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Abstract

Large Language Models (LLMs) have achieved
significant advancements, but the increasing
complexity of tasks and higher performance
demands highlight the need for continuous im-
provement. Some approaches utilize synthetic
data generated by advanced LLMs based on
evaluation results to train models. However,
conventional evaluation methods fail to provide
detailed, fine-grained profiles of LLMs, limit-
ing their guidance for data synthesis. In this
paper, we introduce the Cognitive Diagnostic
Synthesis (CDS) method, which incorporates a
diagnostic process inspired by Cognitive Diag-
nosis Theory (CDT) to refine evaluation results
and characterize model profiles at the knowl-
edge component level. Based on these diag-
nostics, we propose two diagnosis-synthesis
strategies for weakness-targeted data synthesis.
Additionally, we present an enhanced data aug-
mentation and selection pipeline to improve the
quality and diversity of synthesized data. Our
experiments with several open-source models
show significant improvements across multiple
benchmarks, achieving up to 6.00% improve-
ment in code generation, 13.10% in mathemati-
cal reasoning, and 5.43% in academic exams.
Code and data are available on GitHub 1.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across diverse tasks.
However, the increasing complexity of emerging
tasks and the limitations revealed in real-world ap-
plications highlight the critical need for continuous
improvement of LLM performance.

To achieve continuous improvement, researchers
typically analyze the model’s evaluation metrics,
then refine or supplement the corpora accordingly
for subsequent iterations (Lee et al., 2024; Zhao
et al., 2024). For example, if LLMs are found to

*Corresponding Author
1https://anonymous.4open.science/r/cds-04D1

Q: A rectangular field measures 30m × 20m. The 
farmer increases the length by 10% and decreases 
the width by 10%. Calculate the reduction in area.
A: 1. Original area: 30×20 = 600m2 
     2. Adjusted dimensions: 
         Length: 30×(1 + 10%) = 30.1m
         Width: 20× (1 - 10%) = 19.9m
     3. New area: 30.1×19.9 = 598.99m2

     4.  Reduction in area: 600 - 598.99 = 1.01m2

Fined-grained Metric
Acc of Percentage: 15.00%
Acc of Geometry: 95.00% ...

Conventional Metric
Overall Acc: 42.00%

The answer does not match 
the reference answer of 6m², 
so it’s incorrect.

The answer is incorrect, but 
it’s worth a detailed analysis...
    Good mastery of 
Geometry, Mixed Operations
    Poor mastery of 
Percentage Calculation

 ️  Too coarse!

  Highlight the weaknesses and strengths!

Figure 1: The math problem assesses Geometry, Mixed
Operations, and Percentage Calculations. The model
performs well overall but makes an error in percentage
calculation. Conventional metrics lack the granularity to
capture these deficiencies, whereas fine-grained metrics
can identify specific strengths and weaknesses at the
knowledge level.

perform poorly in mathematical tasks, more math
data will be deliberately integrated into the dataset
for the next training cycle. In this process, ad-
vanced LLMs (e.g., GPT-4) are increasingly uti-
lized as data synthesizers to automate training data
generation and augmentation (Dai et al., 2023; Liu
et al., 2023; Sun et al., 2023), thereby reducing
reliance on costly manual annotation.

However, there are two limitations in this pro-
cess: 1) Coarse-Grained Evaluation. Conven-
tional metrics, such as overall accuracy, focus
solely on binary (correct/incorrect) outcomes for
each test sample, providing a summary of model
performance at the dataset level. Figure 1 high-
lights the limitation of these metrics: when a model
performs well on most of the knowledge assessed
but makes a mistake in percentage calculation, lead-
ing to an incorrect final result, conventional met-
rics would simply classify such cases as “incor-
rect,” failing to identify the weakness in percent-
age calculation. As a result, the lack of granular
evaluation limits the attribution of errors to spe-
cific sub-skills or competencies, which are referred
to as Knowledge Components (KCs) in educa-
tional theory (Moore et al., 2024), thus hindering
the precise identification of weaknesses. 2) The
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coarse-grained evaluation limits the guidance
for subsequent data synthesis, leading to gener-
ated data being general and insufficiently targeted
at the specific weaknesses of the model. Recent
studies attempt to use erroneous questions as seed
data for synthesis to align the generated data with
the model’s weaknesses (Lee et al., 2024; Ying
et al., 2024), but they still treat each error in isola-
tion, failing to map and summarize observed mis-
takes to underlying capability deficiencies. Thus,
these methods may correct superficial errors but fail
to address fundamental weaknesses at KC level.

To address these limitations, we draw inspiration
from Cognitive Diagnosis Theory (CDT)—an ed-
ucational framework that uses “diagnosis” to sys-
tematically map assessments to mastery of KCs,
identifying specific strengths and weaknesses in
students’ abilities. In this paper, the LLMs to be
enhanced are treated as “student.” We apply this di-
agnostic approach to summarize their performance
in evaluations, profiling their capabilities at the KC
level. This profiling then guides advanced LLMs to
synthesize data aimed at improving the weak KCs
in the next training cycle.

Specifically, we introduce the Cognitive
Diagnostic Synthesis (CDS) method. First, we
propose two diagnosis-synthesis strategies from
different diagnostic perspectives, using advanced
LLMs as data synthesizers: 1) Global Strategy:
Diagnosis at the dataset level with fine-grained met-
rics such as KC accuracy. These metrics quantify
mastery of each KC, helping identify weak mas-
tery KCs and generating tailored training data. 2)
Fine-grained Strategy: Diagnosis at the question
level, leveraging the analytical capabilities of ad-
vanced LLMs (Bai et al., 2023b; Dai et al., 2023).
We use advanced LLMs to perform cognitive diag-
nosis on specific erroneous cases, identifying KCs
requiring remediation. These analyses generated
during the diagnostic process are then integrated
into the synthesis prompt to expand the length of
the chain-of-thought (CoT), as long CoTs enhance
generation quality (Jin et al., 2024; Wang et al.,
2024).

