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Abstract

Recent advances in large language models
(LLMs) have demonstrated the effectiveness
of chain-of-thought (CoT) prompting. Few-
Shot-CoT relies on task-specific, manually la-
beled demonstrations, limiting its generaliza-
tion to unseen tasks. While Zero-Shot-CoT
eliminates this reliance, it often underperforms.
To address this, existing methods aim to auto-
matically generate demonstrations in zero-shot
settings. However, these generated demonstra-
tions face challenges due to demonstration bias:
1) selected demonstrations may contain errors,
and 2) they may not be suitable or represen-
tative enough for all questions. To mitigate
these biases, we propose Global Coevolution-
ary Reasoning (GCR). The method first applies
Zero-Shot-CoT to answer all questions, then
clusters the results. For each cluster, a random
sample is selected, and these selected samples
serve as demonstrations for each other. The
model then iteratively re-answers the questions
and updates their rationales based on these
demonstrations, enabling coevolutionary rea-
soning to progressively improve the quality of
the answers. This process of random sampling
and coevolutionary reasoning is repeated until
all questions have been re-answered. Experi-
mental results on ten datasets using GPT-3.5-
turbo and GPT-4o-mini show that GCR out-
performs baseline methods without any per-
formance degradation caused by demonstra-
tion bias. Additionally, GCR is orthogonal to
existing methods and can be seamlessly inte-
grated with them. The code is available at:
https://github.com/GouChuan/GCR.

1 Introduction

The paradigm of in-context learning (ICL) (Brown
et al., 2020) has proven effective in large language
models (LLMs), enabling them to perform reason-
ing tasks based on a few examples. Among the
strategies within ICL, chain-of-thought (CoT) (Wei
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Q: Jim spends 2 hours watching TV and then decides to

go to bed and reads for half as long. He does this 3

times a week. How many hours does he spend on TV

and reading in 4 weeks? 

A: |step|subquestion|process| result|| 1 | How many hours 

does Jim spend watching TV and reading each week? | 2 

hours of watching TV + 1 hour of reading = 3 hours | | 2 

| How many hours does Jim spend on TV and reading in 

4 weeks? | 3 hours/week * 4 weeks = 12 hours | Jim 

spends a total of 12 hours on TV and reading in 4 

weeks.

:1
GSM8K

Demonstration

Q: Tom spends 2 hours playing computer and then 

decides to go to bed and listens to music for half as 

long.  He does this 2 times a week.  How many hours 

does he spend on computer and listening in 5 weeks? 

A: |step…||1|How many hours does Tom spend playing 

computer and listening to music each week?|2 hours of 

playing computer + 1 hour of listening to music = 3 

hours| |2|How many hours does Tom spend on computer 

and listening in 5 weeks?|3 hours/week * 5 weeks = 15 

hours| Tom spends a total of 15 hours on computer and 

listening to music in 5 weeks. 

k

Test Question

Figure 1: An example of the first type of demonstration
bias in GPT-3.5-turbo with Auto-CoT on the GSM8K
dataset, where the selected demonstrations may contain
errors and propagate incorrect reasoning.

et al., 2022) reasoning, including few-shot and zero-
shot variants, is a cornerstone for tackling complex
problems. Few-Shot-CoT relies on manually la-
beled demonstrations, limiting generalization to
unseen tasks, while Zero-Shot-CoT (Kojima et al.,
2022) removes this reliance, offering broader appli-
cability but often resulting in suboptimal reasoning.

The Auto-CoT (Zhang et al., 2023) framework
addresses these challenges by dynamically transi-
tioning from zero-shot to Few-Shot-CoT. It clus-
ters questions based on semantic similarity and
selects representative examples from the cluster
centroids to construct a few-shot prompt, combin-
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Q: A car finishes a journey in 20 hours at the speed

of 60 km/hr. If the same distance is to be covered

in 10 hours, how much speed does the car gain? ...

Q: At what price should the Karan mark a sewing

machine that costs him Rs. 1200/- so that even

after offering a 20% discount, he makes 20%

profit? ...

Q: The capacity of a tank of dimensions (8 m × 6 

m × 2.5 m) is? ...

Q: 900 + 5 × 12 = ? …

Q: Joe's age, Joe's sister's age and Joe's father's 

age sums up to 100. When Joe is as old as his 

father, Joe's sister will be twice as old as now. 

When Joe is as old as his father then his father is 

twice as old as when his sister was as old as her 

father. Find the age of Joe's father?

A: Sorry, I am unable to solve this type of word

problem. 

Auto Demos (AQuA)

Test Question

Figure 2: An example of the second type of demon-
stration bias in GPT-3.5-turbo with Auto-CoT on the
AQuA dataset, where the selected demonstrations may
be unrelated to the question being answered, leading to
incorrect answers.

ing the strengths of both approaches. However,
Auto-CoT faces demonstration bias: 1) selected
demonstrations may contain errors, propagating in-
correct reasoning (Figure 1), and 2) they may not
be representative of all questions (Figure 2). While
increasing demonstration diversity can mitigate the
effect of erroneous demonstrations, it does not fully
resolve the first bias.

ECHO (Jin and Lu, 2024) attempts to iteratively
refine demonstrations by using each as a demonstra-
tion for the others, fostering coevolutionary reason-
ing between demonstrations to eliminate the first
bias. However, this iterative process lacks a mech-
anism to ensure positive progression, potentially
exacerbating the first bias (Figure 3), and does not
address the second bias related to representative-
ness.

