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Abstract

Large Language Models (LLMs) have shown
strong performance in solving mathematical
problems, with code-based solutions proving
particularly effective. However, the best prac-
tice to leverage coding instruction data to en-
hance mathematical reasoning remains under-
explored. This study investigates three key
questions: (1) How do different coding styles
of mathematical code-based rationales impact
LLMSs’ learning performance? (2) Can general-
domain coding instructions improve perfor-
mance? (3) How does integrating textual ra-
tionales with code-based ones during training
enhance mathematical reasoning abilities? OQur
findings reveal that code-based rationales with
concise comments, descriptive naming, and
hardcoded solutions are beneficial, while im-
provements from general-domain coding in-
structions and textual rationales are relatively
minor. Based on these insights, we propose
CoinMath, a learning strategy designed to en-
hance mathematical reasoning by diversify-
ing the coding styles of code-based rationales.
CoinMath generates a variety of code-based
rationales incorporating concise comments, de-
scriptive naming conventions, and hardcoded
solutions. Experimental results demonstrate
that CoinMath significantly outperforms its
baseline model, MAmmoTH, one of the SOTA
math LLMs.!

1 Introduction

Large Language Models (LLMs) have been ex-
tensively applied to solving mathematical prob-
lems (Lewkowycz et al., 2022; Azerbayev et al.,
2023; Luo et al., 2023; Ahn et al., 2024; Shao
et al., 2024). Recently, the approach of using code-
based solutions has achieved significant success,
as the calculations are handled by a program inter-
preter, while the reasoning steps are effectively rep-
resented in code format. Prior studies on prompt-

'Our model, code, and datasets are open-sourced at https:
//github.com/amaoo@/CoinMath

ing, such as Program-of-Thoughts (PoT) (Chen
et al., 2022) and Program-Aided Language mod-
els (PAL) (Gao et al., 2023a), have demonstrated
that generating solutions in a code format signifi-
cantly enhances LLM performance on mathemat-
ical tasks compared to Chain-of-Thoughts (CoT)
which uses a text format (Wei et al., 2022). Further-
more, LLLMs trained on mathematical instruction
data with code-based rationales, reasoning steps
presented in executable code, have shown strong
performance (Wang et al., 2023a; Yue et al., 2023;
Zhang et al., 2024a; Toshniwal et al., 2024).

Given the demonstrated effectiveness of mathe-
matical instruction data with code-based rationales,
there is growing interest in synthesizing additional
mathematical problems to expand mathematical
coding instruction datasets (Zhang et al., 2024a;
Toshniwal et al., 2024), aiming to enhance the per-
formance further. Despite this progress, the ques-
tion of how such coding instruction data can be best
leveraged to maximize its impact remains under-
explored. Recently, Zhang et al. (2024b) showed
that model instruction-tuned on text or a mix of
text and code outperforms models trained solely
on code in mathematical reasoning. However, the
conclusions are drawn from evaluating the models
by generating solutions in a text format instead of
a code format. Bi et al. (2024) found that code-
based rationales of medium complexity yield the
best reasoning performance.

Taking this further, our study delves deeper
into the effective utilization of existing coding
instruction data to enhance mathematical reason-
ing. Specifically, we first conduct a comprehensive
study on coding instruction to address three critical
questions: 1) How do different coding styles (e.g.,
having a detailed comment or not) of mathemati-
cal code-based rationales impact LLMs’ learning
performance in mathematical reasoning? 2) Can
coding instructions from general domains, beyond
math, provide meaningful benefits under PoT rea-
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soning? and 3) How does integrating textual ra-
tionales with code-based ones during instruction
tuning enhance mathematical reasoning abilities?

Our findings can be summarized as follows:

* Mathematical code-based rationales that in-
clude concise comments and descriptive nam-
ing conventions are the most effective. Hard-
coded rationales offer straightforward solu-
tions that facilitate the model’s learning.

* General domain coding instructions provide
limited performance improvement compared
to those from the mathematical domain.

* Adding textual rationales of math questions
slightly enhances the performance of general-
purpose models. In contrast, textual rationales
do not benefit code-specialized models.

As the impact of coding instructions from
general domains and textual rationales is mini-
mal, while models exhibit varying behaviors to-
ward code-based rationales with different coding
styles, we propose CoinMath, short for Coding
Instruction for Math, a learning strategy to effec-
tively enhance LLMs’ mathematical reasoning ca-
pabilities. CoinMath diversifies the coding styles
of code-based rationales by incorporating advan-
tageous coding attributes, including concise com-
ments, descriptive naming, and hardcoded solu-
tions. Experimental results demonstrate that Coin-
Math significantly outperforms the previous SOTA
Math LLMs.

Our major contributions are as follows:

* We present a systematic study that investigates
what makes diverse coding instructions effec-
tive, how they enhance the mathematical rea-
soning of LLMs, and why they work, uncov-
ering the key factors behind their impact.