These synthetic data will undergo augmentation
through data rewriting and fusion to enhance their
diversity and comprehensiveness. Following this,
we propose a two-stage data selection process
to ensure data quality. In Stage 1, an advanced
LLM is used to filter out erroneous data. In Stage
2, a novelty score, CDSscore, is designed, which
references global diagnosis outcomes to select high-

quality, weakness-relevant data.
Our contributions are as follows:

• We introduce the diagnosis process of CDT
to refine conventional evaluation, using fine-
grained knowledge components to character-
ize model capabilities.

• We propose two diagnosis-synthesis strate-
gies from different diagnostic perspectives to
achieve targeted data synthesis.

• We propose an improved data augmentation
and selection pipeline to enhance the quality
and diversity of synthesized data. Specifically,
we introduce a novelty score, CDS_score, en-
abling efficient selection of high-quality and
relevant data.

• We conduct extensive experiments spanning
multiple benchmarks and diverse domains,
demonstrating the dominant effectiveness and
applicability of CDS.

2 Related Work

2.1 Cognitive Diagnosis Theory
Cognitive Diagnosis Theory (CDT) provides fine-
grained assessments by diagnosing an individual’s
mastery of specific knowledge points, offering ac-
tionable insights for targeted interventions (Junker
and Sijtsma, 2001; Rupp et al., 2010). CDT focuses
on identifying strengths and weaknesses through
models such as DINA (De La Torre, 2009) and
G-DINA (de la Torre, 2011). These models lever-
age Q-Matrix Theory (Tatsuoka, 1983) to link test
items with underlying knowledge points and pro-
vide probabilistic mastery estimates. While CDT
integrated with AI has been widely applied in ed-
ucational assessments (Minn, 2022; Wang et al.,
2019; Liu, 2021), its application in data synthesis
and model improvement is highly underexplored.

2.2 Synthetic Data for Improving Model
Leveraging advanced LLMs to generate training
data has become a widely adopted strategy for im-
proving open-source models (Dai et al., 2023; Xu
et al., 2023; Mitra et al., 2024; Wang et al., 2023;
Ivison et al., 2023; Chen et al., 2023b; Mitra et al.,
2023; Fu et al., 2023; Kumar et al., 2020; Li et al.,
2024a, 2023). Concurrently, researchers have in-
vestigated generating corrective data through error
analysis of target models (An et al., 2023; Lee
et al., 2024) and enhancing learning via compar-
ative analysis of positive and negative examples
(Ying et al., 2024). Zhang et al. (2024) optimized
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prompts by extracting reasoning principles from
errors, while Liao et al. (2024) analyzed errors in
smaller LMs, storing derived knowledge and sum-
maries in specialized knowledge bases to enhance
reasoning performance.

Some studies begin with knowledge-based syn-
thesis, generating knowledge concepts from online
course platforms (Huang et al., 2024b), GPT-4 (Li
et al., 2024b), and seed instruction analysis and
clustering (Huang et al., 2024a), thereby guiding
advanced LLMs in data synthesis. However, these
approaches have several limitations: simple nom-
inal concepts are inadequate for producing high-
quality and diverse synthetic data and may signifi-
cantly deviate from real-world distributions. More-
over, these methods focus solely on synthesis and
overlook the potential of knowledge points to eval-
uate model weaknesses, thereby limiting the target-
ing and effectiveness of data synthesis.

3 CDS Method

In the framework shown in Figure 2, we annotate
the test samples in the benchmark with their KCs
to evaluate the model and diagnose the evaluation
results to identify weak KCs, which serve as tar-
gets to guide subsequent data synthesis. These syn-
thetic data will undergo augmentation and selection
processes to ensure quality, and then be used for
supplementary training of the student model. The
details are provided as follows.

3.1 Model Evaluation

KC Annotation. For a benchmark D = {d | d =
(q, aref)}, where each sample d consists of a ques-
tion q and a reference answer aref, we allocate the
training data to the target dataset, Dtarget, and re-
serve the test data for the evaluation dataset, Deval.
An advanced model Ma is then used to annotate
each sample in Dtarget with relevant KCs. The an-
notation process is carried out in two stages.

Stage 1: We use Ma to perform coarse anno-
tations, with the prompt shown in Figure 3. To
ensure an appropriate level of granularity, we sam-
ple chapter titles from digital learning platforms,
such as MOOCs, to provide examples of KCs like
Probability. Indeed, subsequent experiments will
demonstrate the flexibility of KC annotations. We
aggregate the KC tags from each sample to build
an initial set. This set is then refined by Ma, with
optional expert involvement, to eliminate redundan-
cies and ensure that the KCs are mutually exclusive,

collectively exhaustive, and appropriately granular.
The refined set of KCs is denoted as K.

Stage 2: We use Ma to perform constrained
annotations to ensure that the tagged KCs orig-
inate from K, yielding the tagged benchmark
D∗

target = {d∗|d∗ = (q, aref,Kq),Kq ⊊ K}.
Thereby, we build the Question-Knowledge Com-
ponent (Q-KC ) matrix, represented as:

Q-KC ∈ {0, 1}|Dtarget|×|K| (1)

Q-KC [i, j] =

{
1 if kcj ∈ Kqi , kcj ∈ K,
0 otherwise.

(2)

where |Dtarget| is the number of benchmark questions, |K| is
the cardinality of the KC set, and Kqi denotes the KC set

tagged to question qi, which is a subset of K.

Model Evaluation and Result Collection. We
evaluate the student model Ms using the tagged
benchmark D∗

target. To better reveal the model’s KC
deficiencies, we collect erroneous cases, denoted
as Derr = {(q, rerr,Kq)}, for subsequent diagnosis,
where rerr is the response from Ms to question q
that does not match the reference answer aref.

3.2 Diagnosis and Data Synthesis
Diagnosis is defined as the process of analyzing KC
mastery profiles derived from evaluation results. To
holistically assess the model’s proficiency in KCs,
we propose two diagnosis-synthesis strategies from
different diagnostic perspectives.

