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Abstract

Large language models (LLMs) have achieved
remarkable performance across various rea-
soning tasks. However, many LLMs still en-
counter challenges in reasoning, especially for
LLMs with fewer parameters or insufficient
pre-training data. Through our experiments, we
identify that noise accumulation across layers
often leads to unstable token predictions during
reasoning. We find that contrasting the proba-
bility distributions across layers effectively mit-
igates this interference. Building on this insight,
we propose Adaptive Layer-Wise contrastive
decoding (ALW), a novel framework that en-
hances reasoning ability by dynamically disen-
tangling noise in shallow layers from critical
signals in deep layers. Extensive experiments
on several reasoning benchmarks demonstrate
that ALW consistently improves answer accu-
racy across multiple LLMs while maintaining
inference efficiency. For example, we achieve
a 48% improvement on the Gsmg8k using the
LLaMA-7B model and an absolute accuracy
increase of 5.2 points on the BBH evaluation
benchmark with the LLaMA-65B model !.

1 Introduction

Recent years have witnessed significant advance-
ments in reasoning tasks (Qiao et al., 2023; Hong
et al., 2024) due to the development and deploy-
ment of large language models (LLMs) (Yang et al.,
2024; Zhao et al., 2024; Guo et al., 2025). How-
ever, not all language models (LMs) possess strong
reasoning abilities. They encounter a variety of
reasoning issues, such as arithmetic mistakes and
semantic errors (Wang et al., 2023).

Existing research enhances reasoning capabili-
ties by linking to external knowledge and retrieving
reasoning evidence (Zhu et al., 2023; Wang et al.,
2024). Recent works find that contrast decoding
of two different models can improve text quality

*Corresponding author.
'Code is available at https://github.com/yczhounlp/ALW

in open-ended text generation (Li et al., 2023) and
have great potential in reasoning tasks (O’Brien
and Lewis, 2023). Chuang et al. (2024) further
achieve performance improvement on open-ended
generation tasks through self-contrast decoding but
with limited gains on reasoning tasks. In view of
this, we start from recent observations on noise
signals within LLMs (Ye et al., 2024), in which
LLMs assign disproportionately high scores to non-
critical tokens, and directly subtracting the atten-
tion distributions of different attention heads can
effectively diminish the influence of noisy irrele-
vant tokens to the generation results. This insight
leads us to question whether the noise from overly-
attended irrelevant tokens accumulates across dif-
ferent layers and results in diverse reasoning errors
observed from the final layer, e.g., repetitive gen-
eration. Figure 1 preliminarily confirms that sub-
tracting the prediction distribution of the shallow
layer from that of the final layer can weaken noisy
context and produce the correct answer “No”.

Therefore, we mitigate noise at the layer level
and propose adaptive layer-wise contrastive decod-
ing, a framework designed to enhance reasoning ca-
pabilities by explicitly disentangling shallow noise
from deep reasoning. To achieve this, we develop
a quantification strategy to determine the optimal
early exit layer for noise suppression. Furthermore,
we introduce a lightweight LM that learns which
layer of the LLM requires noise suppression in
an end-to-end manner and dynamically adjusts the
contrastive strategy during the inference stage. Ad-
ditionally, we extend ALW by developing a tuning-
free method based on semantic similarity, reducing
resource consumption.

Specifically, we first identify the optimal noise
layer that requires the most suppression for differ-
ent inputs and tasks. Then, a predictor, either LM-
based or similarity-based, is employed to capture
the mapping between the prompt and the optimal
contrastive layer. During inference, the prompt is
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Figure 1: Illustration of the probability distributions during the decoding of the final answer token. The model
prompt is: “Q: Would a pear sink in water? A: ...CoT... The answer is”. The model used is LLaMA-7B.

processed by both the LLM and the predictor. The
LLM contrasts the final layer with the early exit
layer selected by the predictor, effectively filter-
ing noise from shallow layers while preserving key
signals in the final layer. Extensive experiments
demonstrate that ALW achieves stable performance
improvements and significantly enhances the rea-
soning abilities of LLMs.
Our contributions are as follows:

* We introduce ALW, a novel decoding frame-
work designed to enhance reasoning capabil-
ities by dynamically disentangling shallow
noise from deep signals.

* We evaluate ALW on several LLM benchmark
datasets across multiple choice tasks and open-
ended generation tasks, demonstrating its ef-
fectiveness in enhancing reasoning abilities.

* We conduct a comprehensive analysis of
ALW’s generalization ability, computational
cost, effectiveness, and limitations.

2 Preliminary

2.1 Noise across Different Layers of LLLMs

Inspired by noise suppression across attention
heads (Ye et al., 2024), we explore the issue of
vertical noise propagation (across different layers).
Noise can be understood as task-irrelevant interfer-
ence, such as incorrect attention allocation, which
may cause the model to hesitate between multiple
unrelated tokens, manifesting as high entropy in the
probability distribution. In contrast, lower entropy
indicates greater confidence in the next prediction
and a reduction in noise.

We use entropy to quantify the noise at each
layer. Figure 2 presents the results of a randomly
sampled case (more cases are given in Appendix A).
We can observe that shallow layers consistently ex-
hibit higher entropy (~10), indicating greater noise

and uncertainty, while deeper layers show signif-
icantly lower entropy (~1), reflecting more stable
and refined representations. After contrasting the
probability distributions of the final layer and the
shallow layer, we obtain a new distribution (“Diff”
row in Figure 2) and observe that the entropy at
each step is consistently lower than that of the final
layer. We attribute this to the information redun-
dancy and noise differences between shallow and
deep layers, where the contrastive operation fur-
ther suppresses the noise, making the probability
distribution more focused on the target token.

This is also consistent with the observation in
Figure 1, where we examine the distribution just
before decoding the final answer. In the final layer,
the model struggles to choose between “yes” and
“no”, with their probabilities being very close. In
fact, this decision is influenced by noise from the
shallow layers where the probability of “yes” is
much higher than “no”, leading to uncertainty in
the final layer. After denoising, the model is able
to confidently select the correct token.

2.2 Noise Suppression

From cases to general tasks, we initially attempt
to randomly select contrastive layers for noise sup-
pression. However, this approach clearly failed,
as different inputs exhibit varying sensitivities to
noise distributions. Therefore, we quantify the op-
timal layer for each input (Section 3.2), where the
optimal layer is the one that maximizes the proba-
bility of the gold token after denoising. Our goal
is not only to generate the correct final answer but
also to produce a reasonable reasoning process.
Next, we focus on the effective utilization of
the generated data pairs. We explored rule-based
methods, such as denoising with the most frequent
layer, but these proved unsuccessful (Appendix B).
We believe the task of layer selection is complex
and requires capturing the implicit relationships
between prompts and layers, leading us to utilize
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Question: Who was the first Nigerian to win the Nobel Prize, in which year?
Answer: Wole Soyinka was the first Nigerian to win the Nobel Prize, in 1986.

1 2 3 4 5 6 7 8 9 10 11

0.25 0.37 0.01 0.01 0.01 263 0.51 0.01 0.58 0.01

119

3

i-th early exit layer
o

0
0
0
0
0
0
0
0

s} W ole! ' So 'y 'ink' 'a' "_was' '_the' ' first' ' Niger'

‘ian'

"to' ' win' ' the' '] ' Prize! in' " it 9t g 6

Figure 2: The entropy of the probability distribution for the final layer and several early exit layers in LLaMA-7B
under teacher forcing at each step. The horizontal axis represents the decoding step, while the vertical axis (ranging
from O to 32 in intervals of 2) denotes the considered early exit layers and the final layer.

LMs (Sec 3.3). In our experiments, we confirm the
optimal configuration for the LM predictor. Addi-
tionally, we devised a tuning-free method to select
the optimal layer based on semantic similarity for
lower resource consumption (ALW-sim).