* Based on the above findings, we propose
CoinMath, a learning strategy that improves
LLMs’ mathematical reasoning by incorporat-
ing code-based rationales with concise com-
ments, descriptive naming conventions, and
hardcoded solutions. Experimental results
show that it outperforms the SOTA model by
an average improvement of 5.9% in accuracy.

* We release the CoinMath model, curated
datasets, and training and evaluation pipelines,
enabling reproducibility and advancing re-
search in mathematical reasoning for LLMs.

2 Related Work

Solving Math with Code. Chain-of-Thought
(CoT) prompting (Nye et al., 2021; Wei et al.,
2022), which guides LLMs to generate intermedi-
ate steps in textual rationales, has proven effective
on reasoning tasks. Expanding on this foundation,
Program-of-Thoughts (PoT) and Program-Aided
Language models (PAL) (Chen et al., 2022; Gao
et al., 2023a) have used code for reasoning. These
methods prompt LLMs to generate reasoning steps
as code and assign computations to external pro-
gram interpreters, which has achieved significant
success, particularly in mathematical reasoning
tasks that involve complex calculations and logical
operations. Subsequently, recent works (Toshniwal
et al., 2024; Wang et al., 2023a; Yue et al., 2023;
Gou et al., 2024) have constructed mathematical
instruction datasets with code-based rationales and
fine-tuned LLMs on them, further improving model
performance on solving math problems.

Effect of Coding Instruction on Mathematical
Reasoning. Several studies have explored coding
instruction’s impact on LLMs’ mathematical rea-
soning abilities. Wang et al. (2023b) and Ma et al.
(2024) indicated that coding instruction only en-
hances task-specific reasoning capabilities, which
suggests non-math-specific data have minimal or
even negative effects on mathematical reasoning.
Zhang et al. (2024b) found that models trained
on pure textual instructions or a combination of
textual and coding instructions perform better in
mathematical reasoning than those trained solely
on coding instructions. However, the evaluations of
these studies focused on CoT reasoning and gener-
ating textual solutions rather than code-based ones,
which may limit the potential benefits of coding
instructions. By contrast, Bi et al. (2024) evaluated
models in PoT reasoning and revealed that mathe-
matical code-based rationales with medium com-
plexity lead to the most significant improvements.
However, they did not comprehensively examine
the effects of different coding styles, code domains,
or the interplay between textual and code-based
rationales in enhancing mathematical reasoning.

3 Study on Coding Instruction

This study investigates the effective utilization of
coding instructions to enhance the mathematical
reasoning abilities of LLMs. It focuses on three key
questions. 1) Coding Style: Identifying the effect
of different coding styles of mathematical code-
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based rationales on LLMs’ mathematical reasoning
learning. 2) Code Domain: Exploring whether cod-
ing instructions from general (non-mathematical)
domains can enhance performance in solving math-
ematical problems under PoT reasoning. 3) Integra-
tion with Textual Rationales: Evaluating the impact
of combining mathematical textual rationales with
code-based ones during training to enhance mathe-
matical performance.

To explore the above questions, we collect in-
struction tuning datasets for three types: Math-
Text, Math-Code and General Code. The Math-
Text dataset, derived from MathInstruct (Yue et al.,
2023), contains 26k math questions annotated with
textual rationales. Similarly, Math-Code is another
subset of MathInstruct, consisting of the same 26k
math questions as Math-Text but annotated with
code-based rationales. Finally, General Code com-
prises 21k Python coding instructions for non-math-
specific tasks, curated from Code Alpaca (Chaud-
hary, 2023) and code generation tasks?. Detailed
statistics for these datasets can be found in Ap-
pendix Table 7.

For evaluation datasets, we use four math Q&A
datasets representing distinct mathematical per-
spectives: (1) Arithmetic: A dataset of arith-
metic questions from MathBench (Liu et al., 2024).
(2) SVAMP (Patel et al., 2021): A primary-
school-level algebraic word problem dataset. (3)
GSM (Cobbe et al., 2021): A middle-school-
level algebraic word problem dataset. (4) MATH
(Hendrycks et al., 2021): A challenging dataset that
extends beyond the high school level and covers
diverse topics, including algebra, precalculus, and
number theory. Examples from each dataset are
provided in Appendix Figure 5. While Arithmetic
focuses solely on basic arithmetic, the difficulty
of mathematical problems increases progressively
from SVAMP to GSM, and finally to MATH. By
default, we use PoT reasoning during evaluation
unless otherwise specified as CoT reasoning.

Both general-purpose and code-specialized mod-
els are evaluated. The general-purpose mod-
els include Llama-3.1-8B (Dubey et al., 2024)
and Gemma-2B (Gemma-Team, 2024), while
the code-specialized models include CodeLlama-
Python-7B (Roziere et al., 2023) and CodeGemma
(CodeGemma-Team, 2024). The instruction tuning
details are provided in Appendix D.

