
Findings of the Association for Computational Linguistics: ACL 2025, pages 8394–8412
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Problem-Solving Logic Guided Curriculum In-Context Learning
for LLMs Complex Reasoning

Xuetao Ma, Wenbin Jiang, Hua Huang*

School of Artificial Intelligence, Beijing Normal University, Beijing, China
maxuetao@mail.bnu.edu.cn, {jiangwenbin, huahuang}@bnu.edu.cn

Abstract

In-context learning (ICL) can significantly en-
hance the complex reasoning capabilities of
large language models (LLMs), with the key
lying in the selection and ordering of demon-
stration examples. Previous methods typically
relied on simple features to measure the rele-
vance between examples. We argue that these
features are not sufficient to reflect the intrinsic
connections between examples. In this study,
we propose a curriculum ICL strategy guided
by problem-solving logic. We select demon-
stration examples by analyzing the problem-
solving logic and order them based on cur-
riculum learning. Specifically, we constructed
a problem-solving logic instruction set based
on the BREAK dataset and fine-tuned a lan-
guage model to analyze the problem-solving
logic of examples. Subsequently, we selected
appropriate demonstration examples based on
problem-solving logic and assessed their dif-
ficulty according to the number of problem-
solving steps. In accordance with the princi-
ples of curriculum learning, we ordered the
examples from easy to hard to serve as contex-
tual prompts. Experimental results on multi-
ple benchmarks indicate that our method out-
performs previous ICL approaches in terms
of performance and efficiency, effectively en-
hancing the complex reasoning capabilities of
LLMs. Our project will be released at https:
//github.com/maxuetao/CurriculumICL

1 Introduction

Large language models (LLMs) (Ouyang et al.,
2022; Ye et al., 2023; Bahrini et al., 2023) can
rapidly acquire new capabilities through in-context
learning (ICL) to solve many new tasks (Wies et al.,
2024; Xu et al., 2024), and can be extended through
chain of thought (CoT) (Wei et al., 2022) to solve
many tasks that require complex reasoning (Zhang
et al., 2023; Zhao and Zhang, 2024; Hou et al.,
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Figure 1: (a) The transformation from QDMR to
problem-solving logic. (b) An example of curriculum
ICL. Example selection depends on the similar problem-
solving logic, and example ordering depends on the
number of operations contained in the logic.

2025). Researchers believe that through ICL,
LLMs can implicitly learn the problem-solving pat-
terns demonstrated in contextual examples and ap-
ply them to new tasks (Bhattamishra et al., 2023;
Dai et al., 2023). This means that LLMs have the
ability to learn and apply problem-solving patterns
on the spot from given examples.

In recent years, supervised fine-tuning (SFT)
methods (Dong et al., 2023; Du et al., 2025a) and
reinforcement learning methods (Du et al., 2023;
Guo et al., 2025; Du et al., 2025b) have been able to
significantly enhance the abilities of LLMs through
training. Despite this, due to the unique character-
istic of ICL that it can enhance problem-solving
capabilities without training, it still holds value as
significant as the methods mentioned above, es-
pecially when facing the need to reduce costs or
quickly apply to new tasks. Relevant work (Hsieh
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et al., 2023) has already shown that LLMs possess
a wealth of basic knowledge and fundamental capa-
bilities that can be effectively activated through a
small number of examples. Particularly, LIMO (Ye
et al., 2025) fine-tuned a large language model with
only a few hundred examples and achieved results
that are close to or even on par with the current
state-of-the-art reinforcement learning optimiza-
tion inference. Therefore, we believe that the ICL
capabilities of current LLMs are still far from be-
ing fully realized. There is a need to design better
prompts to effectively enhance the effectiveness of
ICL.

ICL learns demonstration examples in sequence
and then solves problems, which closely resembles
the process of humans learning knowledge step
by step. We believe that organizing demonstra-
tion examples in a way similar to human educa-
tional curriculum construction is crucial. It helps
LLMs learn the knowledge and patterns shown in
the examples and solve given problems effectively.
Therefore, strategies for curriculum learning (Ben-
gio et al., 2009) can be adopted for the organiza-
tion of demonstration examples. The key to ICL
lies in example selection and ordering, which re-
quires measuring the relevance between examples.
Traditional simple statistical information, such as
similarity (Robertson et al., 2009; Wu et al., 2023a;
An et al., 2023) and perplexity (Gonen et al., 2023;
Margatina et al., 2023a), is not sufficient to reflect
the intrinsic connections between examples, espe-
cially from the perspective of problem-solving.

In this work, we innovatively propose a problem-
solving logic guided curriculum ICL method,
which constructs the optimal ICL prompt for
the query based on problem-solving logic. The
Question Decomposition Meaning Representation
(QDMR) (Wolfson et al., 2020) decomposes com-
plex problems into several sub-questions for solv-
ing and formalizes these sub-questions with 13
custom "operations", which we refer to as problem-
solving logic. Figure 1-(a) shows an example of
problem decomposition and transformation into
problem-solving logic. Although it cannot directly
solve the problem, the problem-solving logic de-
scribes the steps required for solving and the or-
der of these steps in formal language. Therefore,
it can accurately measure the intrinsic connec-
tions between examples and construct a sequence
of demonstration examples that are conducive to
problem-solving. Figure 1-(b) shows an example
of curriculum ICL. We select examples with sim-

ilar problem-solving logic, which can help LLMs
learn how to solve similar problems. Subsequently,
we measure the difficulty of these examples by
the number of problem-solving steps. The greater
the number of steps, the more reasoning steps are
involved, meaning the problem is more difficult
to solve. Relying on the principles of curriculum
learning, we order these examples from easy to
hard to serve as the final in-context prompt.