3 Method

3.1 Self-Contrast Decoding

Typically, an LLM comprises an embedding layer,
followed by M decoder layers indexed from 1 to
M (embedding layer as 0), and ends with an output
layer W,. Given a prompt of length n, denoted by
X ={zo,21,...,2n_1}, hE represents the hidden
states produced by the e-th layer when decoding x,.
For each early exit layer e € [0, M], the probability
distribution is then obtained as follows:

pe(zn]|X) = softmax(Ws(hg)). (1)

To cancel noise, we contrast the prediction of
an early exit layer e with that of the final layer M.
Specifically, we subtract the log probabilities of the
two layers, yielding the following distribution:

vae(xn‘X) = logpM(-fn’X) - logpe(xn’X)- ()

For the actual selection of the early exit layer
e, we first apply a quantification strategy on the
training set 2. This allows us to identify the optimal
contrastive layer and construct the corresponding
prompt-layer data pairs (§3.2). Subsequently, we

2Although training data is constructed for each dataset,
generalization is strong within the same domain (§4.3).

train a lightweight LM end-to-end (§3.3), which
assists the LLM in determining the most suitable
contrastive layer during inference (§3.4).

3.2 Quantification Strategy

In the generation tasks, given a prompt X and a
reference answer A = {aq, as, ..., ay,} of length
m, we analyze each token a; € A individually. For
each a;, we determine the optimal contrastive layer
[ that maximizes its probability, conditioned on the
concatenation of X and its preceding tokens a;.
This process is formulated as follows:

I = argmax ¥ (ai| X +a<), ¢ € [0, M//2). 3)

In multiple choice tasks, given a prompt X, a cor-
rect option T, and K incorrect options {Fi}fi_ol,
we calculate the log-likelihood score s for each
option in each early exit layer e. For the correct
option T at layer e, the score is defined as:

s¢(T|X) = Zlog softmax(we(:ck\X + ac<k)),
k

“)
where zj, denotes each token in the option T. The
score s¢(F;|X) for each incorrect option F; is cal-
culated in the same way. If the score for the correct
option is not lower than that of all possible incor-
rect options, then layer e is considered to have
produced a correct prediction. Consequently, we
define the optimal layer [/ as the one that maximizes
the log-likelihood of the correct option among all
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Multiple choice

X: A team of 4 painters worked on a
mansion for 3/8ths of a day every
day for 3 weeks. How many hours of
work did each painter put in?

to the sequence

A: B GCU AAC 3'
B: 5 CAA TCG 3'
C: 5 6CT AAC 3
D: 5 6TT AGC 3

A:There are 24 hours in a day
...(CoT)... The answer is 189.
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2
Final layer '——) .
x 2 6 1x .
Denoise

(" b LLM

Contrast

300

[O ’ 1 ‘ 2 ‘ LLM ‘Final Iayer‘]

l Constrast in LLM

H m pairs: E i

Lox v v

HR m argmax Y (a,|X+a,) > ! —

¢ : MAX loglikelihood
Kuran - IS o

DpieX, 2> —ipgin—>

x 2 6 1x .
: | |
o™ layer : ¥
\ J i x 2 6,1 .
U T
8]
4—@ If x is 20 percent greater than 5 , then x =

LM or Sim

Figure 3: The workflow illustration of ALW in the quantification and inference stage.

such contrastive layers, formulated as follows:

| = argmax s.(T|X), e € [0,M//2],

st.  se(T|X) > max {so(F;i| X))}t (5)

However, if the score of the option T computed by
the final layer matches that of the optimal layer [,
the contrastive operation is deemed unnecessary,
and [ is assigned a value of —1. Similarly, in gen-
eration tasks, if pys > softmax (1)), [ is also set to
—1. Furthermore, to reduce the search space, we
focus on the first half of the model’s layers. For
example, in the LLaMA-7B model, which consists
of 33 early exit layers, the possible values for [
range from —1 to 16. Figure 3 illustrates the pro-
cess of quantifying the optimal layer. In generation
tasks, given an answer of length m, we can gener-
ate m pairs, whereas in multiple choice tasks, only
a single data pair can be generated.

3.3 Layer Prediction

As described above, for each task, we obtain mul-
tiple (X, [) data pairs. These pairs are stored in a
database Dy, = {(X;, li>}fi61, where N is the total
number of pairs. We formulate layer prediction as
a classification task and train a lightweight model,
such as RoBERTa, end-to-end.

Furthermore, to balance accuracy and recall, we
assign appropriate weights to each category. Let pg
represent the prediction probability of the LM. The

model is optimized as follows:

1 b
L= =52y 2w talogpo(y | X,
1/n; 1
YIS Ty Sy (©)
Ty oy

where b is the batch size, ¢ indexes the samples, j
indexes the categories, and n; represents the fre-
quency of category j in Dy. An example illustrating
the categories is provided in Appendix C.

In addition to the LM-based layer prediction
strategy, we introduce a tuning-free method that
selects the optimal layer based on the cosine simi-
larity between the input embeddings and the data
pairs in Dy,. We refer to this approach as similarity-
based layer prediction, denoted as ALW-sim. In
contrast, the method that requires LM training to
fully activate ALW is termed ALW-Im.

3.4 Decoding Strategy

Drawing on prior research (Li et al., 2023) that used
adaptive plausibility constraints to address false
positive and false negative errors in contrastive ob-
jectives, we extend this to our inference stage. If
certain tokens are characterized by high probabili-
ties, they will be grouped into Vycad(zp|zcn):

{z € Vipu(anlran) > amaxpy(zp|z<n)}, (7)

where « is a hyperparameter ranging from O to 1,
which truncates the distribution of low-probability
tokens. During the inference stage, we leverage
the final layer to ensure token reliability. If a token
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achieves a high probability after contrast but is
not recognized by the final layer (not in Vyeaq), we
exclude it during the decoding process. Finally, the
LLM decodes with ALW-Im or ALW-sim:

Py (Tn|X)
pi(zn|X)

—00

log if ,, € Vhead,

n|X) =
Y (2p|X) { Otherwise, (8)

[ = arg max py(yx|X) or I = Sim (X, Dy),
k

where the function Sim(-) computes the cosine sim-
ilarity between X and all prompts in Dy, selecting
the prompt with the highest similarity and assign-
ing its corresponding [ as the contrastive layer. A
detailed procedure is provided in Algorithm 1.

4 Experiments

4.1 Experimental Setup

Tasks. Our framework is evaluated across various
tasks. We assess arithmetic reasoning performance
on Gsm8k (Cobbe et al., 2021) MathQA (Aida
et al., 2019). For commonsense reasoning evalu-
ation, we employ StrategyQA (Geva et al., 2021),
and PiQA (Bisk et al., 2020). Additionally, we uti-
lize the logically complex and demanding dataset
Folio (Han et al., 2022) for natural language rea-
soning. Finally, we adopt three widely recog-
nized testing benchmarks, MMLU (Hendrycks
etal., 2021), BBH (Suzgun et al., 2022), and ARC-
Challenge (Clark et al., 2018). These benchmarks
are respected in the field for their diversity and
breadth of tasks (details in Appendix D), allowing
us to comprehensively analyze the model’s abil-
ities to manage intricate reasoning across varied
domains. Among these tasks, Gsm8k, StrategyQA,
and Folio are designed as open-ended generation
tasks, and the others are multiple-choice tasks.
Models and Baselines. We employ the LLaMA
family (Touvron et al., 2023) as our fundamen-
tal models, covering sizes of 7B, 13B, 30B, and
65B. In addition, we also consider the updated
and more powerful model LLaMA3-8B-Instruct
(Dubey et al., 2024). We test our framework against
three baselines: Greedy Decoding, Decoding by
Contrasting Layers (DoLa) (Chuang et al., 2024),
and Contrastive Decoding (CD) (Li et al., 2023).
Greedy decoding selects the token with the high-
est probability at each step, DoLa leverages the
Jensen-Shannon divergence between transformer
layers within Language Models to enhance factual-
ity, and CD ensures plausible outputs by making a
comparison between an LLM and a smaller one.