2https://huggingface.co/datasets/iamtarun/
python_code_instructions_18k_alpaca

3.1 Coding Style

What coding styles in code-based rationales are
most effective for model learning? To address this
question, we examine three key attributes of cod-
ing styles that may influence a model’s mathemati-
cal reasoning capabilities: Comment Usage, Nam-
ing Convention, and Solution Generality. Previous
studies have discussed the role of variable naming
and comment usage in prompting design (Chen
et al., 2022; Gao et al., 2023a). In contrast, we fo-
cus on the influence of the instruction tuning phase
with three attributes including a newly introduced
one called, Solution Generality. Figure 1 illustrates
examples of different coding styles across these
attributes. To generate rationales with diverse cod-
ing styles, we employ GPT-40 (OpenAl, 2024) to
transform the original code-based rationales in the
Math-Code dataset into variations reflecting diverse
coding styles. Detailed instructions for generating
these rationales are provided in Appendix C.

We focus on evaluating models in a zero-shot
setting, as instruction-tuned models trained with
datasets featuring different coding styles typically
require few-shot examples that align with those
styles, but a few-shot setting with different exam-
ples for different models may lead to biased eval-
uation results. Zero-shot evaluation allows us to
isolate the effects of the instruction tuning data as
the sole variable.

Comment Usage. We analyze the role of com-
ment density in code-based rationales. Comments
explain the overall logic of the rationales and the
reasoning behind each step. We create three types
of code-based rationales with varying comment
usages: No Comment, Concise Comment, and De-
tailed Comment. In No Comment, the code stands
alone, requiring the model to learn the code’s func-

Model Comment | A. S. G. M. | Avg.
No | 617 304 324 115|340

Hlama3-1- | concise | 83.3 803 73.5 364 | 68.4
Detailed | 80.7 834 73.6 355 | 683

No | 827 644 522 273 567

Cl,"y‘iﬁlgha_?g' Concise | 83.0 687 59.7 28.1 | 59.9
Detailed | 833 69.6 554 272 589

‘ No | 730 653 53.6 258 | 544
Gemma-2- | Concise | 773 67.6 547 266 | 566
Detailed | 79.0 672 540 244 | 56.2

No | 790 53.1 409 214486

CodeGiemma- | concise | 80.0 520 410 217 | 487
Detailed | 81.0 552 39.7 21.4 | 49.3

Table 1: Results with different Comment Usages. The
best average performance for each model is highlighted
in bold. A., S., G., and M. refer to the Arithmetic,
SVAMP, GSM, and MATH datasets, respectively.
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Question: Calculate the sum $1 + 3 + 5 + \\cdots + 15 + 17$. Please write a program to solve it

Comment Usage

Concise Comment I
# Python program to calculate the sum ||
# The sum is an arithmetic series of \ ||
# odd numbers from 1 to 17

return total || return total_sum
# Print the answer ||

print(calculate_sum(1, 17, 2

Detailed Comment (!
# Python program to calculate the sum
# The sum is an arithmetic series of \
# odd numbers from 1 to 17 |I # ...

def calculate_sum(start, end, step |
# Initialize total to © to hold \ I X =0
# the sum of the series |I

total = @ L X 4=y

|| return x
return total

# Call the function with start=1, \ ||
# end=17, step=2 and print the result ||
print(calculate_sum(1, 17, 2 ||

Naming Convention

Descriptive Naming 11

|| def calculate_sum(start_value, \ || # the sum1 + 3 +5 + ... + 17
def calculate_sum(start, end, step || CELTELE, SEERIENE | izl 5 @
total = total_sum = @ | for i in range(1, 18, 2
L. |I for current_number in range \ || total += i
for i in range(start, end+l, step
. | start_value, end_value + 1, step_value
total += i | 11

total_sum += current_number

Obscure Naming

def calculate_sum(a

for y in range(a, b + 1, ¢ ||

Solution Generality
Hardcoded

|| # Specific solution for calculating \

# Print the answer
11 print(total

Generalized

|| # Function to calculate the sum of \
|| # an arithmetic series of odd numbers
def calculate_odd_sum(start, end
b, ¢ total = @
|| for i in range(start, end + 1, 2
total += i

return total
# Example usage
11 start = 1
|| end = 17

print(calculate_odd_sum(start, end

Figure 1: Exemplary code-based rationales in various coding styles (excluding No Comment in Code Notation).
Certain lines are folded or omitted for improved visualization.

tionality and mathematical logic solely from the
code. Concise Comment includes essential annota-
tions that clarify key steps in math problem-solving.
Detailed Comment rationales offer comprehensive
annotations, providing line-by-line explanations of
the code’s functionality and the underlying math-
ematical logic. By examining these three types
of comment usage, we can assess how the pres-
ence and density of comments in instruction data
influence the model’s mathematical reasoning ca-
pabilities.

The experimental results are summarized in Ta-
ble 1. Compared with No Comment, both Concise
Comment and Detailed Comment styles exhibit
good overall performance, with Concise Comment
slightly outperforming Detailed Comment. Addi-
tionally, the performance improvement of Concise
Comment and Detailed Comment over No Com-
ment is larger for general-purpose models than
for the code-specialized models. This suggests
that while both general-purpose and code-specific
models benefit from comments, code-specialized
models inherently have a strong ability to under-
stand code, making comments less critical for them.
In contrast, comments are relatively crucial for
general-purpose models to better grasp the mathe-
matical reasoning underlying the code.

