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Abstract

Multimodal embedding models have gained
significant attention for their ability to map
data from different modalities, such as text
and images, into a unified representation space.
However, the limited labeled multimodal data
often hinders embedding performance. Re-
cent approaches have leveraged data synthe-
sis to address this problem, yet the quality
of synthetic data remains a critical bottleneck.
In this work, we identify three criteria for
high-quality synthetic multimodal data. First,
broad scope ensures that the generated data
covers diverse tasks and modalities, making
it applicable to various downstream scenar-
ios. Second, robust cross-modal alignment
makes different modalities semantically con-
sistent. Third, high fidelity ensures that the
synthetic data maintains realistic details to en-
hance its reliability. Guided by these princi-
ples, we synthesize datasets that: (1) cover a
wide range of tasks, modality combinations,
and languages, (2) are generated via a deep
thinking process within a single pass of a mul-
timodal large language model, and (3) incor-
porate real-world images with accurate and
relevant texts, ensuring fidelity through self-
evaluation and refinement. Leveraging these
high-quality synthetic and labeled datasets, we
train a multimodal multilingual ES model mmE5.
Extensive experiments demonstrate that mmE5
achieves state-of-the-art performance on the
MMEB Benchmark and superior multilingual
performance on the XTD benchmark. Our
codes, datasets, and models are released in
https://github.com/haon-chen/mmE>5.

1 Introduction

Multimodal embedding models encode multimedia
inputs, such as images and text, into latent vector
representations. They have demonstrated effective-
ness across diverse downstream tasks, including
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Figure 1: An illustration of our data synthesis frame-
work. “X—Y” denotes a modality combination, where
“X” represents the query side and “Y”” denotes the target
side. “T” denotes text and “I”” denotes image.

classification (Deng et al., 2009), visual question
answering (VQA) (Singh et al., 2019), and cross-
modal retrieval (Hu et al., 2023). Prior studies have
focused on training multimodal embedding models
using simple text-image pre-trained models such
as CLIP (Radford et al., 2021). More recently, re-
searchers have turned to multimodal large language
models (MLLMs), including LLaVA (Liu et al.,
2023a) and Phi (Abdin et al., 2024), to develop
universal embedding models.

These vision-language models (VLMs) mostly
rely on high-quality human-labeled datasets to
achieve robust embedding capabilities. Such
datasets suffer from data scarcity because they re-
quire high costs of multimodal annotations. To
address this, researchers have leveraged the ad-
vanced language modeling capabilities of large
language models (LLMs) and MLLMs to synthe-
size datasets for fine-tuning multimodal embedding
models (Zhang et al., 2024a; Zhou et al., 2024a;
Zhang et al., 2024b). However, existing works
lack a comprehensive exploration into the quality
of synthetic embedding data. Typically, most data
generated by them are limited to specific modality
types of English retrieval tasks, harming the gener-
alization capabilities of the embedding models.

After analyzing common application scenarios
of multimodal embedding models, we identify
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three key criteria and introduce a data synthesis
framework guided by these principles: (1) Broad
scope. Multimodal embedding models are com-
monly employed in tasks such as classification,
visual question answering (VQA), and retrieval,
which require understanding various input combi-
nations of text and images. Additionally, multilin-
gual contexts are increasingly popular in daily sce-
narios. As shown in Figure 1, our framework syn-
thesizes datasets covering three tasks, seven modal-
ity combinations, and 93 languages, ensuring that
models trained on it generalize effectively across
diverse scenarios. (2) Robust cross-modal align-
ment. In multimodal tasks, models must under-
stand and align information across different modal-
ities to generate meaningful representations. With-
out accurate cross-modal alignment, embeddings
may fail to capture the underlying relationships,
leading to poor performance in downstream tasks.
To synthesize data of robust cross-modal align-
ment, our framework incorporates a deep think-
ing process. Specifically, for each sampled im-
age, we first employ an MLLM to interpret it from
four perspectives before generating data: general
information, object-level description, contextual
background information, and task-specific brain-
storming, i.e., how the image relates to the given
task. Additionally, the entire data synthesis pro-
cess is executed within a single pass of an MLLM.
By this, the MLLM can “see” the images at the
whole time, avoiding potential information loss that
might occur due to multiple I/O steps in previous
works (Zhou et al., 2024a; Zhang et al., 2024b). (3)
High fidelity. The individual quality of each modal-
ity (e.g., real images, high-quality instructions,
queries, and hard negatives) determines the overall
usefulness of the dataset. To enhance fidelity, our
framework uses real images sampled from an open-
source corpus (LAION-400m (Schuhmann et al.,
2021)) as the input images. We also apply a series
of quality control measures, such as self-evaluation
and refinement, ensuring that the synthetic compo-
nents accurately reflect real-world distributions and
maintain strong cross-modal alignment.

With the synthesized data ready, we train a
multimodal multilingual ES model (mmE5). It
achieves state-of-the-art performance on the 36
datasets of MMEB (Jiang et al., 2024b), using 45
times less training data than the previous SOTA
model MMRet (Zhou et al., 2024a) (560K com-
pared to 26M) in a zero-shot setting. After incor-

porating labeled data, mmE5 still demonstrates the
best performance. Besides, mmES5 achieves the best
results on the multilingual benchmark XTD (Ag-
garwal and Kale, 2020), demonstrating its superior
multilingual capabilities.

In summary, our contributions are as follows:

* Based on our analysis of common scenarios
for multimodal embedding models, we iden-
tify three key criteria of high-quality synthetic
data: broad scope, robust cross-modal align-
ment, and high fidelity.

* We introduce a data synthesis framework
guided by the proposed principles. This frame-
work leverages an MLLM to produce high-
quality synthetic datasets that cover a wide
range of tasks, modality combinations, and
languages. It ensures robust cross-modal
alignment through a comprehensive multi-
aspect interpretation process and maintains
high fidelity by employing self-evaluation and
refinement mechanisms.

* Compared to the previous leading model,
mmE5 achieves SOTA performance on the
MMEB benchmark while using 45x less syn-
thetic data in both zero-shot and supervised
settings. mmES5 also demonstrates superior mul-
tilingual capabilities on the XTD benchmark.

2 Related Work

Multimodal Embedding Previous studies, such
as CLIP (Radford et al., 2021), Align (Jia et al.,
2021), BLIP (Li et al., 2022), and CoCa (Yu et al.,
2022), have employed large-scale weakly super-
vised data to learn separate multimodal represen-
tations through pre-training. Some works attempt
to obtain universal embeddings for texts and im-
ages utilizing existing CLIP-like models (Wei et al.,
2024; Liu et al., 2023b; Zhou et al., 2024b,c). For
instance, UnilR (Wei et al., 2024) integrates sepa-
rate embeddings from different modalities into uni-
fied features. Recent approaches finetune MLLMs
to leverage their multimodal reasoning capabilities
for obtaining universal representations (Jiang et al.,
2024a,b; Zhang et al., 2024b; Zhou et al., 2024a;
Lin et al., 2024). For example, VLM2Vec (Jiang
et al., 2024b) utilizes instruction tuning to trans-
form MLLMSs into embedding models.

Synthetic Data The generation of synthetic data
has been extensively explored for text embedding
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Method # Languages Task Modality Combinations ‘ w/ MLLM ‘ One Pass ‘ Self-evaluation
MagicLens | 1 (English) Retrieval IT—I X Vv X
MegaPairs 1 (English) Retrieval IT—I X X
GME 1 (English) Retrieval T—IT, IT=IT X X X
93 (English, | Classification, |IT—I, T—IT, IT—IT,
mmeS (Ours) (Eng Vv V4 Vv
Spanish, etc.) | VQA, Retrieval |-, [-T, IT->T, T—I

Table 1: Comparison of the synthetic datasets in our work with those from previous methods. Our synthetic datasets
encompass 93 languages, two additional tasks, and a wider range of modality combinations. “IT—T” denotes a
modality combination, where “IT” denotes images and texts on the query side and “T” denotes texts on the target
side. The entire data synthesis process is executed within a single pass of an MLLM, thereby avoiding potential
information loss and ensuring robust cross-modal alignment. We also employ real images and self-evaluation to

maintain fidelity.

tasks (Wang et al., 2024a; Chen et al., 2024; Li
et al., 2024b). With the recent emergence of
MLLMs like Phi-3.5-V (Abdin et al., 2024) and
LLaVA (Liu et al., 2023a), along with diffusion
models such as Stable Diffusion (Rombach et al.,
2022), researchers have been focusing on synthe-
sizing data to address the scarcity of multimodal
instruction-tuning datasets. For example, Magi-
cLens (Zhang et al., 2024a) utilizes co-existing
images from the same webpage and an LLM to cre-
ate multimodal data triplets (query image, instruc-
tion, relevant image), i.e., IT—I paradigm. Mega-
Pairs (Zhou et al., 2024a) aims to synthesize more
diverse data triplets by retrieving relevant images
from different perspectives. GME (Zhang et al.,
2024b) employs an LLM and a diffusion model
to generate a fused modality dataset that includes
both T—IT and IT—IT types. Table 1 presents a
comparison of the synthesized data in this study
with that of previous works.

3 Methodology: mmE5

In this section, we present our method, which syn-
thesizes high-quality multimodal data for the fur-
ther finetuning of our embedding model mmE5. As
shown in Figure 2, our method consists of five
stages: (1) Initially, for each data sample to be
synthesized, we configure the specifics of the task,
modality combination, language, and input images.
(2) We employ an MLLM to generate multi-grained
descriptions for the input images, ensuring that
the synthesized texts are well-aligned with the im-
ages. (3) Utilizing this MLLM, we synthesize text
data based on both the images and their descrip-
tions. (4) The MLLM then evaluates its synthesized
data from multiple perspectives, offering revised

data to enhance cross-modal alignment and fidelity.
(5) Finally, the synthesized texts and images are
used to finetune an MLLM specifically for embed-
ding tasks. To minimize potential information loss,
stages (2), (3), and (4) are executed within a single
pass of the MLLM.