Our main contributions are as follows:
(1) This paper proposes a problem-solving logic

guided curriculum ICL strategy to enhance the rea-
soning performance of LLMs. We innovatively
present problem-solving logic as the criterion for
selection and ordering demonstration examples,
which is expected to offer a novel perspective for
future work.

(2) We constructed a problem-solving logic in-
struction set based on the BREAK dataset. Based
on this, we fine-tuned a language model to automat-
ically analyze the problem-solving logic of input
questions.

(3) Extensive experiments are conducted on five
datasets, and results show that our method achieves
significant improvements in average performance
and efficiency across all datasets, surpassing pre-
vious ICL methods and effectively enhancing the
ability of LLMs in reasoning tasks.

2 Background

2.1 In-Context Learning

ICL is a capability that emerges as the training data
and scale of LLMs increase (Dong et al., 2022).
This allows LLMs to learn new tasks with only a
few examples. Examples generally contain ques-
tions and answers. The query needs to maintain
consistent formatting with the examples so that
LLMs can provide accurate responses. This pro-
cess is called few-shot.

Existing research shows that the key to enhanc-
ing ICL performance lies in the organization of
demonstration examples, that is, the selection and
ordering of examples. Taking text similarity as an
example, the general process is to encode the can-
didate examples and the query into vector forms,
and then select the examples most similar to the
query by calculating the similarity between vectors.
Subsequently, these examples are sorted according
to text similarity. Finally, the sorted examples are
then input into the LLMs together with the query
for solving.
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Figure 2: A QDMR example. The original question is
decomposed into four sub-questions, each represented
by an operation.

2.2 Problem-Solving Logic

QDMR is a general method for decomposing com-
plex questions into several sub-questions for solv-
ing. They manually designed 13 operations, with
each sub-question represented by an operation. The
researchers proposed the BREAK dataset through
manual annotation, which contains 60K question-
answer pairs. Specific examples of each operation,
as well as detailed information about the dataset,
can be found in the Appendix A.

This work is inspired by QDMR and refers to the
sequence of operators representing sub-questions
as the problem-solving logic. The set of sub-
questions decomposed by QDMR includes the re-
quired steps and the order between steps. Figure 2
shows a specific QDMR example. The original
question is split into four sub-questions, each of
which is described in a formal language with an
operation, resulting in the corresponding problem-
solving logic as follows:

select→ project→ group→ superlative

2.3 Curriculum Learning

Curriculum learning is a machine learning strat-
egy (Bengio et al., 2009). It suggests that the train-
ing process should mimic human cognitive learning
by starting with simple examples and gradually in-
creasing in difficulty. The core of this method lies
in how to measure the difficulty of examples, which
often depends on the characteristics of the specific
task. For example, in the field of computer vision,
the number of objects in an image (Wei et al., 2016)
or noise (Chen and Gupta, 2015) contained can be
used to measure difficulty. In the field of natural
language processing, sentence length (Platanios
et al., 2019) can be used as a measure of difficulty.
In addition to these, the difficulty can also be mea-
sured by human educational level (Lee et al., 2023)
or evaluation models (Soviany et al., 2020).

3 Problem-Solving Logic Guided
Curriculum ICL

This paper introduces a problem-solving logic
guided curriculum ICL strategy. The overall
methodology is illustrated in Figure 3. Specifically,
we first constructed an instruction set based on the
BREAK dataset and fine-tuned a language model to
automatically analyze problem-solving logic. Then,
we analyzed the problem-solving logic for all data
in the benchmark training set to construct a dataset
of candidate examples. When an actual query is in-
put, its problem-solving logic is first analyzed and
then compared with the candidate examples, se-
lecting those with similar problem-solving steps as
demonstration examples. Furthermore, the number
of problem-solving steps serves as an appropriate
metric for assessing the difficulty of each example.
A greater number of steps means the problem is
more difficult to solve. This inspired us to apply
the principles of curriculum learning to order the
demonstration examples from easy to hard. Finally,
the ordered demonstration examples and the query
are combined to form the final prompt, which is
then input into the LLMs. The following sections
will offer a detailed explanation of how problem-
solving logic is analyzed, along with the process of
selecting and ordering demonstration examples.

3.1 Problem-Solving Logic Analysis

We first need to train a language model to analyze
the problem-solving logic, which is represented as
an ordered set of several problem-solving steps.

Our approach constructs an instruction set based
on the BREAK dataset. Specifically, the input to
the instruction set is a problem, and the output is
problem-solving logic and its formal language. The
formal language ensures that the model correctly
understands the problem-solving process. We then
fine-tune a Llama3-8B model (Touvron et al., 2023;
Dubey et al., 2024) with LoRA (Hu et al., 2022) on
this instruction set. Once the model is trained, it can
analyze problems from any dataset and extract their
problem-solving logic. Examples of the instruction
set can be found in the Appendix A. Details of fine-
tuning and hyperparameters can be found in the
Appendix B.

Analyzing the problem-solving logic is a crucial
step in our work, providing the foundation for the
subsequent curriculum ICL.
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Figure 3: The overall flowchart of our method. First, a base LLM is fine-tuned using an instruction set for problem-
solving logic (PSL) constructed from the BREAK dataset. Then, suitable demonstration examples are selected
and ordered by analyzing the PSL of the candidate examples and the query. Finally, the selected demonstration
examples and the query form the full prompt, which is fed into the LLM to obtain the results.
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ing. (✓) denotes similar problem-solving logic, (×)
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reason for the matching failure. Difficulty is measured
by the number of steps.

3.2 Curriculum ICL

Based on the above problem analysis process, we
can focus on problem-solving logic to guide the
selection and ordering of demonstration examples.
Figure 4 illustrates the process of example selection
and ordering.

