label for
the downstream task.

Scheme Overview. Figure 1 illustrates an
overview of T2DR architecture, which consists of
two modules: Intra-Modal Deficiency-Resistant
module (IADR) and Inter-Modal Deficiency-
Resistant module (IEDR), achieving robustness
and adaptability in incomplete multimodal learning.
We focus our research on three modalities: linguis-
tic, visual, and acoustic. The general processing
pipeline is outlined as follows.

For fine-grained deficiencies, T2DR adopts Intra-
Attni to filter xi, allowing it to mainly focus on the
non-missing data segments corresponding to where
mi equals 1. Then, specific pre-trained encoder
Ei(·) and unified mappings Ui(·) map the encoded
features hi into a unified feature space, which can
be expressed as follows:

hi = Ui(Ei(Intra-Attni(xi,mi))). (1)
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For coarse-grained deficiencies, the Shared Fea-
ture Prediction (SFP) utilizes the shared extractor
Si(·) to capture cross-modal shared information for
imputing the missing modality and builds enhanced
semantic features fi via a residual connection:

fi = Si(hi) + hi. (2)

Then, Inter-Attn integrates the concatenated fea-
tures (f1, f2, . . . , fm) with the weights from
Capability-Aware Scorer (CAS). The fused feature
f is acquired as follows:

f = Inter-Attn([f1, f2, . . . , fm],

CAS([f1, f2, . . . , fm])).
(3)

The fused feature f is then passed to the decoder
to obtain the final predicted label ŷ:

ŷ = dec(f). (4)

3.2 Intra-Modal Deficiency-Resistant Module

Motivation. In the context of incomplete images,
traditional visual methods (Li et al., 2022; Sergio
and Lee, 2021) often employ masked multi-head
attention to ignore missing parts, thereby mitigat-
ing the impact of noise. However, this approach
tends to excessively depend on the available infor-
mation while completely disregarding the potential
value of the missing parts. This local bias may
limit the model’s ability to capture global context.
To validate this hypothesis, we conducted com-
prehensive experiments on ViT (Dosovitskiy et al.,
2020), analyzing how the index “attention distance,”
which quantifies how far each token can effectively
attend to others, varies with different degrees of
data incompleteness. Our results show that as the
missing rate increases, the attention distance sig-
nificantly decreases, indicating a degradation in
the model’s global capability. Detailed experimen-
tal results and theoretical analysis can be found in
Appendix A.1. To address this issue, we propose
Intra-Attn to smooth the attention of missing parts
and enhance the model’s generalization ability.

Data Preprocessing. The digitized form of a
modality xi is typically represented as either a one-
dimensional vector, such as a token embedding for
text, or a two-dimensional matrix, like a pixelated
image for visual or a pixelated spectrogram for
acoustic. However, if matrices are directly input
into Transformer-based models, each pixel must

compute self-attention with all other pixels, result-
ing in quadratic growth in computational complex-
ity (Dosovitskiy et al., 2020). Hence, preprocess-
ing is essential for matrices and simpler vectors can
skip this step.

In detail, matrices need to be divided into
patches of size window_size × window_size, and
then flattened into embeddings. To enhance global
feature capture across patches and maintain data
coherence, a window-shifting operation (Liu et al.,
2021) is performed before the division:

x′ = roll(x,−s, dims = (1, 2)),

m′ = roll(m,−s, dims = (1, 2)),
(5)

where roll shifts the elements of the matrix x and m
by s steps along the specified dimensions, x repre-
sents the complete image, m signifies x′s mask in-
formation, and s is the shifted_size, which is equal
to window_size/2.

Intra-Attn Processing. Since the encoder plays
a crucial role in extracting semantic features, it
is essential to minimize the interference of intra-
modality incomplete data on its input. To filter the
noisy xi, we focus predominant attention on the
valid non-missing data. For the preservation of the
model’s global capacity, we introduce compensa-
tion components for missing parts and apply regu-
lation coefficient ϵ to balance the competitive dy-
namics between missing and available parts, which
is represented as:

Intra_Attn(xi) = σ
(
(1− ϵ)·QK⊤ +M√

dk
+ϵ·U

)
·V.

(6)
where Q, K, and V are derived from linear trans-
formations of xi; σ(·) represents the Softmax op-
eration; 1√

dk
serves as a scaling factor to stabilize

the dot product.
The compensation component U is equivalent to

λ√
dk

, where λ is a trainable parameter that reflects
the influence of global information enhancement.
The matrix M is derived from the mask m, where
M is set to −∞ if m = 0 (indicating a missing to-
ken) and 0 otherwise. It ensures that when a token
is missing, the attention value after the compensa-
tion components and softmax operation approaches
zero. If xi is a matrix, a missing token indicates a
completely missing patch.