3.1 Preliminaries

An MLLM can accept text, image, or text-image
pairs as input, allowing both the query side ¢ and
the document side d to be multimodal. Inspired
by existing works on synthetic text embedding
data (Wang et al., 2024a; Chen et al., 2024), each
data sample we generate is a quadruple of (task
instruction, query, positive document, hard neg-
ative document), denoted as (t,q,d",d™). For
each data piece, we first sample images from
the large-scale open-source image corpus LAION-
400M (Schuhmann et al., 2021) as the query im-
age, positive image, and hard negative image (g;,
d;r, d;). Then, with these three images as in-
put, an MLLM 7y can synthesize a multimodal
embedding data sample y ~ mo(y | ¢i,d;, d;),
where y = (t,q;,d,d;). As a result, the syn-
thetic data can have a maximum of seven elements:
{t, (g, @), (d;f &), (d; ,d;)}. More data exam-
ples can be found in Appendix D.

3.2 Data Synthesis Framework

Guided by the principles of high-quality synthetic
multimodal data, i.e., broad scope, robust cross-
modal alignment, and high fidelity, we introduce
a data synthesis framework. This framework is
designed to synthesize high-quality data that trans-
forms an MLLM for downstream embedding tasks.
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Figure 2: An illustration of our method. We take the generation of an IT—IT retrieval data sample as an example.

3.2.1 Data Configuration

To prepare for the data synthesis process, we con-
figure the input data from three aspects:

Task and Modality Combination We aim to syn-
thesize data with a broad scope by generating be-
yond simple retrieval data of IT—IT and T—IT
types. Our data cover three key multimodal em-
bedding tasks identified by previous work (Jiang
et al., 2024b): classification, VQA, and retrieval.
After selecting a task for synthesis, we will sample
a modality combination with respect to the spe-
cific task, such as choosing from seven possible
combinations for the retrieval task type. Note that
we only synthesize data of modality types that are
included in the MMEB benchmark (Jiang et al.,
2024b), which can cover most scenarios.

Image Despite the powerful multimodal capabil-
ities of modern MLLMs (e.g., GPT-40, Llama-
3.2 (Meta, 2024), and Llava-1.6), most cannot gen-
erate images, and those that can often produce low-
fidelity images (Zhou et al., 2024b). Following
previous works (Zhang et al., 2024a; Zhou et al.,
2024a), we sample real images from the LAION-
400M corpus (Schuhmann et al., 2021). First, we
will sample a query image from the corpus (g; € Z).
Then, for the modality types involving images on
the document side (e.g., IT—IT), we use a small
embedding model, jina-clip-v2 (Koukounas et al.,
2024), to retrieve a similar positive image d;r and
a hard negative image d; efficiently.

Language Most existing models only focus on
high-source languages like English, harming the
multilingual ability of embedding models. To syn-
thesize multilingual data, we sample languages
from the language list of XLM-R (Conneau et al.,
2020) during configuration. In order to facilitate
the common usage scenarios, we give high-source
languages higher weights. Note that the generated

task instruction will always be in English for effec-
tive instruction tuning.

3.2.2 One-pass Generation with MLLM

With the data configuration ready, we introduce
a deep thinking process that involves interpreting
input images, generating data, and performing self-
evaluation. To ensure that the MLLM always takes
the image context into account, we execute this
entire process in a single pass.

Multi-aspect Visual Interpretation To obtain a
comprehensive understanding of the images, the
MLLM 7y first analyzes them from multiple per-
spectives: (1) the general information, (2) detailed
description of the objects present, (3) contextual
background information, and (4) potential connec-
tions between the image and the text that may be
synthesized. The deep understanding of the im-
ages enables my to produce texts that are closely
aligned with the visual content, thereby enhancing
the cross-modal alignment.

Synthesizing Data Using the images and their de-
scriptions as input, we prompt 7y to synthesize
texts (¢, q,d;, d; ). Specifically, the text instruc-
tion ¢ is expected to connect g; with dj . The query
and document texts should be relevant to their re-
spective images. Note that the input and output
formats for the synthetic data may vary depending
on the combination of modalities. For example, for
I—IT and T—IT types, there can be no query text
and image, respectively.

Self-evaluation To further enhance the quality of
the synthetic data, my evaluates the data it synthe-
sizes from: (1) the relevance of the texts to their
corresponding images, (2) the plausibility of hard
negatives, (3) the clarity of ¢, and (4) the diversity

"Because of limited space, full prompts are omitted in this
section. The complete prompts can be found in Appendix C.
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Per Meta-Task Score

Average Score

Models

Class. VQA Retr. Ground. IND OOD Overall
Zero-shot Setting Models
CLIP (Radford et al., 2021) 42.8 9.1 53.0 51.8 - - 37.8
BLIP2 (Li et al., 2023) 27.0 4.2 33.9 47.0 - - 25.2
SigLIP (Zhai et al., 2023) 40.3 8.4 31.6 59.5 - - 34.8
OpenCLIP (Cherti et al., 2023) 47.8 109 523 53.3 - - 39.7
E5-V (Jiang et al., 2024a) 21.8 4.9 11.5 19.0 - - 13.3
MagicLens (Zhang et al., 2024a) 38.8 8.3 354 26.0 - - 27.8
MMRet (w/ 26M synthetic data) 47.2 184  56.5 62.2 - - 44.0
mmE5 (w/ S60K synthetic data) 60.6 55.7 54.7 72.4 - - 58.6
Partially Supervised Finetuning Models®
UnilR (Wei et al., 2024) 42.1 15.0  60.1 62.2 - - 42.8
MM-EMBED (Lin et al., 2024) 48.1 322 638 57.8 - - 50.0
GME (Zhang et al., 2024b) 56.9 412 678 534 - - 55.8
Supervised Finetuning Models
CLIP (Radford et al., 2021) 55.2 19.7 532 62.2 476 428 45.4
OpenCLIP (Cherti et al., 2023) 56.0 219 554 64.1 50.5  43.1 47.2
VLM2Vec (Jiang et al., 2024b) 61.2 499 674 86.1 675 57.1 62.9
MMRet (Zhou et al., 2024a) 56.0 574 699 83.6 68.0 59.1 64.1
mmE5 (w/ synthetic data + labeled data)  67.6 62.7 710 89.7 724  66.6 69.8

Table 2: Results on MMEB benchmark, consisting of 36 tasks across four types: classification (Class.), VQA,
retrieval (Retr.), and visual grounding (Ground.). T UnilR, MM-EMBED, and GME are not strictly zero-shot models.
UnilR and MM-EMBED are trained on the MBEIR dataset (Wei et al., 2024), which includes 10 retrieval datasets
included in the MMEB. Similarly, GME is trained on the UMRB dataset (Zhang et al., 2024b), which shares 14
datasets with the MMEB. For VLM2Vec, we use the LLaVA-based version with high-resolution images reported in
its original paper. The second-best performances are underlined, and the best performances are in bold.

(creativity) of the synthesized data. Following this
evaluation, my provides suggestions for potential
improvements. Finally, a revised version of each
data sample is produced and utilized for the subse-
quent contrastive training phase.

3.3 Finetuning Embedding Model mmE5

Following previous works of instruction-tuned text
embedding models (Xiao et al., 2024; Li et al.,
2024a) and multimodal embedding models (Jiang
et al., 2024b), we apply an instruction template
on each query: [IMAGE] {t} \n {¢} {¢:}, where
“[IMAGE]” is the image token that varies from dif-
ferent MLLMs. We then append an “[EOS]” token
to each query and document. The representation of
each input in an MLLM is derived from the output
of the “[EOS]” token from the final layer.

We utilize the InfoNCE loss (van den Oord et al.,
2018) to perform the standard contrastive learning
objective on our synthetic data D:

¢(q,d¥)
qb(q, d+) + Zd*e,/\/’ ¢(q7 di) ’

L= —log (1

where q is the encoded multimodal query, d rep-
resents the encoded document, and N denotes the
set of negative documents. The function ¢(-) =

exp(cos(+)/7), where cos(-) denotes cosine simi-
larity, and 7 is a temperature hyperparameter.

4 Experiments

4.1 Experimental Setup

We synthesize a total of S60K multimodal embed-
ding data samples. The MLLM utilized for data
synthesis is GPT-40-2024-08-06. The backbone
model for mmE5 is Llama-3.2-11B-Vision?. For
finetuning mmE5, we employed LoRA (Hu et al.,,
2022) with a rank of 8. We evaluate the general
embedding performance in terms of Precision@1
on the MMEB benchmark (Jiang et al., 2024b).
This benchmark comprises 36 multimodal embed-
ding tasks across four categories: classification
(10), VQA (10), retrieval (12), and visual ground-
ing (4). Our synthetic dataset is distributed among
classification, VQA, and retrieval tasks in a 1:1:2
ratio. We synthesize more retrieval data since this
type contains more kinds of modality combinations.
We do not synthesize visual grounding data since
they are relatively simpler for MLLM based on
the MMEB results. To evaluate multilingual mul-
timodal capabilities, we conducted tests using the

2https://huggingface.co/meta-1lama/Llama-3.
2-11B-Vision
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Figure 3: Distribution of languages in the synthetic data.