Global Strategy. We diagnose the model’s
performance from a global perspective using
aggregated KC metrics at the dataset level.
Specifically, we follow the Deterministic Input,
Noise And (DINA) cognitive diagnosis framework
(De La Torre, 2009) that posits a binary mastery
assumption:

• A correct response to question qi implies mas-
tery of all associated KCs

• An incorrect response implies no mastery of
any associated KCs

Under these assumptions, we compute KC-
specific accuracy and frequency metrics:

Acc(kcj) =
∑|Dtarget|

i=1 I(qi) ·Q-KC[i, j]
∑|Dtarget|

i=1 Q-KC[i, j]
(3)

Freq(kcj) =
∑|Dtarget|

i=1 Q-KC[i, j]

|Dtarget|
(4)

where I(qi) ∈ {0, 1} indicates the correctness of Ms’s re-

sponse to qi.

Based on these metrics, we construct a global
KC diagnostic profile for Ms, which consists of
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Figure 2: The pipeline of CDS method.

the accuracy and frequency of each KC, identifying
weakly mastered KCs as those with low accuracy
or low frequency, denoted as Kw. To address these
weaknesses, we use Ma to generate data targeted
at these weaknesses, based on Kw. The process is
detailed in Algorithm 1.

Algorithm 1 Global Strategy
Require: A set of KCs K, an advanced modelMa, accuracy

threshold δa, frequency threshold δf
Ensure: A synthesized dataset Dglobal
1: Kw ← ∅
2: for each kc ∈ K do
3: if Acc(kc) ≤ δa or Freq(kc) ≤ δf then
4: Kw ← Kw ∪ {kc}
5: end if
6: end for
7: Dglobal ← ∅
8: for each kc ∈ Kw do
9: (q, a, Kq = {kc})← Generate(Ma, kc)

10: Dglobal ← Dglobal ∪ {(q, a, Kq)}
11: end for
12: return Dglobal

This strategy operates exclusively at the KC
level, avoiding the introduction of original ques-
tions into synthetic prompts. By summarizing spe-
cific questions into KCs, we address a key limita-
tion of traditional example-question-based synthe-
sis methods: when prompted with original ques-
tions, the model tends to unconsciously rewrite or
rephrase them. This ensures that the generated data
is both novel and independent, free from overfitting
to the original dataset. Detailed prompts and case
studies are provided in the Appendix.

Fine-grained Strategy. We diagnose the
model’s erroneous cases at the question level from

a fine-grained perspective. We use Ma as a di-
agnoser to analyze the model’s problem-solving
process in the current case, thereby identifying the
underlying weak KCs exposed by this case, which
are also denoted as Kw. These analytical processes
generated during the diagnosis are denoted as pdiag,
and are integrated with the original questions and
erroneous responses, forming long CoTs within the
prompt for the advanced LLM to stimulate deeper
reasoning, leading to higher-quality generation re-
sults. The process is detailed in Algorithm 2.

Algorithm 2 Fine-grained Strategy
Require: A set of erroneous responses Derr = { derr | derr =

(q, rerr,Kq)}, an advanced modelMa
Ensure: A synthesized dataset Dfine-grained
1: Odiag ← ∅ {Odiag stores erroneous cases and their corre-

sponding diagnostic outputs.}
2: for each derr ∈ Derr do
3: (pdiag,Kw)← Generate

(
Ma, derr

)

4: Odiag ← Odiag ∪
{
(derr, pdiag, Kw)

}
5: end for
6: Dfine-grained ← ∅
7: for each (derr, pdiag, Kw) ∈ Odiag do
8: (q′, a′, Kw)← Generate

(
Ma, derr, pdiag, Kw

)

9: Dfine-grained ← Dfine-grained ∪ {(q′, a′,Kw)}
10: end for
11: return Dfine-grained

This diagnosis-synthesis paradigm leverages
LLMs’ analytical capabilities beyond data gener-
ation (Bai et al., 2023b; Dai et al., 2023). Recent
studies show that long CoTs guide advanced LLMs
to deeper reasoning, generating higher-quality out-
puts (Jin et al., 2024; Wang et al., 2024). By in-
tegrating diagnostic processes into data synthesis,
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our strategy produces more targeted and higher-
quality data than direct synthesis methods. Detailed
prompts and case studies are in the Appendix.

Data Augmentation. We concatenate the data
generated by two synthesis methods and employ
the following augmentation strategies to further
increase data diversity and volume:

• KC-Constrained Rewriting: Adapting tradi-
tional data rewriting methods (Dai et al., 2023;
Sun et al., 2023), we add a constraint: the
rewritten data should contain the same KCs as
the originals, avoiding deviation from targeted
weaknesses while enhancing diversity.

• Multi-KC Fusion: We pair data from the
synthetic dataset and prompt the advanced
LLM to generate new data containing KCs
from both, thereby increasing data complexity
and comprehensiveness.

We sample a small proportion of the data for aug-
mentation and reintegrate the augmented samples
into the dataset. Additionally, we limit the max
number of KCs per data to prevent the generation
of overly complex or ambiguous samples.

3.3 Data Selection

We implement a two-stage data selection process to
refine augmented synthetic dataset Da, eliminating
subpar samples and retaining those that meet high-
quality and high-relevance standards.

Stage 1: Ma assigns scores to the data based
on multiple criteria such as correctness and KC
relevance, filtering out samples below a threshold.