Algorithm 1 ALW Decoding Strategy

Input: Prompt X = {zg,z1,...,2p—1}, LLM,
LM or Sim(-), Output Layer W, database D,
Output: Next token x,

1: Hidden states {h°}* ) + Forward LLM(X)
2: |+ Forward LM(X) or Sim(X, Dy)
3: if | = —1 then
4 Y(a) = We(hM)
5: else
6: Final prob pys = softmax (W, (k"))
7: Early prob p; = softmax (W, (h'))
8  (z) =log(pm) — log(p1)
9: Mask + Token indices not in Vg
10: Y(Mask) + —o0

: end if
: return x,, = arg max softmax(¢(z))

—_ =
N —

Details. In our experiments, the variable « in
Equation 7 is set to 0.1, a value that has shown
robustness across various domains (Li et al., 2023).
Our predictor utilizes a RoOBERTa-base model (Liu
et al., 2019) or a sentence-transformer (Reimers
and Gurevych, 2019) to compute semantic similar-
ity. For open-ended generation tasks, we imple-
ment Chain-of-Thought (Wei et al., 2022). Addi-
tional details can be found in Appendix E.

4.2 Results

4.2.1 Arithmetic Reasoning

Results are illustrated in Table 1, where the open-
end generation task is indicated by (*). Notably, we
maintain the layer search space for DoLa within
the range [0, M//2], matching the strategy used
in ALW. For CD, we employ LLaMA-7B as the
amateur model, and larger models (13B, 30B, 65B)
are utilized as expert models. However, due to the
absence of LLaMA models smaller than LLaMA-
7B, the baseline CD is not included in the exper-
iments conducted at the 7B scale, and the same
as LLaMA3-8B-Instruct. ALW significantly en-
hances the model’s arithmetic reasoning capabili-
ties. Our approach leads the other three baselines
across four model scales on Gsm8k and MathQA.
Compared to greedy decoding, ALW achieves a
substantial increase in performance, which is more
pronounced in smaller models. For example, there
is a 48% increase on Gsm8&k for LLaMA-7B (28%
for LLaMA-30B and 9% for 65B).
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Arithmetic

Commonsense

General

Models Average
Gsm8k* MathQ StrQA* PiQA Folio* MMLU BBH ARC-C
Greedy  13.6 223 664 785 165 348 341 370 37.9
LLaMA-7B-HF = DoLa 12.9 24.8 65.1 76.8 298 358 387 379 40.2
Ours 20.1 36.3 703  78.1 29.8 40.6 417 413 44.7
Greedy  76.5 38.1 716  79.8 525 384 437 417 553
LLaMA3-8B-Inst DoLa 73.2 50.2 699 717 521 382 495 435 56.8
Ours 78.8 56.3 71.6 80.1 529 442 508 478 60.3
Greedy  18.9 24.9 672  80.1 347 362 372 365 42.0
LLaMA-13B-HF CD 8.3 22.3 664 699 372 295  36.6 342 38.1
DoLa 22.0 30.2 699 78.1 397 38.0 43.1 40.6 452
Ours 22.7 37.8 725 796 504 382 445 421 48.5
Greedy  32.6 26.3 72.9 812 446 378 395 372 46.5
LLaMA-30B-HF CD 32.6 24.8 70.7 722 205 315 392 334 40.6
DoLa 28.0 29.0 734 770 413 375 439  40.6 46.3
Ours 41.7 35.7 76.0 813 44.6 404 450 41.0 50.7
Greedy  50.8 27.2 76.0 813 421 404 379 39.6 494
LLaMA-65B-HF CD 43.9 25.1 742 722 215 320 351 349 424
DoLa 54.0 304 729  66.8 413 37.1 429 451 48.8
Ours 55.3 38.5 777 813 438 414 431 478 53.6

Table 1: The overall performance of ALW for three types of reasoning tasks across LLaMA-7B, 13B, 30B, 65B and
LLaMA3-8B-Instruct. Bold indicates the best results. ALW outperforms three baselines consistently.

4.2.2 Commonsense Reasoning

For commonsense reasoning tasks, LLMs effec-
tively suppress noises from shallow layers, thereby
enhancing their commonsense reasoning capabil-
ities. Results show that ALW outperforms other
baselines on the StrategyQA benchmark. How-
ever, the improvement on PiQA is less pronounced.
A closer analysis reveals that in over 90% of in-
stances, the contrast operation was not applied,
suggesting that decoding in the final layer is more
fruitful than employing the contrast operation. We
hypothesize that this could be due to the inherent
simplicity of the PiQA dataset, which enables the
task to be effectively handled by the shallow layers.
As a result, less noise will present in the shallow
layers. Further details can be found in Appendix F.

4.2.3 Comprehensive Evaluation

We verify the reasoning capabilities of LLLMs on Fo-
lio, MMLU, BBH, and ARC-C. In each case, ALW
consistently surpasses all baselines. ALW proves
particularly efficient in Folio, which involves first-
order logic. This efficacy arises from the inadequa-
cies of the shallow layers in grasping deep logical
relationships, thereby enabling the deeper layers to
circumvent various reasoning errors. Notably, after
using ALW, LLaMA-13B saw a significant increase
in reasoning abilities on Folio, with a result of 50.4
surpassing all other model settings. Moreover, we
present the results of the MMLU and BBH sub-

BBH MathQ PiQA ARC MMLU |Gsm8k Folio StrQA
7B 59.6 79.8 935 80.5 855 | 80.2 82.1 71.2
8B 738 916 954 81.6 90.1 | 81.3 849 752
13B 51.0 69.7 93.1 772 81.1 | 77.1 81.6 70.6
30B 46.1 50.1 87.2 623 80.3 | 79.1 84.2 713
65B 40.8 43.6 80.2 50.0 754 | 77.0 83.1 71.0

Table 2: Accuracy of predictor in multiple-choice tasks
(left); in open-ended generation tasks (right).

tasks in Appendix K and analyze the differences
across various sub-tasks and models.

4.2.4 Accuracy of Predictor

For multiple-choice tasks, we report the accuracy
of the predictor (Im-based) in the test set, as shown
in Table 2 (left). For open-ended generation tasks,
we cannot definitively determine whether a gener-
ated token is correct or incorrect during generation.
However, during the training process, we can maxi-
mize the probability of golden tokens after contrast-
ing. Thus, we report the results on the validation
set, which is shown in Table 2 (right). It can be
observed that in all settings, the accuracy rates are
almost always greater than 50%, indicating that
the predictor can provide relatively accurate predic-
tions of the optimal layer for a given prompt. In
addition, we present the distribution of the predic-
tor output in Appendix G.

8511



Datasets BERT-base RoBERTa-base RoBERTa-large

MathQA 36.1 (-0.2) 36.3 27.4(-8.9)
Folio* 31.4 (+1.6) 29.8 16.5(-13.3)
BBH 40.5 (-1.2) 41.7 40.7(-1.0)

Table 3: Ablation study of predictors. LLaMA-7B with
RoBERTa-base achieves the best performance.

4.3 Ablation

Impact of Predictor. We carry out experiments
with different pre-trained LMs as predictors to
probe the configuration of the ideal model. Table 3
suggests that the application of BERT-base (Devlin
et al., 2019) as a predictor produces slightly sub-
par results in contrast to the use of RoOBERTa-base.
This is substantiated by the relatively diminished
accuracy on MathQA and BBH. However, larger
models do not guarantee superior performance. In
fact, the use of RoBERTa-large leads to a decline in
the overall reasoning competency of LLMs. This
may arise from a mismatch between the volume of
training data and the size of the model.
Generalization. In Table 4, we present ALW’s
generalization performance in-domain and out-
of-domain in LLaMA-7B. The mathematical rea-
soning domain (Domain 1) includes Gsm8k and
MathQA; the comprehensive reasoning domain
(Domain 2) includes MMLU and BBH; and Strat-
egyQA serves as the commonsense reasoning do-
main (Domain 3). The arrows indicate values that
are lower than those of greedy decoding. Observing
the position where the arrow appears, we conclude
as follows: whether within the domain or across
domains, transferring from multiple-choice tasks to
generation tasks is not ideal; conversely, the effect
can exceed greedy decoding but does not reach the
performance specific to the dataset. Besides this,
ALW has demonstrated exceptional generalization
performance. For example, in Domain 2, when
trained solely on MMLU, ALW achieved an ac-
curacy of 40.4 when reasoning on BBH, reaching
96% of the performance (41.7) in a specific dataset.
Similarity VS LM-based selection. We com-
pare the tuning-free ALW-sim with the lightly fine-
tuned ALW-Im. As shown in Figure 5, the simple
similarity-based method, while easy to deploy, can-
not fully unlock the potential of ALW. Additional
experimental results in Table 7 show that ALW-sim
outperforms greedy decoding on average, and in
most settings it is not weaker than the latter. Fur-
thermore, although ALW-sim performs well, we

. Domainl Domain2 Domain3
Domain
Gsm8k* MathQA | MMLU BBH | StrQA*

Gsm8k* - 28.4 372 402 67.7
MathQA 12.1} - 372 40.7 | 659]
MMLU  9.85] 27.2 - 40.4 66.8
BBH 15.9 27.2 37.0 - 65.9]
StrQA* 13.6 27.5 353 409 -
Base 13.6 22.3 348 34.1 66.4

Table 4: In-domain and out-domain generalization.