3.2.1 Demonstration Example Selection

First, we need to select appropriate demonstra-
tion examples. Compared to semantic informa-
tion, we believe that selecting examples with sim-
ilar problem-solving logic is more important. On
one hand, similar problem-solving logic can guide
LLMs in reasoning, and on the other hand, exam-
ples with similar logic but different semantics can
enhance the model’s generalization ability.

Algorithm 1 Demonstration Example Selection

Require: query T , LLM function F (·), set of can-
didate examples {E1, E2, . . . , En}, each ex-
ample Ei has its own solution logic Li =
{Oi1, Oi2, . . . , Oimi}.

Ensure: Mark matching demonstration examples.

1: LT ← F (T ) {Obtain the solution logic for the
query from LLM}

2: for each example Ei in {E1, E2, . . . , En} do
3: Li ← {Oi1, Oi2, . . . , Oimi} {Retrieve solu-

tion logic of Ei}
4: if Li is a subsequence of LT starting from

the first operator then
5: Mark Ei as a demonstration example
6: end if
7: end for

After analyzing the query and all candidate ex-
amples, our method selects demonstration exam-
ples based on the problem-solving logic. The se-
lection criterion requires that the problem-solving
operations set in each candidate example must be a
subsequence of the query, meaning both the types
of operations and their order must match exactly.
Suppose the query has a problem-solving logic
containing m operations, and the selected demon-
stration example has n operations (m ≥ n); the
n operations of the demonstration example must
match the first n operations of the query. This
method ensures that the demonstration example’s
problem-solving steps align with the first n steps
of the query, avoiding any mismatch or additional
problem-solving steps. The complete process is
detailed in Algorithm 1.
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Figure 5: A complete example of curriculum ICL. The selected examples form the context information. The right
half of the figure shows the problem-solving logic, which is the basis for example selection and ordering.

3.2.2 Demonstration Examples Ordering
The key to curriculum learning lies in how to mea-
sure the difficulty of examples. By introducing
problem-solving logic, we can easily assess the dif-
ficulty of each example. The problem-solving logic
consists of several operations, where a higher num-
ber of operations indicates more reasoning steps,
thereby increasing the problem’s difficulty.

Inspired by this, we applied curriculum learn-
ing principles, ordering examples from easy to
hard. Specifically, we sorted the examples in in-
creasing order based on the number of problem-
solving steps, and used them along with the query
to construct the final in-context prompt. Figure 5
shows a complete curriculum ICL example, includ-
ing demonstration examples and the query.

4 Experiments and Analysis

4.1 Experimental Setup

Benchmarks. Our experiment includes two types
of datasets, Arithmetic Reasoning and Common-
sense Reasoning, and validation is conducted on
five different datasets. Arithmetic Reasoning: (1)
the AQuA (Ling et al., 2017) includes 254 test ex-
amples, (2) the SVAMP (Patel et al., 2021) includes
1000 test examples, (3) the Gsm8k includes 1319
test examples. Commonsense Reasoning: (1) the
CommonsenseQA (Talmor et al., 2019) includes
1211 test examples, (2) the StrategyQA (Geva et al.,
2021) includes 229 test examples.

Baselines. We compare our approach against
seven methods that use ICL. Random selects
demonstration examples and their order randomly.
VoteK (Hongjin et al., 2022) selects the most sim-

ilar k examples using k-nearest neighbors (KNN)
and sorts them according to similarity scores.
PromptSO (Shi et al., 2024) uses principal com-
ponent analysis (Abdi and Williams, 2010) to se-
lect the most relevant basis questions and sorts
them based on eigenvalue. AutoCoT (Zhang et al.,
2022) uses k-means to automatically select the
most representative examples that are closest to
the cluster center. CoT+few-shot (Wei et al., 2022)
manually designed fixed demonstration examples
with reasoning processes. Self-Adaption ICL (SA-
ICL) (Wu et al., 2023b) selects similar examples
based on KNN and then chooses an appropriate
order based on information compression. Active
Learning ICL (AL-ICL) (Margatina et al., 2023b)
selects most similar examples based on the princi-
ples of active learning and sorts them according to
similarity.

Implement Details. We evaluate the effective-
ness of our method on the Llama3-8B, Llama3-
70B and Qwen2.5-7B (Qwen et al., 2025). For
each benchmark, we select demonstration exam-
ples from its training set to form prompt informa-
tion to evaluate each test set data. For the SVAMP
dataset, we adopted the same evaluation strategy
as in previous work (Patel et al., 2021), using
ASDiv-a (Miao et al., 2020) and MAWPS (Koncel-
Kedziorski et al., 2016) together as the training
set. To ensure a fair comparison, the number of se-
lected examples for all baselines is based on the set-
tings in CoT (Wei et al., 2022) for different bench-
marks, and the number of examples selected by our
method does not exceed that of the baselines.
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Method Selection
Stategy

Ordering
Stategy

Dataset Avg.SVAMP AQuA Gsm8k ComSenQA StrategyQA
Llama3-8B

Random Random Random 76.5 46.5 73.8 75.8 65.1 67.53
VoteK KNN Similarity 74.9 44.9 76.7 75.4 69.0 68.19

PromptSO PCA Eigenvalue 77.3 43.7 77.7 75.6 67.7 68.40
AutoCoT K-means Similarity 77.5 47.2 75.3 76.0 71.2 69.44

CoT + Fewshot Fixed Fixed 80.5 44.5 79.4 75.1 69.4 69.79
SA-ICL KNN Entropy 78.8 47.6 77.9 78.5 66.8 69.95
AL-ICL KNN Similarity 80.8 45.7 78.2 77.9 68.1 70.13