Naming Convention. We identify naming con-

Model Naming A. S. G. M. | Avg.
Llama- Descriptive | 82.3 81.8 729 35.6 | 68.2
3.1-8B Obscure | 78.0 80.1 723 357 | 66.5
CodeLlama- | Descriptive | 80.3 69.8 583 28.0 | 59.1
Python-7B Obscure | 79.0 66.1 555 28.0 | 57.2
Gemma- Descriptive | 74.7 65.3 57.8 26.5 | 56.1
2-2B Obscure | 73.7 623 550 259 | 542
CodeGemma- | Descriptive | 74.0 57.3 409 21.6 | 484
Obscure | 72.0 54.8 39.7 214 | 47.0

Table 2: Results with different Naming Conventions.

ventions that best support models’ mathematical
reasoning learning. We design two types of naming
conventions, namely, Descriptive Naming and Ob-
scure Naming, while keeping other aspects of the
code, such as comments and logic, unchanged. De-
scriptive Naming uses clear and meaningful names
for all variables, whereas obscure naming employs
short, non-descriptive names (e.g., single letters or
random abbreviations).

As shown in Table 2, the results indicate that De-
scriptive Naming generally outperforms Obscure
Naming. These findings are consistent with previ-
ous studies on naming conventions in prompting
(Chen et al., 2022; Gao et al., 2023a). This further
supports the idea that Descriptive Naming provides
semantic context, helping models associate vari-
able and function names with their intended pur-
poses, which in turn enhances their understanding
of mathematical problems.
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Model Generality A. S. G. M. | Avg.
Llama-3.1- | Hardcoded | 833 789 735 34.8 | 67.6
3B Generalized | 78.0 75.1 727 29.0 | 63.7
CodeLlama- | Hardcoded | 820 67.9 585 29.3 | 59.4
Python-7B | Generalized | 71.3 67.4 54.8 21.7 | 53.9
Gemma-2- Hardcoded | 783 62.5 556 264 | 55.7
2B Generalized | 68.7 603 514 189 | 49.8
CodeGemma- | Hardcoded | 76.0 52.8 403 214 | 47.6
2B Generalized | 68.7 49.0 392 169 | 435

Table 3: Results with different Solution Generalities.

Solution Generality. We explore the benefits of
generalized versus hardcoded solutions. In a gener-
alized solution, a reusable function is written to cap-
ture the logic underlying the math problem, allow-
ing the code to handle similar mathematical prob-
lems by accepting different inputs. Such reusable
functions help models acquire generalizable knowl-
edge of mathematical problems, thereby improving
their ability to generalize. In contrast, hardcoded
solutions are tailored to specific problem instances,
making them straightforward and easier for the
model to learn.

As shown in Table 3, hardcoded solutions consis-
tently outperform generalized solutions, suggesting
that models benefit more from the explicit speci-
ficity of hardcoded logic, which simplifies learn-
ing. However, these results do not imply that hard-
coded solutions are always better for mathemat-
ical instruction tuning. For example, a retrieval-
augmented generation (RAG) model (Gao et al.,
2023b) may perform better with generalized solu-
tions if it retrieves relevant functions effectively.
We do not explore this area, as our experiments
focus on a zero-shot setting for coding styles.
Summary. Based on our analysis of coding styles,
we draw the following conclusions: 1) Comments
on code-based rationales consistently improve per-
formance as they help LLMs understand the logic
behind mathematical problems. 2) Descriptive
naming conventions should be adopted to enhance
the model’s understanding of mathematical prob-
lems. 3) The hardcoded style of code-based ra-
tionales provides a simpler and more effective ap-
proach for model learning.

3.2 General Coding Instruction is Limited for
Math Reasoning

The second question is whether coding instructions
from general domains, i.e. non-mathematical do-
mains, can improve mathematical ability under PoT
reasoning. To investigate this, we train models on
three instruction tuning datasets: General Code,
Math-Code, and a combination of General Code

IT Data | Arith | SVAMP | GSM | MATH | Avg.
Zero-Shot
Vanilla Llama 13.0 1.4 1.0 1.0 4.1
+G.C. 35.0 36.6 253 11.8 | 27.2
+ M.C.
+ Mix 653
Vanilla CodeLlama | 19.3 7.2 1.2 2.4 7.5
+G.C. 70.3 50.9 234 144 | 398
+M.C.
+ Mix 23.9
Few-Shot
Vanilla Llama 78.0 73.1 50.0 18.0 | 54.8
+G.C. 74.7 76.2 51.3 23.0 | 56.3
+M.C. 83.7 80.4 71.6 33.8 | 674
+ Mix 78.7 78.0 71.6 344 | 65.7
Vanilla CodeLlama | 79.7 529 21.1 14.1 42.0
+G.C. 75.3 54.0 27.3 16.6 | 433
+M.C. 80.0 65.8 54.4 259 | 56.5
+ Mix 80.7 65.4 51.8 24.7 | 55.6

Table 4: Performance of coding instruction from differ-
ent domains. G.C., and M.C. represent General Code,
and Math-Code, respectively. Vanilla Llama and Vanilla
CodeLlama represent Llama-3.1-8B and CodeLlama-
Python-7B, respectively. Cells are green if the instruc-
tion tuning boosts the vanilla models’ performance, and
red if the instruction tuning hurts the performance.

and Math-Code.