3.3 Inter-Modal Deficiency-Resistant Module
Shared Feature Prediction. When encountering
inter-modal incomplete data, if T2DR still adopts
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Intra-Attn to resist deficiency, it will result in a
significant data loss, severely impairing the learn-
ing of associated modules. Therefore, a Shared
Feature Prediction is proposed to extract common
features that are relevant to the downstream tasks,
while filtering out the redundant information spe-
cific to each modality. Specifically, we adopt the
Kullback-Leibler (KL) divergence (Van Erven and
Harremos, 2014) to ensure Feature Consistency
(FC) of available modalities, expressed as follows:

LFC =
1

B

B∑

b=1

m∑

i,j=1

KL
[
σ
(
S(h

(b)
i )

)
, σ

(
S(h

(b)
j )

)]
,

(7)
where σ(·) refers to the softmax operation, b de-
notes the samples of the b-th batch and i, j rep-
resent the corresponding modalities. If the t-th
modality is missing, then i, j ∈ {1, . . . , t− 1, t+
1, . . . ,m}. When the KL divergence is minimized,
it indicates that the shared features have been suc-
cessfully extracted. If the mi indicates the xi en-
tirely misses, its features can be replaced by the
shared features from available modalities:

f
(k)
i =

1

m− 1
·

m∑

j=1,j ̸=i

S(h
(k)
j ). (8)

Capability-Aware Scorer. The quality of
modality feature fi is inherently unquantifiable and
varies across different downstream tasks. To ad-
dress this issue, we propose a task-driven qual-
ity evaluation mechanism that computes pseudo-
ground-truth quality, guiding the Capability-Aware
Scorer (CAS) to learn feature-specific weight allo-
cation capabilities.

To ensure that the final features retain more task-
specific information, we introduce downstream task
losses to recognize the capability of fi. As shown
in Figure 2, to achieve precise evaluations of the
i-th modality’s quality, the input is fed into the de-
coder by retaining only fi and setting other modal-
ity features to zero during concatenation. The
pseudo-quality of fi is then determined based on
the resulting loss:

1

q
(k)
i

= CE(dec([0, . . . , f (k)
i , . . . , 0]), Y (k)) + ϵ,

(9)
where ϵ is a small constant value, typically set
to 1e-8, used to avoid division by zero errors,
[0, . . . , f

(k)
i , . . . , 0] represents the concatenation of

f
(k)
i with (m− 1) zeros, and CE denotes the cross-

entropy loss. A smaller loss value indicates that i-th
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Figure 2: Fusion module internals. The feature vector
[0, . . . , fi, . . . , 0] is input into the decoder to compute
pseudo weights wi for training the Capability-Aware
Scorer (CAS). Then Wi is utilized to dynamically adjust
the modality fusion.

modality possesses stronger predictive capability
and higher quality of fi. Then, the pseudo-weight
w is computed as follows:

w
(k)
i =

q
(k)
i∑m

j=1 q
(k)
j

, (10)

To ensure precise and task-specific capability per-
ception, an MSE-Based Tuner (MBT) is employed
to optimize the CAS module:

LMBT =
n∑

k=1

MSE
{[

w
(k)
=1 , . . . , w

(k)
m

]
,

CAS
([

f
(k)
1 , . . . , f (k)

m

])}
. (11)

where MSE means Mean Squared Error, which
measures the average squared differences between
observed and predicted values, ensuring the preci-
sion of CAS’s predictions.

Inter-Attn Processing. As shown in Figure 2,
the Weight Adjuster fuses the features fi with re-
spective supervision Wi, generated by the CAS.
To ensure that the absolute value of the attention
scores is a larger value after multiplication with w∗

i

and a smaller value after division, the normalized
weight Wi is preprocessed as follows:

w∗
i = (1 +Wi) · λ, (12)

where λ is a trainable parameter that reflects the
influence of Wi on the final result.

Intra_Attn impairs the final weights assigned
to the mask part by using M. However, the ad-
dition limits the range of adjustments, making it
effective only for setting attention to the minimal
near-zero or maximum near-one. Thus, Inter_Attn
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adopts multiplication to reasonably allocate modal-
ity weights:

Inter-Attn(Q,K,V) = Softmax
(
QK⊤ ·M√

dk

)
V,

(13)

M =

{
w∗, if QK⊤

√
dk
≥ 0,

1
w∗ , otherwise.

(14)

To achieve higher attention with greater weights
(given w∗ > 1), positive values are amplified while
negative values are reduced. It ensures that high-
quality modality features fi are assigned higher
weights Wi and receive greater attention in the
model, maximizing the utilization of the high-
quality data.

4 Experimental Setup

Benchmark Datasets. We evaluate T2DR’s per-
formance with two multimodal datasets, each con-
taining text, acoustic, and visual modalities, and
three unimodal datasets, each focused on one
modality: text, acoustic, or visual.