Prompt ‘ Would a pear sink in water?

Greedy | A pear is a fruit. Fruits float in water. Thus, a
(x) pear would sink in water. So the answer is yes.
Case 1 ... Thus, a pear would float in water. So the
(x) answer is yes.

Case 2 ... Thus, a pear would float in water. So the
(x) answer is no.

ALW A pear would float in water because its density
W) is lower than that of water. So the answer is no.

Table 5: A case demonstrating the effectiveness of ALW.

still recommend using the more advanced ALW, but
if training resources are extremely limited, ALW-
sim can serve as a substitute.

Random layer. We verify the importance of
the predictor by randomly selecting the contrastive
layer. The results in Table 8 show that random se-
lection led to a significant decrease in the reasoning
accuracy across all settings, with only 25% of the
cases outperforming the results of using greedy de-
coding (highlighted in bold). Therefore, a predictor
that learns the patterns of optimal layer occurrence
with a quantification strategy is necessary.

The effect of ALW. We explore why ALW is
effective, attributing its success to the dynamic cor-
rection of reasoning paths. As shown in Table 5,
greedy decoding makes an error when reasoning
through “pear is fruit” — “fruit float” — “pear
sink”. Applying ALW only at the erroneous step
corrects the prediction to “would float” (Case 1).
However, continuing with greedy decoding after-
ward still fails to yield the correct answer, while
suppressing noise consistently results in a correct
answer (Case 2). By analyzing the probability dis-
tribution when predicting “yes” or “no” (Figure
1), we observe that the model cannot confidently
select an answer, and denoising significantly en-
hances the confidence while steering the model
toward the correct choice.
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Figure 4: Averaged decoding latency per token in mil-
liseconds (ms/token) for LLaMA-30B.

This suggests that ALW performs probability re-
calibration at key decision points, amplifying the
signal of the correct answer. Notably, if ALW is
applied throughout the entire reasoning process,
it suppresses the shallow statistical association of
“fruit — float” while reinforcing the deeper physical
rule of “density < water — float”. Consequently,
ALW guides the reasoning path in a more princi-
pled direction from the outset by mitigating noise.

Latency. We further examine the decoding la-
tency. As illustrated in Figure 4, ALW registers
only a 6% increase compared to greedy decoding.
Compared to DoLa (+10%) and CD (+37%), ALW
results in almost no additional latency. Please refer
to Appendix H for further analysis and explanation.

Elimination of Errors. Building on the re-
search by Wang et al. (2023), we quantitatively in-
vestigate whether reasoning errors have been elim-
inated in the final layer and, if so, what types of
errors are addressed. We analyze on Gsm8k before
and after denoising, as shown in Table 9. Aside
from “miss step” errors, the noise suppression sig-
nificantly reduces various errors, particularly those
related to model degeneration and arithmetic errors.

In addition, we conduct further analyses, includ-
ing the rationale for selecting the first half of the
layers (Appendix I) and case studies (Appendix J).

5 Related work

5.1 Early-Exiting Approaches

Panda et al. (2016) pioneered the exploration of
early exiting in neural networks to accelerate the
decoding process. Recently, early exit methods
have become integral to efficient language models,
as summarized by Khoshnoodi et al. (2024). Layer-
Skip (Elhoushi et al., 2024) employs early exit lay-
ers as a speculative decoding model, while SkipDe-
code (Corro et al., 2023) establishes a single exit
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Figure 5: ALW-sim vs ALW across five different
datasets in LLaMA-7B.

point for each token in a batch at every sequence
position. Contemporaneous work includes EE-
LLM (Chen et al., 2024) and ConsistentEE (Zeng
et al., 2024), as well as studies summarized by Saj-
jad et al. (2023). However, these studies emphasize
extreme efficiency, such as pruning 40% of the
layers while retaining up to 98% of the original per-
formance (Sajjad et al., 2023). In our study, early
exiting serves as an intermediate step. We use early
exit alongside the final layer to capture exploitable
patterns for enhancing reasoning, focusing more
on performance than efficiency.

5.2 Contrastive Decoding

Su et al. (2022) put forward the notion of Con-
trastive Search, a method dedicated to accentuating
semantic distinctions among tokens within the rep-
resentational space. Furthermore, Li et al. (2023)
introduced Contrastive Decoding, exploiting the
disparities between expert and amateur models. In
addition, Gera et al. (2023); Chuang et al. (2024) in-
volved experimental contrastive measures between
different layers of a single backbone model, produc-
ing high-quality text by capitalizing on pre-existing
language models. Recently, researchers Arias et al.
(2024); Waldendorf et al. (2024); Sennrich et al.
(2024) conducted numerous novel studies, primar-
ily focusing on the open-text generation or contrast
decoding to mitigate hallucinations. However, we
focus on downstream reasoning tasks and offer a
broader framework with novel explanations for ef-
fectiveness. Additionally, we leverage layer-wise
noise patterns to enhance LLMs internally.

6 Conclusion

In this paper, we start from the assumptions of at-
tention noise and explore the noise across different
layers of LLMs. We observe that noise accumula-
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tion across layers often leads to unstable token pre-
dictions during reasoning. To address this issue, we
propose adaptive layer-wise contrastive decoding, a
search-based decoding approach that enhances rea-
soning ability by dynamically disentangling noise
in shallow layers from critical signals in deep lay-
ers. We design a quantification strategy and optimal
layer selection methods based on LMs or similarity.
The experimental results demonstrate that ALW
significantly enhances the reasoning capabilities
of LLMs, and further analysis reveals that ALW
improves reasoning by focusing on the correct rea-
soning path through noise suppression.

Limitation

While the adaptive layer-wise contrastive decoding
method has significantly enhanced the reasoning
capabilities of Large Language Models, it still has
some limitations:

* ALW is well-suited for challenging tasks.
When the task is relatively simple, the shallow
layers are highly confident in the prediction,
leading to less noise present in the shallow
layers, which can render ALW ineffective.

* We recommend using the more advanced
ALW other than ALW-sim, while ALW neces-
sitates training preparation before inference.
Although the predictor is small-scale, it still
adds additional computational overhead.

Although ALW enhances reasoning ability by
focusing on the correct reasoning path, it can-
not fully resolve the issue of correct answers
with incorrect paths. While ALW alleviates
this, a small residue effect still remains.
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A More Preliminary Cases

We provide more preliminary cases in Figure 6 and
7. The observed phenomenon is consistent with the
description in Figure 2. Additionally, the contrast
operation helps alleviate prediction uncertainty in
the final layer, enhancing the model’s confidence
in the correct token. This effect arises from re-
moving noise related to shallow layers in the final
layer. The token-level representation, rather than
the distribution-level representation, is shown in
Figure 1.

B Most Frequent Layer

Based on the frequency of layer occurrence in the
training set, we selected a common layer to be con-
trasted during testing. Taking the use of LLaMA-
65B for testing on BBH as an example, we consid-
ered layers O to 40 and the case without contrasting
(—1), and tallied the occurrences of the optimal
layer. Details are shown in Table 10. We observe
that the layer requiring no contrast operation ap-
pears most frequently, while other layers are also
involved, indicating that denoising is dynamically
related to the input. Additionally, shallow layers
appear more frequently than higher layers.