Prior studies (Wang et al., 2023b; Zhang et al.,
2024b) indicate that, under CoT reasoning, instruc-
tion tuning on general code, i.e., non-math-specific
data can have trivial or even negative effects on
mathematical reasoning abilities. Under PoT rea-
soning, our experiments reveal a different trend,
which is presented in Table 4.

In both zero-shot and few-shot settings, training
solely on General Code mostly enhances the mod-
els’ performance in solving math problems. This
improvement is primarily attributed to the models’
enhanced ability to generate valid code and fol-
low instructions, making the models better suited
for PoT reasoning compared to the base model.
We define the valid code rate as the percentage of
executable code generated by a model. Figure 2
presents the accuracy and valid code rate under
zero-shot settings. The results demonstrate that
training on General Code significantly improves
the models’ ability to generate valid code and ad-
here to instructions, leading to higher accuracy in
solving mathematical questions.

However, models solely trained on Math-Code
achieve the best performance, and incorporating
General Code alongside Math-Code reduces its
effectiveness. This implies that non-task-relevant
coding instructions, i.e., General Code, distract the
models and hinder their mathematical reasoning
capabilities. These findings suggest that coding
instructions from general domains offer limited
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(a) LLama-3.1-8B
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95.6% 94.1% [ 100
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80
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Average Valid Code Rate (%)

Vanilla G.C. M.C.
Instruction

G.C. & M.C.

(b) CodeLlama-Python-7B

Figure 2: Average accuracy and average valid code rate
across the evaluation datasets under zero-shot.

benefits for enhancing mathematical reasoning.

3.3 Math-Text is Not Always a Supplement
for Math-Code

Recent works (Yue et al., 2023; Wang et al., 2023a)
commonly employ hybrid training on both textual
and code-based rationales to enhance mathemat-
ical reasoning. According to Yue et al. (2023),
textual rationales contribute to general language-
based reasoning, particularly for scenarios where
PoT reasoning struggles, such as abstract reasoning
in multiple-choice questions.

In this study, we delve deeper by focusing
on math questions that require concrete calcula-
tions, excluding abstract reasoning, and investigate
whether Math-Text consistently serves as a sup-
plement to Math-Code. To ensure a fair compari-
son, we trained models on three instruction tuning
datasets: Math-Text, Math-Code, which contain
identical mathematical questions, differing only in
the rationales provided, and a combination of both.

The results presented in Table 5 show differ-
ent trends between general-purpose and code-
specialized models. For the general-purpose model,
Llama-3.1-8B, incorporating Math-Text alongside
Math-Code slightly improves performance by en-
hancing the model’s ability to comprehend math-
ematical problems in a language-based manner.
However, for code-specialized models, this addi-
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Model IT Data | Arithh SVAMP GSM MATH | Avg
Zero-Shot
amaal. | M [387 622 546 206 [ 440
Llama3 -1 Mc. | 803 809 738 321 | 668
Mix | 803 8L1 760 344 | 679
MT. | 227 448 324 79 | 269
CodeLlama- | vic | 837 690 587 292 | 602
Mix | 793 678 591 281 | 586
Few-Shot
amaal. | M [4837 675 627 218 [ 501
Llaa3. -1 Mc. | 837 804 716 338 | 674
Mix | 830 798 730 354 | 678
MT. | 310 484 267 79 |285
CodeLlama- | vy | 800 658 544 259 | 565
Mix | 783 651 534 245 |553

Table 5: Performance of coding instruction from textual
and code-based rationales. M.T, and M.C. represent
Math-Code, and Math-Code, respectively. M.T. uses
CoT prompting inference while others use PoT prompt-
ing inference.

tion negatively impacts performance, as these mod-
els are inherently optimized for code generation.
The inclusion of textual rationales may interfere
with their specialized capabilities. This finding
suggests that when mathematical questions include
code-based rationales, augmenting them with tex-
tual explanations is beneficial only for models that
are proficient in textual reasoning.

4 CoinMath

Building on the insights from our systematic study
on coding instruction, we introduce CoinMath, a
strategy that enhances coding instructions by in-
corporating beneficial coding styles to improve the
mathematical reasoning capabilities of LLMs.