For multimodal datasets, CMU-MOSI (Zadeh
et al., 2016) and CMU-MOSEI (Zadeh et al., 2018)
are sourced from YouTube videos, annotated with
sentiment intensity scores from -3 (highly negative)
to +3 (highly positive), covering positive, negative,
and neutral sentiments. Notably, CMU-MOSEI is
nearly ten times larger than CMU-MOSI, offering
a more extensive range of speakers and topics.

For unimodal datasets, we use CARER (Sar-
avia et al., 2018) for text, ESC-50 (Srivastava and
Sharma, 2024) for acoustic, and ImageNet (Deng
et al., 2009) for visual. CARER targets emotion
recognition in text, ESC-50 supports environmental
sound classification, and ImageNet focuses on im-
age classification across diverse objects and scenes.

Dataset Preprocessing. For unimodal datasets,
we simulate scenarios of intra-modality incomplete
data through specific preprocessing techniques. For
text data, missing data often occurs at the charac-
ter or word level in real-world scenarios, so we
randomly convert original tokens to [UNK] tokens.
For visual data, we set all three color channels of a
pixel to zero, resulting in a black pixel. For acous-
tic data, which is typically input as a spectrogram
(essentially an image), so we adopt the same simu-
lation technique as for visual data.

For multimodal datasets, existing methods com-
monly use CMU’s preprocessed encoded data to

simplify processing (Sun et al., 2022; Zhao et al.,
2021c; Poklukar et al., 2022b), which determines
the completeness of its intra-modality data. There-
fore, we recode the raw data, ensuring that our
experiments can cover both intra-modal and inter-
modal incomplete data. Specifically, the data after
intra-modal incomplete data processing is then in-
put into the corresponding encoder: BERT (Devlin
et al., 2018) for text data, OpenFace (Baltrušaitis
et al., 2016) for visual data, and OpenSmile (Eyben
et al., 2010) for acoustic data. For inter-modal in-
complete data, we randomly select a modality from
certain samples and set all its encoded features to
zero to simulate complete modality loss.

Metrics. We adopt accuracy (Acc) and weighted
F1 score as performance metrics, with the latter mit-
igating the impact of class imbalance in the MOSI
and MOSEI. The reported results represent the av-
erages obtained from five repeated experiments.

Baselines. For mixed coarse-grained and fine-
grained incomplete data scenarios, we compared
T2DR against four reproducible state-of-the-art
methods: CubeMLP (Sun et al., 2022) for com-
plete modality scenarios, and RedCore (Sun et al.,
2024), MMIN (Zhao et al., 2021c), and GMC (Pok-
lukar et al., 2022b) for incomplete data scenarios.

For fine-grained incomplete data scenarios, we
applied two classic methods for each modality to
conduct classification tasks: TextCNN (Gong and
Ji, 2018) and FastText (Joulin et al., 2016) for text,
VGGish (Hershey et al., 2017) and Beats (Chen
et al., 2022) for acoustic, and ResNet (He et al.,
2016) and CLIP (Radford et al., 2021) for visual.

Implementation Details. All experiments were
conducted on an NVIDIA RTX A5000 GPU with
24GB of memory. For CARER, ImageNet, and
ESC-50, the detailed hyperparameter settings are
as follows: number of attention heads {4, 1, 1},
number of attention layers {1, 3, 3}, batch size 64,
and learning rate 1e-3. For CMU-MOSI and CMU-
MOSEI, the detailed hyperparameter settings are
as follows: feature dimension {300, 228}, number
of fusion layers {6, 3}, regulation coefficient 0.1,
batch size 128, and learning rate 1e-3.

5 Experimental Results

5.1 Mixed Incomplete Data Scenarios

Given the large volume and complexity of video
data, partial frame loss frequently occurs to save
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Dataset
FG ratio CG T2DR CubeMLP MMIN GMC RedCore

(rt, ra, rv) ratio Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
C

M
U

-M
O

SI

(0.5, 0.5, 0.5) 0 0.5875 0.5549 0.5700 0.5526 0.5816 0.5273 0.5743 0.4783 0.5977 0.5275

(0.1, 0.5, 0.9) 0 0.6735 0.656 0.6866 0.6720 0.6822 0.6622 0.5685 0.4371 0.6968 0.6790
(0.1, 0.1, 0.1) 0.1 0.6866 0.6697 0.6822 0.6672 0.6706 0.6560 0.6706 0.6533 0.6633 0.6494

(0.5, 0.5, 0.5) 0.5 0.5758 0.5326 0.5510 0.5266 0.5685 0.5135 0.5685 0.4792 0.5000 0.4817

(0.9, 0.9, 0.9) 0.9 0.5539 0.4792 0.4883 0.4686 0.5044 0.4640 0.5510 0.3965 0.4650 0.4555