Coevolutionary reasoning posits that good
demonstrations are more likely to guide LLMs
to correct answers. Demonstrations are consid-
ered "good" when they are both representative and
accurate. In Shtok et al. (2024), representativeness
is defined as the proportion of questions in a set that
can be solved using a specific example as a demon-
stration, with the set’s problem-solving success rate
exceeding a threshold. However, obtaining such
problem sets with known correct answers in prac-
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Figure 3: Comparison of demonstration accuracy across
Auto-CoT, ECHO, and ECHO+Judge. ECHO can
improve demonstration accuracy in some cases but
may also degrade it in others. On the other hand,
ECHO+Judge, which incorporates a judging mecha-
nism during iterative updates and is influenced by judge
bias, can enhance accuracy in certain situations while
occasionally reducing it.

tice is difficult, limiting the applicability of this
approach. Auto-CoT clusters questions and selects
centroids as demonstrations, assuming these are
representative. However, semantic similarity does
not necessarily imply similar reasoning methods
(Xu et al., 2024b; An et al., 2023), and centroids
may not adequately represent points that are far
from them. (Figure 2). Zhang and Ding (2024)
emphasizes the need to explore the prompt space
in addition to the answer space. While traditional
methods (Yao et al., 2024; Besta et al., 2024) adopt
a "one prompt for all" approach, a single prompt
or set of demonstrations cannot effectively address
all questions. As noted in Yuan et al. (2024), find-
ing a universally applicable prompt for every ques-
tion remains a challenging task. The ideal solution
would involve designing a specific prompt for each
question, but manually creating such prompts is
impractical. Thus, coevolutionary reasoning fo-
cuses on optimizing demonstrations for greater
accuracy. While manually created demonstrations
do not require validation of their correctness, con-
structing task-specific demonstrations for new tasks
is often time-consuming and labor-intensive. This
has led to the consideration of automatically gen-
erated demonstrations. However, without external
feedback, these auto-generated demonstrations are
prone to errors. For instance, Auto-CoT gener-
ates cluster centroids using Zero-Shot-CoT, but the
rationales for these centroids may be flawed. In co-
evolutionary reasoning, examples iteratively serve
as demonstrations for each other, refining and up-
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dating their rationales. Through this process, the
accuracy of the demonstrations is gradually im-
proved.

We address the first bias by introducing coevo-
lutionary reasoning with judge to ensure iterative
refinement progresses positively. To address the
second bias, we balance “one demonstration for
all” and “one demonstration for one” by randomly
selecting examples from each cluster for iteration.
Employing a judging process (e.g., ECHO+Judge)
is expected to improve demonstration accuracy.
However, due to judge bias—arising from poten-
tial errors in the judge’s assessments—it does not
always achieve this improvement (Figure 3). To al-
leviate judge bias, we propose P-sampling, where a
sample is selected either from already chosen exam-
ples or new ones with probabilities P and 1−P , re-
spectively. This combination of P-sampling, global
random sampling, and the judge mechanism ad-
dresses all three biases. We evaluate GCR on
ten datasets across three reasoning problems. Ex-
periments with GPT-3.5-turbo and GPT-4o-mini
demonstrate that GCR consistently outperforms
Auto-CoT on average while avoiding performance
degradation caused by demonstration bias. Addi-
tionally, GCR is orthogonal to existing methods
and can be seamlessly integrated with them.

2 Global Coevolutionary Reasoning

Overview The schematic illustration of our pro-
posed approach is shown in Figure 4. GCR first
uses Zero-Shot-CoT to generate answers for all
N questions. Then, it applies K-means cluster-
ing to the (question, rationale) pairs, where the
rationale derived from Zero-Shot-CoT serves as
the basis for clustering. The intuition behind this
approach is that we want the LLM to explore dif-
ferent reasoning paths when answering questions.
By clustering based on the rationale, we aim to pre-
vent reasoning errors from accumulating due to the
lack of certain reasoning strategies. Next, a sam-
ple (question, rationale) is randomly selected from
each cluster using P-sampling. These k samples
are then subjected to T rounds of coevolutionary
reasoning, where the question is re-answered, and
the judge decides whether to update the rationale.
This process, including both the sampling and the
coevolutionary reasoning steps, is repeated until all
samples have been re-answered. The total number
of calls to the LLM in GCR is given by N + N×T

1−P
(see Appendix C for the proof and cost comparison

with other methods), and the intermediate process
of coevolutionary reasoning is detailed in Appendix
F.

2.1 Coevolutionary Reasoning
During the coevolutionary reasoning process, multi-
ple samples serve as demonstrations for each other.
Each question is iteratively re-answered, and the
newly generated rationale is assessed to determine
whether it should replace the existing rationale. If
the new rationale demonstrates superior quality, it
is updated; otherwise, the previous rationale is re-
tained. The updated (question, rationale) pairs are
then used as demonstrations for subsequent itera-
tions of re-answering. The process of re-answering
and updating all samples constitutes one iteration,
and this procedure is repeated for T rounds to en-
sure convergence. The algorithm for coevolution-
ary reasoning is presented in Algorithm 1. See
Appendix B for illustration of coevolutionary rea-
soning.

Algorithm 1 Coevolutionary Reasoning
Require: Question set Q = {q1, q2, . . . , qk}, initial ratio-

nalesR = {r1, r2, . . . , rk}, number of iterations T
Ensure: Updated rationales R∗, where R∗ is the final up-

dated set of rationales.
1: for t = 1 to T do ▷ Iterate for T rounds
2: for i = 1 to k do ▷ Re-answer one by one
3: Build demonstration set Di = {(qj , rj) | j ̸= i}
4: Generate new rationale: r′i ← LLM(qi | Di)
5: Evaluate new rationale: tag← Judge(qi, r′i, ri)
6: if tag == True then ▷ If new rationale is better
7: Update rationale: ri ← r′i
8: end if
9: end for

10: end for
11: returnR∗

2.2 Key Components of GCR
Judge The judge process evaluates whether a
new rationale improves upon the original in the
coevolutionary reasoning process. It serves two
purposes:

• To eliminate the first type of bias, ensuring
correct progression in iterations.

• To mitigate erroneous reasoning by reducing
the impact of randomly sampling irrelevant
demonstrations.