XTD benchmark (Aggarwal and Kale, 2020). Fol-
lowing MURAL (Jain et al., 2021), we conduct
experiments on seven languages of XTD and report
Recall@10 results. Additional details regarding the
synthetic data, prompts, and implementation can
be found in Appendix A, B, and C, respectively.

4.2 Results on MMEB

The overall results on the MMEB benchmark are
presented in Table 2. mmE5 achieves the best per-
formance on both zero-shot setting (with synthetic
data only) and supervised setting (with IND train-
ing datasets of MMEB). This demonstrates the
quality of our synthetic data and the effectiveness
of our multimodal embedding model. Furthermore,
we can make the following observations: (1) mmE5
generalizes well on all four kinds of tasks. This
demonstrates the broad scope of our synthetic mul-
timodal embedding data in terms of task types. (2)
With only 560K synthetic data, mnmE5 manages to
perform better than MMRet which uses 26M data.
This proves the quality of our synthetic data again.
(3) Intriguingly, mmE5 underperforms MMRet on
retrieval tasks in a zero-shot setting. This is be-
cause MMRet is trained on 26M pure retrieval data,
which makes it perform well on retrieval tasks, but
generalizes poorly on other task types.

4.3 Multilingual Performance on XTD

We synthesize a multilingual multimodal dataset
that consists of 93 languages, in order to train our
embedding model mmE5 to generalize across more
languages. The language distribution of our dataset
is presented in Figure 3. Notably, the dataset pri-
marily consists of English data samples, facilitating

Model | it es rmw zh pl tr ko Avg

ALIGN (Jia et al., 2021) 87.9 88.8 82.3 86.5 79.8 73.5 76.6 82.2
MURAL (Jain et al., 2021) 91.8 92.9 87.2 89.7 91.0 89.5 88.1 90.0
VLM2Vec (Jiang et al., 2024b) |83.7 87.1 86.7 92.8 76.1 37.2 63.9 75.4
jina (Koukounas et al., 2024) |93.6 94.1 89.8 91.8 94.3 92.7 90.1 92.3
M-CLIP (Carlsson et al., 2022)[93.1 93.6 90.0 94.0 94.3 93.1 89.0 92.4
GME (Zhang et al., 2024b) 95.1 96.4 92.3 96.4 94.9 89.8 93.6 94.1

96.1 96.2 93.3 96.3 95.4 93.6 96.0 95.3
90.9 89.6 86.3 90.2 90.3 87.2 86.7 88.7
86.3 86.3 84.2 88.8 84.9 81.0 84.4 85.1

mmE5 (full)
w/ synthetic data only
w/ english synthetic data

Table 3: Results on XTD benchmark, a text-to-image
retrieval task covering seven languages.

common usage scenarios. For the 75 low-resource
languages, we evenly synthesize data samples to
obtain a balanced multilingual dataset that supports
comprehensive cross-linguistic generalization.

To evaluate the multilingual capability of mmES5,
we conduct experiments across seven languages on
a text-to-image retrieval benchmark XTD. As pre-
sented in Table 3, mmE5 outperforms other models
in terms of overall performance on all languages,
demonstrating its superior multilingual multimodal
embedding capability. The following observations
can be made: (1) The multilingual performance
of multimodal embedding models is largely depen-
dent on their foundational models. For example,
jina-clip-v2 and M-CLIP outperform VLM2Vec-
LLaVA, despite VLM2Vec’s strong performance
on MMEB. GME exhibits robust performance on
XTD, which can be attributed to the powerful mul-
tilingual MLLM, Qwen2-VL (Wang et al., 2024b).
(2) The performance of mmE5 declines when labeled
data is omitted, indicating that general multimodal
capabilities remain essential for multilingual re-
trieval tasks. (3) In a zero-shot setting, mmE5 trained
on multilingual synthetic data (nmE5 w/ synthetic
data only) outperforms mmE5 with the same amount
of English synthetic data (mmE5 w/ english synthetic
data). This suggests that the extensive language
coverage provided by our synthetic data enhances
the multilingual capabilities of embedding models.

4.4 Application to Other Base MLLM

We train mmE5 based on the powerful MLLM
LLaMA-3.2-Vision, which is instruction-tuned and
effective in interpreting multimodal inputs. No-
tably, our synthetic data and training paradigm can
effectively transform other foundation MLLMs into
embedding models. We use both our synthetic
data and labeled data to train LLaVA-1.6* and Phi-

Shttps://huggingface.co/llava-hf/1lava-v1.
6-mistral-7b-hf
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Base MLLM Avg. on MMEB Model Avg. on MMEB
Phi-3.5-V (Abdin et al., 2024) 61.0 .

LLaVA-1.6 (Liu et al., 2023a) 658 mmE5 (280K synthetic data only) 57.4
LLaMA-3-Vision (Meta, 2024) (Ours) 69.8 w/o. Visual Interpertation 570
Baselines (For Reference) w/o. Self-evaluation 56.0
VLM2Vec (Phi-3.5-V) 60.1 w/o. Classification Data 52.5
VLM2Vec (LLaVA-1.6) 62.9 w/o. VQA Data 55.1
MMRet (LLaVA-1.6) 64.1 .

VLM2Vec (LLaMA-3.2) 64.8 w/o. Retrieval Data 56.5

Table 4: Performances of mmE5 with different MLLMs.

3.5-V*. The performances of mmE5 with different
foundation MLLMs are presented in Table 4. The
results show that models trained using our method
consistently outperform baseline models built on
the same foundational MLLMs. This indicates that
our synthetic data can effectively enhance the capa-
bility of MLLMs to embed multimodal inputs.

4.5 Discussions of Data Synthesis Process

In this section, we will further investigate the data
synthesis process via zero-shot experiments.

4.5.1 Ablation Studies

To evaluate each component of our data synthesis
framework, we conduct ablation studies of mmE5:
Deep Thinking Process To synthesize high-quality
data, we introduce a deep thinking process to boost
data synthesis. As presented in Table 5, the perfor-
mance of mmE5 declines when the Visual Interpreta-
tion and Self-evaluation components are excluded.
For example, mmE5 performs worse when utilizing
the original data compared to the revised data. This
indicates that the self-evaluation mechanism can
enhance data fidelity, facilitating the training of a
more robust embedding model.

Embedding Task Types In order to expand the
scope of data, we synthesize data across three task
types: classification, VQA, and retrieval. The per-
formance of mmE5 decreases after each type of mul-
timodal embedding data is omitted, demonstrating
that our diverse synthetic data can facilitate model
generalization. Intriguingly, the performance drops
the least after removing the retrieval data, which
is inconsistent with previous research (Jiang et al.,
2024b). One possible explanation is that our back-
bone, Llama-3.2 Vision, inherently exhibits more
robust retrieval capabilities than Phi-3.5-V.

*https://huggingface.co/microsoft/Phi-3.
5-vision-instruct

w/ IT2I only (MagicLens & MegaPairs) 30.1

w/ IT2IT & T2IT only (GME) 28.6
w/o. Hard Negative 56.2
w/ English Data only (280K) 57.6
w/o. English Data (280K) 56.9

Table 5: Performances of ablated models on MMEB.
For efficient test, we conduct zero-shot experiments on
280K synthetic data, which has the same tasks, modality
types and languages as the full synthetic data.

Modality Combinations Most prior works fo-
cus on one or two modality types, such as “IT2I”
(e.g., MagicLens (Zhang et al., 2024a) and Mega-
Pairs (Zhou et al., 2024a)) or “IT2IT & T2IT” (e.g.,
GME (Zhang et al., 2024b)). We propose to syn-
thesize data across various modality combinations
to enhance the diversity of our synthetic dataset,
i.e., the scope of our synthetic multimodal data.
To evaluate the impact of these additional modal-
ity combinations, we train mmE5 with the same
amount of datasets that contain types “IT2I” or
“IT2IT & T2IT” only. The performance of mmE5
significantly decreased when limited to these com-
binations from previous works, which indicates
that the additional modalities enable our embed-
ding model to generalize more effectively across
different combinations and task types.

Hard Negative Each sample in our synthetic
dataset incorporates a hard negative document to
help mmE5 learn subtle differences. After excluding
the hard negatives, the model’s performance drops
significantly, which demonstrates the importance
of this technique for contrastive learning.
Language To investigate the impact of linguis-
tic diversity on model performance on English
benchmarks, we conducted experiments using syn-
thetic data in two configurations: English-only and
non-English languages only. Our model, mmE5,
demonstrated a slight performance advantage with
English-only synthetic data, although the differ-
ence was minimal. Nonetheless, mmE5 achieved
satisfactory results with 280K data samples from
languages other than English. This suggests that
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Figure 4: The impact of synthetic data size on multi-
modal embedding performance on MMEB.

our multilingual dataset enhances the embedding
model’s ability to generalize effectively in both
multilingual and English-only contexts.

4.5.2 Scaling Effect

The scaling effect is an important aspect of syn-
thetic data generation for multimodal embedding
models (Zhang et al., 2024b; Zhou et al., 2024a). It
explores how the performance of the model varies
with the size of synthetic datasets. Besides, the
data synthesis and training processes demand sig-
nificant computational resources and time. There-
fore, studying the scaling effect allows us to iden-
tify the point of diminishing returns, ensuring that
resources are utilized efficiently without overpro-
ducing redundant data.