(0.1, 0.5, 0.9) 0.5 0.6458 0.6308 0.6545 0.6385 0.6385 0.6143 0.5918 0.4911 0.5816 0.5705

(0, 0, 0) 0.1 0.7259 0.7103 0.6939 0.6791 0.6983 0.6833 0.7099 0.6949 0.6895 0.6752

(0, 0, 0) 0.5 0.7041 0.6886 0.6691 0.6542 0.6647 0.6512 0.6924 0.6771 0.5685 0.5575

(0, 0, 0) 0.9 0.6603 0.6461 0.6356 0.6146 0.6487 0.6355 0.6516 0.6206 0.4985 0.4884

(0, 0, 0) 0 0.7230 0.7075 0.6968 0.6817 0.7055 0.6904 0.7114 0.6963 0.7026 0.6880

C
M

U
-M

O
SE

I

(0.5, 0.5, 0.5) 0 0.5192 0.4978 0.5166 0.3994 0.4583 0.4167 0.4922 0.4278 0.5132 0.3905

(0.1, 0.5, 0.9) 0 0.5941 0.575 0.5793 0.4940 0.5662 0.5520 0.5510 0.5088 0.5782 0.4943

(0.1, 0.1, 0.1) 0.1 0.6158 0.5971 0.5765 0.4978 0.5982 0.5609 0.5973 0.5720 0.5626 0.4821

(0.5, 0.5, 0.5) 0.5 0.5179 0.4892 0.5158 0.4077 0.4595 0.4185 0.4610 0.4247 0.4671 0.3803

(0.9, 0.9, 0.9) 0.9 0.4407 0.4247 0.4754 0.3441 0.3994 0.3828 0.4550 0.3726 0.4226 0.3610

(0.1, 0.5, 0.9) 0.5 0.5737 0.551 0.5624 0.4734 0.5327 0.5181 0.5310 0.4981 0.4967 0.4231

(0, 0, 0) 0.1 0.6469 0.6292 0.5909 0.5129 0.6255 0.5892 0.6177 0.5892 0.5823 0.5019

(0, 0, 0) 0.5 0.6272 0.6114 0.5585 0.4892 0.5911 0.5553 0.6033 0.5864 0.5123 0.4398

(0, 0, 0) 0.9 0.6014 0.5855 0.5201 0.4590 0.5759 0.5415 0.5722 0.5628 0.4376 0.3779

(0, 0, 0) 0 0.6516 0.6345 0.6029 0.5224 0.6287 0.5931 0.6270 0.5968 0.6040 0.5221

Table 1: Performance analysis of combining fine-grained (FG) and coarse-grained (CG) incomplete data.

bandwidth and computational resources. Thus, we
assign the higher missing rate to the video in the
imbalanced missing pattern. As shown in Table 1,
T2DR achieves a new state-of-the-art performance
across most missing scenarios and even the com-
plete scenario. Specifically, in MOSI, T2DR im-
proves the Acc by an average of 2.85% and the F1
score by 2.99% over the best-performing MMIN.
In MOSEI, T2DR enhances the Acc by an average
of 5.14% and the F1 score by 9.5% over the best-
performing GMC. The above results demonstrate
that it is effective to allocate more attention to the
more crucial data when dealing with incomplete
multimodal data. Notably, all comparative algo-
rithms exhibit a significant difference between F1
and Acc scores in MOSEI. To figure out this matter,
we perform detailed experiments in Appendix D.2
and find out that it is because the larger MOSEI has
a more balanced distribution of three classes, which
amplifies the impact of category performance im-
balances on the weighted F1 score. Fortunately,
in CAS, the secondary supervision provided by
the CE loss function effectively enhances focus on
each sample’s classification, achieving relatively
balanced performance across different classes.
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Figure 3: Coarse-grained effectiveness evaluation.

5.2 Coarse-grained Incomplete Data
Scenarios

To sufficiently demonstrate T2DR’s effectiveness
in coarse-grained incomplete data scenarios, we
expand the comparison in Table 1 by including
additional levels of modality missing rates.

The comparison of accuracy results is shown
in Figure 3, which reveals that IEDR continues to
exhibit superior performance compared to other
competitive methods. The specifics are detailed
below: (i) While maintaining the absolute superior-
ity of MOSEI and the overall advantage of MOSI,
T2DR does not experience significant drops at any
specific missing rate, demonstrating exceptional
robustness across different degrees of deficiency.
(ii) Even as the missing rate rises, reducing the
amount of learnable information, occasional slight
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Table 2: Performance analysis of fine-grained imputation in various modalities.