In this paper, we choose the judge method as
follows:

1. Self Judge: Let the LLM judge whether
the generated rationale is correct (prompting
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LLMsZero-Shot-CoT

Q: Mitchell is making nachos for his family. He …

Q: Jim spends 2 hours watching TV and then …  

:

Q: Mitchell is making nachos for his … A: Let’s …

Q: Jim spends 2 hours watching TV … A: Let’s …

:

R = 0%

End

:

Clustering
1 k

P-sampling (random)

Put Back

Coevolution Reasoning

(T iterations)

𝑄1: Mitchell is making nachos … 𝐴1
0 : Let’s …

𝑄𝑘: Jim spends 2 hours … 𝐴𝑘
0 : Let’s …

:

R : re-answered ratio 

𝑒𝑖
𝑡

The t-th iteration

The i-th cluster

Re-answered

Re-answered

𝑒1
0

𝑄1: Mitchell is making … 𝐴1
𝑇 : Let’s …

𝑄𝑘: Jim spends 2 hours  … 𝐴𝑘
𝑇: Let’s …

:
𝑒1
𝑇

𝑒𝑘
𝑇

𝑒𝑘
0

:1 k
R<100%

R=100%

Figure 4: Illustrations of GCR. The process begins by generating initial answers for all N questions using Zero-Shot-
CoT. Then, (question, rationale) pairs are encoded and clustered using K-means, where the rationale derived from
Zero-Shot-CoT serves as the clustering basis. Next, a sample (question, rationale) is randomly selected from each
cluster through P-sampling. These k selected samples undergo T rounds of coevolutionary reasoning, where the
questions are re-answered and their rationales are iteratively refined. This process of sampling and coevolutionary
reasoning continues until all samples have been re-answered, ensuring a more effective reasoning evolution.

LLM to identify the specific reasons behind
errors proves to be more difficult (Huang et al.,
2024)). See Appendix A for the prompts. If
the rationale is judged to be correct, the ra-
tionale is updated directly. Unless otherwise
stated, the judge method used in this paper
follows this approach for the sake of conve-
nience. Note that the judge model should be
identical to the generation model to ensure a
fair comparison.

2. Answer Entropy: In line with the Self-
Consistency (Wang et al., 2023b) idea, ask
the large model to answer multiple times and
use the entropy of the answers to judge. The
smaller the entropy of the answers, the more
accurate the demonstrations is considered. In
this case, a majority voting mechanism is used
to select the best answer and rationale, which
are then updated.

3. Probability Disparity: Use the probability
disparity (Wang and Zhou, 2024) of the gener-
ated rationale to judge (this needs to be done
in the context of open-source models). If the
disparity is higher than before, the rationale is

updated.

4. Oracle Labels: Use ground truth to judge (it
should be the performance upper bound for
coevolutionary reasoning). If the answer cor-
responding to the generated rationale matches
the ground truth, the rationale is updated.

From 1 to 4, the cost of the judge increases gradu-
ally, but so does the effectiveness of the judge (see
Table 3).

Global random sampling Global random sam-
pling differs from previous methods by not relying
on a fixed set of demonstrations. Instead, for each
question, demonstrations are randomly sampled
from a global set, broadening the exploration of
the prompt space. This approach has two main
benefits:

• It eliminates the second type of bias by ex-
panding the prompt space, preventing failures
due to irrelevant demonstrations.

• It mitigates errors caused by judge bias, avoid-
ing a significant performance drop in a "one
prompt for all" scenario.
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P-sampling Each time data is sampled for co-
evolutionary reasoning, there is a probability P of
sampling from previously selected data and 1− P
from new data. P-sampling serves two purposes:

• It allows previously selected samples, which
are assumed to be more accurate, to act as
demonstrations, increasing the likelihood of
correct answers for new samples.

• By enabling global random sampling, P-
sampling lets samples re-enter the reason-
ing process with different demonstrations, ex-
panding the exploration of the prompt space
and improving the chance of correct answers.

Therefore, the three mechanisms work in syn-
ergy to perform reasoning and eliminate the three
types of bias.

3 Experimental Setup

3.1 Benchmarks
Following Wang et al. (2023a) and Zhang et al.
(2023), we evaluate GCR on ten benchmark
datasets, categorized into three types of reasoning
tasks: (i) arithmetic reasoning, comprising Multi-
Arith (Roy and Roth, 2015), GSM8K (Cobbe et al.,
2021), AddSub (Hosseini et al., 2014), AQUA-RAT
(Ling et al., 2017), SingleEq (Koncel-Kedziorski
et al., 2015), and SVAMP (Patel et al., 2021); (ii)
commonsense reasoning, including CSQA (Tal-
mor et al., 2019) and StrategyQA (Geva et al.,
2021); and (iii) symbolic reasoning, with tasks like
Last Letter Concatenation and CoinFlip (Wei et al.,
2022). See statistical details in Table 6.

3.2 Baselines
We compare our proposed method, GCR, with three
baseline methods: (1) Zero-Shot-CoT. Zero-Shot-
CoT (Kojima et al., 2022) does not require any
demonstrations, instead relying solely on a prompt
to trigger the CoT reasoning. (2) Auto-CoT. Auto-
CoT (Zhang et al., 2023) automatically selects ex-
amples by clustering with diversity and generates
reasoning chains using Zero-Shot-CoT to construct
demonstrations. (3) ECHO. ECHO (Jin and Lu,
2024) performs additional coevolutionary iterations
on the demonstrations selected by Auto-CoT with-
out any judgment.

3.3 Implementations
We conduct our experiments using GPT-3.5-turbo
as the base language model. For validation, we

also use GPT-4o-mini and mistral_7b_instruct_v3.
To ensure the completeness of the response, we
set a maximum CoT length of 1024 tokens, and
for clustering, we apply Sentence-BERT with K-
means. For a complete description of the experi-
mental setup, including hyperparameters and addi-
tional implementation specifics, please refer to the
Appendix D.

4 Experimental Results

The experimental results are displayed in Table 1.
Overall, GCR outperforms Auto-CoT by a large
margin and is more robust than ECHO. Across
ten benchmark datasets, GCR achieves superior
results with an average improvement of 6.1% and
2.1% over Auto-CoT on GPT-3.5-turbo and GPT-
4o-mini, respectively. This demonstrates the effec-
tiveness of our proposed approach in enhancing
reasoning capabilities. However, as observed from
Table 1, demonstration bias has a smaller impact
on models with stronger reasoning capabilities. Ad-
ditionally, due to the influence of judge bias, GCR
exhibits a slight performance decline on certain
datasets. In this section, we discuss the results of
arithmetic reasoning, commonsense reasoning, and
symbolic reasoning.