In this section, we further investigate the perfor-
mance of mmE5 using synthetic datasets of varying
sizes. Specifically, we conduct zero-shot experi-
ments on MMEB to analyze the scaling effect. As
illustrated in Figure 4, mmE5 consistently achieves
better performance with increased training data,
demonstrating the high quality of our synthetic data
again. This paradigm also indicates a linear-log re-
lationship between the model performance and data
size, consistent with previous works of text embed-
ding (Chen et al., 2024) and dense retrieval (Fang
et al., 2024). This finding facilitates the balancing
of the cost and the multimodal embedding model
performance for future works.

4.6 Hyperparameter Analysis

In order to analyze the training process of our multi-
modal embedding model, we perform experiments
with mmE5 using various training settings. For effi-
ciency, we report zero-shot results for mmE5 trained
with 280K synthetic data. Note that we tune these
hyperparameters on evaluation datasets comprising
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Figure 5: The zero-shot performances of mmE5 with
different training settings on MMEB (280K synthetic
data for efficient test).

1K samples from each training set. However, for
consistency with previous experiments, we present
results on the MMEB test sets.

LoRA Rank denotes the rank of the additional low-
rank matrices in LoRA. This parameter influences
the number of parameters added to the original
model, balancing the model’s capacity and com-
putational efficiency. As shown in the left part
of Figure 5, the performance of mmE5 initially im-
proves then drops. This demonstrates a trade-off: a
lower rank reduces memory and computation but
may lead to underfitting if r is too small, whereas
a higher rank risks harming the pre-trained multi-
modal reasoning capabilities of MLLM.

Training Batch Size In contrastive learning, batch
size plays a critical role because it directly affects
the number of negative samples available for train-
ing. As presented in the middle part of Figure 5, the
performance of mmE5 consistently increases with
larger batch size. However, large batches demand
significantly more GPU memory, i.e., more compu-
tational resources.

Temperature The temperature parameter 7 in the
InfoNCE loss (Equation 1) influences the separa-
tion between positive and negative samples in the
embedding space. We can observe that mmE5’s per-
formance first improves then declines with larger
temperature. This pattern suggests a trade-off: a
low 7 forces the model to strongly penalize near-
positive negatives, which can lead to overfitting,
while a high 7 leads to a more uniform distribution
of embeddings, which may hinder the effective sep-
aration of positive and negative samples.

5 Conclusion

In this work, we synthesize high-quality multi-
modal multilingual data to train the model mmE5.
We first define high-quality multimodal synthetic
data based on three criteria: broad scope, robust
cross-modal alignment, and high fidelity. Then, we
develop a data synthesis framework guided by these
principles. Finally, we train a multimodal multi-
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lingual embedding model using the high-quality
synthetic data. mmE5 achieves SOTA performances
on both the general benchmark MMEB and the
multilingual benchmark XTD.

Limitations

Our work has several limitations that we intend to
resolve in future research:

1. Our model currently relies on the proprietary
MLLM GPT-4o for synthesizing multimodal
data. Future work should explore aligning
smaller MLLMs with the knowledge from
GPT-like models to achieve more efficient
data synthesis.

2. mmE5 focus on text and image modalities. Fu-
ture models should aim to extend coverage
to additional modalities, such as audio and
video.

3. Due to the cost limitation and the observed
scaling effect, we limited the amount of data
produced for model training. Future research
may consider increasing data size while pre-
serving diversity to optimize model perfor-
mance.

Acknowledgments

This work was supported by Beijing Natural
Science Foundation No.  L233008, Beijing
Municipal Science and Technology Project No.
7231100010323009, National Natural Science
Foundation of China No. 62272467. The work
was partially done at the Beijing Key Laboratory
of Research on Large Models and Intelligent Gov-
ernance and Engineering Research Center of Next-
Generation Intelligent Search and Recommenda-
tion, MOE.

References

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat S. Behl, Alon Benhaim, Misha Bilenko, Jo-
han Bjorck, Sébastien Bubeck, Martin Cai, Caio
César Teodoro Mendes, Weizhu Chen, Vishrav
Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo
de Rosa, Matthew Dixon, Ronen Eldan, Dan Iter,
Amit Garg, Abhishek Goswami, Suriya Gunasekar,
Emman Haider, Junheng Hao, Russell J. Hewett,
Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauff-
mann, Nikos Karampatziakis, Dongwoo Kim, Ma-
houd Khademi, Lev Kurilenko, James R. Lee, Yin Tat

Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric
Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
Modi, Anh Nguyen, Brandon Norick, Barun Patra,
Daniel Perez-Becker, Thomas Portet, Reid Pryzant,
Heyang Qin, Marko Radmilac, Corby Rosset, Sam-
budha Roy, Olatunji Ruwase, Olli Saarikivi, Amin
Saied, Adil Salim, Michael Santacroce, Shital Shah,
Ning Shang, Hiteshi Sharma, Xia Song, Masahiro
Tanaka, Xin Wang, Rachel Ward, Guanhua Wang,
Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu,
Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu,
Chengruidong Zhang, Cyril Zhang, Jianwen Zhang,
Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang,
and Xiren Zhou. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
CoRR, abs/2404.14219.

Pranav Aggarwal and Ajinkya Kale. 2020. Towards
zero-shot cross-lingual image retrieval. CoRR,
abs/2012.05107.

Fredrik Carlsson, Philipp Eisen, Faton Rekathati, and
Magnus Sahlgren. 2022. Cross-lingual and multilin-
gual CLIP. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, LREC
2022, Marseille, France, 20-25 June 2022, pages
6848-6854. European Language Resources Associa-
tion.

Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Zil-
iang Zhao, Furu Wei, and Zhicheng Dou. 2024. Little
giants: Synthesizing high-quality embedding data at
scale. CoRR, abs/2410.18634.

Mehdi Cherti, Romain Beaumont, Ross Wightman,
Mitchell Wortsman, Gabriel Ilharco, Cade Gordon,
Christoph Schuhmann, Ludwig Schmidt, and Jenia
Jitsev. 2023. Reproducible scaling laws for con-
trastive language-image learning. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2023, Vancouver, BC, Canada, June 17-24,
2023, pages 2818-2829. IEEE.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2020, On-
line, July 5-10, 2020, pages 8440-8451. Association
for Computational Linguistics.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), 20-25 June 2009, Miami,
Florida, USA, pages 248-255. IEEE Computer Soci-
ety.

Yan Fang, Jingtao Zhan, Qingyao Ai, Jiaxin Mao, Wei-
hang Su, Jia Chen, and Yiqun Liu. 2024. Scaling
laws for dense retrieval. In Proceedings of the 47th
International ACM SIGIR Conference on Research

8262


https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2404.14219
http://arxiv.org/abs/2012.05107
http://arxiv.org/abs/2012.05107
https://aclanthology.org/2022.lrec-1.739
https://aclanthology.org/2022.lrec-1.739
https://doi.org/10.48550/ARXIV.2410.18634
https://doi.org/10.48550/ARXIV.2410.18634
https://doi.org/10.48550/ARXIV.2410.18634
https://doi.org/10.1109/CVPR52729.2023.00276
https://doi.org/10.1109/CVPR52729.2023.00276
https://doi.org/10.18653/V1/2020.ACL-MAIN.747
https://doi.org/10.18653/V1/2020.ACL-MAIN.747
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3626772.3657743
https://doi.org/10.1145/3626772.3657743

and Development in Information Retrieval, SIGIR
2024, Washington DC, USA, July 14-18, 2024, pages
1339-1349. ACM.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Hexiang Hu, Yi Luan, Yang Chen, Urvashi Khandel-
wal, Mandar Joshi, Kenton Lee, Kristina Toutanova,
and Ming-Wei Chang. 2023. Open-domain visual
entity recognition: Towards recognizing millions
of wikipedia entities. In IEEE/CVF International
Conference on Computer Vision, ICCV 2023, Paris,
France, October 1-6, 2023, pages 12031-12041.
IEEE.

Aashi Jain, Mandy Guo, Krishna Srinivasan, Ting Chen,
Sneha Kudugunta, Chao Jia, Yinfei Yang, and Jason
Baldridge. 2021. MURAL: multimodal, multitask
retrieval across languages. CoRR, abs/2109.05125.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling up vi-
sual and vision-language representation learning with
noisy text supervision. In Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages
4904-4916. PMLR.

Ting Jiang, Minghui Song, Zihan Zhang, Haizhen
Huang, Weiwei Deng, Feng Sun, Qi Zhang, Deqing
Wang, and Fuzhen Zhuang. 2024a. E5-V: universal
embeddings with multimodal large language models.
CoRR, abs/2407.12580.

Ziyan Jiang, Rui Meng, Xinyi Yang, Semih Yavuz,
Yingbo Zhou, and Wenhu Chen. 2024b. VIm2vec:
Training vision-language models for massive
multimodal embedding tasks.  arXiv preprint
arXiv:2410.05160.

Andreas Koukounas, Georgios Mastrapas, Bo Wang,
Mohammad Kalim Akram, Sedigheh Eslami,
Michael Giinther, Isabelle Mohr, Saba Sturua, Scott
Martens, Nan Wang, and Han Xiao. 2024. jina-clip-
v2: Multilingual multimodal embeddings for text and
images.

Chaofan Li, Zheng Liu, Shitao Xiao, Yingxia Shao, and
Defu Lian. 2024a. Llama2vec: Unsupervised adap-
tation of large language models for dense retrieval.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 3490-3500. Association for
Computational Linguistics.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun
Wang, Xingxing Zhang, Haoyang Huang, Shaohan

Huang, Xiaolong Huang, Zeqiang Huang, Dongdong
Zhang, Yuxian Gu, Xin Cheng, Xun Wang, Si-Qing
Chen, Li Dong, Wei Lu, Zhifang Sui, Benyou Wang,
Wai Lam, and Furu Wei. 2024b. Synthetic data (al-
most) from scratch: Generalized instruction tuning
for language models. CoRR, abs/2402.13064.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H.
Hoi. 2023. BLIP-2: bootstrapping language-image
pre-training with frozen image encoders and large
language models. In International Conference on
Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 19730-19742.
PMLR.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H.
Hoi. 2022. BLIP: bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In International Conference on Ma-
chine Learning, ICML 2022, 17-23 July 2022, Balti-
more, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 12888—12900.
PMLR.