4.1 Method

The CoinMath framework is depicted in Figure 3.
As discussed in the previous section, LLMs demon-
strate varying performance depending on the cod-
ing styles of mathematical rationales. Among the
evaluated coding styles, Concise Comment per-
forms best in the Comment Usage category, De-
scriptive Naming outperforms in Naming Conven-
tions, and Hardcoded Solution outperforms in So-
lution Generalities. However, while these styles
outperform their counterparts within their respec-
tive attributes, no single coding style proves univer-
sally optimal for all mathematical questions. For
instance, as shown in Section 3.1, Hardcoded So-
lution, while better than Generalized Solution in
the Solution Generality attribute, performs poorly
on the SVAMP dataset for Llama-3.1-8B. This sug-
gests that a fixed coding style may not be ideal for
all mathematical problems.



Code-based Rationales
Atriangle in a Cartesian coordinate plane has
vertices (5, -2), (10, 5) and (5, 5). How many
square units are in the area of the triangle? ...

Comment
Usage

Diverse Coding Styles

Atriangle in a Cartesian coordinate plane has
vertices (5, -2), (10, 5) and (5, 5). How many
square units are in the area of the triangle? ...
Concise Comment
# Given vertices of the triangle
x1, yl =5, -2
x2, y2 = 10, 5

def area_of_triangle(xl, y1, x2, y2, X3, y3
return @.5 * abs((x1*(y2-y3) + x2*(y3-y1)\ Naming
Tt Convention
# Given vertices
X1, yl =5, -2
X2, y2 = 10, 5
X3, y3 =5, 5
area = area_of_triangle(xl, yl, x2, y2, x3, y3

Solution
Generality

——>

Coding Styles
Enhancement

# Given vertices
vertexl_x, vertexly =5, -2
vertex2_x, vertex2_y = 10, 5

# Vertices
x1, yl =
X2, y2 = 10, 5
x3, y3 =5, 5
# Calculate the area using the formula

of the triangle

area = 0.5 *

Descriptive Naming

Hardcoded Solution

Instruction

2 Tuning

abs((x1 * (y2 - y3) + x2 \

£ (y3 - yl) + x3 * (y1 - y2

Figure 3: Overview of CoinMath framework. CoinMath generates three distinct variations of code-based rationales
with advantageous coding attributes—Concise Comment, Descriptive Naming, and Hardcoded Solution—and

ensembles them for LLM instruction tuning.

Instead of creating only one code-based rationale
for a math question with fixed coding attributes,
CoinMath generates three variations of rationales
with diverse beneficial coding styles, using the
same strategy outlined in Section 3.1. Each varia-
tion emphasizes one specific coding style attribute:
concise comments, descriptive naming conventions,
or hardcoded solutions. CoinMath then ensembles
these three variations of rationales with beneficial
coding attributes to maximize the enhancement of
models’ mathematical reasoning.

Additionally, CoinMath excludes coding instruc-
tions from general domains and mathematical tex-
tual rationales, as their contributions to improving
mathematical reasoning are minimal or even nega-
tive.

4.2 Experimental Setup

We scale up the base instruction tuning dataset us-
ing the complete set of code-based rationales from
MathlInstruct (Yue et al., 2023), which contains 73k
math questions with code-based rationales. Subse-
quently, we leverage this scaled dataset to generate
code-based rationales with diverse coding styles
using GPT-40. We use the same evaluation datasets
as in Section 3.

For comparison, we select representative models
from the following three categories: Base mod-
els: We consider LLama-3.1 (Dubey et al., 2024)
and CodeLlama-Python-7B (Roziere et al., 2023)
as our base models. Instruct models: We in-
clude Codel.lama-3.1-8B-Instruct (Dubey et al.,
2024) as a representative instruct-tuned model.
Math-specific models: These models are fine-

tuned specifically for solving math problems, in-
cluding WizardMath (Luo et al., 2023), Math-
Coder (Wang et al., 2023a), and MAmmoTH (Yue
et al., 2023). Since our instruction-tuning dataset
with diverse coding styles is derived from Math-
Instruct which MAmmoTH utilizes, we further
fine-tuned LLama-3.1-8B and Codel.lama-Python-
7B on MathlInstruct to ensure consistency in base
models used for comparison. This approach es-
tablishes a strong baseline for assessing the im-
provements introduced by CoinMath. Additionally,
we include Qwen2-Math-7B and Qwen2-Math-7B-
Instruct (Yang et al., 2024), which are heavily op-
timized for mathematics and demonstrate superior
performance, rivaling even closed-source models
(e.g., GPT-4).

We evaluate the models’ zero-shot performance
and select the best result from two prompting ap-
proaches: CoT prompting and hybrid prompting.
The hybrid prompting approach first uses PoT
prompting and resorts to CoT prompting only if
PoT fails to generate a result.