As layer 1 appeared 147 times, we fixed the con-
trast layer to the layer labeled as 1 during testing.
We conduct experiments on Gsm8k, StraQA, and
PiQA and the results are shown in Table 6. The
numbers in parentheses indicate the change in accu-
racy when using common layer selection compared
to using the predictor. The results in bold represent
outcomes that exceed the greedy decoding results.

In fact, this idea is similar to the static mode in
DoLa. DoLa employs a static method, consistently
using the Oth layer to enhance the factuality of
the LLMs. They believe that the static method is
inferior to the dynamic method (baseline in our
paper). However, our main experiments show that
ALW outperforms DoLa’s dynamic method. The
results just given also prove this point.

7B 13B 30B 65B
Gsm8k 0/ 12.1(-8.0) 0/ 15.9(-6.8) 0/40.9(-0.8) 0/52.3(-3.0)
PiQA  1/78.0(-0.1) 1/79.2(-0.4) 1/81.2(-0.1) 2/80.5(-0.8)
StrQA  0/65.1(-5.2) 0/70.3(-2.2) 0/ 73.4(-2.6) 0/75.5(-2.2)

Table 6: The result of using the most frequent layer as
contrast layer. On the left of / is the layer number that
appears the most, and on the right is the result.

C A Description about Category

The LLM has an embedding layer and M trans-
former decode layers, labeled 1 to M. We employ
a quantification strategy to find the most important
layer [ among the first half of the early exit layers.
Taking LLaMA-7B as an example, there are 32 de-
code layers labeled 1 to 32, and we consider layers
1 to 16 and the embedding layer, so the range of [ is
[0, 16]. However, we recognize that there are cases
where the final layer itself has sufficient confidence
to decode the gold token. In such cases, [ is labeled
—1. This is indeed equivalent to the final layer, but
we want to highlight that no contrast operation was
used, to avoid any confusion among researchers
about how layer M could be contrasted with layer
M, since [ refers to the contrasting layer. The nota-
tion [ = —1 clearly indicates that this is a special
case worth noting.

Based on the explanation above, the range of [ is
[—1,16], and these 18 categories are the number of
classes that the predictor needs to learn to classify.

D Concerns about Evaluation Scope

In Section 4.1, we introduced that in addition to
arithmetic and commonsense reasoning datasets,
we also tested MMLU and BBH. They have been
selected as standard evaluation benchmarks by the
Open LLM Leaderboard for assessing large lan-
guage models, which also proves their versatility
and extensive applicability. In addition to MMLU
and BBH, we evaluated Folio to assess the logical
reasoning capabilities of LLMs, not limiting the
scope to just arithmetic and commonsense reason-
ing.

E More Experiment Details

Alignment of LM and LLM. We believe that a
perfect match between RoBERTa tokenizer and the
LLM tokenizer is not necessary. When RoBERTa
predicts the optimal contrast layer, its input is the
full, raw text, rather than the ID sequence tok-
enized by LLM. The task for RoBERTa is to predict
which layer’s noise needs to be suppressed most
for the current input, which is a sentence-level or
paragraph-level semantic decision, rather than a
fine-grained subword match. In fact, this approach
is similar to the length prediction method used in
LLM scheduling (Stojkovic et al., 2024), where
BERT is employed to predict the possible output
length for an LLM given the input to plan mem-

8517
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Question: When was the Internet first made available to the public?
Answer: The Internet was first made available to the
1 2 3 4 5 6

public in the early 1990s.
7 8 9

10 11 12 13 14 15 16 17 18 19
Diff 169 274 2.42 2.02 107 029 0.41 0.01 0.32 0.97 0.85 157 0.01 0.50 0.01 136 0.01 1.09 0.97
32 2.60 4.05 327 2,61 232 0.58 0.74 050 0.42 138 128 187 0.42 0.46 0.02 141 0.02 0.87 139
30 001 021 057 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.03 1.00 019 0.01 0.01 1.00 0.01 0.06 0.04
28 001 0.08 036 0.06 0.04 0.01 0.01 0.04 0.01 0.01 314 0.97 035 2,04 0.68 3.60 021 0.01 0.04
2% 063 0.48 178 0.15 0.67 0.01 0.01 0.02 0.01 0.01 4.42 0.60 111 357 451 5.82 177 0.04 0.07
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Figure 6: More preliminary cases (case 1).
Question: When did the first human land on the Moon?
Answer: The first humans landed on the Moon on July 20, 1969, during NASA's Apollo 11 mission.
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Figure 7: More preliminary cases (case 2).

ory usage, and such methods often do not require
alignment between PLM and LLM tokenizers.

« for multiple choice tasks. When handling
multiple choice questions, we compute the log
probability sum of a given sentence. However, if
any token in the sentence is not present in Veqd,
its score would be —oo according to Equation 8,
which would make the log probability sum of the
entire sentence —oo, which is unreasonable. To
address this, for tokens not found in Va4, We ap-
ply a penalty of —1000 instead of —oo, ensuring a
more stable and reasonable computation.

GPUs. The main experiments were conducted
on an NVIDIA GeForce RTX 3090. When running
ALW with LLaMA-7B as the LLM and RoBERTa-
base as the predictor, one RTX 3090 is required.
The predictor remains the same. For the 13B model,
two 3090 GPUs are required; for the 30B model,
four GPUs; and for the 65B model, eight GPUs.

Since the predictor’s inference speed is very fast
and does not require a lot of GPU communication,
the budget is essentially consistent with simply
inferring the LLaMA model.

Others. The number of shots assigned for the
three open-ended generation datasets is six shots
for StrategyQA, eight for Gsm8k, and three for
Folio. Moreover, we present the CoT prompts
for three open-ended generation datasets: GsmS8Kk,
StrategyQA, and Folio. The CoT prompts for
Gsm8k and StrategyQA are constructed accord-
ing to the method outlined in (Wei et al., 2022).
For the Folio dataset, prompts are constructed by a
random selection and construction process, which
is described in Table 13. In addition, when using
ALW-sim, in order to balance the data distribution,
we discard some data labeled —1 to maintain bal-
ance. Relatively, we added learning weight when
using ALW-Im (Sec 3.3).
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F Concerns about Performance
Variability

For concerns about variability in performance gains
across different tasks and model sizes, we believe it
is normal for some variation in gains across differ-
ent settings. What we have developed is a universal
reasoning framework that is applicable to various
situations and having the added benefit is more
important. We have achieved this goal.

In Section 4, we demonstrate the robust capabili-
ties of ALW across eight datasets and five model
sizes, ensuring that it can enhance reasoning abil-
ities in most cases. It shows strong performance
on datasets such as BBH, ARC-C, Gsm8k, and
MathQA. For PiQA, where the gain in performance
is smaller, we attempt to analyze in Section 4.3 that
this may be because, for easier tasks, fewer noises
are presented in shallow layers.

G The Distribution of Predictor Outputs

We present the distribution of layers predicted by
the predictor when testing Gsm8k with LLaMA-
7B in Table 11. On 5,621 occasions, the predictor
chose to skip the contrast operation. When a con-
trast is required, the predictor does not have an
extreme tendency to predict a specific layer, and
the overall distribution shows a trend of decreasing
predicted frequency as the layer number increases.
This shows that modeling the relationship between
prompt and layer is not a simple task.

H Concerns about Decoding Latency

We test the average time needed to decode each
token using decoding methods on four NVIDIA
GeForce RTX 3090 GPUs for the LLaMA-30B.
As shown in Figure 4, ALW incurs the least time
expenditure, being only 1.06 times that of the base,
with virtually no increase in time cost.

Moreover, we consider additional operations
from a mathematical perspective. For ALW-sim,
we need to additionally calculate the cosine simi-
larity of each row in the semantic representation
vector [1,d] and the precomputed representation
vector [n, d], which can be approximated as matrix
multiplication of two [n, d] vectors, with a compu-
tational cost of only dn (d=384 in our experiment).

For ALW-1Im, the additional operation is the for-
ward process of LM and contrast operation. The
RoBERTa-base model in our experiment has 110
million parameters, and if we use LLaMA-7B, its
parameter count is 64 times that of RoBERTa-base.

