
Findings of the Association for Computational Linguistics: ACL 2025, pages 8315–8330
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

FiDeLiS: Faithful Reasoning in Large Language Models for Knowledge
Graph Question Answering

Yuan Sui1, Yufei He1, Nian Liu1, Xiaoxin He1, Kun Wang1,2, Bryan Hooi1
1National University of Singapore

2University of Science and Technology of China
{yuansui, yufei.he, nianliu, xiaoxin, bhooi}@comp.nus.edu.sg,

wk520529@mail.ustc.edu.cn

Abstract

Large Language Models (LLMs) are often chal-
lenged by generating erroneous or hallucinated
responses, especially in complex reasoning
tasks. Leveraging Knowledge Graphs (KGs)
as external knowledge sources has emerged
as a viable solution. However, existing KG-
enhanced methods, either retrieval-based or
agent-based, encounter difficulties in accurately
retrieving knowledge and efficiently traversing
KGs at scale. In this paper, we propose a uni-
fied framework, FiDeLiS1, designed to improve
the factuality of LLM responses by anchoring
answers to verifiable reasoning steps retrieved
from KGs. To achieve this, we leverage step-
wise beam search with a deductive scoring func-
tion, allowing the LLM to validate reasoning
process step by step, and halt the search once
the question is deducible. In addition, we pro-
pose a Path-RAG module to pre-select a smaller
candidate set for each beam search step, re-
ducing computational costs by narrowing the
search space. Extensive experiments show that
our method, as a training-free framework, not
only improve the performance but also enhance
the factuality and interpretability across differ-
ent benchmarks.

1 Introduction

Large Language Models (LLMs) have shown im-
pressive reasoning capabilities in tackling complex
tasks (Yu et al., 2024; Sui et al., 2025). However,
their reasoning processes are not always reliable,
and can be prone to generating outputs that are ei-
ther inconsistent with real-world facts (Xu et al.,
2024; Huang et al., 2025) or show flawed reason-
ing process (Li et al., 2024; Sui et al., 2024). Such
limitations significantly undermine the trustwor-
thiness of LLMs in practical, real-world applica-
tions (Kung et al., 2023; Zhang et al., 2024).

1Code is released at https://github.com/Y-Sui/
FiDeLiS.

Figure 1: Challenges for existing KG-enhanced meth-
ods: How to balance faithfulness and efficiency?

To address this issue, leveraging knowledge
graphs (KGs) as external knowledge sources has
emerged as a viable solution (Sun et al., 2023; Ma
et al., 2024; Luo et al., 2024). Unlike traditional
retrieval-augmented generation (RAG) that relies
on web pages or documents (Liu et al., 2024; Qian
et al., 2024; Bayarri-Planas et al., 2024), KGs repre-
sent information in a structured and interconnected
format, where each fact is stored as entities and
relations. This format supports explicit, traceable
reasoning processes (Pan et al., 2023) and facili-
tates multi-hop reasoning through graph traversal.
Moreover, each fact in a KG can be traced back to
its source (Sui et al., 2024; Agrawal et al., 2024),
providing both context and original details, which
further enhances the information authenticity and
reliability of the reasoning processes.

Existing KG-enhanced LLM reasoning methods
face notable challenges and can be roughly cate-
gorized into two primary approaches: retrieval-
based and agent-based paradigms (Luo et al.,
2025). Retrieval-based methods (Wang et al., 2023;
Luo et al., 2024; Baek et al., 2023) retrieve rel-
evant KG facts to support LLM reasoning by ei-
ther prompting (Baek et al., 2023) or fine-tuning
LLMs to learn the underlying structure of KG (Luo
et al., 2024, 2025). These methods often suffer
from incomplete or imprecise information extrac-
tion due to a lack of contextual understanding or an
inability to fully capture the graph structure (Luo

8315

mailto:yuansui@comp.nus.edu.sg
mailto:yufei.he@comp.nus.edu.sg
mailto:nianliu@comp.nus.edu.sg
mailto:xiaoxin@comp.nus.edu.sg
mailto:bhooi@comp.nus.edu.sg
mailto:wk520529@mail.ustc.edu.cn
https://github.com/Y-Sui/FiDeLiS
https://github.com/Y-Sui/FiDeLiS

et al., 2025). Our error analysis (§4.3) of a strong
retrieval-based method, RoG (Luo et al., 2024) re-
veals that only 67% of the generated reasoning
steps are valid, with 33% containing format errors
or referencing non-existent KG facts. In contrast,
agent-based methods (Sun et al., 2023; Ma et al.,
2024) treat LLMs as interactive agents that explore
KGs iteratively to construct reasoning paths and
generate answers. While this approach by nature
can enhance reasoning accuracy, it is computation-
ally expensive, resulting in high latency and scal-
ability limitations. As illustrated in Figure 1, how
to balance the trade-off between faithfulness and
efficiency remains a critical challenge for existing
KG-enhanced reasoning methods.

To this end, we propose FiDeLiS, a unified
framework designed to enhance both the factual ac-
curacy and reasoning efficiency of LLMs. FiDeLiS
grounds LLM responses in verifiable reasoning
steps derived from a KG through two core com-
ponents: (1) Deductive-Verification Beam Search
(DVBS), which systematically constructs and val-
idates reasoning paths step-by-step to ensure log-
ical consistency and factual correctness (detailed
in §3.2). This module also prevents premature ter-
mination and incorrect path extensions, thereby
guaranteeing the validity of generated reasoning
chains. (2) Path-RAG, a retrieval-augmented mech-
anism that pre-selects a constrained set of candidate
entities and relations at each reasoning step to mit-
igate computational inefficiencies. By combining
semantic similarity with graph-based connectivity
analysis, Path-RAG effectively narrows the search
space, significantly reducing latency without com-
promising recall or accuracy (discussed in §3.1).
Extensive experiments demonstrate that FiDeLiS
outperforms strong baselines in both accuracy and
efficiency, providing a scalable, training-free solu-
tion for KG-enhanced LLM reasoning. Our main
contributions are summarized as follows:

• We propose FiDeLiS, a unified framework that
efficiently grounds LLM reasoning in structured
knowledge graphs to improve factual accuracy.

• We enable verifiable and efficient reasoning by
combining deductive validation of reasoning
steps with a high-quality retrieval mechanism
that constrains the search space.

• We demonstrate FiDeLiS’s robustness and scala-
bility across multiple benchmarks without requir-
ing any model fine-tuning.

• By anchoring responses in verifiable reasoning
paths, FiDeLiS enhances interpretability and al-
lows users to verify and understand each reason-
ing step from LLM reasoning.

2 Preliminary

Notation. To facilitate the demonstration of our
method, we define the necessary notation below:

• Definition 1. A reasoning step is a pair (r, e),
where r is the relation and e is the corresponding
entity.

• Definition 2. A reasoning path P is a pair (s, T),
where s is the starting entity for the reasoning
path, and T is a sequence of reasoning steps
T = {t1, . . . , tn} and tk = (rk, ek) denotes the
k-th reasoning step in the path and n denotes the
length of the path.

• Definition 3. The next-hop candidates given
path P , denoted N1(en), is defined as the 1-hop
neighborhood of en, the last node in the reason-
ing path P .

• Definition 4. A reasoning path P = (s, T)
is valid if every step (rk, ek) corresponds to
an actual triplet (ek−1, rk, ek) in the KG (with
e0 = s). For example, a valid reasoning path

could be: P = Justin_Bieber
people.person.son−−−−−−−−−−→

Jeremy_Bieber
people.person.ex_wife−−−−−−−−−−−−→ Erin_Wagner,

which denotes that “Jeremy Bieber” is the father
of “Justin Bieber” and “Erin Wagner” is the ex-
wife of “Jeremy Bieber”.

Task definition. In this work, we focus on the
task of knowledge graph-based question answer-
ing (KGQA), a common reasoning task involv-
ing KGs. It is defined as: given a user query q
and a KG G = {(e, r, e′) | e, e′ ∈ E , r ∈ R},
where E and R denote the set of entities and re-
lations in KG, the task aims to design a function
f to predict answers a ∈ Aq conditioned on q
and G. Following existing KG-enhanced LLMs
methods (Sun et al., 2023; Ma et al., 2024), the
function f can be generally expressed as finding
valid reasoning path(s) P on KGs that connects
the entities mentioned in the query and the an-
swer as: P (a|q,G) = ∑

P Pθ(a|q,P)Pϕ(P|q,G),
where Pθ(a|q,P) denotes the probability of gen-
erating answer a conditioned on q and reasoning
path(s) P by a function parameterized by θ, and
Pϕ(P|q,G) denotes the probability of discovering
reasoning path(s) P by a function parameterized

8316

Lou Seal

Lou seal
giants mascot

San Francisco
Giants

Mascot

m.03_dwt

sports.ma
scot.team

common.topic.image

common.topic.notab
le_types

common.topi
c.article

Seals Stadium

Bruce Bochy

2014 World Series

sports.sports_team
.arena_stadium

sports.sports_team
.championships

baseball.baseb
all_team.curre
nt_manager

Entity emb !!
Relation emb !"