Ours PSL Curriculum 83.4 50.8 81.1 75.0 71.6 72.37
Llama3-70B

Random Random Random 85.9 69.7 91.6 81.7 80.3 81.84
VoteK KNN Similarity 86.2 67.3 92.3 81.6 82.5 81.98

PromptSO PCA Eigenvalue 86.8 73.6 90.1 81.0 77.3 81.76
AutoCoT K-means Similarity 89.2 65.0 92.5 81.4 74.2 80.46

CoT + Fewshot Fixed Fixed 88.8 67.7 91.6 81.4 82.5 82.40
SA-ICL KNN Entropy 85.7 67.3 92.3 81.1 82.5 81.78
AL-ICL KNN Similarity 87.2 68.5 91.7 81.2 84.2 82.56

Ours PSL Curriculum 90.5 70.1 92.6 81.8 85.2 84.04
Qwen2.5-7B

Random Random Random 87.3 74.8 87.2 83.4 65.0 79.54
VoteK KNN Similarity 86.2 79.9 84.6 83.5 68.1 80.46

PromptSO PCA Eigenvalue 85.6 76.4 90.5 82.7 70.3 81.11
AutoCoT K-means Similarity 87.1 69.7 90.4 83.6 69.7 80.10

CoT + Fewshot Fixed Fixed 90.2 76.4 89.8 83.8 63.8 80.79
SA-ICL KNN Entropy 87.7 71.7 88.7 83.3 69.0 80.07
AL-ICL KNN Similarity 88.4 77.6 89.5 82.5 67.7 81.13

Ours PSL Curriculum 92.3 78.3 90.0 84.6 71.2 83.28

Table 1: The table presents a comparison of experimental results across different benchmarks using Llama3-8B,
Llama3-70B and Qwen2.5-7B, demonstrating the accuracy contrast between various ICL methods. Avg represents
the average accuracy across the different benchmarks. The best and second-best performances are highlighted in
bold and underlined, respectively.

4.2 Main Results and Analysis

We compare the performance of our approach with
other ICL methods. All the comparison results are
tabulated in Table 1. For Llama3-8B, compared
with other methods, we achieve the best perfor-
mance on SVAMP, AQuA, Gsm8k and StrategyQA.
The average accuracy across all benchmarks is im-
proved by 2.24%. For Llama3-70B, we achieve the
best performance on SVAMP, Gsm8k, ComSenQA
and StrategyQA. The average accuracy across all
benchmarks is improved by 1.48%. For Qwen2.5-
7B, we achieve the best performance on SVAMP,
ComSenQA and StrategyQA. The average accu-
racy across all benchmarks is improved by 2.15%.
Overall, our proposed method demonstrates excel-
lent performance across different parameter scales
and different models, which shows the effective-
ness and generalizability of the method.

To further demonstrate the effectiveness of the
method, we have conducted validation and analysis
of the key strategies of the method.

4.2.1 Analysis of Example Selection and
Ordering

For the selection and ordering strategies of demon-
stration examples in ICL, we designed several sets
of experiments to verify the effectiveness of our
method.

Regarding example selection, since each query
may match far more examples than the specified
limit during the problem-solving logic analysis,
it is necessary to analyze specific difficulty sam-
pling strategies. We designed four difficulty sam-
pling strategies: (1) Prioritize simplicity: This
strategy selects easy examples first. (2) Prioritize
difficulty: This strategy selects difficult examples
first. (3) Select randomly: This strategy randomly
selects examples of any difficulty. (4) Prioritize
diversity: This strategy aims to select as many
difficulty levels as possible, sampling at most one
example from each difficulty level.

Regarding the ordering of examples, to validate
the effectiveness of curriculum learning, we de-
signed two sets of controlled experiments. Under
the four sampling strategies mentioned above, we
applied two ordering strategy: (1) difficulty in-
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Figure 6: (a) shows the relationship between the average standard deviation of different example selection
strategies and their performance across various benchmarks. (b) shows the impact of example ordering strategies on
performance in relation to the average standard deviation under different selection strategies.

Difficulty
Strategy Ordering Dataset Avg.SVAMP AQuA Gsm8k ComSenQA StrategyQA

Original Llama
AL-ICL 80.8 45.7 78.2 77.9 68.1 70.13

Our Strategy
Prioritize simplicity w/ order 82.3 47.6 79.5 75.5 69.0 70.79

w/o order 82.5 47.2 78.8 76.1 68.1 70.55
Prioritize difficulty w/ order 81.8 44.9 77.9 76.6 67.7 69.77

w/o order 81.6 46.1 79.6 77.0 67.2 70.29
Select Randomly w/ order 81.3 50.6 80.2 76.1 70.3 71.70

w/o order 80.9 48.6 79.2 76.0 71.2 71.17
Prioritize diversity w/ order 83.4 50.8 81.1 75.0 71.6 72.37

w/o order 80.5 46.1 80.1 76.0 65.9 70.11

Table 2: The table presents the accuracy of benchmarks under different difficulty selection strategies. "w/ order"
indicates that the examples are ordered based on curriculum learning, while "w/o order" means the examples are
randomly ordered. The best and second-best performances are highlighted in bold and underlined, respectively.

creasing ordering (w/ order) and (2) random
ordering (w/o order).

We conducted experiments on Llama3-8B, and
the results are shown in Table 2. Through analysis,
we have made the following observations:

First, it can be noted from the table that the
performance of the strategies using the problem-
solving logic and curriculum learning approach
generally outperforms AL-ICL. The prioritize di-
versity (w/ order) strategy significantly outper-
forms the others, achieving an average accuracy
of 72.37%.