Stage 2: Simply scoring data individually with
the model does not leverage global KC diagnostic
profiles to select weakness-targeted data. Thus, we
introduce a novel metric, CDSscore. We hypothe-
size that data with more KCs have higher complex-
ity and comprehensiveness, while data containing
low-frequency and low-accuracy KCs are more ef-
fective for targeting weaknesses. Based on these as-
sumptions, specifically, for da = (q, a,Kq) ∈ Da,
the CDSscore is calculated as follows:

V(kcj) = w1 log(Acc(kcj) + ϵ) + w2 log(Freqa(kcj) + ϵ)

(5)

CDS score(da) =
∑

kcj∈Kq

V(kcj) (6)

where V(·) represents the significance of KC, Acc(kcj) de-

notes the student LLM’s initial accuracy on kcj , Freqs(kcj) is

the frequency of kcj in Da, w1 and w2 are balancing weights,

and ϵ is a small constant to avoid division by zero.

We apply a 1-σ principle, retaining samples with
CDSscore(di) > µ− σ, to construct the final train-
ing set for fine-tuning the student LLM.

4 Experimental Setup

4.1 Datasets and Models

Datasets. We evaluate three primary tasks: math-
ematical reasoning, coding, and academic exami-
nation. To validate the effectiveness of CDS, we
select GSM8k (Cobbe et al., 2021), MBPP (Austin
et al., 2021), and GAOKAO-Bench (Zhang et al.,
2023) for each respective task. As described in
Section 3.1, these benchmarks are split into Dtarget
and Deval. Due to the similar distribution of In-
Domain(ID) training and test sets, we also incor-
porate an Out-of-Domain(OOD) dataset in Deval to
better assess the generalization of CDS. The OOD
datasets include GSM8k-PLUS (Li et al., 2024c),
HumanEval (Chen et al., 2021), and GAOKAO-
Bench-Updates2.

For the academic examination benchmark’s
KC annotation, we use chapter titles from the
GAOKAO syllabus3 as KCs, offering an alternative
method distinct from Section 3.1.

Models. We use Llama3-8B-Instruct(AI@Meta,
2024) and Qwen1.5-7B-Chat(Bai et al., 2023a) as
the student LLMs, with Qwen2-72B-Instruct(Yang
et al., 2024) serving as the advanced LLM.

4.2 Setups

Training Setup. We train the models on 1 NVIDIA
A800 GPU using ZeRO Stage 1 (Rajbhandari et al.,
2020) and AdamW (Kingma and Ba, 2015) as the
optimizer, with LoRA (Hu et al., 2021) (rank r =
8). The batch size is 32, the maximum sequence
length is 2,048, and training runs for 1 epoch.

Inference Setup. For code generation, mathe-
matical reasoning, and academic exams, we use
greedy decoding with a maximum output of 512 to-
kens. For data generation, we use a temperature of
0.5, top-p of 0.8, and a maximum output of 4096 to-
kens. All inference is conducted in a 0-shot setting.
See Appendix D for more details.

2https://github.com/OpenLMLab/GAOKAO-Bench-
Updates

3https://gaokao.neea.edu.cn/html1/category/1509/6212-
1.htm
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Method
Coding Math Examination Avg

MBPP H-Eval GSM8k GSMPlus GAOKAO GAOKAOU –
P@1 P@1 Acc Acc Acc Acc

Qwen1.5-7B-Chat
Prompt(vanilla) 32.00 40.24 54.00 33.92 60.60 48.87 44.94

IFT 30.80 39.02 52.42 33.72 61.40 47.96 44.22

LEC 32.40 39.63 52.20 33.76 64.80 53.39 46.03

AugGPT 34.80 40.85 46.38 28.86 63.40 52.49 44.46

LLM2LLM 34.40 43.90 53.82 33.76 64.40 53.39 47.28

MUSTARD 35.40 39.02 57.42 35.96 62.40 52.04 47.04

CDS(our) 38.00 44.51 64.54 43.86 64.60 53.85 51.56

Llama3-8B-Instruct
Prompt(vanilla) 40.80 54.88 62.02 42.50 41.20 33.03 45.74

IFT 41.60 55.49 61.64 42.78 41.00 31.67 45.70

LEC 42.80 54.88 55.62 42.48 41.60 32.58 44.99

AugGPT 40.00 51.83 47.32 36.00 42.20 35.28 42.10

LLM2LLM 42.80 56.10 55.76 41.46 41.60 31.67 44.90

MUSTARD 41.40 54.88 62.16 42.44 41.20 33.03 45.85

CDS(our) 42.80 55.49 73.14 55.60 41.40 38.46 51.15

Table 1: The main experimental results of our methods and baseline approaches across various tasks are presented.
Experiments are conducted using two different LLMs: Qwen1.5-7B-Chat and Llama3-8B-Instruct. The top two
performances are highlighted in red bold and black bold, respectively.

4.3 Baselines

Main Experiments. We consider several base-
lines for comparison with our method as follows:
(1) Prompt: Direct prompting for answers. (2)
IFT: Fine-tuning with in-domain training data. (3)
LEC (Ying et al., 2024): Embedding erroneous
cases with SentenceBERT (Reimers and Gurevych,
2019), selecting similar positive examples via L2
distance, and synthesizing with both positive and
negative cases. (4) AugGPT (Dai et al., 2023):
Sampling unused instructions from the in-domain
training set for synthetic data generation with the
advanced LLM. (5) LLM2LLM (Lee et al., 2024):
Generating additional data from incorrect examples
using the advanced LLM. (6) MUSTARD (Huang
et al., 2024b): Generating questions from seed con-
cepts, followed by advanced LLM-generated an-
swers and correctness filtering. Consistent data
quantity is maintained across baselines: 2k for
mathematics, 0.5k for code generation, and 0.5k
for academic examination.

Data Selection Experiments. We evaluate our
data selection algorithm against several baselines as
follows: (1) CBS (Chen et al., 2023a): Instructions
are embedded using SentenceBERT, clustered with

HDBSCAN (Campello et al., 2013), and selected
using the K-Center-Greedy algorithm. (2) Core-
set (Sener and Savarese, 2017): Similar to CBS,
with instructions embedded using SentenceBERT
and selected using K-Center-Greedy. (3) Diversity
(Wang et al., 2022): For each data, the ROUGE
score is computed against a subset of n samples,
and the k with the lowest ROUGE scores are se-
lected. (4) Length: Samples are selected based
on data length, focusing on the longest instances
(Lengthlong). (5) Perplexity (Marion et al., 2023):
Samples are selected based on low per-token per-
plexity, indicating model certainty and fluency. (6)
AlpaGasus (Chen et al., 2024): Instances are scored
by an advanced LLM like ChatGPT on dimensions
such as helpfulness and accuracy, and low-scoring
instances are filtered out. (7) Random: Instances
are randomly selected from the dataset.