𝑹 = 𝑺𝟏, 𝑺𝟐, … , 𝑺𝑻 = 𝑺𝟏:𝑻

𝐴

Predicted Final Answer

LLM Driven

Extending Multiple-step
Reasoning Paths

𝑄

𝐿𝑀(𝑥, 𝑆!!:#$!, 𝑝) 𝐶(𝑥%, 𝑠!# , 𝑠!!:#$!)

𝐿𝑀(𝑥, 𝑆&!:#$!, 𝑝) 𝐶(𝑥%, 𝑠&# , 𝑠&!:#$!)

𝐿𝑀(𝑥, 𝑆'!:#$!, 𝑝) 𝐶(𝑥%, 𝑠'# , 𝑠'!:#$!)

𝐿𝑀(𝑥, 𝑆'(!!:#$!, 𝑝) 𝐶(𝑥%, 𝑠&'() , 𝑠&'((:)*()

𝐿𝑀(𝑥, 𝑆&'!:#$!, 𝑝) 𝐶(𝑥%, 𝑠+&, , 𝑠+&(:)*()

⋯ ⋯

Deductive Verification guided Beam Search Section 2.2

Select 𝒌 Paths
(𝒌 = 𝟐)

⋯ ⋯ ⋯

𝑆!"

𝑆#"

𝑆$"

𝑆$%!"

𝑆#$"

⋯
⋯

Reasoning Chain

LM❉ + prompt

Keywords list
Reasoning Step

Candidates
Construction

Retrieval

Question: Lou Seal is the mascot for the team
that last won the World Series when?

Knowledge Graph Path-RAG Section 2.1

𝑻 − 𝟏 length reasoning path

Nodes/Relations

Deductive Verification

Next Reasoning Step

Figure 2: An illustration of FiDeLiS. Top: The workflow of Path-RAG. An LLM first extracts key terms and generates
dense embeddings that feed into the Path-RAG module. Then, Path-RAG rapidly retrieves relevant entities and relations from a
pre-embedded KG and constructs candidate reasoning steps by combining semantic similarity with graph connectivity. Bottom:
The workflow of DVBS. Next, the DVBS module uses LLM-generated planning to guide a beam search that builds reasoning
paths step-by-step over candidates constructed by Path-RAG, with deductive verification ensuring each step logically follows the
previous steps and support the user question.

by ϕ. As reasoning path P is defined as a sequence
of reasoning steps, we factorize the reasoning path
probability using the chain rule as Eq 1:

P (a|q,G) =
∑

P
Pθ(a|q,P)

n∏

k=1

Pϕ(tk|q, t<k,G) (1)

To acquire valid reasoning paths, most prior studies
follow either retrieval-based (Li et al., 2023; Luo
et al., 2024, 2025) or agent-based (Sun et al., 2023;
Ma et al., 2024) paradigm. As indicated in Luo
et al. (2025), retrieval-based methods rely on addi-
tional precise retrievers, while agent-based meth-
ods are computationally intensive and may lead to
high latency. To balance this trade-off, we propose
our method, FiDeLiS, to enable both efficient and
faithful reasoning over KGs.

3 Method

Motivated by the insight that integrating KGs with
LLMs can mitigate hallucinations and enable verifi-
able reasoning, we propose FiDeLiS to improve the
factuality of LLM responses by anchoring answers
to verifiable reasoning steps retrieved from a KG.
The overall framework of FiDeLiS is illustrated in
Figure 2, which consists of two main components:
(1) Reasoning Path Retrieval-Augmented Genera-
tion (Path-RAG, Algorithm 1) and (1) Deductive-
verification Beam Search (DVBS, Algorithm 2).

Given a complex question q, we first employ
an LLM to extract key terms and generate dense
embeddings that capture the question’s core con-

cepts. These embeddings serve as input to the Path-
RAG module, which efficiently retrieves relevant
entities and relations from a pre-embedded KG,
narrowing down the candidate set for subsequent
beam search. This approach addresses the latency
and computational overhead typical of traditional
agent-based methods. Path-RAG then constructs
candidate reasoning steps by combining immediate
semantic similarity with the structural connectiv-
ity of the graph, overcoming the dependence on
highly precise retrievers in standard retrieval-based
approaches. Next, the DVBS module employs an
LLM-generated planning to guide the beam search
that builds reasoning paths step-by-step. At each
step, deductive verification checks whether the ac-
cumulated reasoning steps logically supports the
user question, ensuring the final reasoning path is
both verifiable and accurate.

3.1 Path-RAG: Reasoning Path
Retrieval-Augmented Generation

Previous agent-based methods (Ma et al., 2024;
Sun et al., 2023) treat LLMs as agents that iter-
atively interact with KGs to find reasoning paths
and answer, which necessitate multiple rounds of
interaction between agents and KGs and lead to
high computational costs and latency. We instead
propose a module, Path-RAG, which iteratively pre-
select a smaller candidate set to reduces the search
space for exploring the potential reasoning paths
from KGs. It consists of three steps and we detail

8317

the workflow as follows:

Initialization. We initiate the Path-RAG by en-
coding each entity ei ∈ E , and relation ri ∈ R in
the KG using a pre-trained language model (LM),
which produces dense vectors z(ei) = LM(ei) ∈
Rd and z(ri) = LM(ri) ∈ Rd, where d denotes
the embedding dimension. These embeddings are
stored in a nearest neighbor structure to facilitate
rapid similarity search.

Keyword-Driven Retrieval. We then populate
a nearest neighbor index to retrieve relevant en-
tities and relations for the user query. We first
use an LLM to analysis the user query and gener-
ate exhaustive keywords/relation names that could
be useful for finding the reasoning path to answer
the query (See the prompt in §C.1). This step is
designed to maximize coverage of potential rea-
soning steps, ensuring that no potential reasoning
paths are overlooked during the retrieval process.
The extracted keywords are then encoded using
the same LM in initialization, yielding z(K) =
LM(K) ∈ Rd. We subsequently compute the co-
sine similarity between z(K) and the pre-stored
embeddings, retrieving the top-m entities and re-
lations: Em = argtopmi∈|E| cos (z(K), z(ei)) and
Rm = argtopmi∈|R| cos (z(K), z(ri)).

Reasoning Step Candidates Construction.
Next, we construct candidate reasoning steps
defined in §2 using the retrieved candidate entities
Em and relations Rm. To guide the selection of
potential candidate, we propose a scoring function
that combines semantic similarity with the KG’s
structural connectivity. First we define the base
score function S0 that captures only the semantic
alignment of the candidate with the query as:
S0((r, e)) = Srel(r) + Sent(e), where Sent(e) and
Srel(r) represents the cosine similarity between
the entity/relation to the query respectfully. To
account for the KG’s structural connectivity, i.e.,
the potential for a candidate to lead to fruitful
next steps, we incorporate information from the
next-hop candidates and define the overall scoring
function as Eq 2:
S((r, e)) = S0((r, e)) + α max

∀(rj ,ej)∈N(e)
S0((rj , ej)) (2)

Where N(e) denotes the set of candidate relation-
entity pairs reachable from entity e within one
hop in the KG. α is a hyper-parameter that bal-
ances the immediate semantic relevance (captured
by S0((r, e)) with the candidate’s potential for fu-

ture connectivity (captured by the maximum next-
hop score). A higher α favors candidates with
long-term benefits, even if they seem sub-optimal
initially, while a lower α emphasizes immediate re-
wards, potentially overlooking future impacts. We
verify the effectiveness of this new scoring func-
tion in Table 3 and append the tuning results of
hyper-parameter α in Figure 5.