Sheng-chieh Lin, Chankyu Lee, Mohammad Shoeybi,
Jimmy Lin, Bryan Catanzaro, and Wei Ping. 2024.
Mm-embed: Universal multimodal retrieval with
multimodal 1lms.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023a. Improved baselines with visual instruc-
tion tuning.

Zhenghao Liu, Chenyan Xiong, Yuanhuiyi Lv, Zhiyuan
Liu, and Ge Yu. 2023b. Universal vision-language
dense retrieval: Learning A unified representation
space for multi-modal retrieval. In The Eleventh In-
ternational Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net.

Meta. 2024. Introducing meta llama 3: The most capa-
ble openly available llm to date. https://ai.meta.
com/blog/meta-1lama-3/.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 8748-8763.
PMLR.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2022, New Orleans,
LA, USA, June 18-24, 2022, pages 10674—10685.
IEEE.

8263


https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1109/ICCV51070.2023.01108
https://doi.org/10.1109/ICCV51070.2023.01108
https://doi.org/10.1109/ICCV51070.2023.01108
http://arxiv.org/abs/2109.05125
http://arxiv.org/abs/2109.05125
http://proceedings.mlr.press/v139/jia21b.html
http://proceedings.mlr.press/v139/jia21b.html
http://proceedings.mlr.press/v139/jia21b.html
https://doi.org/10.48550/ARXIV.2407.12580
https://doi.org/10.48550/ARXIV.2407.12580
http://arxiv.org/abs/2412.08802
http://arxiv.org/abs/2412.08802
http://arxiv.org/abs/2412.08802
https://doi.org/10.18653/V1/2024.ACL-LONG.191
https://doi.org/10.18653/V1/2024.ACL-LONG.191
https://doi.org/10.48550/ARXIV.2402.13064
https://doi.org/10.48550/ARXIV.2402.13064
https://doi.org/10.48550/ARXIV.2402.13064
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
http://arxiv.org/abs/2411.02571
http://arxiv.org/abs/2411.02571
http://arxiv.org/abs/2310.03744
http://arxiv.org/abs/2310.03744
https://openreview.net/forum?id=PQOlkgsBsik
https://openreview.net/forum?id=PQOlkgsBsik
https://openreview.net/forum?id=PQOlkgsBsik
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042

Christoph Schuhmann, Richard Vencu, Romain Beau-
mont, Robert Kaczmarczyk, Clayton Mullis, Aarush
Katta, Theo Coombes, Jenia Jitsev, and Aran Ko-
matsuzaki. 2021. LAION-400M: open dataset of
clip-filtered 400 million image-text pairs. CoRR,
abs/2111.02114.

Amanpreet Singh, Vivek Natarajan, Meet Shah,
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
Marcus Rohrbach. 2019. Towards VQA models that
can read. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pages 8317-8326. Com-
puter Vision Foundation / IEEE.

Adron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024a. Improv-
ing text embeddings with large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, pages 11897-11916. Association for
Computational Linguistics.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu,
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024b.
Qwen2-vl: Enhancing vision-language model’s per-
ception of the world at any resolution. CoRR,
abs/2409.12191.

Cong Wei, Yang Chen, Haonan Chen, Hexiang Hu,
Ge Zhang, Jie Fu, Alan Ritter, and Wenhu Chen.
2024. Uniir: Training and benchmarking univer-
sal multimodal information retrievers. In Computer
Vision - ECCV 2024 - 18th European Conference,
Milan, Italy, September 29-October 4, 2024, Pro-
ceedings, Part LXXXVII, volume 15145 of Lecture
Notes in Computer Science, pages 387-404. Springer.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-
nighoff, Defu Lian, and Jian-Yun Nie. 2024. C-pack:
Packed resources for general chinese embeddings. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR 2024, Washington DC, USA,
July 14-18, 2024, pages 641-649. ACM.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Ye-
ung, Mojtaba Seyedhosseini, and Yonghui Wu. 2022.
Coca: Contrastive captioners are image-text founda-
tion models. Trans. Mach. Learn. Res., 2022.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. 2023. Sigmoid loss for language
image pre-training. In IEEE/CVF International
Conference on Computer Vision, ICCV 2023, Paris,
France, October 1-6, 2023, pages 11941-11952.
IEEE.

Kai Zhang, Yi Luan, Hexiang Hu, Kenton Lee, Siyuan
Qiao, Wenhu Chen, Yu Su, and Ming-Wei Chang.
2024a. Magiclens: Self-supervised image retrieval
with open-ended instructions. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net.

Xin Zhang, Yanzhao Zhang, Wen Xie, Mingxin Li, Ziqi
Dai, Dingkun Long, Pengjun Xie, Meishan Zhang,
Wenjie Li, and Min Zhang. 2024b. Gme: Improving
universal multimodal retrieval by multimodal llms.

Junjie Zhou, Zheng Liu, Ze Liu, Shitao Xiao, Yueze
Wang, Bo Zhao, Chen Jason Zhang, Defu Lian, and
Yongping Xiong. 2024a. Megapairs: Massive data
synthesis for universal multimodal retrieval. arXiv
preprint arXiv:2412.14475.

Junjie Zhou, Zheng Liu, Shitao Xiao, Bo Zhao, and
Yongping Xiong. 2024b. VISTA: visualized text
embedding for universal multi-modal retrieval. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 3185-3200. Association for
Computational Linguistics.

Tianshuo Zhou, Sen Mei, Xinze Li, Zhenghao Liu,
Chenyan Xiong, Zhiyuan Liu, Yu Gu, and Ge Yu.
2024c. MARVEL: unlocking the multi-modal ca-
pability of dense retrieval via visual module plugin.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, pages 14608—14624. Association for
Computational Linguistics.

8264


http://arxiv.org/abs/2111.02114
http://arxiv.org/abs/2111.02114
https://doi.org/10.1109/CVPR.2019.00851
https://doi.org/10.1109/CVPR.2019.00851
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
https://aclanthology.org/2024.acl-long.642
https://aclanthology.org/2024.acl-long.642
https://doi.org/10.48550/ARXIV.2409.12191
https://doi.org/10.48550/ARXIV.2409.12191
https://doi.org/10.1007/978-3-031-73021-4_23
https://doi.org/10.1007/978-3-031-73021-4_23
https://doi.org/10.1145/3626772.3657878
https://doi.org/10.1145/3626772.3657878
https://openreview.net/forum?id=Ee277P3AYC
https://openreview.net/forum?id=Ee277P3AYC
https://doi.org/10.1109/ICCV51070.2023.01100
https://doi.org/10.1109/ICCV51070.2023.01100
https://openreview.net/forum?id=Zc22RDtsvP
https://openreview.net/forum?id=Zc22RDtsvP
http://arxiv.org/abs/2412.16855
http://arxiv.org/abs/2412.16855
https://doi.org/10.18653/V1/2024.ACL-LONG.175
https://doi.org/10.18653/V1/2024.ACL-LONG.175
https://doi.org/10.18653/V1/2024.ACL-LONG.783
https://doi.org/10.18653/V1/2024.ACL-LONG.783

Appendix
A Details about Synthetic Data

Task Modality combination # Samples
. . image-to-text 126,177
Classification (image,text)-to-text 13,823
image-to-text 98,040
(image,text)-to-text 41,960
(image,text)-to-image 56,185

Retrieval image-to-image 27,988
(image,text)-to-(image,text) 27,656

text-to-image 14,090
text-to-(image,text) 14,081

VQA (image,text)-to-text 140,000

Table 6: Statistics of the multimodal synthetic data used
for training mmE>5.

In this study, we introduce a synthetic multi-
modal multilingual embedding dataset designed to
facilitate model learning. This section delves into
the details of our synthetic dataset. The dataset is
comprised of three distinct tasks and seven modal-
ity combinations, totaling 560K data samples. Ta-
ble 6 provides a detailed statistical overview of our
synthetic data, categorized by tasks and modalities.

B Implementation Details

B.1 Data Synthesis

For the data synthesis process, we employ the
MLLM GPT-40-2024-08-06 model to generate
data samples. Both the temperature and top-p
parameters are set to 1.0 to ensure diverse and
coherent outputs. Our image corpus is sourced
from LAION-400m (Schuhmann et al., 2021), from
which we exclude images that are either corrupted
or have inaccessible URLs. Each synthetic data
sample incorporates one image sampled from this
corpus as the query image. For modality combina-
tions that include images on the document side, we
utilize the jina-clip-v2> model to retrieve a similar
image, along with a hard negative image, to serve
as additional inputs.

B.2 Finetuning Embedding Model

We train mmE5 using the open-source MLLM,
Llama-3.2-11B-Vision®. The training is conducted
on 64 NVIDIA A100 GPUs, each equipped with

5https://huggingface.co/jinaai/jina—clip—vz
Shttps://huggingface.co/meta-1lama/Llama-3.
2-11B-Vision

40GB of memory. To optimize GPU memory us-
age, we employ gradient checkpointing and set
the gradient accumulation steps to 4. The model
is trained with a learning rate of 2e-5 for one
epoch, utilizing both synthetic and labeled data.
LoRA (Hu et al., 2022) is applied to the MLLM
with a rank of 8. Each training sample incorporates
one hard negative document. Hard negatives are
mined for each subset of MMEB using VLM2 Vec-
LoRA’, with the 70th position in the ranking list
selected as the hard negative sample.