Furthermore, the importance of curriculum learn-
ing is highlighted in our findings. For prioritize
diversity strategies, the effect of ordering is par-
ticularly pronounced. In contrast, the impact of
ordering is less significant for the prioritize sim-
plicity and prioritize difficulty strategies.

Based on the findings above and considering the
characteristics of different selection strategies, we
believe that the primary reason for these results is
data diversity, or more specifically, difficulty diver-

sity. To explain this phenomenon, we calculated
the difficulty levels included in the demonstration
examples for each data across all benchmarks and
computed the average standard deviation. Standard
deviation (std) is typically used to measure the de-
gree of variation, and this metric helps illustrate
the data diversity produced by different strategies.

We analyzed two sets of data: first, the rela-
tionship between difficulty diversity and strategy
performance; and second, the impact of difficulty
diversity on the four strategies, considering both
the cases with and without ordering.

Figure 6-(a) depicts the relationship between per-
formance and difficulty diversity across the four
selection strategies. There is a clear positive corre-
lation between difficulty diversity and performance,
suggesting that data diversity is key to improving
performance. Additionally, Figure 6-(b) shows the
relationship between the performance difference
(with and without ordering) and difficulty diver-
sity across the four selection strategies. We found
that ordering strategies are highly sensitive to dif-
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ficulty diversity. Overall, the higher the difficulty
diversity, the greater the improvement brought by
ordering. Notably, the prioritize diversity strat-
egy saw the largest performance improvement with
ordering. This highlights the effectiveness of cur-
riculum learning, where it is essential to order data
according to difficulty. At the same time, it sup-
ports the idea that measuring example difficulty
by the number of problem-solving steps is a valid
approach.

4.2.2 Analysis of the Number of Examples
The number of demonstration examples for each
query also has an important impact on the perfor-
mance of ICL, as well as on the reasoning effi-
ciency of LLMs. Table 3 presents the number of
demonstration examples included with each test
data across different strategies. For comparison,
we use the fixed number of examples in CoT (Wei
et al., 2022) as a reference.

We find that the prioritize diversity strategy has
significantly superior performance while also hav-
ing the least average number of demonstration
examples. The average number of demonstra-
tion examples for other strategies is more than
6, while priority diversity strategy only requires
2.74. Fewer examples indicate a shorter in-context
length, which helps the reasoning speed of LLMs.
Table 3 also presents the average time cost under
different strategies. We uses the priority diversity
strategy as the baseline at 100% to measure the
time cost of other strategies. Experimental results
show that, compared to other strategies, the prior-
itize diversity strategy has a time cost advantage,
reducing consumption by 9% to 67%, effectively
improving inference performance.

Current studies have shown that an increase in
the number of demonstration examples usually
leads to improved performance (Bertsch et al.,
2024). Our method demonstrates that the quan-
tity of examples is not the only influencing factor.
This conclusion is consistent with numerous stud-
ies (Levy et al., 2023; Xie et al., 2024; Peng et al.,
2024), which indicate that data diversity plays a
critical role in enhancing the generalization capa-
bility of LLMs.

5 Related Work

5.1 In-Context Learning

GPT-3 (Brown et al., 2020) exhibited few-shot
and zero-shot learning abilities during the pretrain-

ing phase. CoT (Wei et al., 2022) designed sev-
eral fixed demonstration examples manually as in-
context information, inspired further research on
ICL (Li et al., 2025a; Yao et al., 2024; Li et al.,
2025b).

Subsequent research has shown that the key
to ICL lies in demonstration examples selection
and ordering (Nguyen and Wong, 2023; Li and
Qiu, 2023; Guo et al., 2024). Regarding ex-
ample selection, AutoCoT (Zhang et al., 2022)
used k-means clustering to select representative
examples and leveraged zero-shot CoT to gener-
ate their reasoning process as demonstration exam-
ples. PromptSO (Shi et al., 2024) used principal
component analysis (Abdi and Williams, 2010) to
encode text and calculate similarity to select exam-
ples. Another work (Rubin et al., 2022) points out
that a retriever can be trained using annotated data
to determine whether an example is suitable for a
query. Regarding example ordering, a study (Lu
et al., 2022) randomly generated multiple combi-
nations of example orderings to create probe sets.
By analyzing the entropy of predicted labels for
each probe set, the researchers selected the best-
performing order. KATE (Liu et al., 2022) explored
ordering examples based on task relevance as well
as length-based sorting. Relevance-based ordering
prioritizes examples closely related to the target
task, while length-based sorting considers potential
advantages for specific tasks.

5.2 Curriculum Learning in LLMs
Numerous applications across various fields have
demonstrated that curriculum learning can effec-
tively enhance model training outcome (Hacohen
and Weinshall, 2019; Wang et al., 2021).

Currently, some works have applied curricu-
lum learning to LLMs (Kim and Lee, 2024; Wang
et al., 2024). A common approach is to train the
model with examples progressing from easy to
hard during fine-tuning. For instance, a study (Lee
et al., 2023) conducted fine-tuning on a structured
dataset that strictly covers multiple educational
stages to simulate the progressive learning char-
acteristics of humans. In the medical field, simi-
larly, human-defined and automatically generated
methods were used to annotate data difficulty, and
LLMs in the medical question-answering domain
were fine-tuned from easy to hard. (Lee et al., 2023).
Additionally, another work (Pouransari et al., 2024)
decomposed datasets into sequences of varying
lengths, using sequence length as a metric to mea-
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Strategy Dataset Avg. TimeSVAMP AQuA Gsm8k ComSenQA StrategyQA
Fixed Examples 8 4 8 7 6 6.60 109%

Prioritize simplicity 7.27 4 7.73 7 5.88 6.38 117%
Prioritize difficulty 7.27 4 7.15 5.82 5.84 6.02 167%
Select Randomly 7.49 4 7.73 7 5.88 6.42 144%

Prioritize diversity 2.16 3.19 3.38 3.19 1.8 2.74 100%

Table 3: The number of demonstration examples selected by different selection strategies in benchmarks. Avg
represents the average number of demonstration examples selected for each data. Time indicates the time cost
comparison across different strategies. The highlighted part represent the strategy with most efficient.

sure data difficulty.
Another common approach for applying cur-

riculum learning to LLMs is ICL. For example,
ICCL (Liu et al., 2024) utilized human experts or
LLM-driven metrics to assess data difficulty, and
gradually increased the difficulty of demonstration
examples from easy to hard.