Dataset Method
Deficiency Rate rfg Average

Improvement
Rate0 0.1 0.3 0.5 0.7 0.9 AVG

CARER

TextCNN (Gong and Ji, 2018) 0.8420 0.8100 0.7200 0.6195 0.5370 0.3990 0.6546
+4.43%

+ IADR 0.8745 0.8500 0.7515 0.6535 0.5490 0.4230 0.6836
FastText (Joulin et al., 2016) 0.6660 0.6695 0.6405 0.6085 0.5965 0.5715 0.6254

+2.51%
+ IADR 0.7005 0.6900 0.6565 0.6230 0.5950 0.5815 0.6411

ImageNet

ResNet (He et al., 2016) 0.6690 0.6515 0.6101 0.5394 0.4188 0.1943 0.5139
+3.25%

+IADR 0.6869 0.6675 0.6280 0.5566 0.4372 0.2076 0.5306
CLIP (Radford et al., 2021) 0.6180 0.5776 0.3658 0.1251 0.0157 0.0018 0.284

+38.59%
+ IADR 0.6167 0.5761 0.4994 0.3874 0.2396 0.0424 0.3936

ESC-50

VGGish (Hershey et al., 2017) 0.5000 0.5950 0.6250 0.5600 0.2750 0.0500 0.4342
+11.88%

+ IADR 0.6150 0.6150 0.6300 0.6800 0.3100 0.0650 0.4858
Beats (Chen et al., 2022) 0.7500 0.7650 0.7250 0.7300 0.7000 0.5300 0.7000

+3.1%
+ IADR 0.8150 0.8050 0.7550 0.7450 0.6850 0.5250 0.7217

increases in both benchmarks suggest that T2DR
successfully learns valuable information from other
modalities, thereby alleviating the loss of informa-
tion due to reduced data. (iii) On the larger MOSEI,
with the optimal performance achieved, the small-
est accuracy reduction (5.02%) from the highest
missing rate to the lowest is realized, highlighting
T2DR’s superior performance.

5.3 Fine-grained Incomplete Data Scenarios
To further evaluate T2DR’s applicability to single-
modal data, we conduct intra-modal incomplete
data experiments on text, visual, and audio modali-
ties. The IADR module is tested on datasets from
all three modalities, with two mainstream models
validated for each modality. Furthermore, we also
compare its performance with masked multi-head
attention in Appendix D.1, demonstrating the ne-
cessity of retaining global capabilities.

As shown in Table 2, the experimental results
indicate that: (i) Intra-Attn shows excellent compat-
ibility across six different methods for three modal-
ities in fine-grained missing scenarios, confirming
its effectiveness in addressing intra-modal miss-
ing data for various modalities and methods. (ii)
The average performance of organized data such
as images and audio is slightly better than that of
unorganized text, suggesting that the mask with
explicit missing information can effectively pro-
vide more targeted data supervision. (iii) Notably,
on the ImageNet dataset, the CLIP+IADR method
achieves an average improvement rate of 38.59%
over the original CLIP, suggesting that the IADR
module can significantly enhance the performance
of models sensitive to incomplete data.

Table 3: The ablation study on MOSEI with six scenar-
ios: coarse-grained deficiency rates rcg are c0, c1, c2,
and c3 respectively, while the fine-grained deficiency
rates rfg are f0 = (c0, c0, c0) and f1 = (c1, c2, c3) ,
where c0 = 0, c1 = 0.1, c2 = 0.5, and c3 = 0.9.

Model Testing Conditions (rfg; rcg)

(f1; c0)(f1; c1)(f1; c2)(f1; c3)(f0; c2)(f0; c0)

T2DR 0.5941 0.5907 0.5737 0.5621 0.6272 0.6516
w/oIADR 0.5842 0.5812 0.5641 0.5458 0.6162 0.6428
w/o CAS 0.583 0.5812 0.5671 0.5566 0.6137 0.6407
w/o SFP 0.5933 0.5857 0.5377 0.5003 0.5785 0.6499
w/oIEDR 0.4449 0.4346 0.4288 0.4248 0.5119 0.5681

5.4 Ablation Studies

To verify the necessity of different components,
we conduct ablation studies on MOSEI under the
above three incomplete data scenarios. As shown
in Table 3, we can find below: (i) Intra-Modal
Deficiency-Resistant (IADR) Removal: The perfor-
mance decline under fine-grained deficiency indi-
cates that IADR’s balance between the missing
parts’ effect and model’s global capacity effec-
tively resists the noise impact from incomplete data.
(ii) Share Feature Prediction (SFP) Removal: The
larger performance decline with inter-modal defi-
ciency reveals that SFP’s prediction on the missing
modality is crucial to avoid the zero-information
issue for course-grained incomplete data. (iii)
Capability-Aware Scorer (CAS) Removal: The rel-
atively balanced performance decline across differ-
ent conditions suggests that the dynamic modality
weights perceived by CAS are essential for Inter-
Attn to integrate modality features in any situation.
(iv) Inter-Modal Deficiency-Resistant (IEDR) Re-
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moval: The significant performance decrease re-
veals that the semantics of the encoded data are
insufficient to directly perform downstream tasks.