4.3 Results and Analysis

The experimental results are presented in Table 6.
CoinMath significantly outperforms MAmmoTH
after learning from code-based rationales that incor-
porate concise comments, descriptive naming con-
ventions, and hardcoded solutions. Additionally,
both CoinMath and Llama-3.1-Instruct are built on
the Llama-3.1 base model and are instruct-tuned for
mathematical reasoning, with Llama-3.1-Instruct
further fine-tuned on other instruction-tuning top-
ics. CoinMath surpasses Llama-3.1-Instruct except
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Model ‘ Base Prompt | Arithmetic SVAMP GSM MATH Avg
Non-Math-Specific Model (<8B)

Llama-3.1 - CoT 36.7 45.7 17.9 8.6 27.3
Llama-3.1-Instruct - CoT 51.7 81.1 75.1 45.7 63.4
CodeLlama-Python - Hybrid 24.3 21.9 3.7 4.9 13.7
Math-specific Model (<8B)

Qwen2-Math Qwen2 CoT 76.3 914 78.8 71.6 79.5
Qwen2-Math-Instruct | Qwen2 CoT 65.0 87.0 79.2 70.2 754
WizardMath-V1.1 Llama-2 CoT 38.3 72.5 67.4 335 52.9
MathCoder-L} Llama-2 - - 715 64.2 23.3 -
MathCoder-CL' CodeLlama - - 70.7 67.8 30.2 -
MAmmoTH Llama-2 Hybrid 13.0 65.3 51.9 31.5 40.4
MAmmoTH-Coder CodeLlama Hybrid 31.0 54.2 31.8 20.5 344
MAmmoTH Llama-3.1 Hybrid 71.4 81.3 73.0 39.1 66.2
MAmmoTH-Coder CodeLlama-Python | Hybrid 72.7 67.0 52.9 21.8 53.6
CoinMath Llama-3.1 Hybrid | 77.0 (+5.6) | 83.1 (+1.8) | 76.4 (+3.4) | 40.3 (+1.2) | 69.2 (+3.0)
CoinMath CodeLlama-Python | Hybrid | 80.7 (+8.0) | 75.1 (+8.1) | 62.0 (+9.1) | 31.8 (+10.0) | 62.4 (+8.8)

Table 6: Zero-shot performance on mathematical evaluation datasets. Red numbers highlight the improvement
compared with the same base models trained on MathInstruct, i.e., MAmmoTH models. T means the results are

from the corresponding papers.

for the MATH dataset, demonstrating the effective-
ness of our approach.

It is worth noting that the performance on the
Arithmetic dataset, an out-of-domain evaluation
dataset, decreases compared to the results in Sec-
tion 3 as the training set is scaled up. In ad-
dition, it is reasonable that our models fall be-
hind the Qwen2-Math models, as those models
undergo extensive training for mathematics across
pre-training, instruction tuning, and reinforcement
learning stages while CoinMath focuses solely on
the instruction tuning stage.

Ablation Study. We investigate the impact of
combining different coding styles on model per-
formance. Figure 4 presents the average accuracy
across our evaluation datasets for various combi-
nations of coding styles. Detailed performance
metrics for each individual evaluation dataset are
provided in Appendix E. Our results show that
incorporating concise comments, descriptive nam-
ing conventions, and hardcoded solutions consis-
tently enhances the model’s performance in solving
math problems. In contrast, their counterparts—no
comment, obscure naming conventions, and gen-
eralized solutions—yield relatively inferior perfor-
mance, achieving results similar to training solely
with concise comments. Finally, combining all
coding styles does not achieve performance as high
as the combination of concise comments, descrip-
tive naming conventions, and hardcoded solutions,
further proving that these three attributes are partic-
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1% o w o
L L L L
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o
L
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[

Llama-3.1-8B

CodeLlama-Python-7B

Concise Comment

Concise Comment + Descriptive Naming

Concise Comment + Descriptive Naming + Hardcoded Solution
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|
|
|
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Figure 4: Average accuracy of the models using code-
based rationales with different combinations of styles.
The average accuracy is calculated across the Arith-
metic, SVAMP, GSM, and MATH datasets.

ularly effective for code-based rationales in improv-
ing the model’s mathematical reasoning ability.

5 Conclusion

We conduct a systematic study to investigate how
coding instructions can effectively enhance the
mathematical reasoning abilities of LLMs. Based
on these findings, we propose CoinMath, which fo-
cuses specifically on mathematical code-based ra-
tionales and combines mathematical coding instruc-
tions with concise comments, descriptive naming,
and hardcoded solutions to boost the mathemati-
cal reasoning capabilities of LLMs. Experimen-
tal results demonstrate that CoinMath outperforms
the baseline model, MAmmoTH, one of the SOTA
models, by an average improvement of 5.9% in
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accuracy.

Limitations

We focus on evaluating LLMs’ mathematical rea-
soning abilities on datasets requiring concrete cal-
culations, including Arithmetic, SVAMP, GSM,
and MATH. However, for other types of math ques-
tions involving abstract reasoning or mathematical
knowledge, such as abstract algebra, and theorem
comprehension. code-based solutions may be less
effective. This underscores the importance of ex-
tending our work to these tasks to gain insights
across a broader range of mathematical question

types.
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A Statistics of Instruction Tuning
Datasets

Table 7 presents the statistics of the three base
instruction-tuning datasets used in our study on cod-
ing instruction. Math-Code and Math-Text share
the same set of mathematical questions but differ
in their rationales, with Math-Code providing code-
based rationales and Math-Text offering textual
ones.