6 Conclusion

This paper proposes a problem-solving logic
guided ICL strategy. By analyzing the problem-
solving logic, we measure the similarity between
problems and select demonstration examples. Ad-
ditionally, the difficulty of problems is assessed
based on the number of problem-solving steps, and
the selected examples are ordered from easy to
hard following the principles of curriculum learn-
ing. Experimental results across multiple bench-
marks demonstrate that our proposed method out-
performs other ICL methods in terms of average
performance, significantly improving the reasoning
capabilities of LLMs.

Limitations

Although our work improves the performance and
efficiency of LLMs in reasoning tasks, there are
still limitations for improvement. First, due to hard-
ware resource constraints, we only conducted ex-
periments on LLMs at the 8B scale, and further
validation of our method is necessary on larger
models, such as those at the 70B scale, to fully
demonstrate its effectiveness. On the other hand,
we observed in many-shot studies (Bertsch et al.,
2024) that a significant increase in the number of
examples leads to substantial improvements in rea-
soning performance. However, due to the limita-
tions of benchmarks and hardware resources, we
were unable to evaluate the effect of curriculum
learning when applied to a large number of exam-

ples. We believe that when both the quantity and
quality of examples are ensured, reasoning perfor-
mance can be further improved, which will be a
focus of our future work.

Potential Risks

Our work does not carry any obvious risks.
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A BREAK Dataset Description

BREAK is a dataset proposed by the Allen Insti-
tute (Wolfson et al., 2020). This work introduces
the Question Decomposition Meaning Represen-
tation (QDMR), which breaks down a question
into several sub-questions for solving and repre-
sents it as a sequence of steps. The dataset collects
60,150 question and QDMR pairs from several pub-
lic datasets. To represent various questions as a uni-
fied sequence of steps, they customized 13 types of
operations, converting the solution process for all
questions into sequences of these operations. The
specific operations and their templates are shown
in Table 4. The decomposition and formalization
of questions can be found in Figure 1 and Figure 2.
Table 5 shows the distribution of operations in the
BREAK dataset, that is, the proportion of each op-
eration appearing in a single data point. Table 6
shows the distribution of the total number of sub-
questions after decomposition in the dataset.

Based on the BREAK dataset, we constructed
an instruction set to analyze the problem-solving
logic. Specific examples and explanations of the
instruction set are provided in Table 7.

B Fine-Tuning Details

We performed LoRA fine-tuning on the Llama3-
8B model using the aforementioned instruction set.
The specific hyperparameters are as follows: the
cutoff_len is set to 1024, the learning rate is set
to 5×10−5, the fine-tuning parameters are specified
as all, lora_rank is set to 8, lora_alpha is set
to 16, the optimizer used is AdamW, the model is
trained for 4 epochs, and the best model is selected
based on the BLEU score.

C Prompt Template

Table 8 shows the prompt templates used for fine-
tuning problem-solving logic analysis.
Table 9–13 shows the full prompt example for in-
context learning on the different benchmarks.

D Supplementary Details

Our experiments utilized the llama-factory (Zheng
et al., 2024) project, which includes model fine-
tuning and in-context learning. The CPU used in
the experiments is an Intel(R) Xeon(R) Platinum
8358 CPU @ 2.60GHz, and the GPU is an NVIDIA
Tesla A800 80G. The hyperparameters were set ac-
cording to the default configuration file provided by
llama-factory. The prompt length was set to 4096,
and the maximum answer output length was set to
1024. To ensure output stability, the temperature
was set to 0.01. In our study, we used ChatGPT to
assist in coding.
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Operator Template / Signature Question Decomposition
Select Return [entities]

w → Se

How many touchdowns were scored overall? 1. Return touchdowns
2. Return the number of #1

Filter Return [ref] [condition]
So,w → So

I would like a flight from Toronto to San Diego
please.

1. Return flights
2. Return #1 from Toronto
3. Return #2 to San Diego

Project Return [relation] of [ref]
w,Se → So

Who is the head coach of the Los Angeles
Lakers?

1. Return the Los Angeles Lakers
2. Return the head coach of #1

Aggregate Return [aggregate] of [ref]
wagg,So → n

How many states border Colorado? 1. Return Colorado
2. Return border states of #1
3. Return the number of #2

Group Return [aggregate] [ref1] for each [ref2]
wagg,So,Se → Sn

How many female students are there in each
club?

1. Return clubs
2. Return female students of #1
3. Return the number of #2 for each #1

Superlative Return [ref1] where [ref2] is [highest /
lowest]
Se,Sn,wsup → Se

What is the keyword, which has been con-
tained by the most number of papers?

1. Return papers
2. Return keywords of #1
3. Return the number of #1 for each #2
4. Return #2 where #3 is highest

Comparative Return [ref1] where [ref2] [comparison]
[number]
Se,Sn,wcom,n → Se

Who are the authors who have more than 500
papers?

1. Return authors
2. Return papers of #1
3. Return the number of #2 for each of #1
4. Return #1 where #3 is more than 500

Union Return [ref1] , [ref2]
So,So → So

Tell me who the president and vice-president
are?