3.2 Deductive-Verification Beam Search
The objective of DVBS is two-fold: (1) to pro-
vide a step-wise beam search for exploring verifi-
able reasoning paths from KG based on candidates
constructed by Path-RAG (§3.1), and (2) to ver-
ify each reasoning step based on deductive reason-
ing (Ling et al., 2023) to ensure each step logically
follows the previous steps and supports the user
query. Compared with existing methods like Sun
et al. (2023) and Ma et al. (2024), while we both
consider treat LLMs as agents that iteratively inter-
act with KGs to find reasoning paths and answers,
our method leverage deductive reasoning to ensure
each reasoning steps are logically connected and
only halt the search if the question can be deduced
based on the reasoning paths. Based on our robust-
ness analysis in §4.3, DVBS demonstrate higher
ratio of valid reasoning paths and can prevent is-
sues of either premature stopping (Huang et al.,
2017) or excessive continuation of reasoning path
extension. The DVBS consists of three steps and
we detail the workflow as follows:

Plan Generation. Inspired by the recent works
regarding planning capabilities of LLMs (Zhang
et al., 2023; Kagaya et al., 2024), we prompt an
LLM to generate the planning steps for answering
the user query, denoted as w. This step is designed
to provide more hints for subsequent LLM decision
making process. Even this step is more like an en-
gineering trick, we find that it may unlock some of
the capabilities of LLM to do “higher-order” think-
ing. By including more hints in the prompt, the
LLM tends to make more accurate and determinis-
tic decisions during beam search, thus improving
the quality of the traversed reasoning paths. (See
Table 2 for ablation analysis).

Beam Search. We then construct the multi-step
reasoning paths by iteratively extending partial
paths using a beam search strategy. At each time
step t, we use an LLM as agent to select one rea-
soning step st from a candidates set St (§3.1) con-
ditioned on (1) the likelihood of each candidate

8318

Backend Models Methods
WebQSP CWQ CR-LT

Hits@1 (%) F1 (%) Hits@1 (%) F1 (%) Acc (%)

Prompting - LLM Only
gpt-3.5-turbo

Zero-shot 54.37 52.31 34.87 28.32 32.74
Few-shot 56.33 53.12 38.52 33.87 36.61
CoT 57.42 54.72 43.21 35.85 37.42

Prompting - LLM Only
gpt-4-turbo

IO 62.32 59.71 42.71 37.93 37.74
Few-shot 68.65 62.71 51.52 43.70 43.61
CoT 72.11 65.37 53.51 44.76 45.42

Finetuning - LLM + KG

NSM (He et al., 2021) 74.31 - 53.92 - -
CBR-KBQA (Das et al., 2021) - - 67.14 - -
DeCAF (Yu et al., 2023) 82.1 - 70.42 - -
KD-CoT (Wang et al., 2023) 73.7 50.2 50.5 - -
RoG (Luo et al., 2024) 83.15 69.81 61.39 56.17 60.32

Prompting - LLM + KG
gpt-3.5-turbo

ToG (Sun et al., 2023) 75.13 72.32 57.59 56.96 62.48
KAPING (Baek et al., 2023) 72.42 65.12 53.42 50.32 -
FiDeLiS 79.32 76.78 63.12 61.78 67.34

Prompting - LLM + KG
gpt-4-turbo

ToG (Sun et al., 2023) 81.84 75.97 68.51 60.20 67.24
FiDeLiS 84.39 78.32 71.47 64.32 72.12

Table 1: Comparison of FiDeLiS with baseline methods and different backbone LLMs. We replicate the outcomes of ToG and
RoG, and retrieve other baseline results directly from the original paper. We utilize 5 demonstrations as our default setting for
FiDeLiS, ToG, Few-shot, and CoT. The experiment results of open-source models can be found in Table 11.

si ∈ St, (2) the user query q, (3) the history of
previous steps s1:t−1, and (4) planning context w
(§3.2), denoted as LM(st|q, s1:t−1, w,St). Instead
of exploring every possibility, we retain only the
top-k scoring paths from the previous beam Ht−1

and extend them by appending candidate steps. The
overall process can be expressed as Eq 3:
Ht = Topk

{
h⊕LM(st|q, s1:t−1, w,St) : h ∈ Ht−1

}
(3)

where ⊕ denotes the concatenation of the current
path h with the selected candidate step st. The
beam search strategy enable efficiently navigate
the vast space of potential reasoning paths while
concentrating on the most promising ones.

While beam search, by its nature, can incur high
computational costs and latency due to multiple
rounds of LLM interactions. Our retrieval mod-
ule Path-RAG mitigate this issue by constraining
candidate set St at each time step t to a narrow,
high-quality subset rather than requiring the LLM
to consider all available options. This targeted re-
trieval not only reduces the number of candidates
to evaluate at each step but also increases the likeli-
hood of selecting relevant reasoning steps, thereby
enabling efficient traversal of KGs at scale. Find
more discussion regarding efficiency of FiDeLiS
in §4.4 and Appendix §B.

Deductive Verification. To ensure that each rea-
soning step logically follows from its predeces-
sors and adequately supports the original query,
we leverage the deductive reasoning capabilities of
LLMs as a verification criterion (Ling et al., 2023)
for the beam search process. We first convert the
user query q into a clear declarative statement q′,

which encapsulates its logical intent and allows the
LLM to operate on a well-defined logical target
(See the concrete example in §C.6). Next, dur-
ing the beam search, candidate reasoning step st

are appended to the history s1:t−1 to form poten-
tial reasoning paths. For each candidate, we then
invoke two deductive verification checks, Cglobal

and Clocal (the prompts are given in §C.2). Only
those candidates that pass local verification, indicat-
ing that the new step maintains logical consistency
with the established context, are retained in the
beam search process. Once the candidates pass
both verification indicate that the user query q can
be deduced based on the retained reasoning paths
s1:t and the beam search progress should be halted.

Global Verification: Cglobal(s
1:t−1, st) re-

turns 1 if (st ∧ s1:t−1) |= q′, and 0 otherwise.

Local Verification: Clocal(s
1:t−1, st) returns

1 if st logically follows from s1:t−1, and 0
otherwise.

By integrating this verification into the beam
search offers several benefits: it (1) enhances the
robustness and validity of the final answer by en-
forcing logical coherence at every step, (2) reduces
computational overhead by pruning unpromising
paths early, and (3) mitigates risks such as pre-
mature termination or excessive extension of the
reasoning process. We provide a concrete example
of the deductive verification process in §C.6 and
the complete DVBS algorithm in Algorithm 2.

8319

Ablation Setting Components
WebQSP CWQ CR-LT

Hits@1 (%) Hits@1 (%) Acc (%)

No ablation FiDeLiS 79.32 63.12 67.34

w/o Path-RAG
using vanilla retriever 72.35 57.11 59.78
using ToG 75.11 59.47 63.47

w/o DVBS

w/o last step reasoning 75.68 59.45 63.72
w/o planning 76.23 60.14 64.13
w/o beam-search 60.35 49.78 61.87
w/o deductive-verifier 74.13 57.23 63.89

Table 2: Ablation Studies of FiDeLiS using model
gpt-3.5-turbo-0125. ∆ refers to the performance gap be-
tween each component and the entire method.

4 Experiments

In this section, we focus on verifying FiDeLiS
from four perspectives as follows: (1) compari-
son results with other baselines over KGQA; (2)
ablation study; (3) robustness analysis and (4) ef-
ficiency analysis. We provide all the experiment
settings in Appendix A due to page constraints.
The prompts for plan generation, beam search and
deductive verification can be found in §C.

4.1 Main Results

In Table 1, we compare the performance of differ-
ent methods with various backbend LLMs across
three datasets. We found that LLM + KG ap-
proaches generally outperform LLM-only methods
(Zero-shot, Few-shot, and CoT) by a wide margin,
indicating the significant benefit of incorporating
KGs into LLM reasoning. In the LLM + KG cat-
egory, FiDeLiS stands out as the best-performing
method across all datasets, particularly when paired
with GPT-4-turbo. For example, on WebQSP, Fi-
DeLiS achieves 84.39% Hits@1 and 78.32% F1,
surpassing ToG (81.84% Hits@1, 75.97% F1) and
RoG (83.15% Hits@1, 69.81% F1). This improve-
ment is consistent across other datasets, and even
compared with some finetuning methods like De-
CAF and RoG, FiDeLiS as a training-free method
still demonstrate better performance. The consis-
tent performance of FiDeLiS highlights its effective
use of both the KG and LLM, as well as its opti-
mization of hyper-parameters like beam width and
depth. Overall, the results illustrate that FiDeLiS,
leveraging advanced LLMs like GPT-4-turbo and
KG-based reasoning, sets a new standard for per-
formance in KG-related tasks.