Thus, for LLM inference, the inference time of the
LM can be considered negligible. Furthermore,
since LM inference runs in parallel with LLM, as
long as the forward pass of the LM is shorter than
the inference time of the LLM, the time impact in-
troduced by the LM can be completely disregarded.
In this case, the additional computations involve
only the subtraction of two hidden states and
the softmax operation.

I Why First Half of All Layers?

As shown in Figure 2, 6 and 7, after surpassing half
of the layers, the layers contain less noise and the
predictions become more focused. That is, deeper
layers tend to retain clearer signals, distinguishing
them from the noise in the shallow layers. There-
fore, theoretically, subtracting the deeper layers
in the final stage is unlikely to yield better results.
Moreover, if we consider only the latter half of the
layers, the search space is consistent with the first
half but the occurrence is less frequent, covering
a narrower range of scenarios. On the other hand,
using all layers from O to 32 undoubtedly greatly
increases the search space, and the increased num-
ber of classifications makes it more difficult for the
predictor to train. We conducted supplementary
experiments in Table 12. We searched within the
latter half of the layers, and the results indicated a
significant decrease in performance. This is consis-
tent with the phenomena observed in Dola.

J Qualitative Study

This section presents generation cases from ALW
and baselines across three open-ended genera-
tion datasets: Gsm8k (Table 16), StrategyQA (Ta-
ble 17), and Folio (Table 18). Using Folio as an
example, in the case shown in Table 18, ALW and
greedy decoding produced entirely opposite genera-
tions when decoding Vx (Student(x) — Teacher(x)).
The erroneous reasoning in the greedy decoding
led to =Student(leon) — —Teacher(leon), resulting
in the conclusion “unknown”. In contrast, ALW ac-
curately expressed Vx (Teacher(x) — —Student(x))
according to the given description, correcting the
erroneous reasoning path of the greedy decoder and
leading to the correct result “True”.

However, there are issues where the result is
correct but the reasoning path is incorrect, and we
analyze this situation in Table 19. In fact, we have
explained in Section 4.3 that the reason ALW im-
proves reasoning is that LLMs often struggle with
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Arithmetic Commonsense General
Models Average

Gsm8k* MathQ StrQA* PiQA Folio* MMLU BBH ARC-C
Greedy 13.6 22.3 66.4 785 165 348 341 370 379
LLaMA-7B-HF = Ours-sim  15.2 28.6 664 780 19.8 369 395 40.1 41.0
Ours-lm 20.1 36.3 703 78.1 298 406 417 413 45.5
Greedy 76.5 38.1 716 798 525 384 437 417 55.3
LLaMA-8B-HF  Ours-sim  76.5 44.7 702 783 525 404 46.6 423 56.4
Ours-lm 78.8 56.3 71.6  80.1 529 442 508 478 60.3
Greedy 18.9 249 672 80.1 347 362 372 365 42.0
LLaMA-13B-HF Ours-sim  14.4 30.2 702  79.7 38.8 372 401 379 439
Ours-lm 227 37.8 725 796 504 382 448 421 48.5
Greedy 32.6 26.3 729 812 446 37.8 395 372 46.5
LLaMA-30B-HF Ours-sim  32.6 28.3 702 812 44.6 39.6 417 385 47.4
Ours-lm 41.7 35.7 76.0 813 446 404 450 41.0 50.7
Greedy 50.8 27.2 76.0 813 421 404 379 396 49.4
LLaMA-65B-HF Ours-sim  46.2 31.5 742  80.1 421 41.0 392 431 50.1
Ours-lm 55.3 38.5 717 813 438 414 43.1 478 53.6

Table 7: The performance of ALW-sim and ALW-Im across all settings. The non-bold entries indicate that ALW-sim
is weaker than greedy decoding. The performance of ALW-sim lies between the base and ALW. We recommend
using the more advanced ALW, but if training resources are extremely limited, ALW-sim can serve as a substitute.

Datasets LLaMA-7B-HF LLaMA-13B-HF LLaMA-30B-HF LLaMA-65B-HF

Gsm8k* 11.4 (-8.7) 18.9 (-3.8) 32.6 (-9.1) 50.0 (-5.3)
PiQA 74.4 (-3.7) 72.8 (-6.8) 74.9 (-6.4) 73.9 (-7.4)
Folio* 26.4 (-3.4) 38.8 (-11.6) 33.1(-11.5) 32.2 (-11.6)
MMLU 35.9 (-4.7) 34.4 (-3.8) 37.9 (-2.5) 36.0 (-5.4)

Table 8: The importance of layer predictor. The numbers in parentheses indicate the change in accuracy when using
random layer selection compared to using the predictor. The results in bold represent outcomes that exceed the
greedy decoding results.

Contrast‘Arithmetic Missing Step Semantic Degeneration‘Total Errors

X 6.1% 30.3% 42.4% 7.6% 86.4%
v 5.3% 30.3% 40.9% 3.0% 79.5%

Table 9: Proportion of errors in of a set of 132 Gsm8k questions. Contrast significantly mitigates various errors,
especially the model’s degeneration and arithmetic errors.

layer -1 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
num 1742 30 147 131 29 36 29 20 27 48 28 31 46 19 82 51 47 40 37 33 67
layer 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
num 58 25 23 9 21 16 23 29 22 28 35 25 18 50 30 33 27 16 21 9 16

Table 10: The statistics of the optimal layer. Using LLaMA-65B and BBH datasets. The layer requiring no contrast
operation appears most frequently, while other layers are also involved. Moreover, shallow layers appear more
frequently than higher layers.
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layer n layer | n
—1 | 5621 8 236
0 1358 9 130
1 1114 | 10 | 256
2 928 11 161
3 964 12 154
4 825 13 | 512
) 335 14 186
6 448 15 86
7 741 16 | 252

Table 11: The distribution of predictor outputs

7B 13B  30B

0,16] 20.1 227 417
[16,32] 121 152 303
Vanilla 136 189 326

Table 12: The comparison between results of using
different model sizes in Gsm8k.

path decisions, and ALW enables the model to fo-
cus confidently on deep reasoning signals, thereby
making the correct next-step choice.

Observing an example from Gsm8k in Table
19, ALW incorrectly multiplies the task time by
the total quantity. However, the erroneous calcu-
lations for small and large holes happen to cancel
each other out (30x3 + 15%10 = 240 minutes =
4 hours), which coincidentally matches the cor-
rect calculation (30x3 = 90 minutes, 15x10 = 150
minutes, total = 240 minutes). Contrastive decod-
ing works when the model struggles to choose be-
tween the correct or incorrect token. That is, if
the model strongly favors an incorrect token (e.g.,
95% probability), it is difficult to change the rela-
tive probabilities between the incorrect and correct
tokens through contrastive decoding. We believe
the correctness of the reasoning path depends on
the model’s understanding of the problem. If, for
a given model, there is no correct path in the path
space or if its probability is very low, it is indeed
difficult to correct it using ALW. In fact, when com-
paring the outputs from ALW and greedy decoding,
the vanilla output is repetitive, indicating that the
model was already confused about the problem. In
this case, ALW can only improve the quality of the
content in these cases. Observing an example from
Folio, all reasoning paths are correct except for “Vx
(BasketballPlayer(x) — American(x))”. In fact, be-
cause ALW has already inferred that Yuri is not a

basketball player, it can already answer that Yuri
is not an American basketball player. The state-
ment “Vx (BasketballPlayer(x) — American(x))”
should have been correctly modeled as “J”, which
might be due to the very limited presence of data
including “3” in the training set.

K Sub-task Results

BBH Sub-tasks. As shown in Table 14, all models
on the “penguins_in_a_table” task show significant
improvement (+40.0 to +67.0), with an average
score of 82.6 (+53.4). This task involves table-
based data reasoning, where ALW can more effec-
tively extract structured information by denoising,
thereby reducing redundant interference. Addition-
ally, all models exhibit significant improvement on
“snarks”, with an average increase of 13.1 points.
The “snarks” typically involves implicit meaning
in complex contexts, which heavily relies on the
model’s understanding of deep semantic and con-
textual relationships. ALW enhances the model’s
ability to capture deep semantic features by sup-
pressing shallow noise (e.g., literal ambiguity, sur-
face feature interference).