Arithmetic Reasoning: GCR achieves the best
average performance compared with all base-
line models, indicating the superiority of our
method. Compared with the competitive base-
line ECHO, GCR outperforms it by an average
of 4.9% with GPT-3.5-turbo and 0.6% with GPT-
4o-mini. The largest improvement is observed
in GSM8K (+10.8%) and AQuA (+10.6%) under
GPT-3.5-turbo, and in AQuA (+3.2%) under GPT-
4o-mini. One possible reason is that these datasets
suffer from two types of demonstration bias in
the demonstrations automatically selected by Auto-
CoT, namely, the selected demonstrations are not
sufficiently representative or contain errors.

Commonsense Reasoning: Consistent improve-
ment is observed in commonsense reasoning tasks.
GCR outperforms all baseline models across both
CSQA and StrategyQA. Compared with Auto-CoT,
GCR improves the average performance by 7.1%
under GPT-3.5-turbo and 0.5% under GPT-4o-mini,
demonstrating its effectiveness in leveraging ex-
ternal knowledge and logical inference. These
results suggest that GCR enhances the ability to
reason about implicit knowledge and abstract re-
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Method
Arithmetic Commonsense Symbolic

Overall
MultiArith GSM8K AddSub AQuA SingleEq SVAMP avg. CSQA StrategyQA avg. LastLetter Coin avg.

GPT-3.5-turbo

Zero-Shot-CoT 94.2 71.7 81.3 54.3 89.4 73.9 77.5 74.1 60.8 67.5 56.6 71.0 63.8 72.7
Auto-CoT 92.8 72.0 80.5 59.4 89.4 74.8 78.2 74.0 59.7 66.8 82.6 92.2 87.4 77.7
ECHO 93.3 70.2 86.6 59.1 90.6 85.1 80.8 74.4 62.5 68.4 66.4 91.2 78.8 77.9
ECHO+Judge 90.7 67.9 87.1 58.3 88.8 85.3 79.7 57.4 70.0 63.7 87.4 99.8 93.6 79.3
GCR 97.7 81.0 89.4 69.7 92.5 83.9 85.7 78.7 69.2 73.9 84.6 91.0 87.8 83.8

GPT-4o-mini

Zero-Shot-CoT 98.2 88.2 88.9 67.7 91.3 92.6 87.8 79.6 75.6 77.6 69.0 97.2 83.1 84.8
Auto-CoT 98.7 86.8 90.4 75.2 91.3 92.7 89.2 83.1 78.4 80.8 79.6 99.8 89.7 87.6
ECHO 99.2 90.4 90.4 79.1 91.7 92.9 90.6 82.9 79.0 81.0 88.4 100.0 94.2 89.4
ECHO+Judge 97.8 90.9 90.1 77.6 92.3 94.0 90.5 83.0 79.2 81.1 83.0 100.0 91.5 88.8
GCR 98.8 91.0 89.9 82.3 91.5 93.8 91.2 82.5 80.1 81.3 88.6 98.4 93.5 89.7

Table 1: Accuracy comparison across datasets using GPT-3.5-turbo and GPT-4o-mini, with avg representing average
performance. Bold values indicate the best performance. ECHO+Judge incorporates a judging mechanism during
iterative updates.

lationships, making it more robust for real-world
commonsense tasks.

Symbolic Reasoning: GCR also achieves bet-
ter results than Auto-CoT in symbolic reasoning
tasks. Notably, due to the absence of a Judge mech-
anism to ensure the iterative process moves in the
correct direction in ECHO (as shown in Figure 3),
ECHO experiences a sharp performance drop on
the LastLetter dataset in GPT-3.5-turbo compared
to Auto-CoT (82.6 % → 66.4 %). However, GCR
and ECHO+Judge, which incorporate the Judge
process during iterations, do not exhibit such a per-
formance decline. These results indicate that GCR
addresses the demonstration bias present in Auto-
CoT and exhibits strong robustness, avoiding sharp
performance declines.

5 Analysis

Another Way to Judge To further validate the
generalizability of GCR, we replaced the closed-
source model’s direct judgment-based method with
the judge method designed for open-source mod-
els. We adopt the probability disparity proposed
in Wang and Zhou (2024) to assess the quality
of a rationale. The open-source model used is
mistral_7b_instruct_v3. The probability dis-
parity of a rationale is defined as:

∆r =
1

|r|
∑

xt∈r

(
p(x1

t |x<t)− p(x2
t |x<t)

)
(1)

Here, r represents a rationale, and x1t and x2t are
the top two tokens at the t-th decoding step, chosen
based on their maximum post-softmax probabili-
ties from the vocabulary, with xt being part of the
answer tokens. To avoid blind confidence, if the

Method AQuA GSM8K StrategyQA avg

Zero-Shot-CoT 29.9 45.8 63.1 46.3
Auto-CoT 36.6 55.7 68.0 53.4
ECHO 33.1 56.8 68.6 52.8
GCR 39.4 57.4 69.7 55.5

Table 2: Accuracy comparison of methods on different
datasets using mistral_7b_instruct_v3 with probability
disparity to judge in GCR. Bold values indicate the best
performance.

probability disparity for a token exceeds a thresh-
old (in this section, 0.75), it is disregarded in the
calculation. Table 2 presents a comparison of meth-
ods on different datasets. GCR achieves the best
results across all datasets, further validating its ef-
fectiveness and generalizability.