IT Dataset | # Sample Characteristics Annotation
Math questions with

Math-Code 26k code-based rationales GPT4

Math-Text 26k Math questions with Human & Llama

texutal rationales
Coding instruction

General Code 21k for general tasks

Llama

Table 7: Statistics of Math-Text, Math-Code and Gen-
eral Code

B Sample Questions from Evaluation
Datasets

Figure 5 shows the samples from Arithmetic,
SVAMP, GSM and MATH.
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Question: What is (-1)/(-1)*((4563/(-15))/13 - -23)*-125?
Answer: 50

Question: Calculate 1000804 divided by -500402.
Answer: -2

(a) Arithmetic

Question: Paco had 26 salty cookies and 17 sweet cookies.
He ate 14 sweet cookies and 9 salty cookies. How many
salty cookies did Paco have left?

Answer: 17.0

(b) SVAMP

Question: Raymond and Samantha are cousins. Raymond
was born 6 years before Samantha. Raymond had a son af
the age of 23. If Samantha is now 31, how many years ago
was Raymond's son born?

Solution: When Raymond's son was born Samantha was 23
- 6 = «23-6=17>>17 years old.

Thus it has been 31 - 17 = ««31-17=14>>14 years since
Raymond's son was born.

HHHH 14

(c) GSM

Question: What is the distance between the two
intersections of $y=x"2$ and $x+y=1$?

Solution: To find the $x$-coordinates of the
intersections, substitute $x"2%$ for $y$ in $x+y=1$ and
solve for $x$, resulting in ...

Answer: ["\\sqrt{10}", 3.1622776601683795]

(d) MATH
Figure 5: Sample questions from the evaluation datasets

C Prompts for Generating Diverse
Coding Style Rationales

Figure 6 shows the instruction we used for gener-
ating code-based rationales with different coding
styles.

D Instruction Tuning Details

We perform instruction tuning of the LLMs fol-
lowing the implementation of TULU (Wang et al.,
2023b; Ivison et al., 2023). The models are fine-
tuned using LoRA (Hu et al., 2021) with a rank of
64 and a total batch size of 128.

E Results of Mixing Coding Styles

Table 8 demonstrates the performance of different
combinations of coding styles for each evaluation
dataset.

instruction = """

1) Please add a comment at the beginning of the
code, explaining the purpose of the code.

2) Add comments to each line of the code in the
solution, explaining its functionality where co
mments are missing.

3) Do not modify the code itself; only add comm
ents.

4) Output only the code and comments. Exclude a
ny additional text from the response.

(a) Instruction for generating detailed comments

instruction = """
1) Given a math question and its Program-of-Tho
ught (PoT) solution, generate two versions of t
he solution code:

a) *kxDescriptive Variable Namesxx: Use clea
r and descriptive names for all variables and f
unctions.

b) *x0Obscure Variable Namesxx: Use short an
d non-descriptive names (e.g., single letters o
r random abbreviations).

2) Keep the code's structure, comments, and log
ic unchanged; only replace the variable names.

3) Avoid using reserved or unsafe names such as
{'sum', 'len', 'float', 'int', 'str', 'list',
'dict'} as variable names.

4) Output only the code and comments in the spe
cified format. Exclude any additional text.

(b) Instruction for applying different naming conventions

instruction = """
1) Given a math question and its Program—of-Tho
ught (PoT) solution, generate two versions of t
he solution code:

a) xxGeneralized Programmingssx:

— Create a reusable function that abstr
acts the logic and can handle similar math prob
lems with different inputs or parameters.

b) *xkHardcoded Programmingxs:

— Write a specific solution tailored to
the given math question, with fixed values and
logic.

2) Output only the code and comments in the spe
cified format. Exclude any additional text outs
ide the provided template.

(c) Instruction for generating generalized and hardcoded solu-
tions

Figure 6: Instruction for generation diverse coding style
rationales

796



Model IT Data Arithmetic SVAMP GSM MATH | Average
Concise Comment 58.0 75.5 72.8 38.6 61.2
Llama- Concise Comment + Descriptive Naming 81.7 80.5 71.3 37.6 67.8
3.1-8B Concise Comment + Descriptive Naming + Hardcoded Solution 77.0 83.1 76.4 40.3 69.2
No Comment + Obscure Naming + General Solution 48.3 81.4 75.2 394 61.1
All 72.3 83.0 75.0 358 66.5
Concise Comment 443 68.6 56.6 214 47.7
Concise Comment + Descriptive Naming 80.3 69.6 56.6 29.5 59.0
Codellama- | Concise Comment + Descriptive Naming + Hardcoded Solution | 80.7 751 620 318 | 624
No Comment + Obscure Naming + General Solution 66.0 69.9 60.2 274 55.9
All 79.3 73.7 60.7 31.7 61.4

Table 8: Ablation Study of Coding Styles. Evaluation is under zero-shot setting
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