However, performance is suboptimal on some
tasks, such as “movie_recommendation”, where
the average score drops to 68.0 (—7.2) after using
ALW, significantly lower than other semantic tasks.
Movie recommendation requires integrating multi-
dimensional information, such as user preferences
(e.g., actors, directors, genres) and context (e.g.,
time, ratings). Shallow layers may capture local
high-frequency features (e.g., “sci-fi”’, “high rat-
ing”), but ALW mistakenly treats them as noise to
be suppressed, leading to the loss of key signals.

MMLU Sub-tasks. As shown in Table 15,
there are differences in the performance of vari-
ous sub-tasks across different models, particularly
in more complex domains (such as economics and
law), where performance fluctuations are more pro-
nounced. In certain sub-tasks, ALW significantly
improves reasoning performance through shallow
layer adaptive selection and final layer denoising
strategies. For example, more noticeable improve-
ments can be observed in tasks related to mathe-
matics and medicine. However, in areas related
to philosophy and management, while some im-
provement is seen, the overall enhancement may
be smaller, indicating that the reasoning process in
these tasks may inherently be more straightforward
or simple, requiring less denoising.
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prompt

shot-1 Context: All kids love animals. All toddlers are kids. If someone loves animals, then they are
not bad. All pirates are bad. If Nancy is not a pirate, then Nancy loves animals. If Nancy is not a
toddler, then Nancy is bad.

Question: The statement "Nancy is a pirate" is True, False or Unknown?

A: Vx (Kid(x) — LoveAnimals(x)), Vx (Toddler(x) — Kid(x)), Vx (LoveAnimals(x) —
—Bad(x)), Vx (Pirate(x) — Bad(x)), ~Pirate(nancy) — LoveAnimals(nancy), ~Toddler(nancy)
— Bad(nancy). The statement is Unknown.

shot-2 Context: Oxford Circus is a road junction connecting Oxford Street and Regent Street. Oxford
Street is in London. John Nash designed the construction on Regent Street. John Nash designed
Oxford Circus. John Nash is an architect in British. Oxford Circus is the entrance to Oxford
Circus tube station which is a part of the Central line in 1900.

Question: The statement "Oxford Circus is in London" is True, False or Unknown?

A: OxfordStreet(oxfordCircus) A RegentStreet(oxfordCircus), Vx (OxfordStreet(x) — Lon-
don(x)), Ix (RegentStreet(x) A Design(johnNash, x)), Design(johnNash, oxfordCircus),
British(johnNash) A Architect(johnNash), CentralLine(oxfordCircus). The statement is True.

shot-3 Context: Buisnesses are either sanctioned or unsanctioned. Sanctioned buisnesses are limited.
Unsanctioned buisnesses are free. The Crude Oil Data Exchange is a buisness that isn’t free.
Question: The statement "Crude Oil Data Exchange is unsanctioned" is True, False or Unknown?
A: Vx (Buisness(x) — Sanctioned(x) A —Sanctioned(x)), Vx (Buisness(x) A Sanctioned(x) —
Limited(x)), Vx (Buisness(x) A ~Sanctioned(x) — Free(x)), Buisness(crudeoildataexchange) A
-Free(crudeoildataexchange). The statement is False.

Table 13: CoT prompt for Folio.

Subtasks LLaMA-7B LLaMA3-8B LLaMA-13B LLaMA-30B LLaMA-65B Average
temporal_sequences 12.040 40.09.9 36.024.0 20.04.9 20.040 25.679
disambiguation_qga 28.0_s0 24.0_40 28.0 3¢ 32.040 28.00.0 28.0 39
date_understanding 88.020.0 76.0120 80.03.9 72.0_350 76.0_40 78.45¢
tracking_shuffled_objects_three_objects 24.040 40.09.9 32.040 40.0g.9 24.00.0 32.039
penguins_in_a_table 73.340.0 100.067.9 86.746.7 80.060.0 73.353.3 82.653.4
geometric_shapes 8.00.0 12.049 8.00.0 8.00.0 12.040 9.61¢6
snarks 72.216.0 722110 77.810.8 72.211 77.816.7 744131
ruin_names 60.04.9 76.012.0 64.012.0 80.016.0 64.00.0 68.858
tracking_shuffled_objects_seven_objects 16.04.9 16.0¢.9 20.0 g 20.09.0 20.0_40 184 14
tracking_shuffled_objects_five_objects 24.020.0 16.0_49 8.00.0 12.049 14.0_140 14.81 2
logical_deduction_three_objects 60.020.0 64.00.0 48.0120 52.00.0 48.040 54.47 5
hyperbaton 72.0_16.0 96.024.0 84.00.0 80.0_12.0 84.00.0 832 o8
logical_deduction_five_objects 24040 32.040 28.012.0 36.012.0 28.050 29.650
logical_deduction_seven_objects 8.00.0 40.0_4 24.040 44.05. 24.05 0 28.03.9
movie_recommendation 64.0_g0 76.0_g 72.00.0 56.0_900 72.00.0 68.0_ 75
salient_translation_error_detection: 24.03.0 32.00.0 16.09.0 16.09.0 24.05.0 22459
all 4117 50.87.1 44.57 3 45.05 5 43.15.9 44.96 4