4.2 Ablation Study

Table 2 demonstrates the ablation study of FiDeLiS
using the gpt-3.5-turbo-0125 model, highlight-
ing the contributions of individual components
(Path-RAG and DVBS) to overall performance. We
conduct the ablation of the Path-RAG by replacing

Methods Backbones
WebQSP CWQ CR-LT

Hits@1 (%) Hits@1 (%) Acc (%)

Vanilla Retriever

w/ BM25 58.31 48.39 50.73
w/ SentenceBert 62.74 50.14 51.80
w/ E5 68.42 52.84 54.31
w/ Openai-Emb∗ 72.35 57.11 59.78

Path-RAG

w/ BM25 70.34 56.11 58.77
w/ SentenceBert 73.45 58.41 60.45
w/ E5 77.93 62.74 65.23
w/ Openai-Emb∗ 79.32 63.12 67.34

Table 3: Performance of FiDeLiS with various embedding
methods. * refers to text-embedding-3-small from Ope-
nAI. We detail the tested embedding methods in §A.3.

it with either a vanilla retriever or ToG (Sun et al.,
2023) as retriever. We find that using ToG shows
slight improvements over the vanilla retriever but
remains below using Path-RAG. Ablating DVBS
components also leads to performance declines,
particularly when beam search is removed, causing
Hits@1 on WebQSP to drop sharply to 60.35%.
The deductive verifier and last-step reasoning show
moderate but noticeable impacts on performance.
The effects are less pronounced on CR-LT, suggest-
ing it is more tolerant of simpler methods. Overall,
the results confirm the critical roles of Path-RAG
and DVBS, especially beam search, in ensuring
robust and accurate reasoning across domains.

4.3 Robustness Analysis

Robustness of Path-RAG. Table 3 presents the
performance of FiDeLiS compared to a vanilla re-
triever with different embedding methods. The re-
sults consistently show that FiDeLiS outperforms
the vanilla retriever irrespective of the underlying
embedding strategy. For instance, with Openai-
Emb∗, the vanilla retriever achieves 72.35% on
WebQSP, whereas Path-RAG reaches 79.32%, in-
dicating a notable improvement. Similar perfor-
mance gains are observed with the other embed-
dings. These improvements suggest that integrating
graph connections can enhance retrieval effective-
ness by providing more informative and contex-
tually relevant information, thereby bolstering the
overall robustness and accuracy of the method.

Effectiveness of Path-RAG. We verify the ef-
fectiveness of the retrieval module Path-RAG with
two baselines: (1) a vanilla retriever and (2) KAP-
ING (Baek et al., 2023) method. The vanilla re-
triever concatenates each entity with its relation
to form a reasoning step and selects candidates
based on cosine similarity with the query embed-
dings. In contrast, KAPING (Baek et al., 2023)
converts each triple into text and retrieves the
top-K similar triples based on semantic similar-

8320

Method Depth = 1 Depth = 2 Depth > 3

Vanilla Retriever 59.34 52.17 47.31
KAPING (Baek et al., 2023) 65.72 60.41 53.11
Path-RAG w/ keywords 72.61 69.38 62.78
Path-RAG w/o keywords 68.78 (↓ 3.83) 65.27 (↓ 4.11) 57.13 (↓ 5.65)

Table 4: Analysis of the CR of reasoning paths over CWQ.

Methods WebQSP (hits@1) CWQ (hits@1)

Deductive Verification 79.32 63.12
Adequacy Verification (used in ToG) 74.13 57.23
Logit-based Scoring 73.47 54.78

Table 5: Analysis of different verification methods.

ity. We quantify the retrieval performance using
the coverage ratio (CR), defined as the percent-
age of the ground-truth reasoning steps being re-
trieved throughout the reasoning path extension
(i.e., CR =

Nretrieved∩Nground−truth

Nground−truth
). Table 4 illus-

trate the experimental setup and corresponding re-
sults. We find that compared with the baselines, our
Path-RAG achieves a higher CR value and aligns
better with the ground-truth paths. It demonstrates
superior ability to capture connections that simpler
retrieval models may overlook. This advantage is
critical for guiding subsequent LLM processing
toward relevant information, ultimately yielding
more accurate and coherent answers.

Path Error Analysis. To verify the faithfulness
of our step-wise method, we conduct an error anal-
ysis regarding the whole reasoning path generation
using RoG (Luo et al., 2024). We quantify the va-
lidity of reasoning path using validity ratio (VR),
which is defined as the ratio of reasoning steps
that existed in the KG to the total number of the
reasoning steps in the output reasoning path (i.e.,
VR =

Nvalid−steps

Nall-steps
). As shown in Figure 3, only

67% of generated reasoning steps are valid, while
the remaining 33% of reasoning steps either have
a format error or do not exist in the KG. This il-
lustrates that the reasoning steps generated offer
few guarantees about feasibility especially when
multiple consecutive steps are combined into a rea-
soning path. While our method leverage step-wise
verification to ensure that each of the reasoning
step exist in the KG and logically connected.

Effectiveness of Deductive-Verification. To ver-
ify the effectiveness of deductive-verification men-
tioned in §3.2, we calculate the average depths of
the generated reasoning paths as shown in Table 6.
We find that by considering deductive verification,
it consistently shows shorter and closer reasoning
depths to ground-truth across all datasets compared
to baseline. This implies that FiDeLiS may offer
more precise termination signals and potentially

Figure 3: Analysis of reasoning errors in RoG (Luo et al.,
2024) over WebQSP.

Method WebQSP CWQ CR-LT

GT 2.3 3.2 4.7

ToG 3.1 4.1 5.2
FiDeLiS 2.4 2.8 4.6

Table 6: Average depths of the generated reasoning paths.
GT refers to ground-truth reasoning paths.

more accurate reasoning paths. We also compare
deductive-verification methods with other baselines
in Table 5, like logit-based scoring that assign soft-
max probability scores to determine the endpoint
of beam search process, and adequacy verification
used in ToG (Sun et al., 2023). Experiments show
higher accuracy with deductive verification com-
pared to adequacy verification and logit-based scor-
ing, demonstrating its effectiveness in enhancing
reasoning accuracy.

Dataset Method Hits@1 Runtime Token #

WebQSP

FiDeLiS (ours) 79.32 43.83 2,452 10.7
w/o Path-RAG using vanilla retriever 72.35 48.37 2,873 10.7
w/o Path-RAG using ToG 75.11 74.26 6,437 10.7

FiDeLiS (ours) - GPT-4o 81.17 37.82 2,452 10.7
FiDeLiS (ours) - GPT-4o-mini 76.48 24.31 2,452 10.7

CWQ

FiDeLiS (ours) 63.12 74.59 2,741 15.2
w/o Path-RAG using vanilla retriever 57.11 78.41 3,093 15.2
w/o Path-RAG using ToG 59.47 132.59 5,372 15.2

FiDeLiS (ours) - GPT-4o 65.33 50.12 2,741 15.2
FiDeLiS (ours) - GPT-4o-mini 58.34 42.54 2,741 15.2

Table 7: Runtime efficiency of FiDeLiS per question.

This finding is further supported by a case
study regarding a complex question of Iran’s
government system, which blends elements of
religion and democracy as shown in Table 8.
While baseline methods such as GPT + CoT
and RoG predominantly identified Iran as an “Is-
lamic Republic” and ToG produce mixed responses,
our approach—enhanced by deductive verifica-
tion—delivers a reasoning path that is both con-
cise and context-aware. The proposed verifica-
tion mechanism not only streamlines the reason-
ing process but also ensures comprehensive cover-
age of grounded answers, demonstrating FiDeLiS’s
strength in handling intricate questions.

4.4 Efficiency Analysis
To investigate the runtime efficiency and cost ef-
ficiency of FiDeLiS, we present a comparison re-
garding the average runtime, average token usage,
average times of LLM calling per question in Ta-
ble 7. We find that (1) our method shows supe-

8321

Question What form of government is in the country that uses the Iranian Rail and was established in 1979?