6 Conclusion

In this paper, we propose T2DR, a comprehensive
framework for addressing both intra-modality and
inter-modality incomplete data. To address vari-
ous granularities of deficiency, we introduce two
weight allocation mechanisms, Intra-Attn and Inter-
Attn, to provide stronger supervision of higher-
quality data. Additionally, for coarse-grained defi-
ciencies, we present shared feature prediction (SFP)
for missing modality imputation, and capability-
aware scorer (CAS) to dynamically perceive the
optimal weight for each modality, enabling Inter-
Attn-based adaptive supervision. Our experiments
on both unimodal and multimodal datasets have
demonstrated the remarkable robustness and adapt-
ability of T2DR under incomplete conditions.

7 Limitations

We have conducted extensive experiments across
fine-grained, coarse-grained, and mixed deficien-
cies, demonstrating the remarkable robustness and
adaptability of our proposal. However, it still en-
counters limitations when handling imbalanced
missing data in the smaller MOSI dataset. This
issue arises mainly from two factors: (i) With im-
balanced missing data across different modalities,
T2DR tends to overly rely on data-rich modalities
on the smaller datasets, which weakens the inter-
modal interactive learning. (ii) T2DR’s employ-
ment of Inter-Attn to assign greater weight to more
effective modalities further amplifies the problem
of neglecting less data-abundant modalities. This
limitation reveals the need for strategies that en-
force inter-modal interaction, thereby facilitating
the learning of more comprehensive cross-modal
complementary information.

Building on the foundation of providing greater
supervision to effective data, our future work will
focus on enhancing inter-modal interaction to fully
capture cross-modal complementary information.
By enabling the above, our approach will better
adapt to multimodal imbalanced missing data in
small datasets, achieving greater robustness in in-
complete multimodal learning.
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A Supplementary for Methods

A.1 Sparsity-Induced Attention Collapse
In this section, we explore how masked multi-head
attention performs under varying degrees of data
incompleteness. Intuitively, completely concen-
trating on non-missing segments may weaken the
model’s overall ability to capture global dependen-
cies. To validate this hypothesis, we introduce
the index “attention distance”, which quantifies
how far each token can effectively attend to others
(Dosovitskiy et al., 2020), providing an intuitive
measure of the model’s global capacity. Initially,
we provide the theoretical proof for this hypothe-
sis, analyzing how attention distance – the model’s
global capacity changes with varying degrees of
data incompleteness. Since attention distance was
first proposed in ViT without a generalized compu-
tation pipeline for other modalities, we focus our
certification on the visual modality. To compute
the attention distance, we first compute the spatial
arrangement of image patches. Given an image
divided into N non-overlapping patches, arranged
in a L×L grid where L =

√
N , the (i, j)-th patch

is positioned at:

(xi, yi) =

(⌊
i

L

⌋
, i mod L

)
. (15)

The Euclidean distance between patches i and j is
then computed as:

Di,j = p ·
√
(xi − xj)2 + (yi − yj)2, (16)

where p denotes the patch size. This results in a dis-
tance matrix D ∈ RN×N , capturing the pairwise
spatial distances between all patches, while the at-
tention score A dictates their interaction capacity;
thus integrate both as follows:

M = A⊙D, (17)

where ⊙ denotes the element-wise product. To
obtain the average distance attended by each token,
we need to sum along the last axis:

M ′ =
N∑

j=1

Mi,j , ∀i ∈ {1, . . . , N}. (18)

Finally, the mean attention distance (MAD) is com-
puted by averaging over all tokens:

MAD =
1

N

N∑

i=1

M ′
i . (19)

The above defines the complete computation pro-
cess of attention distance. However, as the missing
rate increases, the attention score A will change.
The detailed process is as follows.

A = softmax
(
QKT +M√

d

)
, (20)

M =

{
−∞, if the patch is missing,
0, otherwise.

(21)

As the missing rate increases, a growing number
of patches become unavailable, causing more at-
tention scores to drop to zero, as demonstrated in
Equations (20) and (21). This progressive decline
in attention scores consequently causes a signifi-
cant reduction in M in Equation (17), ultimately
resulting in a substantial decrease in the final atten-
tion distance.
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Figure 4: Variation of Attention Distance Across All
Attention Heads Under Different Missing Rates.

This theoretical finding was further validated
through experimental evaluation. We systemati-
cally assessed the attention distance of vit-base-
patch16-224 on 1,000 images from the ImageNet
test set under varying missing rates from 0 to 0.9.
As shown in Figure 4, the attention distance of each
head exhibits a significant decreasing trend as the
missing rate increases. This observation further
validates our hypothesis.