5 Experiments

5.1 Main Results
The main experimental results of our methods and
baseline approaches across various tasks are pre-
sented in Table 1. Our observations are summa-
rized as follows:
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Method
Coding Math

MBPP H-Eval Avg GSM8k GSMPlus Avg

0.1k 0.2k 0.3k 0.1k 0.2k 0.3k – 0.4k 0.8k 1.6k 0.4k 0.8k 1.6k –

CBS 25.60 33.80 33.40 43.29 38.41 37.20 35.28 41.80 62.00 60.94 27.08 40.40 40.24 45.41

CoreSet 25.60 33.40 35.60 40.85 34.15 39.63 34.87 50.76 59.70 60.06 34.10 38.14 38.66 46.90

Diversity 26.60 34.40 35.40 42.68 32.32 42.07 35.58 43.28 56.14 61.64 28.54 35.08 39.80 44.08

Lengthlong 23.80 33.20 33.20 42.07 34.15 40.85 34.55 36.96 59.52 61.02 24.10 38.40 39.46 43.24

Perplexity 31.80 35.00 35.00 42.68 37.20 41.46 37.19 53.04 60.80 62.52 35.32 40.18 41.56 48.90

AlpaGasus 30.60 34.20 35.40 40.24 35.37 40.85 36.11 49.44 62.34 56.82 30.70 40.20 37.32 46.14

Random 24.60 34.00 35.20 40.24 34.15 39.63 34.64 45.68 58.38 59.32 33.76 38.70 38.86 45.78

CDSscore(our) 31.60 34.60 36.20 40.85 37.20 43.29 37.29 53.80 60.80 62.56 36.02 39.96 41.24 49.06

Table 2: The experimental results of our data selection strategy and baseline approaches across various tasks are
presented. Experiments are conducted using Qwen1.5-7B-Chat. The top two performances are highlighted in red
bold and black bold, respectively.

Dominant effectiveness and applicability of
CDS. CDS demonstrates significant improvements
across different models and tasks. For example,
on the GSM8k task, Qwen1.5-7B improves by
10.54%, and Llama3-8B by 11.12%. Additionally,
CDS consistently produces optimal results in cod-
ing and examination tasks(including subjects such
as biology, chemistry, geography, history, mathe-
matics, and physics), highlighting its effectiveness
and broad applicability to tasks that can be decom-
posed into well-defined KCs.

Strong generalization. Although CDS utilizes
synthetic data generated based on ID tasks, it gen-
eralizes effectively to OOD tasks. For example,
Qwen1.5-7B shows a 4.27% improvement on the
Humaneval Bench, while Llama3-8B improves by
5.43% on GAOKAO-Bench-Updates. In contrast,
methods like AugGPT and LEC fail to consistently
improve performance on OOD tasks and may even
lead to degradation.

Flexibility in KC Annotation. Section 4.1 ex-
plains that GAOKAO-Bench constructs the KC set
for annotation by summarizing chapter titles, while
the MBPP and GSM8k benchmarks use the anno-
tation approach described in Section 3.1. Despite
these different annotation methods, all benchmarks
show consistent performance improvements with
CDS.

CDS’s data selection improves robustness. Un-
filtered use of synthetic data may lead to model
degradation. For instance, both LEC and AugGPT
experienced performance declines on two math-
ematical benchmarks, with AugGPT showing a

7.62% decrease on GSM8k and 5.06% on GSM-
Plus. This aligns with prior research, which sug-
gests that unchecked, low-quality instructional data
can impair model performance (Zhou et al., 2023;
Chen et al., 2023b). Table 6 shows an erroneous
sample generated by AugGPT, which can be fil-
tered out during CDS’s selection Stage 1.

5.2 Evaluation of Selection Strategies
Experimental results comparing different data se-
lection strategies are presented in Table 2, where
we fine-tuned Qwen1.5-7B-Chat using samples se-
lected from an augmented synthetic dataset (pre-
screened by Qwen2-72B-Instruct for basic correct-
ness). To evaluate the effectiveness of the CDS
score, we retained only Stage 2 data selection and
excluded Stage 1, which is similar to AlpaGasus.
Our key findings are:

High-quality data selection and broad task
applicability. CDSscore achieves the best average
metrics on both math and coding tasks. Specifi-
cally, in 12 tests corresponding to three different
sample sizes across four datasets, 8 tests ranked in
the top 2. CDSscore consistently outperforms the
Random method in all scenarios, with average im-
provements of 2.65% and 3.28% for the two tasks,
respectively. This demonstrates that CDSscore en-
hances training data quality through selection and
exhibits broad task applicability.