C Prompts

We use different prompts of data synthesis for dif-
ferent tasks. For retrieval task, we design two
prompts for modality combinations that involve
images on the document side or not. Let us take
the prompt of generating classification data for an
example to illustrate the prompt design.

First, we sample a modality combination from
{image-to-text, (image,text)-to-text}. If the query
side does not include texts, the “input_text” of the
classification data sample will be an empty string.
Similarly, for modalities of retrieval task that do not
include document texts, the “positive_document”
and “hard_negative_document” will be empty. Fol-
lowing previous works of synthesizing text embed-
ding data (Wang et al., 2024a; Chen et al., 2024),
we will randomly select a clarity and difficulty set-
ting to enhance diversity.

Then, for the multi-aspect visual description pro-
cess, we ask the MLLM to explicitly include four
perspectives of description. Besides, for the data
synthesis process, we also ask the MLLM to follow
some specific guidelines. Furthermore, the MLLM
will evaluate the initially generated data from sev-
eral aspects and provide “possible_improvements”.
Finally, the revised version of data will be used as
the output data sample. Note that there are no task
instructions generated for the VQA task, since they
are all fixed as “Represent the given image with the
following question:”.

D Data Examples

In this section, we present the examples of the
synthetic multimodal embedding data for Retrieval
(Figure 6 and Figure 7), Classification (Figure 8),
and VQA (Figure 9) tasks.

"https://huggingface.co/TIGER-Lab/
VLM2Vec-LoRA
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Prompt: Synthesizing Classification Data

Your mission is to first produce a detailed visual description of the image (within 300 words), identifying all potential aspects
for generating high-quality data for a {image-to-text, (image,text)-to-text} classification task.

Based on the description, brainstorm a potentially useful task.
Here are a few examples for your reference: {example tasks}

Then, you should write one multi-modal classification example for this task in JSON format. The JSON object must contain
the following keys:

- "description": a string, your detailed visual description, listing all required elements.

- "task_instruction": a string, describing the classification task.

- "input_text": {"an empty string", "a string the input text specified by the classification task"}.

- "label": a string, the correct label of the image and input_text (if not empty) based on the task instruction.
- "misleading_label": a string, an incorrect label that is related to the task.

- "evaluation": a string, a brief summary of the evaluation of data quality.

- "possible_improvements": a string, suggestions for improving the data based on the guidelines.

- "revised_task_instruction": the revised task instruction.

- "revised_input_text": the revised input text, {"an empty string", "a string the input text specified by the classification task"}.
- "revised_label": the revised label.

- "revised_misleading_label": the revised misleading label.

For the description, please include the following elements:

- General Description: Provide an overall summary of the image, including the primary objects, scene, and notable features.
- Object-Level Details: Identify the individual objects in the image, their attributes (e.g., color, size, position), and their
relationships to one another.

- Contextual Features: Describe the scene or environment, including background details, lighting, and any actions taking
place.

- Task-specific Brainstorming: Analyze explore how this image could relate to text (e.g., captions, contextual descriptions).

Please adhere to the following guidelines:

- Task should be suitable for the given image.

- Avoid generate task similar to classification of sentiment / subject / study field / genre / main topic / spam / urgency /
language.

- The "input_text" should be {"less than 10", "at least 10", "at least 50", "at least 100", "at least 200"} words and diverse in
expression (if not empty).

- The "misleading_label" must be a valid label for the given task, but not as appropriate as the "label" for the image.

- The text of "task_instruction" should be in English and others fields should be in {language}.

- Avoid including the values of the "label" and "misleading_label" fields in the "input_text" (if not empty), that would make
the task too easy.

- The "input_text" (if not empty) is {"clear", "understandable with some effort", "ambiguous"} and requires {"high school",
"college", "PhD"} level education to comprehend.

- When generating the data, please evaluate the following aspects:

1. Relevance: Are the generated input texts and labels (if not empty) tightly connected to their corresponding image and task
objectives? Does the task instruction effectively link the query image with the positive label?

2. Plausibility: Are misleading labels sufficiently relevant to the image or labels while remaining definitively incorrect?
Could they mislead the model?

3. Clarity: Is the generated task clear and unambiguous, providing sufficient instruction to connect the query image with the
label, without being overly specific or abstract?

4. Diversity: Does the generated data introduce variation in task instructions, texts (if not empty), and labels to avoid
repetitive patterns in the dataset?

- Provide a detailed evaluation of the data based on the above criteria. For each criterion, explain specific flaws or strengths.
- Suggest specific revisions to address any identified weaknesses, ensuring the revised data better aligns with the guidelines
and task objectives.

- Avoid revisions that overly simplify the task instruction, text (if not empty), or labels, as this may reduce their utility for
training.

- Ensure that revised data maintains consistency with the corresponding image content and classification task requirements.

Your output must always be a JSON object only. Do not explain yourself or output anything else. Be creative!

\ J
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Prompt: Synthesizing VQA Data

Your mission is to first produce detailed visual descriptions of the image (within 300 words), identifying all potential aspects
for generating high-quality data for a visual QA task.

Based on the description, write one visual QA example based on the given image in JSON format. The JSON object must
contain the following keys:

- "description”: a string, your detailed visual description, listing all required elements.

- "question": a string, specifying the question based on the image content.

- "positive_answer": a string, the correct answer for the question based on the image content.

- "hard_negative_answer": a string, an incorrect answer that appears plausible but is ultimately wrong.
- "evaluation": a string, a brief summary of the evaluation of data quality.

- "possible_improvements": a string, suggestions for improving the data based on the guidelines.

- "revised_question": the revised question.

- "revised_positive_answer": the revised positive answer.

- "revised_hard_negative_answer": the revised hard negative answer.

For the description, please include the following elements:

- General Description: Provide an overall summary of the image, including the primary objects, scene, and notable features.
- Object-Level Details: Identify the individual objects in the image, their attributes (e.g., color, size, position), and their
relationships to one another.

- Contextual Features: Describe the scene or environment, including background details, lighting, and any actions taking
place.

- Task-specific Brainstorming: Analyze explore how this image could relate to text (e.g., captions, contextual descriptions).

Please adhere to the following guidelines:

- The "question" should be {"less than 10", "at least 10", "at least 50", "at least 100", "at least 200"} words and diverse in
expression.

- The "hard_negative_answer" must be plausible but less appropriate than the "positive_answer".

- The values for all fields should be in {language}.

- Avoid including explicit hints in the question that make the answer too obvious.

- The "question" (if not empty) is {"clear", "understandable with some effort", "ambiguous"} and requires { "high school",
"college", "PhD"} level education to comprehend.

- When generating the data, please evaluate the following aspects:

1. Relevance: Are the generated question and answers tightly linked to the image content and consistent with the task
requirements?

2. Plausibility: Does the "hard_negative_answer" closely resemble the "positive_answer" while remaining definitively
incorrect? Could it mislead the model?

3. Diversity: Does the generated data introduce variation in questions, and answers to avoid repetitive patterns in the dataset?
- Provide a detailed evaluation of the data based on the above criteria. For each criterion, explain specific flaws or strengths.
- Suggest specific revisions to address any identified weaknesses, ensuring the revised data better aligns with the guidelines
and task objectives.

- Avoid revisions that overly simplify or trivialize the "question".

- Ensure revised data maintain consistency with the image content and task-specific requirements.

Your output must always be a JSON object only. Do not explain yourself or output anything else. Be creative!

\ J
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Prompt: Synthesizing Retrieval Data (Only Query Image)

Your mission is to first produce a detailed visual description of the image (within 300 words), identifying all potential aspects
for generating high-quality data for a {image-to-text, (image,text)-to-text} retrieval task.

Based on the description, brainstorm a potentially useful task.
Here are a few examples for your reference: {example tasks}
Then, you should write one retrieval example for this task in JSON format. The JSON object must contain the following keys:

- "description": a string, your detailed visual description, listing all required elements.

- "task_instruction": a string, describing the retrieval task.

- "query": {"an empty string", "a random user search query specified by the retrieval task and the query image."}

- "positive_document": a string, the relevant document for the query image content.

- "hard_negative_document": a string, a hard negative document that only appears relevant to the query image content.

- "evaluation": a string, a brief summary of the evaluation of data quality.

- "possible_improvements": a string, suggestions for improving the data based on the guidelines.

- "revised_task_instruction": the revised task instruction.

- "revised_query": the revised query, {"an empty string", "a random user search query specified by the retrieval task and the
query image."}.

- "revised_positive_document": the revised positive document, a string, the relevant document for the query image content.
- "revised_hard_negative_document": the revised hard negative document, a string, a hard negative document that only

appears relevant to the query image content.

For the description, please include the following elements:

- General Description: Provide an overall summary of the image, including the primary objects, scene, and notable features.
- Object-Level Details: Identify the individual objects in the image, their attributes (e.g., color, size, position), and their
relationships to one another.

- Contextual Features: Describe the scene or environment, including background details, lighting, and any actions taking
place.

- Task-specific Brainstorming: Analyze explore how this image could relate to text (e.g., captions, contextual descriptions).

Please adhere to the following guidelines:

- The task should involve both query and documents (positive and hard negative, if not empty). It must directly indicate the
relation without being overly detailed or abstract.

- The query (if not empty) should be {"extremely long-tail", "long-tail", "common"}, {"less than 5 words", "5 to 15 words",
"at least 10 words"}, {"clear", "understandable with some effort", "ambiguous"}, and diverse in topic.