Moreover, we performed a comparative analysis
of the head-averaged attention distance between
Intra-Attn and the original method, as depicted in
Figure 6. The results demonstrate that Intra-Attn
achieves a notably higher average attention dis-
tance, providing compelling evidence for its effec-
tiveness in enhancing the model’s global reasoning
capability.
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Figure 6: Comparison of Average Attention Distance
Between Our Method and the Baseline.

A.2 Intra-Modal Deficiency-Resistant
module

In this section, we present a detailed description of
the processing of Intra-Modal Deficiency-Resistant
(IADR) across text, visual, and acoustic modalities.
For unorganized text, token-mapped embeddings
are fed into Intra-Attn before encoding to filter
out noisy data. For organized visual and acoustic,
the pixelated images (or spectrograms) and their
corresponding masks are divided into patches and
undergo a window-shifting operation, after which
they are fed into Intra-Attn to highlight available
information without disrupting model global capa-
bility. In summary, IADR incorporates Intra-Attn
to perform selective information filtering on raw
digital modality inputs prior to feature encoding,
which effectively addresses the challenges of data
incompleteness and noise contamination that typ-
ically degrade model performance in incomplete
multi-modal learning.

A.3 Inter-Modal Deficiency-Resistant module
In this section, we provide a detailed description
of the Inter-Modal Deficiency-Resistant module
(IEDR), including the pseudocode 1 of IEDR and
the T2DR framework in Figure 5 for inter-modality
incomplete data scenarios.

Algorithm 1 Inter-Modal Deficiency-Resistant
Input:

Unified features of various modalities:
H = {h(k)i ∈ Rd}m,n

i,k=1

Entire modality mask of various modalities:
M = {m(k)

i ∈ {True,False}}m,n
i,k=1

Output:
Fused feature across various modalities:
F = {f (k) ∈ Rm×d}nk=1

/* Script symboys i and k mean index of
modality and instance. If mi is True, it
indicates the corresponding modality is
present; if False, it is missing. */

1: for k = 1 to n do
2: for i = 1 to m do
3: if mi then
4: fi ← SFP(hi)
5: else
6: fi ←

mean(S(hi)) for matching mi is True
7: end if
8: end for
9: weights← CAS(f1 ⊕ f2 ⊕ · · · ⊕ fm)

10: f (k) ← Inter-Attn{(f1 ⊕ f2 ⊕ · · · ⊕
fm), weights}

11: end for
12: k = 1, 2, . . . , n; i = 1, 2, . . . ,m
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B Supplementary for Baselines

We implemented two types of baselines, covering
intra- and inter-modal incomplete data. The details
of each baseline are listed below:

Multimodal Models. CubeMLP (Sun et al.,
2022) integrates modality features into a unified
tensor and applies sequential, modality, and chan-
nel mixing through independent MLP units, effec-
tively enhancing feature interaction and reducing
computational complexity. MMIN (Zhao et al.,
2021c) uses a Cascade Residual Autoencoder and
Cycle Consistency Learning to predict missing
modality representations from available ones, en-
hancing robustness and adaptability under uncer-
tain missing-modality conditions. GMC (Poklukar
et al., 2022b) utilizes modality-specific base en-
coders and a shared projection head to align repre-
sentations of complete and modality-specific obser-
vations, employing a novel multimodal contrastive
loss to address the heterogeneity gap and ensure ro-
bustness to missing modality information. RedCore
(Sun et al., 2024) leverages a relative advantage-
aware cross-modal representation learning frame-
work based on variational information bottleneck
(VIB), coupled with a bi-level optimization prob-
lem for adaptive supervision regulation, ensuring
robustness and data efficiency.

Unimodal Models. TextCNN (Gong and Ji,
2018) employs convolutional neural networks to
capture local dependencies and extract semantic
features from text, utilizing multiple filter sizes
to identify important n-grams, and offering a ro-
bust architecture for sentence classification tasks.
FastText (Joulin et al., 2016) innovatively merges
a linear classifier, low-rank approximation, and
hierarchical softmax to achieve efficient, scalable
text classification, improving performance by using
bag-of-n-grams as features to capture local word or-
der. ResNet (He et al., 2016) employs deep residual
learning through shortcut connections to effectively
train very deep networks, enabling improved opti-
mization and higher accuracy by reformulating lay-
ers to learn residual functions instead of direct map-
pings. CLIP (Radford et al., 2021) leverages con-
trastive pre-training on a large dataset of image-text
pairs to enable zero-shot image classification by
aligning visual and textual representations within
a shared multimodal embedding space. VGGish
(Hershey et al., 2017) is a pre-trained audio en-
coder based on the extensive AudioSet, designed to

generate a 128-dimensional feature embedding for
enhanced performance across various audio recog-
nition tasks. Beats (Chen et al., 2022) combines an
acoustic tokenizer and an audio SSL model to con-
vert continuous audio signals into semantic-rich
discrete labels, enhancing the model’s audio un-
derstanding capabilities through mask and label
prediction pre-training.