Effect of Judge To verify the effectiveness of the
Judge, we first incorporate the Judge process into
ECHO’s iterative rationale updating and observe
how the accuracy of the demonstrations changes af-
ter iterations. As shown in Figure 3, ECHO+Judge
helps mitigate the deviation from the correct direc-
tion during the iterative process. However, due to
the influence of judge bias, there is a slight decrease
in accuracy after the iterations. Additionally, we
tested the reasoning performance of ECHO+Judge
(see Table 1). Notably, using GPT-3.5-turbo on the
LastLetter dataset, the demonstrations derived by
ECHO+Judge exhibit higher accuracy compared to
ECHO, avoiding the sharp performance drop ob-
served in ECHO. However, on the CSQA dataset,
ECHO+Judge also suffers a sharp performance de-
cline. One possible reason for this is that, compared
to the demonstrations derived by ECHO, those pro-
duced by ECHO+Judge, due to judge bias, have
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Figure 5: Impact of question set size on GCR’s rea-
soning performance. The performance improvement
of GCR over Zero-Shot CoT increases as the size of
the question set grows. Larger question sets provide a
broader exploration space for demonstrations, enhanc-
ing the likelihood of correct answers.

lower accuracy (see Figure 3). This also under-
scores the importance of considering the impact of
judge bias.

Analysis of Global Random Sampling Com-
pared to ECHO+Judge, GCR includes an additional
global random sampling process, which allows us
to assess whether this step contributes to improved
reasoning performance. As shown in Table 1, GCR
is more robust than ECHO+Judge. On the CSQA
dataset with GPT-3.5-turbo, GCR benefits from
the use of global random sampling, a decentral-
ized approach that partially mitigates the impact
of demonstration bias, thus preventing the sharp
performance decline observed in ECHO+Judge.
However, since global random sampling may se-
lect irrelevant or incorrect examples as demonstra-
tions, and because judge bias cannot be completely
eliminated, a slight decrease in reasoning perfor-
mance is observed. Additionally, we investigated
the impact of the question set size on GCR’s rea-
soning performance using mistral_7b_instruct_v3
on the GSM8K dataset. We randomly sampled
question sets of varying sizes from GSM8K and
compared the performance improvement of GCR
over Zero-Shot-CoT in reasoning. As shown in
Figure 5, as the size of the question set increases,
the reasoning performance of GCR improves more
compared to Zero-Shot-CoT. This is because, with
more questions, GCR has a larger exploration space
for demonstrations due to global random sampling,
making it more likely for the model to correctly
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Figure 6: Comparison of GCR and baseline meth-
ods’ reasoning performance at different P-values on
the AQuA dataset using mistral_7b_instruct_v3.

answer the questions.

Analysis of P-sampling In this study, we inves-
tigate how to determine the optimal P-value in P-
sampling and its impact on GCR’s reasoning per-
formance. We validated GCR’s performance at
different P-values using the AQuA dataset with
the mistral_7b_instruct_v3 model, as shown in Fig-
ure 6. As the P-value increases, the probability
of sampling previously selected examples during
coevolutionary reasoning also rises. This suggests
that GCR’s reasoning performance may improve,
but at the cost of increased computational over-
head. However, as observed in Figure 6, when
the P-value is between 0.2 and 0.4, GCR’s rea-
soning performance is highest. When the P-value
reaches 0.6, 0.8, or higher, performance does not
continue to increase or converge as expected. In
practice, there will always be errors introduced by
the judge. Let’s assume that the error introduced
after each coevolution is denoted as e. Due to P-
sampling, the number of re-answers required is M
(i.e., N/(1 − P )). Consequently, the total error
introduced, E, can be expressed as

E ≥ M · e (2)

(since errors propagate further). As P increases,
M increases, which in turn causes the total error
E to increase. This creates a trade-off between the
gains from exploring a larger prompt space and
the impact of judge bias, which is reflected in the
peak observed in Figure 6. When using different
judge methods, the range of the peak will shift ac-
cordingly. Therefore, we recommend setting the
P-value between 0.2 and 0.4 to achieve a balance
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Method Judge method GSM8K AQuA SVAMP

Auto-CoT+multi-call (Tmax = 10) Oracle Labels - 93.3 -
GCR (Tmax = 4) Oracle Labels - 92.1 -
GCR (Tmax = 6) Oracle Labels - 93.7 -
Auto-CoT+multi-call (T = 5) Self Judge 71.9 67.3 79.9
GCR (T = 4) Self Judge 81.0 69.7 83.9
Auto-CoT+Self-Consistency (T = 50) N/A - 70.5 -
GCR (T = 4× 10) Answer Entropy - 72.0 -

Table 3: Accuracy comparison of GCR with other meth-
ods that also require multiple answers to the same ques-
tion, using GPT-3.5-turbo. The ’-’ in the table indicates
that no experiments were conducted due to overhead.

between computational efficiency and high reason-
ing performance.

Effect of Coevolutionary Reasoning This sec-
tion explores the role of coevolutionary reason-
ing, which involves multiple answers to the same
question, similar to Self-Consistency (Wang et al.,
2023b), Multiagent Debate (Du et al., 2024), and
multiple calls to LLM with a judge. As suggested
by Huang et al. (2024), when comparing reason-
ing performance, it is important to ensure consis-
tent overhead. We first investigate the performance
comparison between GCR and Auto-CoT with mul-
tiple calls to LLM under two conditions: using
oracle labels for judgment and allowing the large
model to judge itself, both using GPT-3.5-turbo
(see Appendix E for experimental details). From
Table 3, we observe that under oracle label judg-
ment, GCR and multi-call achieve similar perfor-
mance, but GCR requires significantly less over-
head. When using Self Judge, GCR outperforms
multi-call while maintaining the same overhead.
Moreover, GCR and Self-Consistency are orthogo-
nal, and when using Answer Entropy for judgment,
GCR combined with Self-Consistency achieves bet-
ter performance than Auto-CoT combined with
Self-Consistency under the same overhead. There-
fore, coevolutionary reasoning can achieve compa-
rable performance to multi-call LLM with much
less overhead. Multiagent Debate involves multi-
ple agents engaging in a multi-round debate on the
same question, whereas GCR involves coevolution-
ary reasoning across multiple questions.

6 Related Work

Chain of Thought Prompting Chain-of-
Thought (CoT) reasoning has been widely
explored to enhance LLM inference. Wei et al.
(2022) first introduced CoT prompting in a few-
shot setting, while Kojima et al. (2022) extended it
to the zero-shot scenario. Auto-CoT (Zhang et al.,

2023) automatically constructs demonstrations,
achieving performance comparable to Few-Shot-
CoT in a zero-shot setting. Active Prompting
(Diao et al., 2024) further improves prompting
by annotating the most important task-specific
questions as demonstrations.