Strong stability. CDSscore shows consistent per-
formance across datasets and sample sizes, while
some baselines exhibit fluctuating performance.
For example, CBS’s performance varied signifi-
cantly with sample size, and Coreset performed
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Strategy Coding Math Examination Avg

MBPP H-Eval GSM8k GSMPlus GAOKAO GAOKAOU –
P@1 P@1 Acc Acc Acc Acc

Prompt(vanilla) 32.00 40.24 54.00 33.92 60.60 48.87 44.94

Synthesis Strategy
+ Global 32.00 40.85 57.96 36.22 62.00 52.04 46.85

+ Fine-grained 34.00 39.63 60.96 37.62 60.80 49.77 47.13

+ Global & Fine-grained 35.40 40.24 61.84 38.60 61.40 52.49 48.33

Augmentation Strategy
+ Rewrite 35.40 41.46 61.52 41.38 62.60 51.13 48.91

+ Fusion 35.20 41.46 61.00 40.42 63.40 52.49 48.99

+ Rewrite & Fusion 35.40 43.29 63.78 42.04 64.60 53.85 50.49

Table 3: Ablation results of data synthesis and augmentation strategies. Experiments were conducted using
Qwen1.5-7B-Chat. Data augmentation was applied to the synthetic data generated by the ‘+ Global & Fine-grained’
approach. The top two performances are highlighted in red bold and black bold, respectively. The sample sizes for
the synthesis strategy are 300, 300, and 600 for coding; 300, 1000, and 1300 for math; and 300, 300, and 600 for
exams. The augmentation proportions are 0.5, 0.5, 0.25 & 0.25.

well on math tasks but struggled with coding tasks.
Scalability. CDSscore expands its advantage as

sample sizes increase, demonstrating optimal accu-
racy with 0.3k samples for MBPP and H-Eval, and
1.6k samples for GSM8K. Notably, at 0.3k samples
on Humaneval, it outperformed the second-best
methods, Diversity and Perplexity, by 1.22% and
1.83%, respectively.

Computational Efficiency. As shown in Table
7, compared to the suboptimal Perplexity method
when selecting 2,000 samples from a 3,000-sample
dataset, Perplexity requires 307.78 seconds, while
CDSscore takes negligible time. This efficiency re-
sults from the elimination of computationally in-
tensive tasks such as embedding generation and
clustering, and without the need for GPU.

5.3 Ablation Study
To evaluate the effectiveness of each component of
the CDS method, we conducted an ablation study
using various combinations of data synthesis and
augmentation strategies. A basic correctness check
was performed using Qwen-72B-Instruct to filter
out obviously incorrect data. The results are shown
in Table 3. Our key findings are:

Dual Strategies Outperform Single Strategies.
Dual strategies generally outperform single strate-
gies in both the data synthesis and augmentation
stages. This effect is particularly noticeable in aug-
mentation, where combining Rewriting and Fusion
strategies resulted in optimal performance across
all six datasets.

Data Augmentation Effect. Combining syn-
thesis and augmentation typically improves perfor-
mance. After applying augmentation, the average
performance exceeded previous results. However,
exceptions exist, such as with Rewriting, where
performance on GAOKAO-UPDATES deteriorated
by 1.36%. This may be due to overfitting to similar
synthesis data. Such degradation was not observed
with dual strategy augmentation, suggesting that
combining multiple strategies to increase data com-
plexity and diversity improves robustness.

6 Conclusion

In this paper, we introduce the Cognitive
Diagnostic Synthesis (CDS) method, inspired by
Cognitive Diagnosis Theory, which refines eval-
uation results and characterizes model profiles at
the knowledge component level. Building on the
Knowledge Component diagnostic construct, we
optimize conventional evaluation metrics, design
dual diagnosis-synthesis strategies, and propose a
novel data selection method. Leveraging advanced
LLMs, we automate the generation of weakness-
targeted, high-quality instructional data. We ap-
plied the synthesized data to small LLMs, such as
Qwen1.5-7B-Chat and Llama3-8B-Instruct, achiev-
ing significant improvements in code generation,
mathematical reasoning, and academic testing. No-
tably, CDS achieves these improvements without
relying on expensive closed-source LLMs like GPT-
4, instead using only the open-source Qwen2-72B-
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Chat for automated diagnosis and synthesis.

7 Limitations

In this paper, (1) due to cost limitations, our ad-
vanced LLM selection is restricted to the open-
source Qwen-72B-Instruct, which is not the most
cutting-edge model available. Given the current
limitations in both the model’s analytical and gen-
erative capabilities, the full potential of CDS re-
mains to be explored. In future work, we plan
to experiment with more advanced models, such
as GPT-4(Achiam et al., 2023) and DeepSeek-
V3(DeepSeek-AI et al., 2024).

(2) The identification and annotation of KCs still
involve significant randomness and subjectivity. In
future work, we aim to refine our KC annotation
strategy, including exploring the use of pseudo-
labels as a substitute for explicit labels.
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A Knowledge Component Details

The knowledge components (KCs) used for various
tasks are shown in Table 4 and Table 5. Table 4
lists the components for Coding and Math, while
Table 5 details the components for the various sub-
jects within the Exams task.

B Case Study

C Computational Cost of Data Selection
Strategies

As shown in Table 7, we compared the time effi-
ciency of different data selection methods when
selecting 2,000 samples from a pool of 3,000. The
key parameters and computational requirements
are as follows:

• Model: For embedding generation, we used
the Qwen1.5-7B-Chat.
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Task Knowledge Components

Coding Basic Data Types, Bitwise Operations, Boolean Logic, Class Definitions, Comparison Operators,
Conditional Statements, Copying and Deep Copying, Dictionary Operations, Dynamic Program-
ming, Exception Handling, Finding Min and Max, Heap Operations, Importing Libraries and
Modules, Indexing and Slicing, Lambda Functions, List and Array Operations, Looping, Map
Function, Recursion, Regular Expressions, Search Algorithms, Sorting Algorithms, Stacks and
Queues, String Operations, Summation, Tree Structures, Tuple Operations, Type Checking and
Conversion

Math Basic Arithmetic Operations, Decimal and Fraction Operations, Mixed Operations, Prime and
Composite Numbers, Factors and Multiples, GCD and LCM, Algebraic Expressions, Equations,
Inequalities, Basic Geometry, Area, Perimeter, Volume, Angles, Coordinates, Mean, Median,
Mode, Probability, Permutations, Combinations, Financial Calculations, Unit Conversion, Time
and Date Calculations, Speed, Distance, and Time, Measurement, Money, Ratio and Proportion,
Bar Graphs, Line Graphs, Number Sequences, Word Problems, Linear Equations, Simple
Algebra, Pattern Recognition, Mathematical Logic, Shapes and Spatial Understanding, Symmetry,
Congruence, Units of Measurement, Temperature, Length, Mass, Capacity

Table 4: Knowledge Components for Coding and Math tasks. The components for Exam tasks are in Table 5.