Answer ’Parliamentary system’, ’Presidential system’, ’Islamic republic’, ’Unitary state’, ’Theocracy’

GPT + CoT

Think step by step. First, identify the country: the country that uses the Iranian Rail is Iran. Then, retrieve the historical Context of 1979: In 1979, Iran underwent a significant
transformation with the Iranian Revolution, which led to the overthrow of the Pahlavi monarchy. Third, following the revolution, the country adopted a new form of government based
on Islamic law. The result was the establishment of the Islamic Republic of Iran, which combines elements of a theocracy and a democracy, where religious leaders have significant
influence over the state governance. So, the government form is the Islamic Republic of Iran, established in 1979 following the Iranian Revolution.

RoG
location.country.form_of_government, location.location.containedby location.country.form_of_government’
location.location.containedby → government.form_of_government.countries
The results are Islamic republic.

ToG

Path-1: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Islamic republic → government.form_of_government.countries → Iran
Path-2: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Theocracy → government.form_of_government.countries → Iran
Path-3: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Unitary state → government.form_of_government.countries → Iran
Based on the reasoning paths, the result is Iran.

FiDeLiS

Path-1: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Islamic republic
Path-2: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Theocracy
Path-3: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Unitary state
Based on the reasoning paths, the results are Theocracy, Unitary state, Islamic republic.

Table 8: Case study of FiDeLiS. We highlight the wrong answers with red color, and correct answers with blue color.

rior efficiency compared to the ToG (which is also
training-free), by reducing approximately 1.7x run-
time costs. (2) Path-Rag component is critical in
enhancing both the accuracy and efficiency of the
model. Its ability to constrain potential path can-
didates effectively reduces unnecessary computa-
tional overhead, leading to quicker and more ac-
curate results. To address concern regarding our
method’s potential application in real-time scenar-
ios, we also test our method using faster and more
advanced LLMs. Table 7 shows that our method
could be further accelerated with newer, faster mod-
els like GPT-4o or GPT-4-mini. The potential of
the ongoing advancements in LLMs are expected
to further enhance the scalability and efficiency
of FiDeLiS, making it a practical development in
challenging environments. More detailed analysis
of bottleneck of computation of FiDeLiS can be
further found in Appendix B.

5 Related Work

LLM Reasoning & Role of KGs. Large lan-
guage models (LLMs) demonstrate impressive ca-
pabilities in reasoning tasks but often generate hal-
lucinated or factually incorrect outputs, particu-
larly in complex, multi-step scenarios (Huang et al.,
2025; Li et al., 2024; Chen et al., 2025; He et al.,
2025). This unreliability reduces their effectiveness
in knowledge-intensive applications. Knowledge
graphs (KGs) have emerged as a solution by offer-
ing structured, verifiable data that supports trans-
parent and multi-hop reasoning (Sui et al., 2024).
Unlike document-based retrieval-augmented gen-
eration approaches, KGs provide direct access to
relational facts, enhancing both interpretability and
traceability (Chen et al., 2024).

KG-enhanced LLM Reasoning. KG-enhanced
reasoning methods are generally categorized into
retrieval-based and agent-based models. Retrieval-

based approaches, such as DeCAF (Yu et al., 2023),
rely on text-based retrieval to select relevant infor-
mation from KGs and jointly generate answers and
logical forms, but their performance can degrade
without precise retrieval mechanisms. In contrast,
agent-based models, like ToG (Sun et al., 2023),
iteratively explore reasoning paths but suffer from
high computational overhead. To address these lim-
itations, recent methods like RoG (Luo et al., 2024)
and GCR (Luo et al., 2025) have sought to integrate
KG structure into LLM training or decoding to im-
prove reasoning fidelity and explanation generation.
To improve the faithfulness of the LLM reasoning,
KD-CoT (Wang et al., 2023) verifies sub-reasoning
steps through external KGs to prevent errors during
inference, while NSM (He et al., 2021) employs a
teacher-student architecture to learn intermediate
supervision signals that guide reasoning.

6 Conclusion

This paper proposes a retrieval-exploration interac-
tive method specifically designed to enhance inter-
mediate steps of LLM reasoning grounded by KGs.
The Path-RAG module and the use of deductive
reasoning as a calibration tool effectively guide
the reasoning process, leading to more accurate
knowledge retrieval and prevention of misleading
reasoning chains. Extensive experiments demon-
strate that our method, being training-free, not only
reduces computational costs but also offers superior
generality. We believe this study will significantly
benefit the integration of LLMs and KGs, or serve
as an auxiliary tool to enhance the interpretability
and factual reliability of LLM outputs.

Limitations

Our work demonstrates a promising advancement
by integrating KGs with LLMs to reduce hallucina-
tions and promote deep, faithful reasoning through

8322

deductive verification. However, the method ex-
hibits certain limitations. Its reliance on external
KGs means that the overall effectiveness is contin-
gent on the quality and comprehensiveness of these
resources, and challenges may arise when encoun-
tering incomplete, inconsistent or outdated infor-
mation. Despite these limitations, the open-KGs
like Wikidata and DBpedia used in our study are
of high quality, benefiting from years of updates by
an extensive community. For domain-specific KGs,
although there may currently be gaps in quality, we
are optimistic about future enhancements. Given
the significant societal impact and the noticeable
boosts in LLM performance facilitated by KGs, it
is likely that community efforts will continue to
refine and expand these resources.

References
Garima Agrawal, Tharindu Kumarage, Zeyad Alghamdi,

and Huan Liu. 2024. Can Knowledge Graphs Reduce
Hallucinations in LLMs? : A Survey. arXiv preprint.

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023.
Knowledge-Augmented Language Model Prompting
for Zero-Shot Knowledge Graph Question Answer-
ing. arXiv preprint.

Jordi Bayarri-Planas, Ashwin Kumar Gururajan, and
Dario Garcia-Gasulla. 2024. Boosting Healthcare
LLMs Through Retrieved Context. arXiv preprint.

Yulin Chen, Haoran Li, Yuan Sui, Yufei He, Yue Liu,
Yangqiu Song, and Bryan Hooi. 2025. Can indirect
prompt injection attacks be detected and removed?
ArXiv preprint, abs/2502.16580.

Yuxuan Chen, Daniel Röder, Justus-Jonas Erker, Leon-
hard Hennig, Philippe Thomas, Sebastian Möller, and
Roland Roller. 2024. Retrieval-Augmented Knowl-
edge Integration into Language Models: A Survey.
In Proceedings of the 1st Workshop on Towards
Knowledgeable Language Models (KnowLLM 2024),
pages 45–63, Bangkok, Thailand. Association for
Computational Linguistics.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya
Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen Tan,
Lazaros Polymenakos, and Andrew McCallum. 2021.
Case-based reasoning for natural language queries
over knowledge bases. CoRR, abs/2104.08762.

Willis Guo, Armin Toroghi, and Scott Sanner. 2024.
CR-LT-KGQA: A Knowledge Graph Question An-
swering Dataset Requiring Commonsense Reasoning
and Long-Tail Knowledge. arXiv preprint.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021. Improving Multi-hop Knowl-
edge Base Question Answering by Learning Interme-
diate Supervision Signals. In Proceedings of the 14th

ACM International Conference on Web Search and
Data Mining, pages 553–561.

Yufei He, Yuexin Li, Jiaying Wu, Yuan Sui, Yulin Chen,
and Bryan Hooi. 2025. Evaluating the paperclip max-
imizer: Are rl-based language models more likely to
pursue instrumental goals? arXiv preprint arXiv:
2502.12206.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2025. A Survey on Hallucination in Large Lan-
guage Models: Principles, Taxonomy, Challenges,
and Open Questions. ACM Transactions on Informa-
tion Systems, 43:1–55.

Liang Huang, Kai Zhao, and Mingbo Ma. 2017. When
to Finish? Optimal Beam Search for Neural Text
Generation (modulo beam size). In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2134–2139, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng,
Hanyi Fang, and Peter Szolovits. 2020. What Disease
does this Patient Have? A Large-scale Open Domain
Question Answering Dataset from Medical Exams.
arXiv preprint.

Tomoyuki Kagaya, Thong Jing Yuan, Yuxuan Lou,
Jayashree Karlekar, Sugiri Pranata, Akira Kinose,
Koki Oguri, Felix Wick, and Yang You. 2024.
RAP: Retrieval-Augmented Planning with Contex-
tual Memory for Multimodal LLM Agents. arXiv
preprint.

Tiffany H Kung, Morgan Cheatham, Arielle Medenilla,
Czarina Sillos, Lorie De Leon, Camille Elepaño,
Maria Madriaga, Rimel Aggabao, Giezel Diaz-
Candido, James Maningo, et al. 2023. Perfor-
mance of ChatGPT on USMLE: Potential for AI-
assisted medical education using large language mod-
els. PLoS digital health, 2:e0000198.

Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng, Xin
Zhao, Jian-Yun Nie, and Ji-Rong Wen. 2024. The
Dawn After the Dark: An Empirical Study on Fac-
tuality Hallucination in Large Language Models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 10879–10899, Bangkok, Thai-
land. Association for Computational Linguistics.

Shiyang Li, Yifan Gao, Haoming Jiang, Qingyu Yin,
Zheng Li, Xifeng Yan, Chao Zhang, and Bing Yin.
2023. Graph reasoning for question answering with
triplet retrieval. In Findings of the Association for
Computational Linguistics: ACL 2023.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2023.
Deductive Verification of Chain-of-Thought Reason-
ing. arXiv preprint.

8323

http://arxiv.org/abs/2311.07914
http://arxiv.org/abs/2311.07914
https://doi.org/10.48550/arXiv.2306.04136
https://doi.org/10.48550/arXiv.2306.04136
https://doi.org/10.48550/arXiv.2306.04136
https://doi.org/10.48550/arXiv.2409.15127
https://doi.org/10.48550/arXiv.2409.15127
https://arxiv.org/abs/2502.16580
https://arxiv.org/abs/2502.16580
https://doi.org/10.18653/v1/2024.knowllm-1.5
https://doi.org/10.18653/v1/2024.knowllm-1.5
https://arxiv.org/abs/2104.08762
https://arxiv.org/abs/2104.08762
https://doi.org/10.48550/arXiv.2403.01395
https://doi.org/10.48550/arXiv.2403.01395
https://doi.org/10.48550/arXiv.2403.01395
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.18653/v1/D17-1227
https://doi.org/10.18653/v1/D17-1227
https://doi.org/10.18653/v1/D17-1227
https://doi.org/10.48550/arXiv.2009.13081
https://doi.org/10.48550/arXiv.2009.13081
https://doi.org/10.48550/arXiv.2009.13081
http://arxiv.org/abs/2402.03610
http://arxiv.org/abs/2402.03610
https://doi.org/10.18653/v1/2024.acl-long.586
https://doi.org/10.18653/v1/2024.acl-long.586
https://doi.org/10.18653/v1/2024.acl-long.586
https://doi.org/10.48550/arXiv.2306.03872
https://doi.org/10.48550/arXiv.2306.03872

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhen-
hua Han, Qianxi Zhang, Qi Chen, Chengruidong
Zhang, Bailu Ding, Kai Zhang, Chen Chen, Fan Yang,
Yuqing Yang, and Lili Qiu. 2024. RetrievalAttention:
Accelerating Long-Context LLM Inference via Vec-
tor Retrieval. arXiv preprint.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and
Shirui Pan. 2024. Reasoning on graphs: Faithful and
interpretable large language model reasoning. In In-
ternational Conference on Learning Representations.

Linhao Luo, Zicheng Zhao, Chen Gong, Gholamreza
Haffari, and Shirui Pan. 2025. Graph-constrained
reasoning: Faithful reasoning on knowledge graphs
with large language models. In Forty-second Interna-
tional Conference on Machine Learning.

Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li,
Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian Guo.
2024. Think-on-Graph 2.0: Deep and Faithful Large
Language Model Reasoning with Knowledge-guided
Retrieval Augmented Generation. arXiv preprint.

Shirui Pan, Yizhen Zheng, and Yixin Liu. 2023. Inte-
grating Graphs with Large Language Models: Meth-
ods and Prospects. arXiv preprint.

Hongjin Qian, Peitian Zhang, Zheng Liu, Kelong Mao,
and Zhicheng Dou. 2024. MemoRAG: Moving to-
wards Next-Gen RAG Via Memory-Inspired Knowl-
edge Discovery. arXiv preprint.

Yuan Sui, Yufei He, Tri Cao, Simeng Han, and Bryan
Hooi. 2025. Meta-reasoner: Dynamic guidance for
optimized inference-time reasoning in large language
models. Preprint, arXiv:2502.19918.

Yuan Sui, Yufei He, Zifeng Ding, and Bryan Hooi. 2024.
Can Knowledge Graphs Make Large Language Mod-
els More Trustworthy? An Empirical Study over
Open-ended Question Answering. arXiv preprint.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Lionel Ni, Heung-
Yeung Shum, and Jian Guo. 2023. Think-on-Graph:
Deep and Responsible Reasoning of Large Language
Model on Knowledge Graph. In The Twelfth Interna-
tional Conference on Learning Representations.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641–651.

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang
Li, Yunsen Xian, Chuantao Yin, Wenge Rong, and
Zhang Xiong. 2023. Knowledge-Driven CoT: Ex-
ploring Faithful Reasoning in LLMs for Knowledge-
intensive Question Answering. arXiv preprint.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. 2024.
Hallucination is Inevitable: An Innate Limitation of
Large Language Models. arXiv preprint.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206, Berlin,
Germany. Association for Computational Linguis-
tics.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Yiqun Hu, William
Wang, Zhiguo Wang, and Bing Xiang. 2023. DecAF:
Joint Decoding of Answers and Logical Forms for
Question Answering over Knowledge Bases. arXiv
preprint.

Junchi Yu, Ran He, and Rex Ying. 2024. Thought Prop-
agation: An Analogical Approach to Complex Rea-
soning with Large Language Models. arXiv preprint.

Qiang Zhang, Keyang Ding, Tianwen Lyv, Xinda Wang,
Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao Wang,
Xiaotong Li, Zhuoyi Xiang, Kehua Feng, Xiang
Zhuang, Zeyuan Wang, Ming Qin, Mengyao Zhang,
Jinlu Zhang, Jiyu Cui, Tao Huang, Pengju Yan, Ren-
jun Xu, Hongyang Chen, Xiaolin Li, Xiaohui Fan,
Huabin Xing, and Huajun Chen. 2024. Scientific
Large Language Models: A Survey on Biological &
Chemical Domains. arXiv preprint.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B. Tenenbaum, and Chuang Gan. 2023.
Planning with Large Language Models for Code Gen-
eration. arXiv preprint.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D. Manning,
and Jure Leskovec. 2022. GreaseLM: Graph REA-
Soning Enhanced Language Models for Question
Answering. arXiv preprint.

8324

https://doi.org/10.48550/arXiv.2409.10516
https://doi.org/10.48550/arXiv.2409.10516
https://doi.org/10.48550/arXiv.2409.10516
https://doi.org/10.48550/arXiv.2407.10805
https://doi.org/10.48550/arXiv.2407.10805
https://doi.org/10.48550/arXiv.2407.10805
https://doi.org/10.48550/arXiv.2310.05499
https://doi.org/10.48550/arXiv.2310.05499
https://doi.org/10.48550/arXiv.2310.05499
https://doi.org/10.48550/arXiv.2409.05591
https://doi.org/10.48550/arXiv.2409.05591
https://doi.org/10.48550/arXiv.2409.05591
https://arxiv.org/abs/2502.19918
https://arxiv.org/abs/2502.19918
https://arxiv.org/abs/2502.19918
https://doi.org/10.48550/arXiv.2410.08085
https://doi.org/10.48550/arXiv.2410.08085
https://doi.org/10.48550/arXiv.2410.08085
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://doi.org/10.48550/arXiv.2308.13259
https://doi.org/10.48550/arXiv.2308.13259
https://doi.org/10.48550/arXiv.2308.13259
https://doi.org/10.48550/arXiv.2401.11817
https://doi.org/10.48550/arXiv.2401.11817
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.48550/arXiv.2210.00063
https://doi.org/10.48550/arXiv.2210.00063
https://doi.org/10.48550/arXiv.2210.00063
https://doi.org/10.48550/arXiv.2310.03965
https://doi.org/10.48550/arXiv.2310.03965
https://doi.org/10.48550/arXiv.2310.03965
https://doi.org/10.48550/arXiv.2401.14656
https://doi.org/10.48550/arXiv.2401.14656
https://doi.org/10.48550/arXiv.2401.14656
https://doi.org/10.48550/arXiv.2303.05510
https://doi.org/10.48550/arXiv.2303.05510
https://doi.org/10.48550/arXiv.2201.08860
https://doi.org/10.48550/arXiv.2201.08860
https://doi.org/10.48550/arXiv.2201.08860

A Experiment Details

A.1 Baselines

We consider the following methods including
training-free (highlighted with *) and training-
based methods as baselines:

• NSM (He et al., 2021) propose a teacher-student
approach for KGQA task, where the student net-
work aims to find the correct answer to the query,
while the teacher network tries to learn interme-
diate supervision signals for improving the rea-
soning capacity of the student network.