- All documents (if not empty) must be created independent of the query. Avoid copying the query verbatim. It’s acceptable if
some parts of the "positive_document" are not topically related to the query.

- All documents (if not empty) should be at least {"10", "30", "200", "300"} words long.

- The "hard_negative_document" (if not empty) contains some useful information, but it should be less useful or
comprehensive compared to the "positive_document".

- The text of "task_instruction" should be in English and others fields should be in {language}.

- Do not provide any explanation in any document (if not empty) on why it is relevant or not relevant to the query.

- Do not use the word "query" or "document" in the generated content.

- Both the query and documents (if not empty) require {"high school", "college", "PhD"} level education to understand.

- When generating the data, please evaluate the following aspects:

1. Relevance: Are the generated query and documents (if not empty) tightly connected to their corresponding image and task
objectives? Does the task instruction effectively link the query image with the positive text?

2. Plausibility: Are hard negatives sufficiently similar to the query or positive examples while remaining definitively
incorrect? Could they mislead the model?

3. Clarity: Is the generated task clear and unambiguous, providing sufficient instruction to connect the query image with the
positive document, without being overly specific or abstract?

4. Diversity: Does the generated data introduce variation in task instructions, queries, and documents to avoid repetitive
patterns in the dataset?

- Provide a detailed evaluation of the data based on the above criteria. For each criterion, explain specific flaws or strengths.
- Suggest specific revisions to address any identified weaknesses, ensuring the revised data better aligns with the guidelines
and task objectives.

- Avoid revisions that overly simplify the task instruction, query, or documents, as this may reduce their utility for training.
- Ensure that revised data maintains consistency with the corresponding image content and retrieval task requirements.

Your output must always be a JSON object only. Do not explain yourself or output anything else. Be creative!

\ J
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Prompt: Synthesizing Retrieval Data (With Document Images)

Your mission is to first produce detailed visual descriptions of the images (within 600 words), identifying all potential aspects
for generating high-quality data for a {(image,text)-to-image, image-to-image, (image,text)-to-(image,text), text-to-image,
text-to-(image,text) } retrieval task that involves both query and document images.

Based on the description, brainstorm a potentially useful task.
Here are a few examples for your reference: {example tasks}
Then, you should write one retrieval example for this task in JSON format. The JSON object must contain the following keys:

- "description": a string, your detailed visual description, listing all required elements.
- "task_instruction": a string, describing the retrieval task.

- "query": {"an empty string", "a random user search query specified by the retrieval task and the query image."}

- "positive_document": {"an empty string", "a string, the relevant document for the query based on the query text and image
content" }

- "hard_negative_document": {"an empty string", "a string, a hard negative document that only appears relevant to the query
and the query image content." }

- "evaluation": a string, a brief summary of the evaluation of data quality.

- "possible_improvements": a string, suggestions for improving the data based on the guidelines.

- "revised_task_instruction": the revised task instruction.

- "revised_query": the revised query, {"an empty string", "a random user search query specified by the retrieval task and the
query image."}.

- "revised_positive_document": the revised positive document, a string, {"an empty string", "a string, the relevant document
for the query based on the query text and image content" }

- "revised_hard_negative_document": the revised hard negative document, {"an empty string", "a string, a hard negative
document that only appears relevant to the query and the query image content." }

For the description, please include the following elements:

- General Description: Provide an overall summary of the image, including the primary objects, scene, and notable features.
- Object-Level Details: Identify the individual objects in the image, their attributes (e.g., color, size, position), and their
relationships to one another.

- Contextual Features: Describe the scene or environment, including background details, lighting, and any actions taking
place.

- Task-specific Brainstorming: Analyze explore how this image could relate to text (e.g., captions, contextual descriptions).

Please adhere to the following guidelines:

- The task must connect the query image and positive image through their content. It must directly indicate the relation
without being overly detailed or abstract.

- The query (if not empty) should be {"extremely long-tail", "long-tail", "common"}, {"less than 5 words", "5 to 15 words",
"at least 10 words"}, {"clear", "understandable with some effort", "ambiguous"}, and diverse in topic.

- The query (if not empty) should effectively associate the query image with the positive image.

- All documents (if not empty) must be created independent of the query. Avoid copying the query verbatim. It’s acceptable if
some parts of the "positive_document" are not topically related to the query.

- All documents (if not empty) should be at least {"10", "30", "200", "300"} words long.

- The "hard_negative_document" (if not empty) contains some useful information, but it should be less useful or
comprehensive compared to the "positive_document".

- The text of "task_instruction" should be in English and others fields should be in {language}.

- Do not provide any explanation in any document (if not empty) on why it is relevant or not relevant to the query.

- Do not use the word "query" or "document" in the generated content.

- Both the query and documents (if not empty) require {"high school", "college", "PhD"} level education to understand.

- When generating the data, please evaluate the following aspects:

1. Relevance: Are the generated query and documents (if present) tightly linked to their corresponding images? Does the task
instruction effectively connect the query image to the positive image?

2. Plausibility: Are the negative examples, including hard negatives, realistic and similar enough to the positive image to
challenge the model, while still being definitively incorrect?

3. Clarity: Is the generated task clear and unambiguous, providing sufficient instruction to connect the query image with the
positive image, without being overly specific or abstract?

4. Diversity: Does the generated data introduce variation in task instructions, queries, and documents to avoid repetitive
patterns in the dataset?

- Provide a detailed evaluation of the data based on the above criteria. For each criterion, explain specific flaws or strengths.
- Suggest specific revisions to address any identified weaknesses, ensuring the revised data better aligns with the guidelines
and task objectives.

- Avoid revisions that overly simplify the task or create unrealistic connections between the query and positive image.

- Ensure that revised data maintains consistency with the corresponding image content and retrieval task requirements.

Your output must always be a JSON object only. Do not explain yourself or output anything else. Be creative!

. J
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An Example of Synthetic Retrieval IT2IT Data (Description & Initial Data)

Images
(Query; Positive;
Hard Negative)

The first image portrays a vibrant outdoor scene of a powerful waterfall cascading down a
ledge surrounded by lush foliage. The waterfall is centrally located, with a stream flowing
in the foreground over several rocks and branches. The image captures a vivid display of
sunlight filtering through dense greenery, with bright shades of green and the mist from
the waterfall adding to the natural beauty. The scene suggests a secluded, serene
environment.

The second image presents a cascading waterfall, framed in monochrome, offering a
sense of timelessness and tranquility. The waterfall descends through rocky formations
before settling into a small pool at the bottom. The foreground features smooth rocks,
Description | polished by flowing water, which lends texture and depth to the black-and-white
photograph. The dark shadows and bright highlights create stark contrasts, enhancing the
visual impact. The surrounding area is densely wooded, indicating a secluded spot within
a forest.

The third image displays a vividly colorful landscape dominated by an expansive lake
flanked by tall, rugged cliffs. The cliffs exhibit a range of warm hues, from deep reds to
oranges, basked in the glow of a low-hanging sun. The sky is a brilliant blue with
scattered clouds, which together with the reflections on the water, create a picturesque
scene. Reeds in the foreground frame the serene water, whose stillness mirrors the sky
and cliffs, suggesting peace and prismatic beauty.

Retrieve an image-description pair depicting cascading water features in different lighting

Task Instruction and weather conditions.

Query Picturesque waterfall with vibrant forest and sunlight

This image captures a waterfall in a forested area, presented in a monochrome format. It
highlights the natural setting with cascading water over rocky terrain, creating an air of
serenity. The use of black and white emphasizes light contrasts and textures of the water
and surroundings, offering a classic, peaceful portrayal of nature unaffected by human
interference, emphasizing timeless tranquility.

In this photograph, a beautiful lake sits surrounded by striking cliffs under a bright blue
Hard negative |sky. The cliffs are illuminated by the sun, showcasing a range of warm colors that contrast

document with clear blue reflections on the water surface. Framing the lake are tall reeds,
contributing to a sense of isolation and calm are very good.

Positive
document

Figure 6: An example of the synthetic Retrieval IT2IT data (part 1). This part includes the input images, the
multi-aspect descriptions, and the initially generated data.
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An Example of Synthetic Retrieval IT2IT Data (Evaluation & Refinement)

Relevance: The task effectively links the images through their feature of cascading water
though the third doesn't fit.
Plausibility: The negative stands apart from the cascading water concept but holds some

Evaluation -
scenic elements.
Clarity: The task is clearly defined.
Diversity: There is a good variation in image scenes using water as a theme.
. Ensure the negative image relates closer to cascading water but under different weather
Possible o A . - . " .
conditions or lighting. Provide more differentiation between positive and negative
Improvements A - - .
descriptions. Revise watermark elements for image clarity.
Revised Task |Retrieve an image-description pair depicting waterfalls in different lighting or weather
Instruction conditions.

Revised Query

Vibrant sunlight waterfall with lush surrounding forest

Revised Positive
document

This image captures a waterfall in a forested area, presented in a monochrome format. It
highlights the natural setting with cascading water over rocky terrain, creating an air of
serenity. The use of black and white emphasizes light contrasts and textures of the water
and surroundings, offering a classic, peaceful portrayal of nature unaffected by human
interference, emphasizing timeless tranquility.

Revised Hard
negative
document

The photo showcases a breathtaking desert landscape under a vibrant sky. The stillness of
the clear, reflective lake beneath towering orange-red cliffs suggests peace.
Foregrounding tall reeds framing this water body adds depth without cascading water,
contrasting yet resembling a waterfall.