• GPU Requirements:

– AlpaGasus requires 4 A800 GPUs and
uses Qwen2-72B-Chat for inference.

– Other methods, including CBS, CoreSet,
Diversity, and Perplexity, only require 1
A800 GPU for processing.

• Clustering Parameters:

– For CBS and CoreSet, the HDBSCAN
clustering algorithm was used with the
following parameters:

* min_cluster_size = 2

* min_samples = 1

D Experimental Details

D.1 Training Setup.
We provide the key parameter settings for LoRA
fine-tuning configurations. The following table 8
summarizes the most important settings.

D.2 Inference Setup
We provide the key parameter settings for inference
configurations. The following table 9 summarizes
the most important settings.

D.3 Dataset and Data Generation Details
The dataset usage for the CDS method is summa-
rized in Table 10. It outlines the sample sizes used
for each task, as well as the number of generated
samples across various stages.

E Instruction Details

Table 3 18 show the prompts using in CDS.
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Subject Knowledge Components for Exams

Biology Protein and Nucleic Acid Structure, Sugar and Lipid Types and Functions, Water and In-
organic Salts, Cell Theory, Prokaryotic and Eukaryotic Cells, Cell Membrane Structure,
Organelles Structure and Function, Nucleus Structure and Function, Substance Transport
Across Cell Membrane, Enzyme Role in Metabolism, ATP Metabolism, Photosynthesis
Process, Environmental Impact on Photosynthesis, Cellular Respiration, Cell Growth and
Division, Cell Differentiation, Cell Aging and Apoptosis, Cancer Cells and Prevention, Mei-
otic Division, DNA Structure and Replication, Gene Transcription and Translation, Mendel’s
Laws, Sex-linked Inheritance, Gene Mutation, Transgenic Food Safety, Human Genetic
Diseases, Evolution Theory, Plant Hormones, Nervous and Hormonal Regulation, Nerve
Impulse Transmission, Homeostasis, Immune System Role, Population and Community,
Ecosystem Structure and Function, Ecosystem Stability, Biodiversity Conservation, Plant
Growth Regulators, Yeast Respiration.

Chemistry Physical vs Chemical Changes, Acids, Bases, Salts and Oxides, Element Symbols, Valency
and Formulas, Atomic and Molecular Masses, Law of Mass Conservation, Chemical Re-
actions, Molar Mass and Volume Calculations, Solubility and Concentration, Colloids and
Solutions, Periodic Table Structure, Element Trends, Chemical Bonds, Oxidation-Reduction
Reactions, Heat of Reactions, Electrochemistry, Reaction Rate and Activation Energy, Chem-
ical Equilibrium, Electrolytes and Conductivity, pH Calculation, Ionization and Hydrolysis,
Organic Compounds, Polymer Chemistry, Laboratory Safety, Gas Production and Separation,
Chemical Analysis, Concentration Calculations.

Geography Earth’s Position in Space, Solar Influence, Earth’s Movements and Seasons, Earth’s Layers,
Earth Material Cycles, Surface Changes, Atmospheric Heating, Wind and Pressure Systems,
Climate and Weather Systems, Water Cycle, Ocean Currents, Geography and Environ-
ment, Climate Change, Natural Resources, Natural Disasters, Population Growth, Migration,
Urbanization, Agricultural and Industrial Location, Environmental Impact, Geography of
Resources, Transportation Systems, Human-Earth Relationships, Sustainability, Green De-
velopment, Remote Sensing, Geographic Information Systems, GPS and Navigation, Digital
Earth.

History Ancient Chinese Political Systems, Shang and Zhou Dynasties, Qin Centralization, Han to
Yuan Political Evolution, Ming and Qing Monarchy, Ancient Chinese Economy, Agricultural
Systems, Handicraft and Commerce, Capitalism Emergence, Cultural Evolution, Hundred
Schools of Thought, Confucianism, Neo-Confucianism, Chinese Scientific and Technological
Achievements, Ancient Greek and Roman Political Systems, Athenian Democracy, Roman
Law, Renaissance, Enlightenment, Industrial Revolution, World War Effects, Cold War and
Bipolarity, Globalization, WTO and China’s Role, Modern Chinese Politics, Reform and
Opening-up, Scientific and Technological Development in China, Modern Chinese Education
and Culture.

Math Basic Arithmetic Operations, Decimal and Fraction Operations, Prime and Composite Num-
bers, Factors and Multiples, GCD and LCM, Algebraic Expressions, Equations, Inequalities,
Geometry, Area, Perimeter, Volume, Angles, Coordinates, Mean, Median, Mode, Probability,
Permutations, Combinations, Financial Calculations, Unit Conversion, Time and Date Calcu-
lations, Speed, Distance, Time, Measurement, Fractions, Decimals, Ratio, Proportion, Bar
Graphs, Line Graphs, Probability Theory, Number Sequences, Word Problems, Time Tables,
Integer Operations, Linear Equations, Simple Algebra, Pattern Recognition, Mathemati-
cal Logic, Shapes and Spatial Understanding, Symmetry, Congruence, Binomial Theorem,
Conic Sections.

Physics Motion of Particles, Newton’s Laws, Mechanical Energy, Projectile and Circular Motion,
Law of Gravitation, Electric Field, Circuits, Magnetic Field, Electromagnetic Induction, AC,
Kinetic Theory of Gases, States of Matter, Thermodynamics, Vibration and Waves, Electro-
magnetic Waves, Light, Relativity, Reference Frames, Linear Motion, Friction, Hooke’s Law,
Scalars and Vectors, Force Composition, Equilibrium, Energy Conservation, Momentum,
Collision Theory, Universal Gravitation, Satellite Motion, Electric Potential, Capacitors,
Ohm’s Law, Electric Resistance, Magnetic Forces, Lorentz Force, Spectroscopy, Nuclear
Physics, Radiation, Energy Loss, Fission and Fusion Reactions, Photoelectric Effect, Ein-
stein’s Equation.