Judge To enhance answer verification, Weng
et al. (2023) treat the conclusion obtained by CoT
as a condition for solving the original problem,
performing backward verification. Madaan et al.
(2024) propose an iterative self-refinement process
where an LLM generates an initial output, critiques
its own response, and revises it accordingly. Ling
et al. (2024) introduce the Natural Program for-
mat for deductive reasoning, facilitating the struc-
tured extraction and verification of reasoning steps.
However, Huang et al. (2024) argue that LLMs still
struggle with self-correction in the absence of ex-
ternal feedback. Several works address uncertainty
estimation in reasoning. Wan et al. (2023) lever-
age answer entropy to measure uncertainty and
highlight the importance of diverse demonstrations,
noting that Auto-CoT, which selects demonstra-
tions based solely on question embeddings, lacks
control over rationale quality and may produce mis-
leading demonstrations. Li et al. (2022) improve
reasoning by generating diverse prompts to explore
multiple reasoning paths, employing a trained veri-
fier with weighted voting to filter incorrect answers,
and verifying each reasoning step individually. Ad-
ditionally, Kuhn et al. (2023) introduce semantic
entropy to quantify uncertainty in natural language
generation, while Wang and Zhou (2024) use proba-
bility disparity to assess rationale accuracy in open-
source settings.

Evolve in LLMs Guo et al. (2024) propose an
approach where multiple initial prompts are gener-
ated, with LLMs acting as evolutionary operators to
iteratively refine them based on their performance
on a development set. Similarly, Jin et al. (2024)
introduce an evolutionary algorithm where CoT
prompts undergo crossover, mutation, and rewrit-
ing to enhance problem understanding. However,
these methods focus solely on prompt evolution,
neglecting demonstration refinement. Xu et al.
(2024a) propose Reprompting, which iteratively ex-
pands an initial set of zero-shot-generated recipes
by using previous samples as parent prompts, filter-
ing out ineffective ones based on answer correct-
ness. While Reprompting can be seen as evolving
demonstrations, it relies on ground-truth answers
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for evaluation. In contrast, GCR evolves demon-
strations independently of answer supervision, of-
fering a distinct approach to demonstration refine-
ment.

7 Conclusion

This paper presents a method for global coevo-
lutionary reasoning, referred to as GCR, where
samples are clustered based on rationales obtained
through Zero-Shot-CoT. Within each cluster, sam-
ples are randomly selected using P-sampling, and
coevolutionary iterations are performed where sam-
ples act as demonstrations for one another. This
approach addresses the demonstration bias inher-
ent in Auto-CoT, enhancing reasoning performance
in the absence of manually designed demonstra-
tions. Furthermore, it can be integrated with exist-
ing methods for reasoning tasks.

Limitations

While our approach demonstrates effectiveness in
improving reasoning performance, it has several
limitations:

1. Computational Cost: The iterative process in
coevolutionary reasoning increases the num-
ber of LLM calls, leading to a significant in-
crease in computational overhead, although
it maintains less overhead compared to Self-
Consistency.

2. Dependence on Judge Quality: The effec-
tiveness of the coevolutionary process relies
on the quality of the judge. Although GCR
mitigates judge bias to some extent through
global sampling and P-sampling, a stronger
judge could further enhance reasoning perfor-
mance. Future work will explore better meth-
ods for evaluating the quality of rationales in
both open-source and closed-source settings.

3. Assumption of a Fixed Dataset: Most CoT
studies assume access to a complete dataset
with test questions (Wei et al., 2022; Kojima
et al., 2022). Future work could extend GCR
to a streaming setting where data arrives dy-
namically.

4. Understanding LLM Limitations: It re-
mains an open question whether LLMs lack
the capability to perform a certain class of
reasoning methods or if they struggle with

specific problem types. Further research is
needed to disentangle these factors.
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A Prompts for Judging

We use task-specific judgment by querying the
LLM. The specific prompts are shown in Table 4.
Although we provide the LLM with a prompt to
give specific reasons when determining correct-
ness, we only use the conclusion it provides. This
is because we found that, compared to directly pro-
viding the conclusion, asking for specific reasons
leads to more accurate judgments.

B Illustration of Coevolutionary
Reasoning

The illustration of coevolutionary reasoning is
shown in Figure 7.

C Proof of the Expected Number of LLM
Calls in GCR and Cost Comparison
with Alternative Methods

We first consider a scenario where there is a single
cluster of data, with the cluster containing n data
points. In each sampling step, there is a probability
P of selecting a sample from the already sampled
data, and a probability 1− P of selecting a sample
from the data that has not been sampled yet. The
expected number of steps required to sample all n
data points in this cluster is:

E =
∞∑

k=n

k

(
k − 1

n− 1

)
(1− P )n−1P k−n(1− P )

Let t = k − n, then we have:

E =
∞∑

t=0

(n+ t)

(
t+ n− 1

n− 1

)
(1− P )nP t

= (1− P )n

[
n

∞∑

t=0

P t

(
t+ n− 1

n− 1

)

+
∞∑

t=0

tP t

(
t+ n− 1

n− 1

)]

= (1− P )n

[
n

∞∑

t=0

P t

(
t+ n− 1

t

)

+
∞∑

t=0

tP t

(
t+ n− 1

t

)]
(3)

Next, we prove the following identity:
∞∑

m=0

(
m+ k − 1

m

)
xm =

1

(1− x)k
,

0 ≤ x < 1, k ≥ 1 (4)

When k = 1,
∞∑

m=0

(
m+ k − 1

m

)
xm =

∞∑

m=0

xm =
1

1− x
. (5)

This equation holds. When k ≥ 2, we hypothesize
that the equation holds for k − 1, then

∞∑

m=0

(
m+ k − 2

m

)
xm =

1

(1− x)k−1
. (6)
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Figure 7: Illustration of coevolutionary reasoning.

Q: Mitchell is making nachos for his family. 

He buys two bags of chips with 55 chips each. 