• KD-CoT (Wang et al., 2023) propose to verify
the sub-reasoning process of LLMs through the
external KGs to facilitate faithful reasoning.

• DeCAF (Yu et al., 2023) use a text-based retrieval
instead of entity linking to select question-related
information from the KG, and generate logical
forms and direct answers respectively. They
combine the logical-form-executed answers and
directly-generated answers to obtain the final out-
put.

• KAPING∗ (Baek et al., 2023) proposes a zero-
shot knowledge-augmented prompting method.
It first retrieves triples related to the question
from the graph, then prepends them to the input
question in the form of a prompt, which is then
forwarded to LLMs to generate the answer.

• ToG∗ (Sun et al., 2023): conduct the reasoning on
KGs by iteratively exploring multiple potential
reasoning paths and concludes the final answer
by aggregating the evidence from retrieved rea-
soning paths.

• RoG (Luo et al., 2024): incorporate the underling
structure of KGs into LLMs throught pre-training
and fine-tuning to generate the reasoning path
and explanation.

• GCR (Luo et al., 2025) propose to integrate KG
structure into the LLM decoding process to con-
duct graph-constrained reasoning.

A.2 Datasets & Metrics

We consider three KGQA benchmark: WebQues-
tionSP (WebQSP) (Yih et al., 2016), Complex We-
bQuestions (CWQ) (Talmor and Berant, 2018) and
CR-LT-KGQA (Guo et al., 2024) in this work. We
follow previous work (Luo et al., 2024) to use the
same training and testing splits for fair comparison
over WebQSP and CWQ. The questions from both

Dataset 1 hop 2 hop ≥ 3 hop

WebQSP 65.49 % 34.51% 0.00%
CWQ 40.91 % 38.34% 20.75%
CR-LT 5.31 % 43.22% 51.57%

Table 9: Statistics of the question hops in WebQSP, CWQ
and CR-LT-KGQA.

Dataset #Ans = 1 2 ≥ #Ans ≤ 4 5 ≥ #Ans ≤ 9 #Ans ≥ 10

WebQSP 51.2% 27.4% 8.3% 12.1%
CWQ 70.6% 19.4% 6% 4%

Table 10: Statistics of the number of answers for questions
in WebQSP and CWQ.

WebQSP and CWQ can be reasoned using Freebase
KGs2. To address the bias in WebQSP and CWQ,
which predominantly feature popular entities and
there is a likelihood that their data might have been
incorporated into the pre-training corpora of LLMs,
we further test our method on CR-LT-KGQA (dis-
cussed in §A.2). We use the complete dataset from
CR-LT-KGQA in our experiments, as it comprises
only 200 samples. Each of the question can be
reasoned based on the Wikidata3. The statistics
of the datasets are given in Table 10 and Table 9.
To streamline the KGs, we follow RoG (Luo et al.,
2024) and utilize a subgraph of Freebase by extract-
ing all triples that fall within the maximum reason-
ing hops from the question entities in WebQSP and
CWQ. Similarly, we construct the corresponding
sub-graphs of Wikidata for CR-LT-KGQA. We as-
sess the performance of the methods by analyzing
the F1 and Hits@1 metrics for CWQ and WebQSP,
and by evaluating the accuracy for CR-LT-KGQA.
The statistics of the datasets can be found in Table 9
and Table 10.

Motivation of CR-LT-KGQA. The motivation
for evaluating over CR-LT-KGQA is that the major-
ity of existing KGQA datasets, including WebQSP
and CWQ, predominantly feature popular entities.
These entities are well-represented in the training
corpora of LLMs, allowing to often generate cor-
rect answers based on their internal knowledge,
potentially without external KGs. Moreover, since
WebQSP and CWQ have been available for several
years, there is a likelihood that their data might
have been incorporated into the pre-training cor-
pora of LLMs, further reducing the need for exter-
nal KGs during question-answering. To this end,
we utilize the CR-LT-KGQA benchmark, which

2https://github.com/microsoft/FastRDFStore
3https://www.wikidata.org/wiki/Wikidata:

Main_Page

8325

https://github.com/microsoft/FastRDFStore
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page

0 50 100 150 200 250 300
Entity Popularity

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

Original
CR-LT

Figure 4: Distribution of CR-LT-KGQA dataset.

Figure 5: Parameter tuning for α for scoring function
over WebQSP

features queries specifically crafted to target ob-
scure and long-tail entities. Figure 4 illustrates
the distribution of entity frequency and popularity
in CR-LT, underscoring the inherent challenges of
these queries. In such scenarios, knowledge graphs
are indispensable as they offer a reliable, verifiable
source of information, particularly for entities that
are poorly represented in the training data of large
language models. By testing our methods on CR-
LT-KGQA, we investigate the extent to which inte-
grating KGs can bolster LLM performance in less
common knowledge domains, where their effective-
ness typically declines. This evaluation not only
demonstrates the potential synergy between LLMs
and KGs but also clarifies the critical role that KGs
continue to play in supporting LLMs across diverse
query scenarios.

A.3 Backbone LLMs & Embedding Methods

Backbone LLMs. We assess our approach on
closed- and open-source LLMs. We consider
closed-source models like GPT-4-turbo (between
Feb, 2024 to July, 2024), GPT-3.5-turbo (between
Feb, 2024 to July, 2024), GPT-4o, GPT-4o-mini
(between Nov, 2024 to Jan 2025) from OpenAI,
and open-sourced models like meta-llama-2-13B
from Meta and mixtral-7B from Mixtral AI. The
experiment results of open-source models can be
found in Table 11. We set all the inference configs
using temperature T = 0.3 and p = 1.0.
Embedding Methods. We assess the robustness
of the retrieval module Path-RAG on different em-

Backend Models
WebQSP CWQ CR-LT

Hits@1 (%) F1 (%) Hits@1 (%) F1 (%) Acc (%)

Llama-2-13B 72.34 69.78 58.41 54.78 60.87
Mistral-7B 74.11 70.23 60.71 56.87 63.12

Table 11: Performance over Open-sourced LLMs.

bedding models. We consider probabilistic ranking
function like BM254, dense retrieval using smaller
language models like SentenceBERT5 and E56,
and more advanced embedding model like text-
embedding-3-small from OpenAI7.

A.4 Implementation Details

We set the default beam width as 4 and depth as 4
without specific annotation. We set the α in Eq 2 as
0.3 to ensure reproducibility. For hyper-parameter
tuning regarding α for Eq 2 and beam search width
and length, we conduct experiments as shown in
Figure 5 and Figure 6.

Analysis of Beam Search. We investigate the ef-
fect of hyper-parameters like beam width and depth
in beam search, as illustrated in Figure 6. By vary-
ing the width and depth from 1 to 4, we observe that
overall performance improves as both parameters
increase, peaking when the search depth exceeds
3 for the WebQSP and CWQ datasets. However,
beyond a depth of 3, performance begins to decline,
likely because only a small fraction of questions in
these datasets require reasoning at greater depths.
In contrast, increasing the beam width consistently
enhances performance, highlighting the benefits of
broader exploration in search.

A.5 Robustness Analysis Across Different
Domains and KGs

KGs vary in structure and domain-specific char-
acteristics, so consistent performance across both
general and specialized KGs can reflect a method’s
adaptability to diverse real-world applications. To
this end, we conduct robustness analysis of Fi-
DeLiS across different domains and KGs to verify
the generalizability. To perform this analysis, we in-
troduced a new dataset, MedQA-USMIE, sourced
from MedQA (Jin et al., 2020), which is designed
to require domain-specific biomedical and clini-
cal knowledge. The dataset is a 4-way multiple-
choice question-answering task, and we extracted

4https://en.wikipedia.org/wiki/Okapi_BM25
5https://sbert.net
6https://huggingface.co/intfloat/e5-large
7https://platform.openai.com/docs/guides/

embeddings

8326

https://en.wikipedia.org/wiki/Okapi_BM25
https://sbert.net
https://huggingface.co/intfloat/e5-large
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings

(a) RD over CWQ (b) RD over WebQSP

(c) BW over CWQ (d) BW over WebQSP

Figure 6: Analysis of various beam search width (BW) and
reasoning depth (RD).