Table 5: Knowledge Components for various Exam subjects. This table details the components for the Exam task
mentioned in Table 4.
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An Erroneous Sample Generated by AugGPT

### Question:
A local bakery sells cupcakes at $2 each. Last week, they decided to run a promotion where if you buy 5 cupcakes, you get 1
free. Without the promotion, they could sell 65 cupcakes in a week. After the promotion ended, the bakery noticed that their
revenue increased by 40% compared to the previous week when there was no promotion. How many free cupcakes did they
give away during the promotion week?
### Answer:
1. Calculate the number of cupcakes sold during the promotion week:
Without the promotion, the bakery sold 65 cupcakes per week, so during the promotion week they sold: 65 * 1.4 = 91
cupcakes.
2. Calculate the number of free cupcakes: Since the promotion is ’buy 5, get 1 free,’ if X free cupcakes were given away
during the promotion week,

::::
then:

:::
5X

:
+
::
X

:
=
:::

91,
::
so

::
X

:
=
:::::

15.33.
Therefore, they gave away 15 free cupcakes.

### Stage 1 Scoring Results:
Score: 1 || Explanation:
1. Correctness of the Answer (Top Priority 1): The answer is incorrect. The model mistakenly assumes that the 91 cupcakes
are all paid, but in reality, 91 represents the total number of paid cupcakes. Since the promotion is “buy 5, get 1 free,” for
every 6 cupcakes sold, 1 is free. Therefore, the correct number of free cupcakes given away is 18, not 15.33, as 91 paid
cupcakes correspond to 18 free cupcakes.
2. Clarity: The reasoning is presented in a step-by-step format but lacks accuracy in the core calculations. It is easy to
follow but ultimately misleading because of the errors.
3. Conciseness: The explanation is brief but fails to address the problem correctly.
4. Format and Structure: The response is properly formatted in a clear, step-by-step structure, but the calculations are flawed.
Correctness was the most significant factor here, and the error in the calculations leads to a low score. The rest of the
explanation could be clearer with correct reasoning.

Table 6: An erroneous sample generated by AugGPT. We used CDS’s Stage 1 selection method, which employs
Advanced LLM prompt scoring. The scoring results are shown above.

Method CBS CoreSet Diversity Lengthlong Perplexity AlpaGasus Random CDSscore(our)

Time (s) 321.79 306.45 7134.14 0.00 307.78 1303.42 0.00 0.00

Table 7: Time comparison of different data selection methods when selecting 2,000 samples from a pool of 3,000.
A value of 0.00 indicates millisecond-level response time.
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Figure 3: Prompt for KC Annotation of Math Task (Stage 1).

Parameter Value

Precision (bf16) Enabled
Optimizer AdamW

Learning Rate (lr) 3e-5
Betas [0.98, 0.999]

Scheduler Type WarmupLR
Warmup Min LR 1e-4
Warmup Max LR 3e-4

Gradient Accumulation Steps 16
Batch Size (per GPU) 2

LoRA Rank (r) 8
LoRA Alpha 16

Table 8: Key parameter settings for the LoRA fine-
tuning configuration.
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Stage Sampling Parameters

Dataset Annotation temperature=0.5, top_p=0.8, repetition_penalty=1.05, max_tokens=1024
Model Evaluation temperature=0, top_p=1.0, top_k=1, max_tokens=512
Fine-grained Diagnosis temperature=0.5, top_p=0.8, repetition_penalty=1.05, max_tokens=1024
Data Synthesis temperature=0.5, top_p=0.8, repetition_penalty=1.05, max_tokens=4096, N_sample=5
Data Augmentation temperature=0.5, top_p=0.8, repetition_penalty=1.05, max_tokens=4096,

p_rw=0.25, p_fusion=0.25
Data Selection (Stage 1) temperature=0, top_p=1.0, top_k=1, max_tokens=512,

repetition_penalty=1.05, θ=8
Data Selection (Stage 2) w1=0.85, w2=0.15, ϵ=1e-6

Table 9: Key parameter settings for the inference configuration.

Task Dtarget Deval Ds Da Dfinal

ID for Math:GSM8K* 3500 5000 2581 3116 2010
OOD for Math:GSMPLUS - 5000 - - -

ID for Coding:MBPP 474 500 689 997 798
OOD for Coding:H-Eval - 164 - -

ID for Exams:GAOKAO 591 500 1078 1776 1332
OOD for Exams:GAOKAOU - 209 - - -

Table 10: Dataset usage across different tasks and stages for Qwen1.5-7B-Chat. The "*" in the "ID for Math" task
indicates that we additionally used 292 samples for pre-fine-tuning to help the model answer math problems in the
required format, facilitating answer extraction.

Figure 4: Prompt for KC Annotation of Coding Task (Stage 1).
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Figure 5: Prompt for KC Annotation of Math Task (Stage 2).

Figure 6: Prompt for KC Annotation of Coding Task (Stage 2).
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Figure 7: Prompt for Fine-grained Diagnosis of Math Task.

Figure 8: Prompt for Fine-grained Diagnosis of Coding Task.
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Figure 9: Prompt for Fine-grained Synthesis of Math Task.

Figure 10: Prompt for Fine-grained Synthesis of Coding Task.
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Figure 11: Prompt for Global Synthesis of Math Task.

Figure 12: Prompt for Global Synthesis of Coding Task.
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Figure 13: Prompt for Fusion Augmentation of Math Task.

Figure 14: Prompt for Fusion Augmentation of Coding Task.
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Figure 15: Prompt for Rewriting Augmentation of Math Task.

Figure 16: Prompt for Rewriting Augmentation of Coding Task.
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Figure 17: Prompt for Scoring of Math Task.

Figure 18: Prompt for Scoring of Coding Task.

8393