If his family has five members, how many 

chips does each person get if they all get the 

same number?

A:|1|How many chips does Mitchell have in 

total?|2 bags of chips x 55 chips each|110 

chips| |2|How many chips does each family 

member get?|Total chips / number of family 

members|110 chips / 5 members|22 chips| 

Therefore, each family member gets 22 chips.

Q: Jim spends 2 hours watching TV and then 

decides to go to bed and reads for half as long.  

He does this 3 times a week.  How many hours 

does he spend on TV and reading in 4 weeks?

A:| 1 | How many hours does Jim spend 

watching TV and reading each week? | 2 hours 

of watching TV + 1 hour of reading = 3 hours | 

| 2 | How many hours does Jim spend on TV 

and reading in 4 weeks? | 3 hours/week * 4 

weeks = 12 hours | Jim spends a total of 12 

hours on TV and reading in 4 weeks.

T = 0

:

:

Q: Mitchell is making nachos for his family. 

He buys two bags of chips with 55 chips each. 

If his family has five members, how many 

chips does each person get if they all get the 

same number?

A:Mitchell buys 2 bags of chips, each with 55 

chips, so he has a total of 2 * 55 = 110 chips. 

Mitchell's family has 5 members. To find out 

how many chips each person gets, we need to 

divide the total number of chips by the number 

of family members: 110 chips / 5 people = 22 

chips per person. Therefore, each person in 

Mitchell's family will get 22 chips.

Q: Jim spends 2 hours watching TV and then 

decides to go to bed and reads for half as long.  

He does this 3 times a week.  How many hours 

does he spend on TV and reading in 4 weeks?

A:Jim watches TV for 2 hours and then reads 

for 2 / 2 = 1 hour. So, in one day, Jim spends a 

total of 2 + 1 = 3 hours on TV and reading.\n- 

Since he does this 3 times a week, in one week 

he spends 3 hours/day x 3 days/week = 9 hours 

on TV and reading. In 4 weeks, he will spend a 

total of 9 hours/week x 4 weeks = 36 hours on 

TV and reading. Therefore, Jim spends 36 

hours on TV and reading in 4 weeks.

T = 1

:

:

Q: Mitchell is making nachos for his family. 

He buys two bags of chips with 55 chips each. 

If his family has five members, how many 

chips does each person get if they all get the 

same number?

A:|1|How many chips does Mitchell have in 

total?|2 bags of chips x 55 chips each|110 

chips| |2|How many chips does each family 

member get?|Total chips / number of family 

members|110 chips / 5 members|22 chips| 

Therefore, each family member gets 22 chips.

Q: Jim spends 2 hours watching TV and then 

decides to go to bed and reads for half as long.  

He does this 3 times a week.  How many hours 

does he spend on TV and reading in 4 weeks?

A:| 1 | How many hours does Jim spend 

watching TV and reading each week? | 2 hours 

of watching TV + 1 hour of reading = 3 hours | 

| 2 | How many hours does Jim spend on TV 

and reading in 4 weeks? | 3 hours/week * 4 

weeks = 12 hours | Jim spends a total of 12 

hours on TV and reading in 4 weeks.

T = 2

:

:

Figure 8: An example of intermediate iteration process in coevolutionary reasoning.
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Task Prompt

Arithmetic Reasoning Input = [instruction, original problem, solution]
Output = [yes or no, reason]
Instruction: Is this solution accurate in terms of calculation
errors, missing-step errors, and semantic misunderstanding
errors? Please answer "yes" or "no" and provide a reason.
Carefully check:
1. Calculation errors: Are there any arithmetic or algebraic
errors in the steps or final result?
2. Missing-step errors: Are there any steps omitted that are
necessary for correctly solving the problem?
3. Semantic misunderstanding errors: Does either solution
misunderstand the problem or apply incorrect methods or formulas?
original problem: <ORG_PROB>
solution: <ORG_SOL>

Commonsense Reasoning Input = [instruction, original problem, solution]
Output = [yes or no, reason]
Instruction: From a common-sense and logical reasoning
perspective, is this solution accurate?
Please answer "yes" or "no", and follow the given output format
without any additional information.
original problem: <ORG_PROB>
solution: <ORG_SOL>

Symbolic Reasoning Input = [instruction, original problem, solution]
Output = [yes or no, reason]
Instruction: From a symbolic and logical reasoning perspective,
is this solution accurate?
Please answer "yes" or "no", and follow the given output format
without any additional information.
original problem: <ORG_PROB>
solution: <ORG_SOL>

Table 4: Prompts for different reasoning tasks to evaluate rationales.
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Thus,

∞∑

m=0

(
m+ k − 1

m

)
xm =

∞∑

m=0

(
m+ k − 2

m

)
xm

+
∞∑

m=1

(
m+ k − 2

m− 1

)
xm.

(7)

Now, we can express the second sum as:

∞∑

m=1

(
m+ k − 2

m− 1

)
xm = x

∞∑

m=0

(
m+ k − 1

m

)
xm.

(8)

Let T =
∑∞

m=0

(
m+k−1

m

)
xm. Then, we have:

T =
1

(1− x)k−1
+ xT,

which simplifies to:

T =
1

(1− x)k
.

Thus, the equation 4 holds for k.
By mathematical induction, we conclude that the

equation 4 holds for all k ≥ 1.
From equation 4 and equation 3, we obtain:

E = (1− P )n
[

n

(1− P )n
+ P · d

dP

(
1

(1− P )n

)]

= (1− P )n
[

n

(1− P )n
+

Pn

(1− P )n+1

]

= n+ n
P

1− P

=
n

1− P
. (9)

Thus, in a single cluster, the expectation of P-
sampling is n

1−P .
Now, assuming the clustering is uniform, the

expected total number of LLM calls is:

Etotal =
N
C × T

1− P
× C +N =

NT

1− P
+N,

where C is the number of clusters, the term N rep-
resents the initial number of Zero-Shot-CoT calls,
and the term NT

1−P accounts for the LLM calls dur-
ing the P-sampling and coevolutionary reasoning
process.

The costs of GCR and baselines are compared
in Table 5.