1. Return the president
2. Return the vice-president
3. Return #1 , #2

Intersection Return [relation] in both [ref1] and [ref2]
w,Se,Se → So

Show the parties that have representatives in
both New York state and representatives in
Pennsylvania state.

1. Return representatives
2. Return #1 in New York state
3. Return #1 in Pennsylvania state
4. Return parties in both #2 and #3

Discard Return [ref1] besides [ref2]
So,So → So

Find the professors who are not playing Canoe-
ing.

1. Return professors
2. Return #1 playing Canoeing
3. Return #1 besides #2

Sort Return [ref1] sorted by [ref2]
Se,Sn → ⟨e1...ek⟩

Find all information about student addresses,
and sort by monthly rental.

1. Return students
2. Return addresses of #1
3. Return monthly rental of #2
4. Return #2 sorted by #3

Boolean Return [if / is] [ref1] [condition] [ref2]
So,w,So → b

Were Scott Derrickson and Ed Wood of the
same nationality?

...
3. Return the nationality of #1
4. Return the nationality of #2
5. Return if #3 is the same as #4

Arithmetic Return the [arithmetic] of [ref1] and
[ref2]
wari,n,n → n

How many more red objects are there than blue
objects?

...
3. Return the number of #1
4. Return the number of #2
5. Return the difference of #3 and #4

Table 4: The 13 operator types of QDMR steps. Listed are, the natural language template used to express the
operator, the operator signature and an example question that uses the query operator in its decomposition.

Operator QDMR
SELECT 100%
PROJECT 69.0%
FILTER 53.2%

AGGREGATE 38.1%
BOOLEAN 30.0%

COMPARATIVE 17.0%
GROUP 9.7%

SUPERLATIVE 6.3%
UNION 5.5%

ARITHMETIC 5.4%
DISCARD 3.2%

INTERSECTION 2.7%
SORT 0.9%
Total 60,150

Table 5: Operator prevalence in BREAK, that is, the
proportion of each operator appearing in a single data
point.

Steps QDMR
1-2 10.7%
3-4 44.9%
5-6 27.0%
7-8 10.1%
9+ 7.4%

Table 6: The distribution of the total number of QDMR
sub-questions.
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Input
\\The input is a problem to be solved, such as:
what flights are available tomorrow from denver to philadelphia?
Label
\\ The label contains <operator> and <formal language>.

\\ <operator> is an ordered set composed of the aforementioned custom operations.
\\ <formal language> is the formalized language that provides a detailed description
of each operator.
<operators>: [’select’, ’filter’, ’filter’, ’filter’]
<formal language>: ["SELECT[’flights’]", "FILTER[’#1’, ’from denver’]", "FIL-
TER[’#2’, ’to philadelphia’]", "FILTER[’#3’, ’if available’]"]

Table 7: Examples and Explanation of Instruction Sets Based on the BREAK Dataset

Prompt
You are a helpful assistant. Please break down in order the operations <operations>
required to solve the following problems, and the process of solving the problem
according to the operations <programs>:
what flights are available tomorrow from denver to philadelphia?
Label
<operators>: [’select’, ’filter’, ’filter’, ’filter’]
<formal language>: ["SELECT[’flights’]", "FILTER[’#1’, ’from denver’]", "FIL-
TER[’#2’, ’to philadelphia’]", "FILTER[’#3’, ’if available’]"]

Table 8: Fine-tuning prompts for problem-solving logic analysis
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Prompt
System prompt
Please provide the answer in the following format: "The final answer is <answer>"
User input
question: Being his favorite, he saved checking on the grapevines for his last stop. He was told by
235 of the pickers that they fill 100 drums of raspberries per day and 221 drums of grapes per day.
How many drums of grapes would be filled in 77 days?
answer: Equation is ( 221.0 * 77.0 ). The final answer is 17017.0

question: Tiffany was collecting cans for recycling. On Monday she had 4 bags of cans. The next
day she found some more bags worth of cans. If she had a total of 6 bags altogether, how many
bags did she find on the next day?
answer: Equation is ( 6.0 - 4.0 ). The final answer is 2.0

question: After a typhoon, 13 trees in Haley’s backyard died. If she had grown 3 trees initially, how
many more trees died in the typhoon than those that survived?
answer: Equation is ( 13.0 - ( 3.0 - 13.0 ) ). The final answer is 23.0

question: Brenda’s mother made cookies for 5 people. She prepared 22 cookies but had to throw
away 17 cookies. If each of them had the same number of cookies, how many did each of them
have?
answer: Equation is ( ( 22.0 - 17.0 ) / 5.0 ). The final answer is 1.0

question: Haley grew 9 trees in her backyard. After a typhoon 4 died. Then she grew 5 more trees.
How many trees does she have left?
Number of problem-solving logic step:
4->5->6->7->7

Table 9: Full prompt example for in-context learning on the SVAMP dataset
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Prompt
System prompt
Please provide the answer in the following format: "The final answer is <answer>"
User input
question: What is the probability of rolling one six-sided dice, and getting a different number on
each die? A)1/12 B)1/3 C)1 D)5/9 E)7/18
answer: Let’s think step by step. MAGOOSHOFFICIAL SOLUTION. For the first die, we can
roll any one of six numbers. For the second die, we can roll any number save for the number we
rolled on the first die, giving us 5 possibilities. For the third die, we can roll four different numbers
(we can’t roll the number we rolled on the first or second die). 6 possibilities out of 216 total
possibilities. 6/6 = 1. The final answer is C.

question: If q is the square of a positive integer, which of the following must be equal to the square
of the next positive integer? A)

√
n+ 1 B)n+ 1 C)n2 + 1 D)q + 2

√
q + 1 E)n2 + 2n+ 1

answer: Let’s think step by step. If q is the square of a positive integer, then q = (x)2 where x is a
positive integer. To calculate, (x+ 1)2 = x2 + 2x+ 1, which is q + 2

√
q + 1. This should be D.