Table 14: The results of BBH subtasks. The subscript indicates the difference from the greedy decoding, where red
represents a lower value than greedy decoding, and blue indicates a value that is not lower than greedy decoding.
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Subtasks LLaMA-7B LLaMA3-8B LLaMA-13B LLaMA-30B LLaMA-65B Average
abstract_algebra 60.0¢.0 50.0_10.0 50.0_10.0 80.030.0 70.020.0 62.06.0
anatomy 42.90_0 50.0()_0 57.10_0 57.10_0 50.077_1 51.4,]_4
astronomy 25.0,6_2 37.5040 31.20.0 37576.2 37-576.2 33.8,3_8
business_ethics 90.020‘0 60.0()0 60.0_ 10.0 60.071()‘0 80401()‘0 70.020
clinical_know]edge 51.9]1_1 44457 48.17_4 40-77_4 48]57 46767
college_biology 26.713.3 40~06,7 40.013.3 33.30.0 33.30‘() 34-76,7
collegeichemistry 40.0()‘0 50.0,10_0 20.072()_() 40.00_0 10.072[)_[) 32.071[)_()
college_computer_science 50.010.0 50.010.0 60.040.0 50.00.0 50.09.9 52.012.0
college_mathematics 30.090.0 20.010.0 40.099.0 40.030.0 60.030.0 38.0290
college_medicine 33.30_0 50-016.7 50.011_1 44.422_2 38.916_7 43.313_3
college_physics 27.3()40 36.4941 27.30.0 36.49.1 36.4941 32.75,5
computer_security 40.00.9 50.00.0 40.0_19.0 50.00.0 50.00.0 46.0_5
conceptual_physics 62.54_2 70.88_3 41 .7,4_2 54.2,1 2.5 66.7,4_‘_) 59.2,] K
econometrics 33.3()4() 33-3716,7 25.00.0 25.00.0 25.004() 28.3,3.3
electrical_engineering 20.0_133 46.70.0 33.313.3 20.0_4.7 20.0_¢.7 28.0_97
elementary_mathematics 447158 553911 289 95 34.20.0 39.59¢4 40.57.4
formal_logic 38.57‘7 46.17‘7 38.5,7.7 61.515‘4 46.17‘7 46.26.2
global_facts 40.010.0 70.020.0 60.030.0 60.020.0 50.010.0 56.015.0
high_SChOOl_biOlOgy 32.319,4 58.132,2 32.33.2 41 .96_5 35.5,3_2 40~011.6
high_SChOOl_ChemiStI‘y 42.919‘1 57.119‘0 38. 10‘0 38‘174,3 47.619‘1 44.810'5
high_school_computer_science 60.030.0 40.090.9 50.030.0 60.040.0 60.030.0 54.030.0
high_school_european_history 41.2,115 29.4,115 29.4,2;;,5 29.40.0 29-4717,6 31.8,1249
high_school_geography 60.05.0 55.00.0 55.00.0 50.00.0 50.0_50 54.00.0
high_school_government_and_politics 65.00.0 50.0_5, 60.0_10.0 65.0_10.0 45.0_350 57.0_120
high_school_macroeconomics 30.8 5.1 333 95 20.5 193 30.8_ 95 35996 30.3 41
high_school_mathematics 40.795.9 66.755.6 40.77.4 37.074 40.7111 452915
high_school_microeconomics 45.890.8 50.0g.3 45.84.9 37.5 49 50.08 3 45.875
high_SChOOl_physiCS 56.2,(‘,.2 50‘0,12.5 56.26'2 68.818‘8 62.513‘8 58.85,0
high_school_psychology 54.500 67.310.9 54.55 5 54513 54.5 109 57.107
high_school_statistics 27.39.1 40.9:8.9 27.39.1 40.999 7 22745 31.812.7
high_SChOOl_US_hiStOI‘y 33-348 429286 33-34,8 38.1 19.1 333,43 36.210'5
high_SChOOl_WOI']d_hiS(OI'y 20.84_2 33.38_3 20.80_0 25-08.3 33.316_7 26.77_5
human_aging 43.5()40 47.813.1 52-28.7 65.21341 39.1,130 49.64,3
human_sexuality 42900 42979 50.07 1 35.70.0 50.014.3 44.35 7
international_law 30.815.4 23177 23.1 77 23177 38.515.4 27.77.7
jun'sprudence 18.2941 45.59‘1 18.2,9,1 27.3,9,1 36‘4,1&2 29.1,3.6
logicalifallacies 41 .2()‘0 35.3,17_(; 35.3,17_(; 23.5711_5 41.275_9 35.371[)_(;
machine_learning 41 .7(),0 25.0,33_3 41 .7,5_3 25.0725_0 41 ~7—8.3 35.0,15_0
management 45.59& 63.627‘3 36.40'0 45.50.0 45.5040 47‘373
marketing 58.3_16_7 58.3_12_5 50.0_12_5 66.78_3 58.30_0 58.3_(,‘_7
medical_genetics 80.0()40 70.010.0 90.030.0 70.00.0 90.020,0 80.012.0
miscellaneous 48.1 —76 77.224‘1 46.8,7.(5 54.4,5,1 57.0,3‘3 56.7()‘0
moral_disputes 34300 28.6_5.7 343 59 31.4¢0 42.95 7 343 g6
moral_scenarios 60.036.7 23.3()4() 32-28.9 34.411‘1 28.9546 35.812'4
nutrition 22.66.5 22.63. 22.66.5 22.60.0 22.60.0 22.63.9
phi]OSOphy 31 ~215.6 25.0(),0 25-06.2 31 .23_1 40.618,7 30-68.8
prehistory 45.5()‘() 54.5()‘() 54.53'0 54.50.0 54.53‘0 52.71.2
professional_accounting 20.7 6.9 37.90.0 34.56.9 20.7 103 31.0_179 29.0_ 55
professional_law 22.7,()_7 29.23,2 25.31.9 23.4,2_6 26.0143 25~3O.6
professional_medicine 39336 42.97 5 32.1 35 32.136 357 36 36.41 4
professional_psychology 45214 48465 46.89.7 50.09.7 51.63 48.461
public_relations 81.827.3 72.7941 81.89.1 81.89.1 81.818.2 80.014.5
security_studies 32.030 28.0_490 36.03.0 36.00.0 36.00.0 33.69.4
SOCiOlOgy 28.64_8 47.623_8 33-34.8 33-34.8 23.8,9_5 33.35_7
us_foreign_policy 40.030,(} 20.010,(} 20.010.0 30.010‘() 40.010.0 30.014'0
Vil‘OlOgy 29.4()‘0 23.5()‘0 17.6,5_9 41.20_0 29.4[)‘0 28.2,1_2
world_religions 44.4(),0 44.45,5 50.00,0 55.60_0 55.6,27_5 50.0,,1_,1
all 40.65 5 4426 9 38220 40.426 41449 41.03.7

Table 15: The results of MMLU subtasks.
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Question James runs 12 miles a day for 5 days a week. If he runs 10 miles an hour how many hours does
he run a week?

ALW James runs 12 miles a day for 5 days a week. That means he runs 12 * 5 = 60 miles a week. If
W) he runs 10 miles an hour, it takes him 6 hours to run 60 miles. The answer is 6 hours.

Baseline James runs 12 miles a day for 5 days a week. 12 miles is 12 x 5 = 60 miles. 10 miles an hour is
(x) 10 x 60 = 600 miles. So he runs 600 miles a week. 600 / 60 = 10 hours. The answer is 10 hours.

Table 16: Qualitative Study for LLaMA-7B with ALW and baselines on Gsm8k.

Question ‘ If your skin was turning the color of a zombie, could it be because of nickel?

ALW Nickel is a metal that causes allergic reactions in some people. A common symptom of nickel

) allergy is a greenish discoloration of the skin. Zombies are often depicted with green skin. Thus,
if your skin was turning the color of a zombie, it could be because of nickel. So the answer is
yes.

Baseline Nickel is a metal. Metals are not known to cause skin to turn green. Thus, your skin turning

(x) green is not likely to be caused by nickel. So the answer is no.

Table 17: Qualitative Study for LLaMA-30B with ALW and baselines on StrategyQA.

Question Context: All professors are teachers. All researchers are professors. No teachers are students.
All people who study are students. Leon is not studying or a researcher. If Leon is not studying,
then Leon is a teacher.

Question: The statement "Leon is neither a student nor a researcher." is True, False or Unknown?

ALW Vx (Professor(x) — Teacher(x)), Vx (Researcher(x) — Professor(x)), Vx (Teacher(x) —

W) Not(Student(x))), —Studying(leon) — Teacher(leon), —Researcher(leon) — Teacher(leon),
Teacher(leon) — Not(Student(leon)). The statement is True.

Baseline Vx (Professor(x) — Teacher(x)), Vx (Researcher(x) — Professor(x)), Vx (Student(x)

(x) — Teacher(x)), Vx (Teacher(x) — Not(Student(x))), —Student(leon) — —Teacher(leon),

—Researcher(leon) — Teacher(leon). The statement is Unknown.

Table 18: Qualitative Study for LLaMA-13B with ALW and baselines on Folio.

Question It takes Matthew 3 minutes to dig a small hole for shrubs and 10 minutes to dig a large hole for
trees. How many hours will it take him to dig 30 small holes and 15 large holes?

ALW Matthew can dig 30 small holes in 3 minutes. That means he can dig 30 x 3 = 90 small holes in 1

) hour. He can also dig 15 large holes in 10 minutes. That means he can dig 15 x 10 = 150 large
holes in 1 hour. So he can dig 90 + 150 = 240 holes in 1 hour. 240 / 60 = 4 hours. The answer is
4.

Baseline Matthew will dig 30 small holes in 30 minutes. 10 minutes to dig a large hole. 30 small holes +

(x) 10 large holes = 40 holes. 40 holes in 30 minutes + 10 holes in 10 minutes = 50 minutes. 50

minutes / 60 minutes = 0.833. 0.833 hours. The answer is 0.833 hours.

Question Context: Some basketball players are not American. All basketball players are tall. If someone
is tall, they wear large shoes. If someone wears large shoes, they wear large-sized clothes. Yuri
does not wear large-size clothes.

Question: The statement "Yuri is an American basketball player." is True, False or Unknown?

ALW Vx (BasketballPlayer(x) — American(x)), Vx (BasketballPlayer(x) — Tall(x)), Vx

W) (Tall(x) — WearLargeShoes(x)), Vx (WearLargeShoes(x) — WearLargeSizeClothes(x)),
—WearLargeSizeClothes(yuri). The statement is False.

Baseline Vx (BasketballPlayer(x) — American(x)), Vx (Tall(x) — BasketballPlayer(x)), Vx

(x) (LargeShoes(x) — LargeClothes(x)), Vx (LargeClothes(x) — BasketballPlayer(x)),

-LargeClothes(yuri) — Yuri. The statement is True.

Table 19: Discussion on cases where the reasoning path is incorrect but the answer is correct.

8524