C Supplementary for Datasets

Multimodal Datasets. The CMU-MOSI dataset
comprises 2,199 annotated video segments with
sentiment intensity labels, whereas CMU-MOSEI
extends this scale with 23,453 video clips contain-
ing both sentiment and emotion annotations. Both
datasets maintain predefined training, validation,
and test splits as specified in their official documen-
tation.

Unimodal Datasets. ImageNet (1.43M images),
CARER (20k emotional text), and ESC-50 (2k en-
vironmental audio clips) all adhere to standardized
partitioning protocols established by their respec-
tive curators.
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Figure 7: Comparative Analysis of Improved Intra-Attn
and Masked Multi-Head Attention in Experimental Re-
sults.

D Supplementary for Experiments

D.1 Supplementary for IADR Experiments
As discussed in Appendix A.1 , in scenarios with
missing data, the direct application of conven-
tional attention mechanisms that exclusively rely
on available data would inevitably lead to signifi-
cant degradation in the model’s global capability.
To address this limitation, we propose Intra-Attn,
which introduces a compensation term for miss-
ing data to balance noise interference and global
performance degradation. (1) In visual tasks, our
method achieves consistent improvements across
baseline architectures (average +1.1% on CLIP and
+0.1% on ResNet). (2) In audio tasks, Intra-Attn
demonstrates substantially enhanced robustness to
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Table 4: Performance analysis of Intra-Modal Deficiency-Resistant module in various modalities.

Dataset Method
Deficiency Rate rfg Average

Improvement
Rate0 0.1 0.3 0.5 0.7 0.9 AVG

ImageNet
ResNet+KNN 0.7273 0.7087 0.6427 0.5118 0.3657 0.1212 0.5129 -0.19%
CLIP+KNN 0.6181 0.5679 0.4512 0.2923 0.1382 0.0019 0.3449 +21.44%

ESC-50
VGGish+KNN 0.4950 0.5400 0.5800 0.5600 0.2050 0.0450 0.4042 -6.91%

Beats+KNN 0.7600 0.7700 0.7400 0.7300 0.6700 0.5100 0.6967 -0.47%

missing spectral features, as illustrated in Figure 7.
These quantitative results and comparative analyses
collectively demonstrate that Intra-Attn not only
effectively mitigates the impact of missing data
within a modality but also preserves the model’s
overall capability.

Based on the experiments with intra-modality in-
complete data, we also compare these results with
the simple imputation method K-Nearest Neigh-
bors (KNN) (Peterson, 2009). It fills in missing
data by averaging the values of the nearest neigh-
bors, ensuring the integrity of the dataset. Since the
imputation process depends on mask information,
which is not feasible for unstructured text, we fo-
cus our experiments exclusively on the visual and
acoustic modalities. As shown in Table 4, which
supplements the results of the section 5.3, we find
that KNN only works for the CLIP model, which is
extremely sensitive to incomplete data (with an ac-
curacy drop of 0.4929 from rfg = 0 to rfg = 0.5) .
However, its average improvement rate of 21.54%
is still significantly lower than the 38.59% achieved
by IADR. KNN even undermines the performance
of the original model in most cases, likely due to
the increased filling errors in high-dimensional or
imbalanced data distributions. Hence, it is quite
remarkable for IADR to exhibit such strong robust-
ness in handling intra-modality incomplete data
across six classical methods in three modalities.
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Figure 8: Coarse-grained effectiveness evaluation on F1
score.
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Figure 9: Label-specific Accuracy Comparison on MO-
SEI.

D.2 Supplementary for IEDR Experiments
Following the experiments with inter-modality in-
complete data, we conduct an additional evalua-
tion of the F1 metric shown in Figure 8. We find
that, compared to MOSI, T2DR demonstrates a
more dominant performance in MOSEI, which
is attributed to two key factors: (i) T2DR, as an
attention-based method, is better suited for large-
scale datasets (Dosovitskiy et al., 2020). (ii) Our
approach achieves a more balanced performance
across various categories in MOSEI. Specifically,
with the significant increase in neutral samples in
MOSEI (from 4.41% to 21.87%), however, neu-
tral sentiment is hard to classify due to the lack
of strong sentiment indicators and the difficulty in
detecting weakly associated cues (Gandhi et al.,
2023). Therefore, achieving a higher F1 score
on MOSEI requires more balanced performance
across all three categories, as weak classification of
neutral sentiment will be distinctly amplified in F1.
To validate the above idea, we compare T2DR with
subsequent GMC and notice that when the dataset
is complete, the drop from F1 to accuracy is 1.71%
and 3.02% respectively. This large disparity drives
us to conduct a more thorough analysis. We com-
pute the prediction result for each label shown in
Figure 9, which reveals that T2DR presents smaller
performance variation across various classes, re-
sulting in a higher F1 despite having consistent
accuracy.
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