The final answer is D.

question: If Tim had lunch at $50 and he gave 20% tip, how much did he spend? A)$60.00 B)$35.42
C)$60.60 D)$21.56 E)$78.45
answer: Let’s think step by step. The tip is 20% of what he paid for lunch. Tip = 20% of 50.00 =
$10.00. Total spent = 50.00 + 10.00 = $60.00. The final answer is A.

question: Carl is facing very difficult financial times and can only pay the interest on a $10,000 loan
he has taken. The bank charges him a quarterly compound rate of 4%. What is the approximate
interest he pays annually? A)$1600 B)$2000 C)$2150 D)$2500 E)$12000
answer: Let’s think step by step. The bank charges a 4% quarterly compounded annual rate. Per
quarter rate is (16/4)% = 4%. Thus, the quarterly compounded interest will be slightly more than
$1600. The final answer is A.

question: A shopkeeper employed a servant at a monthly salary of 1500. In addition to it, he agreed
to pay him a commission of 15% on the monthly sale. How much sale in Rupees should the servant
do if he wants his monthly income as 6000? A)30000 B)415000 C)31500 D)50000 E)None of
these
Number of problem-solving logic step:
2->3->4->5->6

Table 10: Full prompt example for in-context learning on the AQuA dataset
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Prompt
System prompt
Please provide the answer in the following format: "The final answer is <answer>"
User input
question: A shopkeeper bought 150 packets of milk. Each packet contained 250 ml of milk. If one
fluid ounce is equal to 30 ml, how many ounces of milk did he buy?
nanswer: Let’s think step by step. If the shopkeeper bought 150 packets of milk, each packet
containing 250ml of milk, all the packets had a total of 250*150 =«150*250=37500»37500ml.Since
one ounce equal 30 ml, the total amount of milk that the shopkeeper bought in oz is
37500/30=«37500/30=1250»1250 oz of milk. The final answer is 1250

question: Twenty gallons of tea were poured into 80 containers. Geraldo drank 3.5 containers. How
many pints of tea did Geraldo drink?
answer: Let’s think step by step. 20 gallons = 160 pints. 160/80 = «160/80=2»2 pints.3.5 * 2 pints
= «3.5*2=7»7 pints. Geraldo drank 7 pints of tea. The final answer is 7

question: During the holidays, Lance works as a merchandiser. He works 35 hours a week, spread
equally over 5 workdays. If Lance earns $9 an hour, how much does he make on each workday?
answer: Let’s think step by step. Lance works 35 / 5 = «35/5=7»7 hours a day. So he makes $9 x 7
= $«9*7=63»63 on each workday. The final answer is 63

question: A snack machine accepts only quarters. Candy bars cost ¢25, each piece of chocolate
costs ¢75, and a pack of juice costs ¢50. How many quarters are needed to buy three candy bars,
two pieces of chocolate, and one pack of juice?

answer: Let’s think step by step. Three candy bars cost ¢25 x 3 = ¢«25*3=75»75. Two pieces
of chocolate cost ¢75 x 2 = ¢«75*2=150»150. So, the total amount needed to buy those is ¢75
+ ¢150 + ¢50 = ¢«75+150+50=275»275. Since a quarter is equal to ¢25, therefore ¢275/¢25 =
«275/25=11»11 quarters are needed. The final answer is 11

question: Mark makes custom dog beds. A bed for a Rottweiler takes 8 pounds of stuffing, a bed
for a chihuahua takes 2 pounds of stuffing, and a bed for a collie takes the average amount of
stuffing between the first two kinds of beds. How many pounds of stuffing does Mark need to make
4 chihuahua beds and 3 collie beds?
Number of problem-solving logic step:
5->6->7->8->8

Table 11: Full prompt example for in-context learning on the Gsm8k dataset
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Prompt
System prompt
Please provide the answer in the following format: "The final answer is <answer>"
User input
question: What is the only was to recover from exhaustion? A. mediate B. have rest C. stay in bed
D. run out of steam E. go to sleep
answer: B

question: Google Maps and other highway and street GPS services have replaced what? A. united
states B. mexico C. countryside D. atlas E. oceans
answer: D

question: You can share files with someone if you have a connection to a what? A. freeway B. radio
C. wires D. computer network E. electrical circuit
answer: D

question: If a person isn’t able to pay their bills what must they do? A. know everything B.
acknowledgment C. make more money D. throw a party E. spare time
Number of problem-solving logic step:
1->2->3->3

Table 12: Full prompt example for in-context learning on the ComSenQA dataset

Prompt
System prompt
Please provide the answer in the following format: "The final answer is yes or no"
User input
question: Can you buy Casio products at Petco?
answer: Casio is a manufacturer of consumer electronics and watches. Petco is a chain store that
sells pet supplies like food, bowls, litter, toys, cages and grooming equipment. The final answer is
no

question: Did Clark Gable appear in any movies scored by John Williams?
answer: Clark Gable died in 1960. John Williams scored his first movie in 1961. The final answer
is no

question: Could a dandelion suffer from hepatitis?
answer: Only creatures that contain a liver can suffer from hepatitis. The liver is an organ only
found in vertebrates. Vertebrates exist in the kingdom Animalia. Dandelions are plants in the
kingdom Plantae. The final answer is no

question: Did Mozart ever buy anything from Dolce & Gabbana?
Number of problem-solving logic step:
2->3->4->4

Table 13: Full prompt example for in-context learning on the StrategyQA dataset
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