Figure 7: An example of the synthetic Retrieval IT2IT data (part 2). This part includes the evaluation, possible
improvements, and the revised data.
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An Example of Synthetic Classification IT2T Data

Image
(Query)
The image is a movie poster featuring a dramatic scene with a dusky, smoky
background. The foreground shows a man in a sharp, dark suit and a woman in a leather
outfit, both shown from the waist up. They are positioned closely, facing the viewer.
Above them, the text 'NICOLAS CAGE' is prominently displayed. The background
Description depicts a dystopian, smoky landscape with industrial structures, flames, and dark

billowing smoke, giving an impression of chaos and destruction. The middle lower
section features the title THE HUMANITY BUREAU' in bold, white capital letters.
Below the title, there are smaller texts with names 'Sarah Lind', "Hugh Dillon', and more,
alongside the phrase 'Escape from New America’. The color scheme is predominantly
dark, with flashes of fiery orange.

Task Instruction

Identify the genre this movie poster belongs to

Input Text

Destruction backdrop

Label

Science Fiction

Misleading Label

Romantic Comedy

Relevance: The poster's imagery and text signaling a dystopian theme are closely related
to the 'Science Fiction' label.

Plausibility: The misleading label 'Romantic Comedy' might be incorrect due to the
intense imagery of destruction, however, it still bears a relationship to movie genres.

Bvaluation Clarity: The task is clear in instructing the identification of film genre based on visual
Ccues.
Diversity: The data introduces variety in illustration, steering clear of repetitive genre
classification.
Possible To enhance data quality, add more challenging input text variations to test genre
Improvements | recognition effectiveness and to diversify task styles.
Revised Task Determine the movie genre based on the visual elements in the poster.
Instruction
Revised .
Input Text Chaotic landscape scene
Revised Label | Science Fiction
Revised

Misleading Label

Adventure

Figure 8: An example of the synthetic Classification IT2T data.
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An Example of Synthetic VQA IT2T Data

Image

(Query)

Description

The image features a young boy sitting in a rustic wooden crate filled with apples, with
a specific focus on him biting into a green apple. The boy‘s light blonde, wavy hair
frames his face as he appears engaged in eating. He is dressed in a striped shirt with
blue, green, and yellow hues, paired with blue jeans, adding a playful and casual vibe.
The wooden crate, slightly weathered and grayish, holds several red and green apples,
emphasizing the theme of harvest. Surrounding the boy are lush apple trees, their
branches laden with ripe red and green apples and vibrant green leaves. The background
is filled with soft sunlight filtering through the orchard, creating a bright and cheerful
setting. The natural tones of green and red apples contrast with the boy’s colorful outfit,
making him the focal point. The scene suggests a connection to outdoor activities like
apple picking and highlights the freshness of rural environments.

Question

In the image, there is a child dressed in a brightly striped shirt standing near a large
container filled with colorful fruits. Based on the scene depicted, what type of fruit is
the child likely surrounded by, considering the visible tree and its fruit characteristics?

Positive Answer

Apples

Negative Answer

Bananas

Evaluation

Relevance of the question and answers is high, focusing specifically on the child and the
surrounding fruits, while maintaining consistency with the image content.

The hard negative answer, although certainly wrong, could mislead due to its plausible
nature, but overall is less fitting given the absence of bananas in the scene.

The data displays diversity through detailed description without repetitive elements.

Possible
Improvements

Consider more deeply associating the description of the tree's characteristics to add
context that makes the negative answer slightly more challenging, without sacrificing
the overall accuracy of context. Ensuring a balance between misleading potential and
implausibility would enhance this data further.

Revised Question

What type of fruit, seen in the trees and collected in the container, is prominently
featured around the child who is standing next to the wooden box in this lush outdoor
setting?

Revised Positive

Answer Apples
Revised Negative
Oranges
Answer

Figure 9: An example of the synthetic VQA IT2T data.
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E Detailed Results

In this section, we present the detailed comparisons
of mmE5 to baseline models on both zero-shot and
supervised finetuning settings on the MMEB bench-
mark (Jiang et al., 2024b). Due to space limitation,
we omit the detailed results of partially supervised
finetuning models.
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Zero-shot Setting Models Supervised Finetuning Models
CLIP OpenCLIP SigLIP BLIP2 MagicLens ES-V MMRet mmE5 VLM2Vec MMRet mmE5
Classification (10 tasks)

Task

ImageNet-1K 55.8 63.5 454 10.3 48.0 9.6 49.1 68.8 74.5 58.8 77.6
N24News 34.7 38.6 139  36.0 33.7 234 458 545 80.3 71.3 82.1
HatefulMemes 51.1 51.7 472  49.6 49.0 497 51.0 550 67.9 53.7 64.3
VOC2007 50.7 52.4 643 521 51.6 499 746 739 91.5 85.0 91.0
SUN397 434 68.8 39.6 345 57.0 33.1  60.1 72.7 75.8 70.0 77.9
Place365 28.5 37.8 20.0 21.5 31.5 8.6 353 39.7 44.0 43.0 42.6
ImageNet-A 25.5 14.2 42.6 3.2 8.0 2.0 31.6 46.1 43.6 36.1 56.7
ImageNet-R 75.6 83.0 75.0 39.7 70.9 30.8 66.2 86.2 79.8 71.6 86.3
ObjectNet 434 514 40.3  20.6 31.6 7.5 49.2 74.8 39.6 55.8 62.2
Country-211 19.2 16.8 14.2 2.5 6.2 3.1 9.3 35.1 14.7 14.7 34.8
All Classification 42.8 47.8 403 270 38.8 21.8 472 60.7 61.2 56.0 67.6
VQA (10 tasks)

OK-VQA 7.5 11.5 2.4 8.7 12.7 8.9 28.0 56.6 69.0 73.3 67.9
A-OKVQA 3.8 3.3 1.5 3.2 2.9 5.9 11.6  50.0 54.4 56.7 56.4
DocVQA 4.0 5.3 4.2 2.6 3.0 1.7 126 81.3 52.0 78.5 90.3
InfographicsVQA 4.6 4.6 2.7 2.0 5.9 2.3 10.6 440 30.7 39.3 56.2
ChartQA 1.4 1.5 3.0 0.5 0.9 2.4 24 352 34.8 41.7 50.3
Visual7W 4.0 2.6 1.2 1.3 2.5 5.8 9.0 404 49.8 49.5 51.9
ScienceQA 9.4 10.2 7.9 6.8 52 3.6 233 473 42.1 45.2 55.7
VizWiz 8.2 6.6 2.3 4.0 1.7 2.6 259 540 43.0 51.7 52.8
GQA 41.3 52.5 57.5 9.7 43.5 7.8 413 654 61.2 59.0 62.1
TextVQA 7.0 10.9 1.0 33 4.6 3.2 189 83.1 62.0 79.0 83.5
Avg. 9.1 10.9 8.4 4.2 8.3 4.9 184 55.7 49.9 57.4 62.7
Retrieval (12 tasks)

VisDial 30.7 254 21.5 18.0 24.8 9.2 62.6 39.1 80.9 83.0 73.7
CIRR 12.6 15.4 15.1 9.8 39.1 6.1 65.7 41.6 49.9 61.4 54.9

VisualNews_t2i 78.9 74.0 51.0 481 50.7 135 457 512 75.4 74.2 71.7
VisualNews_i2t 79.6 78.0 524 135 21.1 8.1 534 649 80.0 78.1 83.4

MSCOCO_t2i 59.5 63.6 58.3 53.7 54.1 20.7 68.7 55.0 75.7 78.6 76.2
MSCOCO_i2t 57.7 62.1 55.0 20.3 40.0 14.0 56.7 59.1 73.1 72.4 73.6
NIGHTS 60.4 66.1 629  56.5 58.1 4.2 59.4 589 65.5 68.3 68.8
WebQA 67.5 62.1 58.1 554 43.0 177 763 829 87.6 90.2 88.1
FashionIQ 11.4 13.8 20.1 9.3 11.2 2.8 31,5 21.6 16.2 54.9 28.6
Wiki-SS-NQ 55.0 44.6 55.1 28.7 18.7 8.6 254 58.8 60.2 24.9 65.2
OVEN 41.1 45.0 56.0 39.5 1.6 5.9 73.0 67.6 56.5 87.5 71.3
EDIS 81.0 71.5 23.6 544 62.6 268 599 552 87.8 65.6 83.6
Avg. 53.0 52.3 31.6 339 35.4 11.5 565 54.7 67.4 69.9 71.0
Visual Grounding (4 tasks)

MSCOCO 33.8 34.5 46.4 28.9 22.1 10.8 427 59.0 80.6 76.8 85.0
RefCOCO 56.9 54.2 70.8 47.4 22.8 119 693 789 88.7 89.8 92.7

RefCOCO-matching 61.3 68.3 50.8 595 35.6 389 632 80.8 84.0 90.6 88.9
Visual7W-pointing ~ 55.1 56.3 70.1 520 234 143 735 712 90.9 71.0 92.3

Avg. 51.8 53.3 59.5 47.0 26.0 19.0 622 725 86.1 83.6 89.7
Final Score (36 tasks)

Al IND Avg. 37.1 39.3 32.3 25.3 31.0 149 435 572 67.5 59.1 72.4
All OOD Avg. 38.7 40.2 38.0 25.1 23.7 11.5 443 60.4 57.1 68.0 66.6
All Avg. 37.8 39.7 348 252 27.8 13.3 44.0 58.6 62.9 64.1 69.8

Table 7: Detailed results of zero-shot setting and supervised setting models on each dataset of MMEB (Jiang et al.,
2024b).
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