For fair comparison under identical costs, we set

Tmulti-call = TSC =
TGCR

1− P
. (10)

This explains why

TGCR ≤ 0.8×TSC = 0.8×Tmulti-call when P = 0.2

in Table 3.

D Experimental Details on the main
experiments

We mainly use GPT-3.5-turbo as language model.1

Furthermore, to validate the generalizability of
our method, we also conducted experiments on
GPT-4o-mini and mistral_7b_instruct_v3. Except
for Zero-Shot-CoT, which uses the CoT trigger
"\n\n|step|subquestion|process|result|",
all other methods use the CoT trigger "Let’s
think step by step". For Auto-CoT and
ECHO, we use Sentence-BERT (Reimers and
Gurevych, 2019) to encode questions and apply
K-means for clustering following Zhang et al.
(2023), and the number of demonstrations k is 8
except for AQuA and LastLetter(4), CSQA(7), and
StrategyQA(6) following Wei et al. (2022). Here,
the number of demonstrations k is equivalent to
the number of clusters. Due to the observation
that, in the original Auto-CoT paper setup, with
a maximum CoT length of 256, the rationale was
sometimes incomplete, we set the maximum CoT
length to 1024 in all our experiments to ensure the
generated rationale is complete. In experiments
with GPT-4o-mini and mistral_7b_instruct_v3,
demonstrations generated using the original
Auto-CoT method (selecting the examples closest
to the cluster center with fewer than 6 reasoning
steps) sometimes did not meet this condition.
Therefore, in the experiments with GPT-4o-mini
and mistral_7b_instruct_v3, we removed the
restriction of fewer than 6 reasoning steps to obtain
the demonstrations. In ECHO, the number of
iterations for demonstrations is set to 4. For GCR,
we use Sentence-BERT to encode the rationale
and apply K-means for clustering. In P-sampling,
P is set to 0.2, and the number of coevolutionary
reasoning iterations is set to 4. To ensure a fair
comparison, the number of clusters is set to 5, so
that during the coevolutionary reasoning process,
the number of demonstrations when re-answering

1We conducted the experiments using this model between
October 2024 and November 2024.
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Method Auto-CoT Auto-CoT + multi-
call (T iters)

Auto-CoT + SC (T
iters)

ECHO (T iters) GCR (T iters coevo-
lution)

LLM calls N +N N +N T N +N T N + k T +N N +
N T

1− P

Table 5: Comparison of costs between GCR and baseline methods, where N, T, and k denote the number of questions,
iterations, and demonstrations, respectively.

a question is 4 (which matches the minimum
number of demonstrations in Auto-CoT or ECHO).
Unless otherwise specified, the temperature is set
to 0 for experimental reproducibility.

E Experimental Details on the Effect of
Coevolutionary Reasoning

We investigate the role of coevolutionary reasoning
using GPT-3.5-turbo. In the case of using Oracle
Labels for judgment, we compare GCR (Tmax =
4), GCR (Tmax = 6) with Auto-CoT+multi-call.
Here, Tmax refers to the maximum number of co-
evolutionary reasoning iterations, which is set to
4 or 6, and the iteration stops once the answer is
correct. Auto-CoT+multi-call refers to using Auto-
CoT to construct a demonstration set, followed by
multiple answers. After each answer, Oracle La-
bels are used to check if the answer is correct, and
if so, the next question is answered. For Auto-
CoT+multi-call, the maximum number of answers,
T ′
max, is set to 10. To ensure nearly identical com-

putational costs, we require that Tmax
1−P must be less

than or equal to T ′
max (where P is set to 0.2 by de-

fault), meaning Tmax should be less than or equal
to T ′

max × (1− P ) = 8.
In the case of using Self-Judge for judgment, we

again ensure nearly identical computational costs
and compare GCR (T = 4) with Auto-CoT+multi-
call (T = 5). In this process, the LLM itself de-
cides whether to update the answer after each re-
sponse.

To compare with Auto-CoT+Self-Consistency,
we use Answer Entropy for judgment in GCR. Co-
evolutionary reasoning iterates for 4 steps, and after
each question, the LLM answers 10 times to gener-
ate multiple different answers (to ensure diversity,
the temperature for GCR is set to 0.7). The en-
tropy is calculated, and if the entropy is smaller
than the previous iteration, the answer and ratio-
nale are updated with the majority-voted answer
and corresponding rationale (the answer may have
multiple rationales, and the shortest one is chosen).
Otherwise, no update is made. Auto-CoT+Self-

Dataset Domain # Samples Ave. words Answer

MultiArith Math 600 31.8 Number
AddSub Math 395 31.5 Number
GSM8K Math 1319 46.9 Number
AQUA Math 254 51.9 Option
SingleEq Math 508 27.4 Number
SVAMP Math 1000 31.8 Number
CSQA CS 1221 27.8 Option
StrategyQA CS 2290 9.6 Yes / No
Last Letters Sym. 500 15.0 String
Coin Flip Sym. 500 37.0 Yes / No

Table 6: Details of datasets being evaluated. Math: arith-
metic reasoning. CS: commonsense reasoning. Sym.:
symbolic reasoning.

Consistency answers 50 times during question an-
swering (4× 10/(1− P )).

Following Wang et al. (2023b), both Auto-
CoT+multi-call and Auto-CoT+Self-Consistency
are set with a temperature of 0.7. Unless otherwise
specified, the temperature for GCR is set to 0.

F Coevolutionary Example Iteration
Process

The iteration of demonstrations in ECHO+Judge
can be seen as a process of coevolutionary rea-
soning. Therefore, in this section, we use GPT-
3.5-turbo to present the intermediate process of
constructing demonstrations in ECHO+Judge for
GSM8K as an example of coevolutionary reason-
ing. As shown in Figure 8, after one round of co-
evolutionary reasoning, the questions are answered
correctly. However, due to the influence of judge
bias, the second iteration results in an incorrect
answer for a certain question, highlighting the im-
portance of mitigating judge bias.

G Details of the Datasets Evaluated

The details of datasets being evaluated are shown
in Table 6.
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