Method WebQSP MedQA-USMIE

ToG 81.84 42.37

Path-RAG w/ Si
r + Si

e 83.15 44.31
Path-RAG w/ Si

r + Si
e + αmax∀j∈Ni

(Sj
r + Sj

e) 84.39 46.45

Table 12: Robustness analysis of our method across different
domains

300 examples from its test set for evaluation. The
corresponding biomedical KG is based on Dis-
ease Database and DrugBank (Zhang et al., 2022).
The results, presented in Table 2, indicate that our
method exhibits consistent robustness across differ-
ent types of KGs. Our scoring function, enhanced
by incorporating next-hop neighbor information
Si
r + Si

e + αmax∀j∈Ni
(Sj

r + Sj
e), achieves higher

performance gains in both WebQSP and MedQA-
USMIE, particularly improving accuracy in the spe-
cialized biomedical domain. These findings vali-
date that our method can effectively handle the chal-
lenges posed by both general and domain-specific
knowledge graphs, indicating strong adaptability
and robustness.

B Bottleneck of Beam Search Efficiency

The bottleneck of computation is the beam search
process, which contributes to N ∗ D times LLM
calling, where D is the depth (or equivalently
length) of the reasoning path, and N is the width
of the beam-search (how many paths are remained
in the pool in each iteration). Specifically, we need
to call ND + D + C times LLM for each sam-
ple question, where C is a constant (equals to 1 if

there is no error occurs when calling the API). Sun
et al. (2023) indicate that the computational effi-
ciency can be alleviated by replacing LLMs with
small models such as BM25 and Sentence-BERT
for the beam search decision since the small mod-
els are much faster than LLM calling. In this way,
we can reduce the number of LLM calling from
ND+D+C to D+C. However, this may sacri-
fices the accuracy due to the weaker scoring model
in decision making (Sun et al., 2023).

We noted that ND + D + C is the maximal
computational complexity. In most cases, FiDeLiS
does not need ND+D+C LLM calls for a ques-
tion because the whole reasoning process might be
early stopped before the maximum reasoning depth
D is reached if LLM determines the query can be
deductive reasoning by the current retrieved rea-
soning paths. As an illustration, Table 7 shows the
average numbers of LLM calls per question needed
by FiDeLiS on different datasets. It can be seen
that in three KGQA datasets, the average numbers
of LLM calls (ranging from) are smaller than 21,
which is the theoretical maximum number of LLM
calls calculated from ND +D + C when N = 4
and D = 4. We can also see that this average num-
ber gets even smaller for dataset covering a lot of
single-hop reasoning questions, such as WebQSP.

8327

C Prompt List

In this section, we show all the prompts that need to
be used in the main experiments. The In-Context
Few-shot refers to the few-shot examples we used
for in-context learning.

C.1 Plan-and-solve

You are a helpful assistant designed to output JSON
that aids in navigating a knowledge graph to answer
a provided question. The response should include
the following keys:

(1) ’keywords’: an exhaustive list of keywords
or relation names that you would use to find the
reasoning path from the knowledge graph to answer
the question. Aim for maximum coverage to ensure
no potential reasoning paths will be overlooked;

(2) ’planning_steps’: a list of detailed steps re-
quired to trace the reasoning path with. Each step
should be a string instead of a dict.

(3) ’declarative_statement’: a string of declar-
ative statement that can be transformed from the
given query, For example, convert the question
’What do Jamaican people speak?’ into the state-
ment ’Jamaican people speak *placeholder*.’ leave
the *placeholder* unchanged; Ensure the JSON ob-
ject clearly separates these components.
In-Context Few-shot

Q: {Query}
A:

C.2 Deductive-verification

You are asked to verify whether the reasoning step
follows deductively from the question and the cur-
rent reasoning path in a deductive manner. If yes
return yes, if no, return no".
In-Context Few-shot

Whether the conclusion ’{declara-
tive_statement}’ can be deduced from
’{parsed_reasoning_path}’, if yes, return
yes, if no, return no.

A:

C.3 Adequacy-verification

You are asked to verify whether it’s sufficient for
you to answer the question with the following rea-
soning path. For each reasoning path, respond with
’Yes’ if it is sufficient, and ’No’ if it is not. Your
response should be either ’Yes’ or ’No’.
In-Context Few-shot

Whether the reasoning path ’{reasoning_path}’
be sufficient to answer the query ‘{Query}’, if yes,

return yes, if no, return no.

A:

C.4 Beam Search

Given a question and the starting entity from a
knowledge graph, you are asked to retrieve reason-
ing paths from the given reasoning paths that are
useful for answering the question.

In-Context Few-shot

Considering the planning context {plan_context}
and the given question {Query}, you are asked
to choose the best {beam_width} reasoning paths
from the following candidates with the highest
probability to lead to a useful reasoning path for
answering the question. {reasoning_paths}. Only
return the index of the {beam_width} selected rea-
soning paths in a list.

A:

C.5 Reasoning

Given a question and the associated retrieved rea-
soning path from a knowledge graph, you are asked
to answer the following question based on the rea-
soning path and your knowledge. Only return the
answer to the question.

In-Context Few-shot

Question: {Query}

Reasoning path: {reasoning_path}

Only return the answer to the question.

A:

8328

C.6 Demonstration of Deductive Verification
Deductive Verification Example

Question: Who is the ex-wife of Justin Bieber’s father?

After one round of beam searching, the current reasoning path is:
Justin_bieber → people.person.father → Jeremy_bieber.

The next step candidates are:
1. people.married_to.person → Erin Wagner
2. people.person.place_of_birth → US, . . .

The deductive reasoning can be formulated as follows:

Premises:

- Justin_bieber → people.person.father → Jeremy_bieber
(from the current reasoning path)
- Jeremy_bieber → people.married_to.person → Erin Wagner
(from the next step candidates)

Conclusion:

Erin Wagner is the ex-wife of Justin Bieber’s father.
(Using a large language model (LLM) zero-shot approach to reformat the question into a cloze
filling task, we use the last entity from the next step candidates, "Erin Wagner", to fill the cloze.)

The prompt will ask whether the conclusion can be deduced from the given premises. If the answer
is "yes", return “yes”, otherwise return “no.”

8329

Algorithm 1 Path-RAG Initialization and Retrieval Process
1: Initialization:
2: for all ei ∈ E , ri ∈ R do
3: zie = LM(ei) ▷ Embed entities
4: zir = LM(ri) ▷ Embed relations
5: end for
6: Populate nearest neighbor index with {zie} and {zir} ▷ Facilitate retrieval
7: procedure RETRIEVE(query q)
8: Ki = LM(‘prompt’, q) ▷ Generate keywords
9: for all km

i ∈ Ki do
10: ki ← concatenate(km

i)
11: zk = LM(ki) ▷ Embed concatenated keywords
12: Ek = argtopki∈E cos(zk, z

i
e) ▷ Retrieve top-k entities

13: Rk = argtopki∈R cos(zk, z
i
r) ▷ Retrieve top-k relations

14: end for
15: return Ek,Rk

16: end procedure
17: procedure SCOREPATH(Ek,Rk)
18: Initialize Score← 0
19: for each ek ∈ Ek and rk ∈ Rk do
20: Calculate Si

e, S
i
r ← cos(zk, z

i
e), cos(zk, z

i
r) ▷ Compute similarity scores

21: S(p) = Si
r + Si

e + αmax∀j∈Ni(S
j
r + Sj

e) ▷ Score path using Eq. 2
22: Score← max(Score, S(p)) ▷ Update max score
23: end for
24: return Score, p
25: end procedure

Algorithm 2 Deductive-Verification Guided Beam Search
Require: User query x, Beam width B
Ensure: Reasoning path s1:T

1: InitializeH0 = {∅}
2: Utilize LLM to generate from x:
3: Planning steps.
4: Declarative statement x′.
5: for t = 1 to T do
6: for each h ∈ Ht−1 do
7: Generate possible next steps st ∈ S using Path-RAG.
8: for each st do
9: Compute C(x′, st, s1:t−1) using LLM:

10: C(x′, st, s1:t−1) =

{
1 if x′ can be deduced from st and s1:t−1,

0 otherwise.

11: if C(x′, st, s1:t−1) = 1 then
12: Append st to h to form new hypothesis h′.
13: Add h′ toHt.
14: end if
15: end for
16: end for
17: Ht = TopB(Ht) based on scoring function (like plausibility or likelihood).
18: end for
19: return the best hypothesis fromHT .

8330

